
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SPARC-RTL: STOCHASTIC PROMPT-ASSISTED RTL
CODE SYNTHESIS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) show promise in code generation yet struggle
with Hardware Description Languages (HDLs) such as Verilog, where models
often get stuck in flawed reasoning paths that block accurate synthesis and bug
fixing. We introduce Stochastic Prompt Assistance (SPA), a lightweight method-
ology that leverages LLM prompt sensitivity by injecting controlled, non-semantic
perturbations into prompts. This approach encourages exploration of diverse rea-
soning paths without requiring additional feedback loops. Implemented in the
SPARC-Debugger, our automated framework pairs SPA with hierarchical error-
pattern matching and achieves consistent gains on Verilog code-generation and
debugging benchmarks, including critical “0-to-1” unlocks where baseline mod-
els fail entirely. SPA thus provides a complementary and orthogonal mechanism
to existing decoding and refinement strategies, improving the reliability of LLMs
in HDLs and offering a principled path for broader application in high-precision
formal reasoning domains.

1 INTRODUCTION

Hardware Description Languages (HDLs) such as Verilog are foundational for digital circuit de-
sign, yet authoring and debugging RTL code remains a notoriously challenging endeavor. The
low-level, concurrent semantics of hardware make Verilog verbose and error-prone, leading to time-
consuming development cycles and costly iterative debugging Wang et al. (2025b); Rahman et al.
(2015). Critically, hardware bugs are immutable post-fabrication, rendering errors exceptionally ex-
pensive Makris et al. (2006). These challenges underscore a pressing need for AI-driven assistance
in RTL code synthesis and debugging.

Large Language Models (LLMs) have demonstrated impressive success in general-purpose code
generation (e.g., Google’s Gemini 2.5 Pro achieved ∼99% pass@1 on HumanEval PromptLayer
Blog (2025); Chen et al. (2021)). However, their effectiveness in the Verilog domain remains lim-
ited Thakur et al. (2024); Liu et al. (2023). Verilog’s strict syntax, concurrent semantics, and cryptic
compiler diagnostics often cause models to get stuck in flawed reasoning paths, producing persistent
and difficult-to-resolve errors. A notable instance of this phenomenon is the localization bottleneck,
where models repeatedly misidentify the true source of an error Bui et al. (2022). This tendency
is especially problematic in enterprise settings, where privacy constraints necessitate locally hosted
models; unfortunately, even the strongest open-source options (e.g., Llama 3.3) exhibit pronounced
performance gaps on complex RTL tasks. Together, these factors reveal a capability gap that calls
for methods which improve reliability under fixed inference budgets.

Concurrently, LLMs exhibit pronounced prompt sensitivity: small changes in phrasing can produce
dramatic performance swings, with differences of up to 45% observed Cao et al. (2024); Salinas
& Morstatter (2024). Rather than treating this sensitivity as a liability, we view it as an opportu-
nity. Our core methodology, Stochastic Prompt Assistance (SPA), leverages controlled, stochastic
perturbations of the input prompt to encourage exploration of diverse reasoning trajectories. For ex-
ample, on the CirFix task fsm full, Llama 3.3 improved from ∼40% success with a fixed prompt
to nearly 90% with SPA, and similar 0→ 1 unlocks recur across multiple tasks (Section 5.2). By
operating at the input level, SPA provides a lightweight diversification mechanism that is orthogonal
to decoding-time strategies such as temperature sampling Holtzman et al. (2020).
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To operationalize this methodology, we developed the SPARC-Debugger, an automated frame-
work for Verilog code synthesis and debugging that provides both a controlled testbed to isolate
SPA’s effect and a realistic workflow to demonstrate its practical usefulness. We position SPA not
as a monolithic competitor but as a modular, lightweight technique that is complementary to exist-
ing state-of-the-art frameworks such as AutoChip Thakur et al. (2023) and MEIC Xu et al. (2024).
The name SPARC stands for Stochastic Prompt-Assisted RTL Code Synthesis, reflecting its core
refinement loop: when a candidate fails, a hierarchical error-matching mechanism queries dynamic
Pattern (LP ) and Error (LE) Libraries using a tiered matching approach to refine a base prompt (p0).
SPA then generates perturbed variants of p0 for resubmission to the model. This cycle of targeted
prompt refinement, stochastic diversification, generation, and evaluation progressively unsticks the
model from brittle reasoning loops, enabling recovery of solutions that baseline prompting cannot
reach, thereby improving reliability in RTL debugging and synthesis.

