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Figure 1: Our proposed DiffusionVLA model unifies autoregressive and diffusion modeling to enable self-reasoning and robot policy
learning. This approach generalizes effectively to visual changes, supports zero-shot bin picking, adapts to new robot morphologies,
performs visual question-answering, and generates actions with high speed.

Abstract

In this paper, we present DiffusionVLA, a novel
framework that integrates autoregressive reason-
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ing with diffusion policies to address the lim-
itations of existing methods: while autoregres-
sive Vision-Language-Action (VLA) models lack
precise and robust action generation, diffusion-
based policies inherently lack reasoning capabil-
ities. Central to our approach is autoregressive
reasoning — a task decomposition and explana-
tion process enabled by a pre-trained VLM — to
guide diffusion-based action policies. To tightly
couple reasoning with action generation, we in-
troduce a reasoning injection module that directly
embeds self-generated reasoning phrases into the
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policy learning process. The framework is simple,
flexible, and efficient, enabling seamless deploy-
ment across diverse robotic platforms.

We conduct extensive experiments using multi-
ple real robots to validate the effectiveness of Di-
VLA. Our tests include a challenging factory sort-
ing task, where DiVLA successfully categorizes
objects, including those not seen during train-
ing. The reasoning injection module enhances
interpretability, enabling explicit failure diagno-
sis by visualizing the model’s decision process.
Additionally, we test DiVLA on a zero-shot bin-
picking task, achieving 63.7% accuracy on 102
previously unseen objects. Our method demon-
strates robustness to visual changes, such as dis-
tractors and new backgrounds, and easily adapts
to new embodiments. Furthermore, DiVLA can
follow novel instructions and retain conversa-
tional ability. Notably, DiVLA is data-efficient
and fast at inference; our smallest DiVLA-2B
runs 82Hz on a single A6000 GPU. Finally, we
scale the model from 2B to 72B parameters, show-
casing improved generalization capabilities with
increased model size.

1. Introduction
Recently, Vision-Language-Action (VLA) models have
emerged as a promising direction in robotics (Bu et al.,
2024; Liu et al., 2024b; Li et al., 2024c;a; Zhang et al.,
2024; Zheng et al., 2025; Pertsch et al., 2025; Brohan et al.,
2023; Kim et al.; Wen et al., 2024; Black et al., 2024; Octo
Model Team et al., 2024; Deng et al., 2025; Liu et al., 2025;
Cui et al., 2025; Chen et al., 2025; Liu et al., 2024a). Among
these VLAs, a prominent approach frames action prediction
as a next-token prediction (NTP) task, mirroring the dom-
inant autoregressive paradigm in Large Language Models
(LLMs), which operates by sequentially predicting discrete
tokens, with each token’s generation conditioned on the
preceding ones. While these models, such as RT-2 (Brohan
et al., 2023) and OpenVLA (Kim et al.), have demonstrated
notable success, they suffer from inherent limitations. First,
discretizing continuous action data into fixed-size tokens
can disrupt the coherence and precision of actions. Second,
NTP is inherently inefficient for action generation, particu-
larly in real-time robotic applications where performance is
critical.

Meanwhile, building on the success of diffusion models in
content generation (Rombach et al., 2022; Peebles & Xie,
2023; Podell et al., 2023; Ho et al., 2020; 2022), diffusion-
based models for learning visuomotor policies (Chi et al.,
2023) have gained significant popularity over the past two
years. Numerous methods have demonstrated strong perfor-

mance in manipulation tasks by modeling action sequence
generation as a noise-denoising process. This approach bet-
ter captures the multimodal nature of robotic actions and
enables faster sequence generation compared to NTP-based
VLA models. However, despite the advantages of diffusion
models for policy learning, they lack the reasoning capabili-
ties crucial for VLA models to solve complex tasks effec-
tively, a component that evidently improves LLMs. This
motivates us to raise the question: can we bring together
the advantages of both parties, specifically the reasoning
power of autoregressive models and the robustness of high-
frequency action generation offered by diffusion models?

