
Brax - A Differentiable Physics Engine for Large
Scale Rigid Body Simulation

C. Daniel Freeman
Google Research

Erik Frey
Google Research

Anton Raichuk
Google Research

Sertan Girgin
Google Research

Igor Mordatch
Google Research

Olivier Bachem
Google Research

Abstract

We present Brax, an open source library for rigid body simulation with a focus on
performance and parallelism on accelerators, written in JAX. We present results
on a suite of tasks inspired by the existing reinforcement learning literature, but
remade in our engine. Additionally, we provide reimplementations of PPO, SAC,
ES, and direct policy optimization in JAX that compile alongside our environments,
allowing the learning algorithm and the environment processing to occur on the
same device, and to scale seamlessly on accelerators. Finally, we include notebooks
that facilitate training of performant policies on common OpenAI Gym MuJoCo-
like tasks in minutes.

Figure 1: The suite of examples environments included in the initial release of Brax. From left to
right: ant, fetch, grasp, halfcheetah, and humanoid.

1 Summary of Contributions

Brax trains locomotion and dexterous manipulation policies in seconds to minutes using just one
modern accelerator. Brax achieves this by making extensive use of auto-vectorization, device-
parallelism, just-in-time compilation, and auto-differentiation primitives of the JAX[1] library. In
doing so, it unlocks simulation of simple rigidbody physics systems in thousands of independent
environments across hundreds of connected accelerators. For an individual accelerator, Brax reaches
millions of simulation steps per second on environments like OpenAI Gym’s MuJoCo Ant[2]. See
Sec. 6 for more details, or our Colab[3] to train a policy interactively.

The structure of the paper is as follows: we first provide motivation for our engine in Sec. 2. In
Sec. 3, we describe the architecture of Brax, starting from the low level physics primitives, how they
interact, and how they can be extended for practitioners interested in physics based simulation. In
Sec. 4, we review our ProtoBuf environment specification, and detail how it can be used to construct
rich physically simulated tasks, including the suite of tasks bundled in this initial release. In Sec. 5,
we tour some of the reinforcement learning algorithms bundled with Brax. In Sec. 6, we catalog
scaling behavior of Brax on accelerators, performance comparisons between Brax and MuJoCo on
OpenAI Gym-style learning problems, and report Brax’s engine fidelity on a benchmarking task.

35th Conference on Neural Information Processing Systems (NeurIPS 2021) Track on Datasets and Benchmarks.



In Sec. 7, we demonstrate how environment differentiability can be used to dramatically improve
algorithm sample complexity on a simple task. Finally, in Sec. 8, we discuss the limitations and
possible extensions of our engine.

2 Motivation

The reinforcement learning community has made significant progress on the study and control
of physically simulated environments over the past several years. This progress stems from the
confluence of strong algorithmic techniques [4–9] with accessible simulation software [10–14]. On
the algorithmic side, model-free optimization techniques like proximal policy optimization (PPO)[6]
and soft actor critic methods (SAC)[5] have exploded in popularity and can easily solve many of
the “hard” control problems of the previous decade. On the simulation side, practitioners have the
choice of a variety of engine backends to power their study of simulated environments, including
MuJoCo[10], pybullet[15], and physX, among many others, many of which are differentiable[16–
22, 14].

While these engines and algorithms are quite powerful, and have provided the firmament of algorith-
mic innovation for many years, they do not come without drawbacks. Reinforcement learning, as
it is practiced, remains prohibitively expensive and slow for many use cases due to its high sample
complexity: environments with only hundreds of dimensions of state space require millions to billions
of simulation steps during RL exploration. As environments increasingly require interactive physics
calculations as part of the environment step, this problem will only grow worse[23–25].

While some progress has been made to lower this sample complexity using off-policy algorithms[8, 26–
28], RL systems instead frequently address sample complexity by scaling out the environment
simulation to massive distributed systems. These distributed simulation platforms yield impressive
RL results at nearly interactive timescales[29–32], but their hardware and power costs make them
inaccessible to most researchers.

The design of the simulation engine contributes to this inaccessibility problem in three ways:

First, most simulation engines in use today run on CPU, while the RL algorithm runs on GPU or
TPU, in another process or another machine. Latency due to data marshalling and network traffic
across machines becomes the dominant factor in the time it takes to run an RL experiment.

Second, most simulation engines are black boxes: they do not offer a gradient for the sampled
environment state, which makes them suitable only for model-free RL approaches. This lack of
differentiability forces the researcher to use slower, less efficient optimization methods.

Finally, most simulation engines are black boxes in another way: they are either closed source, or
built on an entirely different technical stack than the reinforcement learning algorithms. This lack of
introspectability not only harms productivity by limiting rapid iteration and debugging, but it prevents
researchers from understanding the relationship between the environment’s state and action space,
which is often critical to guiding new RL research.