Our primary contributions are: (1) We introduce Stochastic Prompt Assistance (SPA), a lightweight
input-level diversification method that leverages prompt sensitivity to expand explored reasoning tra-
jectories and help unstick models from brittle failure modes in RTL code generation and debugging.
(2) We design the SPARC-Debugger, a practical framework that integrates SPA with hierarchical
error-pattern matching inside an iterative refinement loop, intended both as a validation platform for
the methodology and as a pluggable component for existing HDL workflows. (3) We evaluate on
VerilogEval Liu et al. (2023) (generation) and CirFix Ahmad et al. (2022) (debugging) under fixed
decoding settings, observing pass@1 improvements in our setup and several 0 → 1 unlock cases.
Taken together, these contributions position SPA as a lightweight and complementary technique for
improving the robustness of LLM-based RTL code generation and debugging.

2 PRELIMINARY

2.1 PROMPT SENSITIVITY AND OUTPUT DIVERSIFICATION

Transformer-based Large Language Models (LLMs) are highly sensitive to input phrasing: even
small variations, such as token reordering or punctuation, can shift attention patterns and yield
markedly different outputs Vaswani et al. (2017). This “butterfly effect” of prompting has been
quantified to produce performance swings of up to 45% between minimally rephrased prompts Cao
et al. (2024); Salinas & Morstatter (2024).

To address this variability, prior work has explored two main directions. At the decoding level,
stochastic strategies such as temperature and nucleus sampling Holtzman et al. (2020) introduce
randomness during token generation, while reasoning-oriented approaches like chain-of-thought
prompting Wei et al. (2022) and self-consistency Wang et al. (2023) diversify reasoning by sampling
multiple trajectories and selecting answers by majority vote. At the input level, diversity is created
by reformulating prompts. Prompt ensembles Jiang et al. (2023) paraphrase task instructions, DiP-
PER Lau et al. (2024) generates varied templates, and multilingual prompting Wang et al. (2025a)
leverages cross-lingual variation. More advanced frameworks, including Self-Refine Madaan et al.
(2023) and Reflexion Shinn et al. (2023), employ iterative critique or memory-based reflection to
improve solutions across multiple rounds. These methods demonstrate the utility of diversification
but often require substantial sampling or auxiliary reasoning steps.

Our Stochastic Prompt Assistance (SPA) offers a different perspective. Instead of relying on decod-
ing randomness or complex revision loops, SPA applies lightweight syntactic perturbations at the
input level. This approach directly leverages structural sensitivity to broaden reasoning trajectories
while keeping inference costs fixed.

2.2 CHALLENGES IN LLM-BASED VERILOG CODE SYNTHESIS AND DEBUGGING

Despite advances in general-purpose code generation Chen et al. (2021), Hardware Description Lan-
guages (HDLs) such as Verilog remain a challenging domain. RTL tasks demand strict syntactic and
semantic precision, while error localization is often hampered by compiler feedback that is cryptic
or ambiguous. This difficulty is a well-documented obstacle in program repair and contributes to
models becoming stuck in flawed reasoning paths.
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Figure 1: Stochastic Prompt Assistance (SPA). From a base prompt p0, controlled noise injection
generates diverse variants, each evaluated by the LLM to expand solution space exploration. The
mechanism later integrates into the SPARC-Debugger framework.

Existing HDL-specific approaches illustrate these challenges. RTLFixer Tsai et al. (2023) addresses
syntax-level errors but struggles with deeper semantic bugs. VeriGen Thakur et al. (2024) and
VeriDebug Wang et al. (2024) integrate HDL-specific embeddings and fine-tuning, yet are limited
by generalization and context quality. CirFix Ahmad et al. (2022) applies genetic programming to
explore candidate patches but scales poorly with larger search spaces. Iterative refinement frame-
works such as AutoChip Thakur et al. (2023) and MEIC Xu et al. (2024) leverage compiler feedback
to guide repair, achieving higher success on modular tasks but often requiring many iterations and
failing when diagnostics are uninformative. Adapting general-purpose agents like FixAgent Lee
et al. (2024) to HDL remains difficult due to concurrency and domain-specific semantics.

In summary, prior work reflects two dominant paradigms: tool-based feedback, which depends
heavily on diagnostic quality, and diversification strategies, which often incur heavy iterative costs.
Both have shown partial success but leave open the need for lightweight mechanisms to expand
exploration under ambiguity. This motivates our proposed approach in the next section.

3 METHODOLOGY: STOCHASTIC PROMPT ASSISTANCE

Building directly on this motivation, we introduce Stochastic Prompt Assistance (SPA) as a distinct
input-level ensembling paradigm. Unlike semantic ensembling or multi-round reasoning strategies,
SPA employs controlled, low-level syntactic perturbations to “unstick” models from brittle reasoning
loops. This design enables exploration of diverse solution paths under fixed inference budgets, which
is particularly valuable for domains like Verilog debugging where models frequently get trapped in
flawed generative trajectories.