In this work, we propose a unified model, named Diffusion-
VLA (DiVLA in short), that integrates autoregression with
a diffusion model. The autoregressive component provides
reasoning over the query, while the diffusion model controls
the robot. Specifically, DiVLA builds upon a pre-trained
Vision-Language Model (VLM), retaining its autoregressive
capabilities for text-based reasoning. We extend this founda-
tion by integrating a diffusion model that facilitates learning
robotic actions through a noise-denoising process. This
setup empowers DiVLA to achieve both language-driven
reasoning and robust action generation in robotic contexts.
However, simply combining these elements does not fully
exploit the reasoning potential, as there is often an implicit
gap between logical reasoning and actionable robot policies.
To bridge this gap, we propose a reasoning injection module,
which reuses reasoning outputs and embeds them directly
into the policy head, thus enriching the policy learning pro-
cess with explicit reasoning signals. This innovation allows
us to directly incorporate reasoning into action generation,
enhancing the model’s dexterity, robustness, and general-
ization across various scenarios. Our experiments confirm
that DiVLA delivers the following advantages: 1) Visual
generalization via self-generated reasoning: DiVLA can
recognize and categorize previously unseen objects via self-
generated reasoning, showcasing its ability to generalize to
novel visual inputs.
2) Strong action interpretability: Our reasoning injec-
tion module provides insights into the end-to-end policy’s
decision-making, explaining robot actions and facilitating
failure analysis.
3) Adaptability to novel instructions and conversational
capability: Our approach can execute novel instructions
while maintaining conversational fluency, offering a versa-
tile response range in interactive scenarios.
4) Fast adaptation to other embodiment: DiVLA can
quickly fine-tune for deployment on new embodiment, such
as bimanual robots, achieving high performance with mini-
mal adjustments.
5) Fast inference speed: With inference rates of 82Hz for
DiVLA-2B and 42Hz for DiVLA-7B on a single A6000
GPU, our method ensures real-time responsiveness even in
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high-demand environments.
6) Enhanced visual generalization: DiVLA is unaffected
by visual distractions or novel backgrounds, demonstrating
robustness in visually dynamic settings.
7) Scalability: The scalable DiVLA family (2B, 7B, and
72B) demonstrates that generalization and performance im-
prove with model size, consistent with established scaling
laws.

This work introduces a novel end-to-end framework for
robot policy learning. By unifying an autoregressive objec-
tive with a diffusion model, our approach enables the model
to both “talk” and “act.” Critically, our proposed reasoning
injection module promotes generalization to novel objects
and provides interpretable actions. While the concept is
simple and straightforward, the combination of ingredients
and the application to robot learning is novel. Empirical
evaluation across multiple complex real-world robot tasks
demonstrates a level of generality surpassing that of previ-
ous single-model approaches.

2. Related Works
Autoregression models. Predicting the next token has been
regarded as a key approach toward general artificial intelli-
gence due to its success in training language models (Tou-
vron et al., 2023a;b; Achiam et al., 2023; Bi et al., 2024;
Team, 2024). RT-2 (Brohan et al., 2023) pioneered the ap-
plication of next-token prediction in robot learning which
predicts actions by converting continuous actions into dis-
crete tokens for learning robotic motion. Building on this,
OpenVLA (Kim et al.) introduced an open-source, im-
proved, and smaller version of RT-2 (Brohan et al., 2023)
with a similar approach, while ECoT (Zawalski et al., 2024)
developed a chain-of-thought method. However, research
has shown that next-token prediction may not be the opti-
mal approach for robot models, especially when adapting to
various embodiments. In this work, we leverage the strength
of next-token prediction specifically for reasoning tasks.

Diffusion models. Diffusion models have become domi-
nant in the field of visual generation. The Diffusion Pol-
icy (Chi et al., 2023) extends the application of diffusion
models to robot learning, demonstrating their effectiveness
in handling multimodal action distributions. Subsequent
work has advanced the Diffusion Policy (Zhao et al.; Wang
et al., 2024d; Prasad et al., 2024; Reuss et al., 2024; Ue-
hara et al., 2024a;b; Black et al., 2023a;b; Dasari et al.,
2024; Lin et al., 2024) by applying it to 3D settings (Ke
et al., 2024; Ze et al., 2024b;a; Yan et al., 2024), scaling
it up (Zhu et al., 2024), increasing its efficiency (Jia et al.;
Wang et al., 2024e), and introducing architectural innova-
tions. For instance, TinyVLA (Wen et al., 2024) integrates
diffusion models with lightweight vision-language mod-
els, while π0 (Black et al., 2024) leverages flow matching

rather than diffusion for action generation. Our approach
introduces reasoning—a crucial element in language mod-
els—into the diffusion-based vision-language-action (VLA)
model.