We submit Brax as a proposed solution to all three problems at once. Brax puts a physics engine
and RL optimizer together on the same GPU/TPU chip, improving the speed/cost of RL training by
100-1000x. It is differentiable, opening the door to new optimization techniques. And it’s an open
source library that is packaged to run in Colabs, so that anyone can do RL research for free.

3 Using Brax: The core physics loop

Brax simulates physical interactions in maximal coordinates[33], where every independent entity
in a scene that can freely move is tracked separately. This data—position, rotational orientation,
velocity, and angular velocity—is typically the only data that changes dynamically in the course of a
simulation. All other dynamical relationships, like joints, actuators, collisions, and integration steps
are then built as transformations on this fundamental state data. This is codified in the data primitive
qp, implemented as a flax[34] dataclass, and named whimsically after the canonical coordinates q
(position) and p (momentum) that it tracks. These qp datastructures thus store position, quaternion,
velocity, and angular velocity data. To make vectorization easy, qps have leading batch dimensions
for the number of parallel scenes as well as the number of bodies in a scene. For example the shape

2



of the position data for 4 parallel scenes with 10 bodies per scene would be [4, 10, 3]—4 scenes, 10
bodies, and 3 spatial dimensions.

def pseudo_physics_step(qp, action, dt):
qp = kinematic_integrator.apply(qp, dt)
for jo in joints:

dpj += jo.apply(qp)
for ac in actuators:

dpa += ac.apply(qp, action)
for co in colliders:

dpc += co.apply(qp)
qp = potential_integrator.apply(qp, dpj + dpa, dt)
qp = collision_integrator.apply(qp, dpc)
return qp

Algorithm 1: Pseudocode for the structure of a physics step in Brax. Impulsive updates (dpi) are
collected in parallel for each type of joint, actuator, and collider. These updates depend only on
the dynamical state data for the system—the qp—which stores position, quaternion, velocity, and
angular velocity data for all parts in the system. Integrator transformations then advance time by
applying these impulses to the qp.

A physically simulated object generally includes extra data, thus we bundle other information—
masses, inertias, dimensions of objects, etc.—in abstractions associated with particular qps. These
abstractions are joints, actuators, and colliders. Each of these abstractions has its own apply method
that calculates an impulsive update (δp) based on the current state of the qp data, and optionally a
user-defined action in the case of actuators:

δp = Brax_abstraction.apply(qp)

To complete the physics step, Brax then sums up all of the differential, impulsive updates to qp
data in the course of a single short timestep, and transform the system state via a symplectic Euler
update (extensions to higher order integrators are straightforward, but see 8 for more details). These
integrator functions return an update to the state data directly:

qp′ = Brax_integrator.apply(qp)

Throughout, we parallelize wherever possible, across actuators, joints, colliders, and even entire
simulation scenes. See Alg. 1 for pseudocode for the structure of this loop, or [35] for the code of the
loop. An overarching system class handles the coordination and bookkeeping of all of these updates
and physical metadata. This class also provides a way to perform a single simulation step via the step
function, which advances the state data by δt:

qpt+δt = Brax_system.step(qpt, actions, δt)

where actions are any torques or target angles needed by any actuators in the system.

Modifying or extending this control flow is as simple as implementing a new Brax transformation
that conforms to these structures, and then appropriately inserting this transformation in the physics
step function.

In order to better visualize and explore Brax’s core physics loop, please see our basics Colab [36].

4 Using Brax: Creating and evaluating environments

Brax provides an additional abstraction layer for interacting with physically simulated scenes. In Sec.
4.1, we describe the ProtoBuf specification for defining Brax systems—i.e., the lowest level data that
describes any physics constraints in a system. Next, In Sec. 4.2, we motivate the env class, which
allows practitioners to construct gym-like decision problems on top of Brax systems. Finally, we
discuss the environments that have been prepackaged with Brax.

3



4.1 System specification

Our ProtoBuf text specification allows a user to define all of the bodies in a scene, how they are
connected to each other via joints, as well as any actuators or colliders between objects, pairwise.
For any tree of bodies connected by joints, Brax’s system class will automatically determine the
position and rotation of the qp that places each body in a valid joint configuration through the
system.default_qp method.

Reminiscent of, e.g., MuJoCo’s xml-based system definition, users can define systems in text, or
they can define systems programmatically. We provide an example configuration that defines a joint
between a parent and child body in Appendix A, both in the pure text form, and the programmatic form.
Similar configuration files define every system in the Brax repo within each respective environment
file, e.g. [37]. See our introductory Colab notebooks for an interactive tour of both of these apis.

4.2 Gym-like environments

For sequential decision problems, we must track extra metadata beyond what is necessary for a
physics update. We provide an env class for handling book-keeping of any initializing, resetting,
observing, acting, or reward function defining required to fully specify a sequential decision problem.
We also provide a wrapper around this class to interface directly with it as an OpenAI gym-style
interface.

To illustrate the versatility of Brax as an engine, we include and solve several example environments
in our initial release: MuJoCo-likes (Ant, Humanoid, Halfcheetah), Grasp (a dexterous manipulation
environment), and Fetch (a goal-based locomotion environment). See Table 1 for the dimension data
for these environments.