Formally, SPA can be described as a stochastic search process over perturbed prompt variants. Given
an initial task description p0, SPA generates an ensemble of N candidate prompts:

pi = p0 ⊕Ni, Ni ∼ D(S,L, Pos), i = 1, . . . , N, (1)

where ⊕ denotes the perturbation operator and D(S,L, Pos) specifies a distribution over symbol
set S, noise length L, and insertion position Pos. Each perturbed prompt pi is then submitted to the
LLM to produce a candidate solution yi. By evaluating this diversified set {yi}Ni=1, SPA increases
the likelihood that at least one candidate escapes flawed reasoning and aligns with the ground truth,
in contrast to N repetitions of the same unperturbed p0.

An overview of this process is shown in Figure 1. The cycle of perturbation, generation, and evalua-
tion constitutes the core of SPA. In the next subsection, we formalize the SPA hypothesis and detail
controlled perturbation strategies that underpin this methodology.

3.1 THE SPA HYPOTHESIS

The SPA Hypothesis is: Systematic injection of controlled noise into an LLM’s input prompt in-
duces meaningful variations in its attention patterns and generative pathways. This controlled per-
turbation encourages the LLM to explore different input segments (e.g., Verilog code) and consider
alternative reasoning paths, such as different error localizations for debugging or varied implemen-
tation strategies for code generation. As a result, such injection is hypothesized to increase the
probability of finding a successful solution within an ensemble of generated outputs by overcoming
single-prompt biases and limitations, without degrading outputs to uncontrolled randomness. Born
from our observations in Verilog debugging, this hypothesis frames controlled noise injection as a
principled mechanism for overcoming persistent failure modes in high-precision formal domains.
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3.2 NOISE TYPES FOR CONTROLLED PERTURBATION

SPA utilizes distinct noise types to perturb prompts, aiming for diverse yet plausible outputs by
shifting the LLM’s interpretation or focus. These ”noises” are alterations designed to achieve this,
not arbitrary data corruption. The injection position (Pos)—prepending, appending, or random
insertion (e.g., as comments)—is also a key parameter for evaluation.

Pure Random Noise (PRN) involves injecting tokens or characters with no direct semantic task rel-
evance at various positions (Pos). Generated from a broad character set S (e.g., the full ASCII table,
including all numbers, letters, and symbols), its length L can be a fixed range (e.g., 4-12 characters
like z9Q4$saP) or a percentage of the base prompt p0’s length. PRN introduces high local in-
put entropy to maximally perturb nearby contextual embeddings, potentially jolting the model from
sub-optimal reasoning. Due to its unpredictable nature, this type of noise is expected to provide a
wide search radius, but it also carries the risk of causing topic drift or model confusion, especially
if the noise intensity is too high or its placement is inappropriate.

Structured Random Noise (SRN). SRN introduces perturbations that, while random, adhere to
certain structural or syntactic conventions that the LLM is likely to recognize as ignorable padding
or non-instructional content. These noises can be placed at the beginning or end of the prompt, or
more commonly, inserted randomly as comments (e.g., // tmp 854921, /* ==== */) within
the prompt, for instance, between code blocks. Other forms include sequences restricted to random
digits or random punctuation marks only (from a restricted symbol set S, e.g., S ⊂ ASCIIsymbols
or S ⊂ ASCIInumbers), or the insertion of blank lines at syntactically safe positions. SRN subtly
alters token positions and sequence length, thereby changing contextual embeddings and potentially
attention patterns, without significantly harming readability or the LLM’s interpretation of the core
task, as LLMs typically discount such tokens. It aims for moderate diversity with a minimal risk of
invalid outputs.

Knowledge-Influenced Noise (KIN) injects semantically rich, plausible, in-domain content that is
deliberately task-irrelevant or offers a different contextual focus. This content is valid, not erro-
neous. Examples, inserted at any Pos (often as comments), include common comment sentences
from unrelated domains (e.g., // Know thyself.), or a short, commented-out Python function
for a Verilog task. KIN acts as a sophisticated contextual distractor, compelling the model to discern
relevance. It can prime latent LLM knowledge of different coding patterns or syntax, encouraging
exploration in a more informed subspace. However, the introduction of out-of-domain semantic con-
tent also risks creating a counterproductive cognitive load, and its effectiveness remains an empirical
question to be explored.

The distinct noise types (PRN, SRN, KIN) offer varied exploration strategies with inherent trade-
offs between scope and stability. This approach of generating diverse prompt variants aligns with
established prompt ensembling techniques Li et al. (2022); Jiang et al. (2023), where varied inputs
improve model reliability. SPA automates this diversity through controlled noise injection, aiming to
increase the likelihood of finding a correct solution within an ensemble, often evaluated by metrics
like pass@k Chen et al. (2021).