Robot foundation models. Existing works (Belkhale et al.,
2024; Brohan et al., 2022; 2023; Gu et al., 2023; Jiang et al.,
2022; Jang et al., 2022; Fu et al., 2024; Huang et al.) lever-
age RL (Yuan et al., 2024) and LLM (Liang et al., 2023) to
decouple the multimodal understanding and embodied con-
trol. Another line of research leverages pre-trained Vision-
Language Models (VLMs) and fine-tunes them directly on
robotic data (Brohan et al., 2023; Zawalski et al., 2024;
Kim et al.; Wen et al., 2024). Our work follows this ap-
proach, unifying autoregressive and diffusion models for
both reasoning and manipulation tasks.

Unified auto-regressive model and image generation. Re-
cent work has focused on unifying multimodal understand-
ing with image generation. These efforts include using auto-
regressive methods to generate images (Li et al., 2024b; Sun
et al., 2024; Wang et al., 2024c;a), diffusion models to pro-
duce text, or combining both approaches into unified mod-
els (Ge et al., 2024; Lu et al., 2024; Zhao et al., 2024; Wu
et al., 2024a), such as Show-O (Xie et al., 2024), Transfu-
sion (Zhou et al., 2024), and Vila-U (Wu et al., 2024b). Un-
like these methods, our framework explores unifying next-
token prediction with diffusion models, which enhances the
robot model’s reasoning abilities. This reasoning capability,
in turn, improves the model’s generalization to various tasks
and environments.

3. Methodology
Our ultimate goal is to create a unified framework that
combines autoregressive models, which excel at predict-
ing language sequences for reasoning, with diffusion mod-
els, which are highly effective at generating robotic actions.
Developing such an integrated model presents substantial
challenges, with key issues centered on: (i) designing an
architecture that seamlessly and efficiently integrates both
autoregressive and diffusion mechanisms; and (ii) leverag-
ing self-generated reasoning to enhance action generation
without adding inference computation overhead. In this sec-
tion, we introduce the overall framework of our method in
Section 3.1 and explore the design choices that inform our
model architecture in Section 3.2.

3.1. Architecture

Given any sequence of interleaved images, text, and video,
we first encode the images into dense visual features using
SigLIP (Zhai et al., 2023). These encodings are then trans-
formed into a fixed number of N visual embeddings through
a Transformer. It’s worth noting that typical visual inputs
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Figure 2: Environmental Setup for the Franka Robot and Experimental Configuration for Factory Sorting. Left: For factor sorting
tasks, (a) The target sorting box is divided into four distinct sectors, each designated for one of the following categories: stuffed toys, hex
keys, knit gloves, and toy cars, (c) The seen objects in the train data, (d) mixing the seen and unseen object for evaluation, (e) cluttered
scene for seen objects, (f) cluttered scene for mixing seen and unseen objects. Middle: We use a Franka robot arm equipped with two
external Zed cameras and a Realsense 435i wrist camera. Right: The setup for zero-shot bin picking.

Table 1: Experimental Results for Multi-Task Learning on Real Robot. We report the count of pre-trained trajectories. We also report
the average success rate for evaluation on both in-distribution and out-of-distribution. Task 1: Select the appropriate object based on the
user’s intent. Task 2: Flip the vertically placed pot. Task 3: Pick up the cube and place it into the [yellow/blue] box. Task 4: Place the cup
onto the plate. Task 5: Place the cube into the box.

Pre-trained In-Distribution Visual Generalization
Model \ Tasks Trajectory Task 1 Task 2 Task 3 Task 4 Task 5 Avg. Task 1 Task 2 Task 3 Task 4 Task 5 Avg.