Env Name Obs Dim Act Dim Type
Halfcheetah 25 7 continuous

Ant 87 8 continuous
Humanoid 299 17 continuous

Grasp 139 19 continuous
Fetch 101 10 continuous

Table 1: Observation and action space data for the environments included in Brax.

4.2.1 MuJoCo Gym-Likes

The reinforcement learning and control communities have used the OpenAI Gym MuJoCo tasks
as benchmarks for developing algorithms for the past several years. While these tasks are well-
understood, and essentially solved, we provide our own fairly faithful reconstructions of three of
these environments as a baseline point of comparison to help ground practitioner expectations. Owing
to subtle engine differences, these environments are not perfectly identical to the MuJoCo scenes on
which they are based, and we call out major differences in Appendix E.

4.2.2 Grasp

Dexterous manipulation tasks have exploded in popularity as algorithmic and hardware advances have
enabled robots to solve more complicated problems. Grasp is a simple pick-and-place environment,
where a 4-fingered claw hand must pick up and move a ball to a target location. We include this
environment primarily as a proof-of-concept to demonstrate that the contact physics of our engine
are sufficient to support nontrivial manipulation tasks. For a representative sample trajectoy of a
successful policy, see Fig. 7 in Appendix B.

4.2.3 Fetch

We performed extensive experimentation on a variety of goal-directed locomotion tasks. Fetch
represents a generally stable environment definition that is able to train a variety of morphologies to
locomote within 50 million environment frames. For this release, we include a toy, boxy dog-like
quadruped morphology as the base body, but it is straightforward to modify this scene for new body
morphologies.

4



5 Using Brax: Solving locomotion and manipulation problems

To train performant policies on the environments included in this release and interactively evaluate
them, see our training Colab[3].

5.1 Learning Algorithms Bundled with Brax

Brax includes several common reinforcement learning algorithms that have been implemented to
leverage the parallelism and just-in-time-compilation capabilities of JAX. These algorithms are:

• Proximal Policy Optimization (PPO) [6]
• Soft Actor Critic (SAC) [4]
• Evolution Strategy (ES) [32]
• Analytic Policy Gradient (APG)

Each algorithm is unique in some respects. PPO is an on-policy RL algorithm, SAC is off-policy, ES
is a black-box optimization algorithm, and APG exploits differentiability of the rewards provided
by the environment. This breadth of algorithmic coverage demonstrates the flexibility of Brax, as
well as its potential to accelerate research and reduce costs. For this work, we focus our experimental
analysis on PPO and SAC (see, e.g., Sec 6), and defer analysis of ES and APG to future work.

5.1.1 Proximal Policy Optimization (PPO)

In order to capture all benefits of a JAX based batched environment that could run on an accelerator(s)
we built a custom implementation of PPO. In particular the environment data (rollouts) are generated
on an accelerator and subsequently processed there by an SGD optimizer. There’s no need for this
data to ever leave the accelerator nor is there any need for context switches between various processes.
The whole training loop (env rollouts + SGD updates) happens within a single non-interrupted jitted
function.

The training proceeds as follows:

• the batch is split evenly between every available accelerator core and environment rollouts
are collected

• normalization statistics are computed based on this batch, stats are synced between all cores
and then observations are normalized

• each accelerator core splits the batch into an appropriate number of mini batches for which
gradient updates are computed, synced between all cores, and then applied synchronously

The performance/throughput of the algorithm heavily depends on the hyperparameters (e.g. batch
size, number of minibatches, number of optimization epochs). We noticed that for the best hyperpa-
rameters, our implementation of PPO is efficient enough that the primary bottleneck comes from the
environment(e.g., 75% time goes to running the env for Ant), even though the environment itself is
quite fast.

5.1.2 Soft Actor Critic (SAC)

Unlike PPO, SAC uses a replay buffer to sample batches from. In order to use the whole potential of
Brax we implemented a custom SAC with a replay buffer living completely on an accelerator. This
allowed the whole training procedure to be compiled into a single jitted function and run without any
interruptions. The training roughly proceeds as follows:

• each available accelerator core runs the environment for a few steps and adds this data to an
individual per-core replay buffer

• normalization statistics are computed based on the newly generated data, stats are synced
between all cores

• several SGD updates are performed, where each accelerator core samples its part of a batch
from its own replay buffer, computes gradient updates, and synchronizes the final update
with other cores

5



SAC is much more sample efficient than PPO, thus we observed that the training throughput now
becomes bottlenecked by SGD updates (12% for running the env, 10% for working with replay buffer,
78% for SGD updates). Because of the poor scaling of SGD updates to multiple cores, using more
than 1 accelerator core was providing marginal benefit, so the most cost efficient setup was achieved
with a single accelerator core.