3.3 THEORETICAL BASIS AND CONNECTIONS

The efficacy of Stochastic Prompt Assistance (SPA) is hypothesized to derive from two core mech-
anisms that connect to broader concepts in LLM research.

3.3.1 PERTURBING ATTENTION AND INFERENCE PATHS VIA INPUT NOISE

At a fundamental level, noise injection mechanically impacts the self-attention mechanism of Trans-
formers Vaswani et al. (2017). An input prompt p0, represented by its token embeddings X , yields
Query (Q = XWQ), Key (K = XWK), and Value (V = XWV ) matrices. The attention calcu-

lation is Attention(Q,K, V ) = softmax
(

QKT

√
dk

)
V , where dk is the dimension of the key vectors.

Introducing noise Ni into p0 results in a perturbed embedding sequence X ′
i = Embed(p0 ⊕ Ni).

This alteration of X ′
i subsequently modifies the Query (Q′

i = X ′
iWQ) and Key (K ′

i = X ′
iWK)

matrices, directly changing the attention scores and thus redirecting the model’s focus.

In the context of Verilog debugging, we hypothesize that this attentional re-weighting is a crucial
mechanism for overcoming persistent failure modes. By altering the attention patterns, SPA can
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Figure 2: The SPARC-Debugger Framework for Verilog Error Diagnosis.

guide the model towards overlooked aspects of the code or error messages. While we do not isolate
fine-grained localization accuracy, the consistent 0→1 unlocks suggest SPA helps models escape
brittle reasoning loops under ambiguous diagnostics (Section 5.2). Each perturbed prompt pi effec-
tively samples a point near p0 on the input manifold, potentially activating different latent knowledge
within the LLM and compelling the model to follow varied inference paths. SPA can thus be con-
ceptualized as a form of Monte Carlo sampling over the prompt space to increase the probability of
finding a successful solution.

3.3.2 INPUT-LEVEL PERTURBATION: ORTHOGONALITY AND SYNERGY WITH DECODING
STRATEGIES

SPA differs fundamentally from decoding-level randomization strategies. Techniques such as tem-
perature sampling (P (token|context) ∝ exp(logit/Ts)), top-k, and top-p sampling Holtzman et al.
(2020) operate on the output probability distribution derived from a single, fixed prompt. In con-
trast, SPA operates at the input level, generating multiple distinct prompt contexts pi before decoding
begins for each. Each pi then conditions a unique generative process, making SPA an orthogonal
approach to these decoding methods.

This orthogonality suggests a potential for synergy. For example, each SPA-generated pi could be
decoded using stochastic strategies like temperature sampling (Ts > 0), yielding multiple outputs
(e.g., yi,a, yi,b, . . . ) for each distinct input. This hierarchical approach—SPA at the prompt level,
stochastic methods at decoding—can enable a more thorough exploration of the solution space than
either technique alone, as SPA’s input modulation influences token probabilities from the start of the
generative path.

With the SPA methodology established, the subsequent section introduces the SPARC-Debugger,
a framework applying these principles to Verilog automated debugging and code generation.

4 THE SPARC-DEBUGGER FRAMEWORK

The SPARC-Debugger is the automated framework we designed to instantiate and evaluate SPA
in practice. Beyond serving as a validation platform, it also contributes a structured methodology for
integrating prompt perturbations with compiler-guided refinement in the Verilog domain. Specifi-
cally, it embeds SPA into a closed-loop process that couples hierarchical error-pattern matching with
prompt diversification, enabling systematic exploration and correction of RTL errors.

This framework thus plays a dual role: (1) it provides a concrete instantiation of SPA, showing how
lightweight input perturbations can be operationalized in realistic HDL workflows, and (2) it offers
an experimental testbed for rigorously measuring SPA’s impact under controlled feedback condi-
tions. The following subsections detail its components, beginning with compilation verification and
hierarchical error matching.

4.1 COMPILATION VERIFICATION: COMBINING HIERARCHICAL MATCHING WITH SPA

This initial stage of the SPARC-Debugger focuses on resolving syntax and structural errors in
Register Transfer Level (RTL) code, such as missing semicolons or mismatched begin/end blocks.
This stage, depicted in Figure 2(a), automates error correction by employing SPA to improve LLM-
based code refinement.