Diffusion Policy (Chi et al., 2023) - 66.7 36.4 0 36.4 0 27.9 11.1 11.1 0 22.2 0 8.9
TinyVLA (Wen et al., 2024) - 72.7 45.5 36.4 45.5 27.3 45.5 44.4 44.4 11.1 22.2 22.2 28.9

Octo (Octo Model Team et al., 2024) 970K 57.6 27.3 9.1 0 27.3 24.3 44.4 11.1 11.1 0 22.2 17.8
OpenVLA-7B (Kim et al.) 970K 69.7 18.2 18.2 36.4 54.5 39.4 55.6 11.1 0 33.3 33.3 26.7

DiVLA-2B 39K 100 100 63.6 63.6 90.9 83.6 44.4 66.7 44.4 66.7 66.7 57.8

in robot learning often include multiple camera views. To
manage this, we applied the shared SigLIP visual backbone
to each view and subsequently concatenated the resulting
visual tokens.

For vision-language processing, we leveraged Qwen2-
VL (Wang et al., 2024b), a state-of-the-art vision-language
model available in three sizes: 2B, 8B, and 72B parameters.
We initialized the VLM backbone with the publicly released
checkpoint. It is also possible to use any other pre-trained
VLM as backbone, since we decouple the vision-language
understanding with action generation, making the overall
architecture flexible to fit for advanced new models.

Projection layer for action tokens. Following the
final embedding layer of the VLM, a fixed number of action
tokens are generated. These tokens are then fed into a
projection module, comprised of two MLP layers with

LayerNorm. This projection module functions similarly
to those found in conventional vision-language models
like LLaVA (Liu et al., 2023b;a), bridging the VLM’s
output embedding to the diffusion model and aligning their
output dimensions. The diffusion model itself adheres to
the standard Diffusion Policy design (Chi et al., 2023),
with randomly initialized weights This component also
incorporates reasoning from the LLM, which we describe
in detail below. An MLP layer is attached to the last layer
at the bottom of the action decoder to predict the robot’s
joint space. If multiple embodiments are evolved, instead of
making a copy of a separate action decoder (Octo Model
Team et al., 2024), we simply initialized a new MLP layer
for training and evaluation. This step ensures that the
knowledge from the pre-trained data is preserved and thus
can quickly adapt to a new embodiment.

Reasoning injection module. The core of our approach
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Figure 3: Experimental Results for Factory Sorting. We compared our DiVLA with Diffusion Policy, Octo, TinyVLA, and OpenVLA.
DiVLA achieves the highest average success rate, outperforming the runner-up OpenVLA by 20.9%.

lies in introducing explicit reasoning into Vision-Language-
Action (VLA) models. Unlike most autoregressive VLAs,
which require a recursive setup — converting reasoning
outputs into inputs for subsequent model runs — our method
proposes a more efficient and streamlined integration of
reasoning. By embedding reasoning directly within the
policy model, we avoid the computational and operational
complexities of iterative input-output cycles, enabling faster
and more seamless reasoning incorporation.

Our reasoning injection module operates by taking the fi-
nal embedding from the tokenized output of the reasoning
component and directly injecting it into the policy model
through Feature-wise Linear Modulation (FiLM) (Perez
et al., 2018). This injection technique, inspired by methods
in RT-1 (Brohan et al., 2022) and YAY (Shi et al., 2024),
enables us to modulate the policy network’s layers based on
the reasoning signal. We refer to this process as “injection”
because, in our design, the policy network focuses primar-
ily on action-specific tokens, while the reasoning module
functions as an auxiliary enhancement, providing contextual
depth without dominating the primary decision-making flow.
This approach ensures that reasoning is not only present but
actively utilized during policy model training.

3.2. Model Design Choices

We illustrate the training strategy and other techniques that
we used to improve the efficiency and effectiveness of our
method. We also discuss the selection of pretraining data.

Training objectives. Given a batch of input sequences, the
overall training loss is formulated as a combination of the
diffusion loss and the next-token prediction (ntp) loss: L =
Ldiff + αLntp, where α is the hyper-parameters weighting
the loss term Lntp. In our observations, the magnitude of
Lntp consistently remains about ten times smaller than that
of Ldiff . To balance the contribution of each component to
the overall loss, we typically set α = 10 in all experiments.
This adjustment ensures that both terms are comparably

weighted in the training process, allowing the model to
learn effectively from both action and next-token prediction
tasks.