5.1.3 Evolution Strategy (ES)

To implement ES we followed the same paradigm as for PPO/SAC: we ran everything on an
accelerator without any interruptions, keeping all processing contained within the accelerator.

The training proceeds as follows:

• a lead accelerator generates policy parameters perturbations
• policy parameters perturbations are split evenly between all available accelerator cores for

evaluation
• the lead computes gradients based on evaluation scores and updates the policy

The algorithm spends > 99% of running time evaluating environment steps.

5.1.4 Analytic Policy Gradient (APG)

As a proof of concept of how to leverage the differentiablity of our engine, we provide a APG
implementation. Training is significantly simpler than the previous algorithms:

• compile a function that takes a gradient of the loss through a short trajectory
• perform gradient descent with this function

After compiling the gradient update, this algorithm spends the majority of the remaining time
evaluating the gradient function. This algorithm is less mature than the previous three, and does not
currently produce locomotive gaits, and instead seems prone to being trapped in local minima on
the environments we provide, with the exception of the Reacher task discussed in section 7 where
it succeeds. Differentiating through long trajectories is an active area of research[38, 21, 18] and is
known to be difficult to optimize[39, 40], thus we defer more advanced differentiable algorithms to
future releases.

5.2 Training Performance

As part of our release, we include performant hyperparameters for all of our environments. These
hyperparameters typically solve their environment with a standard accelerator in seconds to minutes.
For exhaustive listings of our hyperparameter experiments see our repo[41]. For plots of performance
of the best 20 hyperparameter settings for each environment for exhaustive hyperparameter sweeps
over SAC and PPO, see Appendix D.

6 Performance Benchmarking

6.1 Parallelizing over Accelerators

By leveraging JAX’s vectorization and device parallelism primitives, we can easily scale Brax up to
hundreds of millions of steps per second of performance by distributing environment computation
within and across accelerators. Fig. 2 depicts these scaling curves for the suite of environments
included in this release on a particular fast, modern accelerator cluster (4x2 topology of TPUv3),
as well as the performance scaling on the Ant environment for a variety of accelerators and TPU
topologies. For reference, Colab TPU instances currently provide limited free usage of 2x2 TPUv2
accelerators.

6.2 Engine Comparisons

A perfectly apples to apples comparison between engines is difficult, primarily because the main way
to parallelize the most widely used engines is either by custom multithreading harnesses over CPU, or

6

https://github.com/google/brax/tree/main/datasets


Figure 2: (left) Scaling of the effective environment steps per second for each environment in this
release on a 4x2 TPU v3. (right) Scaling of the effective environment steps per second for several
accelerators on the Ant environment. Error bars are not visible at this scale. These environments
have between 8 (halfcheetah) and 17 (grasp) rigid bodies per scene, thus performance typically starts
saturating beyond about 20,000 total rigid bodies per accelerator. See App. F for more details about
the scaling of performance with number of rigid bodies in a scene.

by distributed aggregation of headless workers with attached accelerators—typically bespoke setups
not available to most practitioners. Thus, it probably isn’t fair to compare Brax’s Ant environment
compiled to and running on a TPUv3 8x8 accelerator (~hundreds of millions of steps per second)
to the typical use case of a practitioner running the OpenAI gym MuJoCo-ant on a single threaded
machine (~thousands of steps per second). While we include Brax results from deployment on large
clusters of TPUs, we emphasize that Brax performance on a single 1x1 TPUv2 is significantly better
than what the vast majority of practitioners have, until now, been able to achieve at dramatically
reduced cost.

To make this performance gap clear, we first consider a qualitative comparison of training speed for
the Ant environment with Brax’s PPO implementation over a variety of architectures. We compare this
to a traditional setup, with a standard implementation of PPO[28]—i.e., not compiled nor optimized
for parallelism, visualized in Fig. 3. Note that Brax reaches performant locomotion in ten seconds or
so, whereas the standard PPO implementation takes close to half an hour.

Figure 3: Qualitative comparisons of training curves for Brax’s compiled and optimized PPO
implementation versus a standard PPO implementation[28]. Note the x-axis is log-wallclock-time
in seconds. All curves with “brax” labels are Brax’s version of Ant, whereas the MuJoCo curve is
MuJoCo-Ant-v2. Both implementations of ppo were evaluated for 10 million environment steps.
Shaded region indicates lowest and highest performing seeds over 5 replicas, and solid line indicates
mean. See App. C for hyperparameters used.

Next, to verify that Brax’s versions of MuJoCo’s environments are qualitatively similar to MuJoCo’s
environments, we depict training curves for a standard implementation of SAC on our environments
side-by-side with training curves for MuJoCo’s versions. Qualitatively, for a fixed set of SAC
hyperparameters, Brax environments achieve similar reward in a similar number of environment steps

7



Figure 4: Qualitative comparisons of training curve trajectories in MuJoCo and Brax. (left) Training
curves for MuJoCo-Humanoid-v2 and brax-humanoid, (middle) MuJoCo-Ant-v2 and brax-ant, and
(right) MuJoCo-HalfCheetah-v2 and brax-halfcheetah. All environments were evaluated with the
same standard implementation of SAC[28] with environments evaluated on CPU and learning on
a 2x2 TPUv2—i.e., not Brax’s accelerator-optimized implementation. Solid lines indicate average
performance, envelopes are variance over random seeds. See App. C for hyperparameters used. See
Appendix E for a short discussion of the gap in performance for halfcheetah.