The process begins with Error Detection and Parsing: an HDL compiler flags an error in the Hard-
ware Design (HD), generating Error Logs. A Rule-Based Error Message Splitter then segments these
diagnostic messages for detailed inspection. Subsequently, Hierarchical Library-Based Error
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Matching is performed. Parsed error logs, containing an error signature Enew = (ec, em, el, eids)
(error code, message, line, identifiers), are matched against a pre-constructed Pattern Library (LP )
for recurring structural faults and an Error Library (LE) for specific, known syntax issues. Cru-
cially, both LP and LE are designed to be dynamic; they become increasingly comprehensive as
more diverse errors are processed. This continuous learning enhances their utility over time. The
matching algorithm is hierarchical:

1. Tier 1 (Exact Error Code Matching): The error code ec from Enew is directly matched
against error codes ck within entries LE,k = (ck, tk, sk) in the Error Library LE . A match
occurs if ec = ck.

2. Tier 2 (Regex Pattern Matching): If Tier 1 yields no match or ec is generic, the error
message em is compared against predefined regular expression patterns Rj stored in the
Pattern Library LP . A match is found if RegexMatch(em, Rj) = True.

3. Tier 3 (TF-IDF Cosine Similarity Matching): For errors unresolved by prior tiers, the
new error message em is compared with textual descriptions tk in libraries (LE ,LP ) Man-
ning et al. (2008). Both em and tk are converted into TF-IDF vectors, V⃗ (em) and V⃗ (tk), re-

spectively. The Cosine Similarity is then computed as Simcos(em, tk) =
V⃗ (em)·V⃗ (tk)

||V⃗ (em)||·||V⃗ (tk)||
.

A fuzzy match is identified if this similarity score exceeds a predefined threshold θsim cos.

If a match is identified, an Information Extractor isolates relevant details. These details, combined
with prompt templates, are used to construct a targeted base prompt p0. If no library-guided match
is found, a general base prompt p0 is constructed directly from the error log. This base prompt
p0 then proceeds to the LLM Refinement stage. Here, the SPARC module implements the SPA
methodology by generating N prompt variants pi from p0 using selected noise injection strategies
(PRN, SRN, KIN). Each variant pi is sent to an LLM agent, yielding N candidate code corrections
yi. These candidates then undergo Selection, Iteration, and Loop Control. All yi are recompiled.
If one or more compile successfully, a selection strategy determines the refined HD. If all fail, the
shortest error log not indicating compiler abandonment is chosen to construct a new p0 for another
refinement iteration. This loop is constrained by a maximum iteration count (Maxcompile).

4.2 FUNCTIONAL VALIDATION: SPA-DRIVEN HYPOTHESIS AND SOLUTION GENERATION

Once the HD is syntactically correct, this phase evaluates its functional correctness using a Testbench
(TB), as illustrated in Figure 2(b). This phase employs SPA when LLM intervention is needed to
resolve functional issues. The process initiates with a TB-HD Interface Check. After interface
resolution, the Simulation Tool applies test vectors to the HD. If the TB simulation fails, the dis-
crepancies trigger an error analysis. A base prompt p0 is formulated using the collected failure
information. The SPARC module then generates Na prompt variants from p0. These variants guide
LLM agents in inferring potential error causes, ultimately yielding a set of root cause hypotheses,
H = {h1, . . . , hNa}.

Subsequently, for each hypothesis hk ∈ H , a targeted base prompt p′0,k is created. The SPARC
module generates Ns variants p′k,l from p′0,k. LLM agents then use these variants to produce Ns

candidate HDL modifications (fixes), yk,l. These candidates first undergo screening for compil-
ability. Successfully compiled candidates are re-simulated with the full TB. If a candidate passes
all test cases, it is selected as the validated solution. If only partial improvements are achieved,
the outcomes inform the base prompt for a subsequent iteration. This functional debugging loop is
constrained by Maxcompile. A Hardware Design that successfully passes all simulation vectors is
considered validated.

4.3 EXTENDING THE FRAMEWORK FOR VERILOG CODE GENERATION

To evaluate the versatility of the SPA methodology, we extend the application of the
SPARC-Debugger beyond debugging to Verilog code generation. From a high-level design spec-
ification, the SPARC module generates diverse prompt variants to elicit varied initial Verilog drafts
from LLMs. These drafts then undergo iterative refinement using the SPARC-Debugger’s compi-
lation and runtime validation loops, automatically correcting syntactical, structural, and functional
errors to transform initial outputs into validated hardware designs. The empirical performance of
this SPA-enhanced code generation approach is detailed in the evaluation section.
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5 EVALUATION

To validate the SPA Hypothesis and assess the efficacy of our Stochastic Prompt Assistance (SPA)
methodology, this section details the experimental setup, evaluation framework, and results for Ver-
ilog debugging and code generation tasks.