Pretraining Data. We consider OXE (O’Neill et al., 2023)
and Droid (Khazatsky et al., 2024) dataset for pretraining.
We use Droid data to pre-train DiVLA-2B and DiVLA-
7B. Because larger models typically needs more data for
training, we use OXE and Droid together for pre-training
DiVLA-72B. The original Droid data contains only robotic
actions, paired partially with observations and language
instructions. These data contain only robotic actions, paired
partially with observations and language instructions. To
enhance our model’s ability to generalize with language, we
leverage GPT-4o to automatically transform these data into
a form that includes reasoning. Consequently, the network
architecture remains consistent across both the pre-training
and fine-tuning stages.

4. Experiments
In this section, we examine the effectiveness of DiVLA for
embodied control. In Section 4.2, we compare Di-
VLA against other state-of-the-art models within a stan-
dard multi-task setting, assessing its performance in both
in-distribution and out-of-distribution scenarios. In Sec-
tion 4.3, we evaluate DiVLA in the challenging factory
sorting task, showcasing its remarkable performance and
illustrating how reasoning enables the model to analyze
robot actions and sort items accurately. In Section 4.5, we
showcase DiVLA’s impressive generalization abilities in a
zero-shot bin-picking task involving over 102 unseen ob-
jects. In Section 4.6, we illustrate DiVLA’s adaptability to
new embodiments, successfully completing complex tasks
that require bimanual coordination. We provide experimen-
tal setup and implementation details in the Appendix.
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Zero-shot Bin Picking on 102 Unseen Objects

Figure 4: Zero-shot Bin Picking on 102 Unseen Objects. Our
method outperforms the state-of-the-art robot foundation models
by a large margin.

Figure 5: Examples of visual variations, including randomly placed
distractors, different backgrounds, and distracting lighting. Di-
VLA is robust to visual changes in different scenarios.

4.1. Experimental Setup.

Implementation details and pretraiend data. The model
is pre-trained on the Droid (Khazatsky et al., 2024) dataset.
We then finetune our model on evaluation tasks, similar to
the setting as π0 (Black et al., 2024). We use LoRA (Hu
et al., 2021) to fine-tune the VLM models. We use 2e-5 as a
fixed learning rate to train the model, similar to OpenVLA.
The visual encoder and VLM are frozen. We apply LoRA
on VLM for fine-tuning.

Data for finetuning. We explore four experimental
settings: factory sorting, bin picking, multi-task learning,
and table bussing. The first three settings are conducted
with the Franka robot, while the table bussing task utilizes
the bimanual AgileX robot. Our dataset includes 500
trajectories for the factory sorting task and 580 trajectories
for multi-task learning. The bin picking task is designed as
a zero-shot task, so no training data was collected for it. For
the table bussing task, we gathered 400 trajectories, where
objects are randomly placed on the table, often overlapping
with each other. During the fine-tuning stage, all data
corresponding to the same embodiment are trained together.
For instance, the factory sorting and multi-task data are
combined for training purposes.

4.2. Real-World Multi-Task Learning

We begin with a standard setting in which the model is
trained on multiple tasks and completes each task based
on different user queries. We designed five tasks: object
selection, flip the vertically placed pot, placing a cube
into a designated box, placing a cup onto a plate, and
placing a cube inside a box. Detailed descriptions of
these tasks are provided in the Appendix. The exper-
imental results can be found in Table 1. We compare
our method to the Diffusion Policy (Chi et al., 2023),
TinyVLA (Wen et al., 2024), Octo (Octo Model Team
et al., 2024), and OpenVLA (Kim et al.). Notice that both
Octo and OpenVLA is pre-trained on OXE (O’Neill et al.,
2023), which is 25 times larger than our pre-trained datasets.

Generalization to visual changes. We further eval-
uate our method in a multi-task setting with visual changes
to assess its robustness and adaptability in diverse, dynamic
environments. Specifically, we introduce three challenging
scenarios designed to test the model’s ability to handle
visual variability: 1) adding additional distractors in the
surroundings to increase visual clutter and complexity, 2)
altering the background to test resilience against shifts in
scene context, and 3) implementing colorful lighting effects
to introduce varied illumination and color hues. These
scenarios are shown in Figure 5 to illustrate the impact of
each change on the visual environment. The experimental
results are demonstrated in Table 1.