Figure 5: Linear momentum (left), angular momentum (middle), and energy (right) non-conservation
scaling for Brax as well as several other engines. Non-Brax data was adapted with permission
from the authors of [42] and plotted here for comparison. Following Erez et al., in the momentum
conservation scene we disabled damping, collisions, and gravity, and randomly actuated the limbs
for 1 second with approximately .5 Nm of torque per actuator per step. For energy, we additionally
disabled actuators, gave every body part a random 1m/s kick, and measured the energy drift after 1
second of simulation. All measurements averaged over 128 random seeds with single precision floats.

compared to their MuJoCo counterparts. Note that this is not meant to be a claim that we facilitate
“higher reward”, because comparing different reward functions is somewhat theoretically fraught
(though Brax’s reward functions are very close to the MuJoCo gym definitions, see Appendix E for
more details). We intend only to demonstrate that the progression of reward gain is similar, and that
Brax environments achieve qualitatively similar performance over a similar number of learning steps.

Finally, we consider the simulation quality of our engine by how it performs in the “astronaut”
diagnostic introduced by [42]—a modified version of the humanoid scene which measures momentum
and energy nonconservation as a function of simulation fidelity, depicted in Fig. 5. Qualitatively,
Brax achieves competitive linear momentum conservation scaling owing to its maximal cartesian
coordinate representation of positions and symplectic integration scheme. Energy conservation
performance is in line with Havok and MuJoCo’s euler integrator. Brax does exceptionally well at
angular momentum conservation, comparatively.

7 Leveraging Differentiability

Up until this point, we have focused on the ways in which Brax facilitates fast policy learning by
leveraging scale on accelerators. Because Brax was written in JAX, and because we took care to
only use differentiable ops in the core physics primitives, it is also possible to learn policies using
the gradient of the environment loss directly by employing JAX’s grad primitive. In this section, we
consider a simplified 2-jointed reaching task with identical observation space to OpenAI’s MuJoCo
Reacher, called brax-reacherangle, but using angle actuation instead of torque actuation (see [43]).

8



This task is simple enough that it showcases the promise of a differentiable environment without
other complexities like contact physics that are known to make optimization difficult even with access
to gradients.

Figure 6: Performance of PPO and APG on the brax-reacherangle task for 30 random seeds. The same
data is pictured in both panes, but versus wallclock time (left) and versus number of environment
frames used at that point in training (right). Solid lines indicate mean, and shaded regions indicate
standard deviation. See App. C for the hyperparameters used for these experiments, and see App. G
for a discussion of the hyperparameter search space.

Fig. 6 depicts the performance of PPO vs. APG on this task. While both algorithms solve the
environment in a similar amount of time (though PPO is still typically faster), APG achieves
dramatically better sample complexity, and is able to solve the environment using an order of
magnitude fewer environment frames than PPO. This sort of scaling is expected: policy gradient
algorithms are well known to require significantly more environment frames to estimate a gradient
than simply calculating the gradient directly [9]. Note that because calculating gradients is expensive,
PPO can estimate gradients more quickly than APG can directly calculate them.

One prominent feature of these plots is PPO’s noticeably lower training variance, compared to APG’s.
PPO achieves lower variance training by truncating trajectory unrolls to only 50 steps, compared to
APG’s full 100-step trajectories. This sort of truncation is known to bias the gradients, but with the
advantage that it can make optimization easier[44]. We will explore reducing the variance of APG
through other optimization methods like truncated backpropagation through time[45] in future work.

8 Limitations and Future Work

In this section, we detail several important limitations and frailties of our engine.

8.1 Spring Joints

It is well known that physics engines that rely on spring constraints instead of more sophisticated
Featherstone-style methods can be brittle and can require careful tuning of damping forces. Practi-
cally, these instabilities arise as a small radius of convergence in the integrator, necessitating small
integration step sizes. Worse, these instabilities grow as a function of the difference in mass scale
present in a problem. While relying on spring constraints has greatly simplified the core primitives of
our engine, it does mean that ensuring stability in a new physics scene can require a fair amount of
tuning of damping forces, mass and inertia scale, and integration step size.

Additionally, because our systems are essentially large coupled spring-mass configurations, there is
more “jitter” in our simulation traces than in a hypothetical corresponding Featherstone simulation.
This can be mitigated by increasing the strength of joint spring constraints, but this comes at the cost
of a reduced maximum stable integration step size. For the environments in this release, we chose
these spring constants so as to maximize simulation speed while still retaining qualitatively smooth
simulation, and we will investigate Featherstone methods in future work.