5.1 EXPERIMENTAL SETUP

Models and Deployment. Our experiments utilized a diverse set of Large Language Models
(LLMs), encompassing both closed-source models like OpenAI’s GPT-4o and GPT-4o-mini Ope-
nAI (2024), as well as open-source models such as Meta’s Llama 3.3 Meta AI (2024) and Alibaba
Cloud’s Qwen3 Yang et al. (2025). To ensure fair comparisons, all models were run with consistent
decoding parameters (e.g., temperature 0.6). The experiments were conducted on a server equipped
with eight NVIDIA H200 GPUs. We utilized vLLM Kwon et al. (2023) and Ollama Ollama Team
(2025) to deploy the local open-source models.

Benchmarks. We evaluate on two complementary benchmarks for Verilog tasks. For debugging,
we adopt the CirFix dataset Ahmad et al. (2022), which consists of 32 defect scenarios across 11
Verilog projects. Consistent with prior work Ahmad et al. (2022); Laeufer et al. (2024), we conduct a
focused evaluation on a subset of seven modules that capture the lightweight to medium-complexity
designs where most common bug patterns (e.g., incorrect assignments, missing resets, sensitivity
list errors) occur. This setting provides a controlled yet meaningful comparison, while leaving large
IPs (e.g., i2c, sha3) to future work. Each defect is accompanied by a functional testbench for
correctness checking.

For Verilog code generation, we adopt the VerilogEval benchmark Liu et al. (2023), which consists
of 156 tasks collected from HDLBits. The tasks span from simple combinational circuits to complex
finite state machines, and evaluate both Code Completion and Spec-to-RTL.

Together, these two benchmarks offer a complementary and standardized basis for assessing LLMs
on both bug fixing and synthesis in RTL.

Methodology and Baselines. Our evaluation is grounded in a fair comparison under an equal
computational budget. The baseline consists of an LLM using a standard, unperturbed prompt with
stochastic decoding. To ensure robustness, all reported results are the average success rate over
five independent runs. We focus on the single-turn, zero-shot pass@1 metric Chen et al. (2021) to
directly measure the impact of each noise strategy. This setup is designed to precisely isolate SPA’s
contribution rather than to compete with multi-turn SOTA frameworks.

SPA Configurations. We evaluated the three noise types defined in our methodology: Pure Ran-
dom Noise (PRN) from the full ASCII set, Structured Random Noise (SRN) using pure symbols,
and Knowledge-Influenced Noise (KIN) with 20 predefined Verilog-irrelevant comment sentences.
Noise was injected by prepending (Front), appending (End), or inserting into a random line as a
comment (Rand). Noise lengths (L) were explored as percentages of the base prompt’s length.

5.2 EVALUATION FOR VERILOG DEBUGGING

This subsection presents the empirical results of applying the SPA methodology to Verilog debug-
ging tasks from the CirFix dataset.

SPA Boosts Debugging Success Across Models. The results in Figure 3 consistently demonstrate
SPA’s ability to improve debugging performance. For Llama 3.3, a capable but not top-tier model,
the baseline success rate of approximately 63% was significantly improved by several SPA strate-
gies, with PRN+End achieving a peak performance of around 73%—a 10% absolute improvement.
The more powerful models also benefit: GPT-4o-mini shows a notable 7% absolute gain with the
same PRN+End strategy, while GPT-4o, already very strong on this benchmark, still registers a
smaller but positive improvement. These results suggest that SPA is broadly beneficial, though its
relative impact is more pronounced for models with greater headroom for improvement. The in-
teraction between SPA and high-capability models is more nuanced, highlighting the importance of
selecting perturbation strategies thoughtfully.

SPA Outperforms Representative Repair Frameworks. To provide context for SPA’s performance,
Figure 4 compares its results against several representative repair baselines: CirFix Ahmad et al.
(2022), RTL-Repair Laeufer et al. (2024), and GPT-4 VarB Ahmad et al. (2024). We stress that
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Figure 3: Overall success rate (pass@1)
for Verilog debugging across different
SPA strategies on Llama 3.3, GPT-4o-
mini and GPT-4o.
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Figure 4: Task-level success rate (pass@1) on the CirFix
debugging benchmark, comparing SPA-enhanced LLMs
with representative repair frameworks (illustrative, not
strictly comparable).

this comparison is illustrative rather than a strict benchmark: CirFix and RTL-Repair are domain-
specific repair systems, while GPT-4 VarB is a prompting-based study under different experimental
settings, whereas our results are LLMs enhanced by SPA. Despite some variance on individual
tasks, the overall row shows a consistent trend: all three SPA-enhanced models exceed the baselines
(baselines ≈0.58/0.70/0.64 vs. Llama 3.3 +SPA ≈0.73, GPT-4o +SPA ≈0.82, GPT-4o-mini +SPA
≈0.82). This indicates that SPA can elevate general-purpose LLMs to be competitive with, and in
some cases surpass, specialized repair tools. It highlights SPA’s role as a lightweight and comple-
mentary enhancement to existing workflows rather than a monolithic replacement. All systems are
evaluated under their standard settings reported by their respective papers; we do not enforce equal
tool-call budgets across heterogeneous frameworks.
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Figure 5: Task-level pass@1 success rate for Llama 3.3
on CirFix debugging benchmark.

SPA Breaks Persistent Failure Modes. A
more granular view for Llama 3.3 in Fig-
ure 5 shows where SPA’s value is most ev-
ident. While SPA configurations remain
strong on tasks where the baseline already
succeeds (e.g., decoder, mux), their ad-
vantage is clearest on modules where the
model gets stuck. The most striking exam-
ple is the sdram task: baseline prompting
yields 0% pass@1, indicating the model
is trapped in a flawed generative trajectory, whereas multiple SPA strategies break this failure
mode—PRN+End alone reaches 20% pass@1. This ”0-to-1” unlock phenomenon is not unique
to a single model; for instance, SPA also raises GPT-4o-mini’s success on lshift reg from 0%
to 12% (see Appendix A for full per-model results).

These task-wise recoveries support the SPA Hypothesis that controlled syntactic perturbations can
jolt a model out of brittle reasoning loops. In practical workflows, this translates into substan-
tial ensemble gains: if an ensemble of 10 attempts used the best-performing strategy (PRN+End),
the estimated pass@10 on sdram would reach approximately 89.3%. In this evaluation, we de-
liberately isolate a single SPA turn to measure its contribution precisely; running the full iterative
SPARC-Debugger would likely obscure the specific benefit of SPA because the framework’s ad-
ditional components solve many cases outright. Nevertheless, these results suggest that embedding
SPA-style ensembles within the full debugger can further elevate success on the most challenging
debugging tasks.

5.3 EVALUATION FOR VERILOG CODE GENERATION

This subsection evaluates SPA’s efficacy for Verilog code generation on the VerilogEval benchmark.

Optimal SPA Strategy is Task- and Model-Specific. The impact of SPA on code generation, as
detailed in Table 1, reinforces that the optimal perturbation strategy is highly dependent on the
specific model and task. For instance, PRN+Front works best for Qwen3-32B, while GPT-4o-mini
benefits most from SRN+End. This contrast with debugging highlights SPA’s different role: in
debugging, SPA breaks persistent failure modes; in code generation, where baseline performance
is already strong, its role is to expand the solution space with a portfolio of diverse candidates.
This underscores the value of the full SPARC-Debugger, which can leverage ensembles of high-
performing SPA variants instead of a single, fixed strategy. Since many individual strategies already
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How Often Noise Improves Accuracy Over Original

Figure 6: (a) How often the different SPA strategies improve accuracy over Original prompt on
Qwen3:32B. (b) Ablation on noise length L for SRN+End on GPT-4o-mini. (c) Ablation on tem-
perature for the base prompt on the same task.

Table 1: Pass@1 success rate for VerilogEval code generation tasks under different prompt-noise
strategies with different LLMs. Bold numbers mark the best score of the row.

Task Model Original PRN + End PRN + Front SRN + End SRN + Front KIN + Rand

Code-Comp GPT-4o-mini 0.769 0.762 0.768 0.785 0.762 0.754
Code-Comp Llama 3.3 0.750 0.708 0.703 0.739 0.684 0.692
Code-Comp Qwen3-32B 0.812 0.812 0.829 0.707 0.812 0.608
Spec-to-RTL Qwen3-32B 0.781 0.769 0.800 0.744 0.793 0.657

yield high success rates (> 0.75), combining them in the debugger’s iterative loop further raises the
probability of finding a correct solution.

SPA as an Orthogonal and More Effective Exploration Method. Deeper insight into SPA’s utility
is provided in Figure 6. The analysis in Figure 6(a) shows that SPA strategies often succeed on
Qwen3-32B tasks where the baseline fails, improving accuracy on approximately 30–33% of Code
Completion cases and over 25% of Spec-to-RTL tasks. This highlights SPA’s ability to generate
alternative reasoning paths that the original prompt cannot access, making it an orthogonal com-
plement to standard prompting. Further ablation on GPT-4o-mini (Figures 6(b,c)) reveals that SPA
consistently outperforms conventional decoding-level randomness. Specifically, SRN+End achieves
its peak performance at a moderate injection length (L ≈ 0.3), with a robust range of 0.1 ≤ L ≤ 0.5
where performance is reliably enhanced. In contrast, adjusting decoding temperature alone reaches
a lower peak (about 78.3%) and exhibits unstable variance. This direct comparison confirms that
SPA provides a distinct and more controllable exploration dimension, yielding more consistent gains
than sampling-based diversity.