9



8.2 Collisions

Inspired by the Tiny Differentiable Simulator[16], we use velocity-level collision updates with Baum-
garte stabilization for all of our collision primitives. We did experiment with fully springy, impulsive
collisions, but found the motion quality and stability to suffer. Because of this choice, we inherit the
known tuning requirements and intrinsic non-physicality of these methods[46]. We experimented
with time-of-impact based collision detection, but, similar to the authors of DiffTaichi[17], we found
it provided little accuracy advantage for the complexity penalty it added to the codebase.

Additionally, we currently only use the quadratically-scaling, naive collision detection for any
colliders included in a scene. Typical physics-based sequential decision problems don’t involve
enough colliders for this to be a significant bottleneck, given that we can still easily parallelize over all
collision primitives in a scene without straining modern accelerator memory buffers, but we imagine
this will become more strained over time as tasks grow in complexity. We leave more advanced
collision physics, e.g. LCP-based solvers, and more efficient collision pruning to a future release.

8.3 Jitting, JAX, and XLA

While we tout our ability to compile pythonic physics environments and learning algorithms side-by-
side to XLA as a strong comparative advantage that our library inherits from JAX, this does not come
without any development friction. Of most salience for end-users of Brax, JIT compilation times
can sometimes approach or exceed the training time for complicated environments (i.e., compilation
can take minutes). We iterated extensively on the core design patterns of Brax to ameliorate this,
and in some cases, collaborated directly with the JAX development team to adjust XLA compilation
heuristics on TPU to improve compilation speed and performance. Ultimately, compilation time
remains a small bottleneck, particularly for learning algorithms that leverage differentiability.

8.4 Algorithms

This work presents results for our PPO and SAC implementations. While we include APG and ES in
this release, they have not been as thoroughly tested, nor have we performed as many hyperparameter
explorations with them. We leave it to future work to fully leverage the differentiability of our engine.

8.5 Social Impacts

Producing another version of what practitioners commonly use almost definitionally further compli-
cates the landscape of existing benchmarks, but we hope that the development velocity unlocked by
our library more than makes up for this extra friction. At the same time, the democratizing effect
of releasing an engine that can solve control problems quickly can be double edged: the difference
between a piece of democratizing technology and a weapon depends entirely on who is wielding it.
Mastery over the control of robots represents a society-transforming opportunity, thus we hope our
engine only helps to improve and accelerate the equitable automation of our future.

There remains a chance, however, that by releasing a significantly faster engine, we inadvertently
dramatically increase the compute spent on reinforcement learning problems, in much the same way
building a new highway in a city can counter-intuitively increase traffic[47]. At least for our own
energy expenditure, the experiments we performed were done in datacenters that are on track to be
fully renewably sourced by 2030[48].

Acknowledgments and Disclosure of Funding

The authors thank Erwin Coumans for invaluable advice on the subtle implementation details of
physics engines, Blake Hechtman and James Bradbury for answering the authors numerous questions
and providing optimization help with JAX and XLA, Luke Metz and Shane Gu for stimulating
feedback and helpful discussions throughout the development of this project, and Yuval Tassa for
exceptional feedback on an early draft of this manuscript. The authors further thank Vijay Sundaram,
Wright Bagwell, Matthew Leffler, Gavin Dodd, Brad Mckee, and Logan Olson for helping to incubate
this project.

10



References
[1] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclaurin,

George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao Zhang. JAX: compos-
able transformations of Python+NumPy programs, 2018. URL http://github.com/google/jax.

[2] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-dimensional
continuous control using generalized advantage estimation. arXiv preprint arXiv:1506.02438, 2015.

[3] URL https://github.com/google/brax/blob/main/notebooks/training.ipynb.

[4] Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash Kumar,
Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and applications. arXiv
preprint arXiv:1812.05905, 2018.

[5] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. In International Conference on Machine
Learning, pages 1861–1870. PMLR, 2018.

[6] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[7] Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew, Arthur Petron, Alex
Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, et al. Solving rubik’s cube with a robot hand.
arXiv preprint arXiv:1910.07113, 2019.

[8] Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

[9] Horia Mania, Aurelia Guy, and Benjamin Recht. Simple random search of static linear policies is
competitive for reinforcement learning. In Proceedings of the 32nd International Conference on Neural
Information Processing Systems, pages 1805–1814, 2018.

[10] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control. In
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5026–5033. IEEE,
2012.

[11] Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden,
Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. arXiv preprint
arXiv:1801.00690, 2018.

[12] Colin Summers, Kendall Lowrey, Aravind Rajeswaran, Siddhartha Srinivasa, and Emanuel Todorov.
Lyceum: An efficient and scalable ecosystem for robot learning. In Learning for Dynamics and Control,
pages 793–803. PMLR, 2020.