Syntactic Noise Outperforms Semantic Noise. Our evaluation also clarifies why syntactic perturba-
tions succeed where semantic ones fail. As shown in Figures 3 and Table 1, Knowledge-Influenced
Noise (KIN) consistently underperforms. Injecting task-irrelevant but semantically meaningful to-
kens distracts model attention and degrades output quality Vaswani et al. (2017). This contrast
reinforces the SPA Hypothesis: lightweight syntactic noise broadens reasoning trajectories without
introducing misleading semantics, whereas semantic noise destabilizes the generation process.

Practical Lessons Learned. Taken together, these ablations provide concrete guidance: (1) syntactic
perturbations (PRN, SRN) are the most reliable choices; (2) injecting noise at 10–30% of prompt
length strikes the best balance between diversity and stability; and (3) SPA serves as an orthogonal,
budget-friendly complement to decoding randomness, making it broadly applicable for boosting
code generation tasks under fixed inference constraints.

6 CONCLUSION

This work introduced and validated Stochastic Prompt Assistance (SPA), a lightweight, input-
level methodology that leverages an LLM’s prompt sensitivity to diversify reasoning trajectories.
Our empirical results across Verilog debugging and code generation benchmarks show that injecting
controlled, non-semantic perturbations consistently yields pass@1 gains and, critically, achieves
0 → 1 unlocks where baseline models fail entirely. We further demonstrate that SPA serves as a
complementary and orthogonal enhancement to decoding-time sampling and iterative refinement
strategies, offering a computationally efficient means to ”unstick” models from brittle trajectories.
These findings validate the practical utility of the SPARC-Debugger and suggest that controlled
input perturbation is a principled and promising method for improving the reliability of LLMs in
HDLs, with potential extensions to other high-precision formal reasoning domains.
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ETHICS STATEMENT

This work does not involve human subjects, personally identifiable information, or sensitive user
data. All experiments are conducted on publicly available datasets (VerilogEval and CirFix), which
have been previously released for research use. Our contributions are methodological and algorith-
mic; we do not foresee direct negative societal impacts beyond the general risks associated with
code-generation systems. We follow the ICLR Code of Ethics in ensuring integrity, fairness, and
transparency throughout the research.

REPRODUCIBILITY STATEMENT

We ensure reproducibility by using two publicly available benchmarks, VerilogEval and Cir-
Fix, described in Sections 5.2 and 5.3. Our methodology (SPA and the SPARC-Debugger)
is detailed in Section 3, with ablations in Section 5.3 clarifying parameter choices. An
anonymous GitHub repository is available at https://anonymous.4open.science/r/
Noise-Injection-to-LLM-BBED, which contains source code and a README with usage
instructions to support independent verification.
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Figure 7: Task-level pass@1 success rate for GPT 4o on CirFix debugging benchmark.
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Figure 8: Task-level pass@1 success rate for GPT 4o-mini on CirFix debugging benchmark.

Our analysis of these models yields two primary insights:

Effectiveness on Strong Baselines. For a high-performing model like GPT-4o, which already
achieves a baseline success rate of approximately 80%, the best SPA strategy (PRN+End) further
improves the overall performance to 81%. This demonstrates that even on highly capable models,
SPA can provide a marginal but valuable performance gain.

Crucial Role in Overcoming Failure Modes. The value of SPA is most pronounced in its ability to
break persistent failure modes. This is clearly demonstrated in the GPT-4o-mini results. For the
challenging lshift reg task, the baseline model completely fails, achieving a 0% success rate.
However, the PRN+End strategy successfully overcomes this impasse, achieving a 12% success
rate. This ”0-to-1” improvement underscores SPA’s core function: it is not merely a performance
booster but a critical exploration mechanism that can unlock solutions inaccessible to the standard
prompting approach.

We also note that certain SPA variants, particularly those introducing more semantic noise (e.g.,
KIN+Rand), can sometimes result in a slight performance decrease compared to the strong baseline.
This is consistent with our hypothesis that SPA functions by perturbing the model’s reasoning path.
When a model’s default path is already highly effective, some perturbations can naturally be less
optimal. This reinforces the view of SPA as a portfolio of diverse strategies; its strength lies in the
ensemble’s ability to significantly increase the probability of finding a correct solution, especially
on the most difficult tasks where the baseline model is stuck.

B LLM USAGE

Large Language Models (LLMs) were used as research tools during this project. Specifically, they
assisted in preliminary exploration of prompting behaviors and in limited drafting support for writ-
ing. However, all technical ideas, experiments, analysis, and final writing decisions were made by
the authors. No LLM is considered a contributor to the research.
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