[13] Linxi Fan, Yuke Zhu, Jiren Zhu, Zihua Liu, Orien Zeng, Anchit Gupta, Joan Creus-Costa, Silvio Savarese,
and Li Fei-Fei. Surreal: Open-source reinforcement learning framework and robot manipulation benchmark.
In Conference on Robot Learning, pages 767–782. PMLR, 2018.

[14] Arthur Juliani, Vincent-Pierre Berges, Ervin Teng, Andrew Cohen, Jonathan Harper, Chris Elion, Chris
Goy, Yuan Gao, Hunter Henry, Marwan Mattar, et al. Unity: A general platform for intelligent agents.
arXiv preprint arXiv:1809.02627, 2018.

[15] Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics simulation for games, robotics and
machine learning. http://pybullet.org, 2016–2021.

[16] Eric Heiden, David Millard, Erwin Coumans, Yizhou Sheng, and Gaurav S Sukhatme. NeuralSim:
Augmenting differentiable simulators with neural networks. In Proceedings of the IEEE International Con-
ference on Robotics and Automation (ICRA), 2021. URL https://github.com/google-research/
tiny-differentiable-simulator.

[17] Yuanming Hu, Tzu-Mao Li, Luke Anderson, Jonathan Ragan-Kelley, and Frédo Durand. Taichi: a language
for high-performance computation on spatially sparse data structures. ACM Transactions on Graphics
(TOG), 38(6):201, 2019.

[18] Yuanming Hu, Luke Anderson, Tzu-Mao Li, Qi Sun, Nathan Carr, Jonathan Ragan-Kelley, and Frédo
Durand. Difftaichi: Differentiable programming for physical simulation. arXiv preprint arXiv:1910.00935,
2019.

11

http://github.com/google/jax
https://github.com/google/brax/blob/main/notebooks/training.ipynb
http://pybullet.org
https://github.com/google-research/tiny-differentiable-simulator
https://github.com/google-research/tiny-differentiable-simulator


[19] Keenon Werling, Dalton Omens, Jeongseok Lee, Ioannis Exarchos, and C Karen Liu. Fast and feature-
complete differentiable physics for articulated rigid bodies with contact. arXiv preprint arXiv:2103.16021,
2021.

[20] Jonas Degrave, Michiel Hermans, Joni Dambre, et al. A differentiable physics engine for deep learning in
robotics. Frontiers in neurorobotics, 13:6, 2019.

[21] Filipe de Avila Belbute-Peres, Kevin Smith, Kelsey Allen, Josh Tenenbaum, and J Zico Kolter. End-to-end
differentiable physics for learning and control. Advances in neural information processing systems, 31:
7178–7189, 2018.

[22] Paula Gradu, John Hallman, Daniel Suo, Alex Yu, Naman Agarwal, Udaya Ghai, Karan Singh, Cyril
Zhang, Anirudha Majumdar, and Elad Hazan. Deluca–a differentiable control library: Environments,
methods, and benchmarking. arXiv preprint arXiv:2102.09968, 2021.

[23] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Junyoung
Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster level in starcraft
ii using multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.

[24] Max Jaderberg, Wojciech M Czarnecki, Iain Dunning, Luke Marris, Guy Lever, Antonio Garcia Castaneda,
Charles Beattie, Neil C Rabinowitz, Ari S Morcos, Avraham Ruderman, et al. Human-level performance in
3d multiplayer games with population-based reinforcement learning. Science, 364(6443):859–865, 2019.

[25] Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław Dębiak, Christy Dennison,
David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2 with large scale deep reinforcement
learning. arXiv preprint arXiv:1912.06680, 2019.

[26] Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

[27] Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. An optimistic perspective on offline
reinforcement learning. In International Conference on Machine Learning, pages 104–114. PMLR, 2020.

[28] Matt Hoffman, Bobak Shahriari, John Aslanides, Gabriel Barth-Maron, Feryal Behbahani, Tamara Norman,
Abbas Abdolmaleki, Albin Cassirer, Fan Yang, Kate Baumli, et al. Acme: A research framework for
distributed reinforcement learning. arXiv preprint arXiv:2006.00979, 2020.

[29] Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam Doron, Vlad
Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl with importance weighted
actor-learner architectures. In International Conference on Machine Learning, pages 1407–1416. PMLR,
2018.

[30] Lasse Espeholt, Raphaël Marinier, Piotr Stanczyk, Ke Wang, and Marcin Michalski. Seed rl: Scalable and
efficient deep-rl with accelerated central inference. arXiv preprint arXiv:1910.06591, 2019.

[31] Michael Petrov, Szymon Sidor, Susan Zhang, Jakub Pachocki, PrzemysÅCaw DÄ Zbiak, Filip Wol- ski,
Christy Dennison, Henrique PondÃl’, Greg Brockman, Jie Tang, David Farhi, Brooke Chan, and Jonathan
Raiman. Openai rapid. URL https://openai.com/blog/openai-five/.

[32] Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evolution strategies as a scalable
alternative to reinforcement learning. arXiv preprint arXiv:1703.03864, 2017.

[33] Roy Featherstone. Rigid body dynamics algorithms. Springer, 2014.

[34] Jonathan Heek, Anselm Levskaya, Avital Oliver, Marvin Ritter, Bertrand Rondepierre, Andreas Steiner,
and Marc van Zee. Flax: A neural network library and ecosystem for JAX, 2020. URL http://github.
com/google/flax.

[35] URL https://github.com/google/brax/blob/main/brax/physics/system.py#L120.

[36] URL https://github.com/google/brax/blob/main/notebooks/basics.ipynb.

[37] URL https://github.com/google/brax/blob/main/brax/envs/ant.py#L94.

[38] Marc A Toussaint, Kelsey Rebecca Allen, Kevin A Smith, and Joshua B Tenenbaum. Differentiable physics
and stable modes for tool-use and manipulation planning. 2018.

[39] Ronald J Williams and Jing Peng. An efficient gradient-based algorithm for on-line training of recurrent
network trajectories. Neural computation, 2(4):490–501, 1990.

12

https://openai.com/blog/openai-five/
http://github.com/google/flax
http://github.com/google/flax
https://github.com/google/brax/blob/main/brax/physics/system.py#L120
https://github.com/google/brax/blob/main/notebooks/basics.ipynb
https://github.com/google/brax/blob/main/brax/envs/ant.py#L94


[40] Luke Metz, Niru Maheswaranathan, Jeremy Nixon, Daniel Freeman, and Jascha Sohl-Dickstein. Under-
standing and correcting pathologies in the training of learned optimizers. In International Conference on
Machine Learning, pages 4556–4565. PMLR, 2019.

[41] URL https://github.com/google/brax/tree/main/datasets.

[42] Tom Erez, Yuval Tassa, and Emanuel Todorov. Simulation tools for model-based robotics: Comparison of
bullet, havok, mujoco, ode and physx. In 2015 IEEE international conference on robotics and automation
(ICRA), pages 4397–4404. IEEE, 2015.

[43] URL https://github.com/google/brax/blob/main/brax/envs/reacherangle.py.

[44] Corentin Tallec and Yann Ollivier. Unbiasing truncated backpropagation through time. arXiv preprint
arXiv:1705.08209, 2017.

[45] Paul J Werbos. Backpropagation through time: what it does and how to do it. Proceedings of the IEEE, 78
(10):1550–1560, 1990.

[46] Joachim Baumgarte. Stabilization of constraints and integrals of motion in dynamical systems. Computer
methods in applied mechanics and engineering, 1(1):1–16, 1972.

[47] Todd Litman. Generated traffic and induced travel. Victoria Transport Policy Institute Canada, 2017.

[48] URL https://cloud.google.com/blog/topics/inside-google-cloud/
announcing-round-the-clock-clean-energy-for-cloud.

[49] Baohe Zhang, Raghu Rajan, Luis Pineda, Nathan Lambert, André Biedenkapp, Kurtland Chua, Frank
Hutter, and Roberto Calandra. On the importance of hyperparameter optimization for model-based
reinforcement learning. In International Conference on Artificial Intelligence and Statistics, pages 4015–
4023. PMLR, 2021.

[50] URL https://github.com/openai/gym/issues/1541.

[51] URL https://github.com/google/brax/blob/main/brax/physics/joints.py#L282.

13

https://github.com/google/brax/tree/main/datasets
https://github.com/google/brax/blob/main/brax/envs/reacherangle.py
https://cloud.google.com/blog/topics/inside-google-cloud/announcing-round-the-clock-clean-energy-for-cloud
https://cloud.google.com/blog/topics/inside-google-cloud/announcing-round-the-clock-clean-energy-for-cloud
https://github.com/openai/gym/issues/1541
https://github.com/google/brax/blob/main/brax/physics/joints.py#L282

	Summary of Contributions
	Motivation
	Using Brax: The core physics loop
	Using Brax: Creating and evaluating environments
	System specification
	Gym-like environments
	MuJoCo Gym-Likes
	Grasp
	Fetch


	Using Brax: Solving locomotion and manipulation problems
	Learning Algorithms Bundled with Brax
	Proximal Policy Optimization (PPO)
	Soft Actor Critic (SAC)
	Evolution Strategy (ES)
	Analytic Policy Gradient (APG)

	Training Performance

	Performance Benchmarking
	Parallelizing over Accelerators
	Engine Comparisons

	Leveraging Differentiability
	Limitations and Future Work
	Spring Joints
	Collisions
	Jitting, JAX, and XLA
	Algorithms
	Social Impacts

	Appendix - Brax System Specification
	Appendix - Grasp Trajectory
	Appendix - Hyperparameters for Figures
	Appendix - Hyperparameter Sweeps
	Appendix - Major Differences from Mujoco
	Halfcheetah
	Ant
	Humanoid

	Appendix - Large Scale Failure Analysis
	Appendix - Hyperparameter Sweeps for Differentiability Experiments
	Appendix - License