Our evaluation of these scenarios reveals that while all meth-
ods experience a decline in performance due to these visual
changes, our method consistently maintains the highest av-
erage success rate across five different tasks. This outcome
highlights the model’s inherent robustness and adaptabil-
ity, despite the absence of any specific data augmentation
techniques during training.

4.3. End-to-End Sorting on Real Robot

We evaluate the capability of DiVLA in an industrial setting,
where a robot is tasked with sorting items into designated
sectors within a large box based on object category. Specifi-
cally, we categorize items into four classes: (1) toy cars, (2)
knit gloves, (3) stuffed toys, and (4) hex keys. The language
instruction provided is “Sort all items into corresponding
areas”. A total of 500 trajectories are collected as training
data. The task is considered successful only if the robot
successfully grasps the object and places it in the correct
sector. The experimental setup is illustrated in Figure 2.

This task poses several challenges, requiring both precise
object grasping and accurate category identification. We as-
sess our method under two difficulty settings: easy and hard.
In easy mode, fewer than 5 items are placed on the table,
whereas in hard mode, 6 to 11 items are randomly arranged.
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Furthermore, both seen and unseen objects are mixed in
these scenarios. In the cluttered scene, items may overlap
or be randomly distributed across the table, increasing the
complexity of the sorting task.

The experimental results are illustrated in Figure 3. Di-
VLA demonstrates robust performance with an average suc-
cess rate of 66.2% across all experimental settings. While
other methods show significant performance degradation as
scene complexity increases (i.e., higher object count and
clutter level), particularly evident in DP’s sharp decline
to 9.2% success rate in highly cluttered mixed scenarios,
DiVLA maintains a substantial 60% success rate. This sus-
tained performance underscores our approach’s capability
to effectively handle complex and dynamic real-world sce-
narios.

4.4. Behavior Analysis of Robot Foundation Model

Deep learning has demonstrated superior performance and
generalization capabilities compared to traditional methods.
Despite this, its nature as a “black box” algorithm often
raises concerns regarding trustworthiness. The lack of trans-
parency into the model’s decision-making process makes
it difficult to understand its actions. This section explores
applications of our reasoning injection module, designed to
improve model interpretability by illuminating its internal
reasoning and explaining why certain actions might fail.

How does the model generalize to new objects? We con-
duct experiments on sorting tasks. Specifically, we ask the
model to identify and sort unseen objects, that are not in the
train data. We place four previously unseen objects on the
plate, a stuffed toy cat, a pair of green gloves, a dark toy car,
and a screwdriver.

From this experiment, we observe several interesting find-
ings. First, the model demonstrates the ability to analogize
to new objects. For instance, while the model has not been
trained on a screwdriver, it correctly categorizes it as a hex
key due to their visual similarity. This indicates that the
model can generalize to new objects, not by direct recogni-
tion, but by comparing the object’s semantic features with
those of known objects. Second, the model can identify the
color of some objects; for example, it categorizes the green
glove as “green glove” and the stuffed toy cat as “brown
toy cat.” Although these experiments are not exhaustive,
they represent an important step towards the explainable
generalization of robot models.

Failure case analysis via self-generated reasoning. A key
advantage of our model is its ability to generate natural
language rationales alongside its output actions, providing
valuable insight into its decision-making process. By
observing these reasoning phrases, we can understand
what the model is “thinking” at each step. For instance, as

Grab the toy 
blue car

Grab hex key, 
put into right-
bottom sector

Figure 6: What internal processes guide a model’s actions? We
illustrate this using an example of DiVLA’s reasoning, inferred
from shifts in its behavior based on changes to the target object.
The model initially intends to grasp a “toy blue car”, but when
presented with a hex key, its reasoning instantly redirects to sorting
the “hex key” instead. This demonstrates one approach to inter-
preting a robot’s actions.

Figure 7: Some of the unseen objects used for evaluation in the
zero-shot bin-picking tasks.

illustrated in Figure 6, the model might initially identify
a toy car and generate the reasoning, “grabbing the toy
car,” indicating its intent to pick it up. However, if we
intervene by placing a hex key in the gripper instead, the
reasoning dynamically shifts to “grabbing the hex key.” This
adaptive reasoning allows the model to adjust its subsequent
actions, correctly sorting the hex key despite the unexpected
change. This dynamic reasoning not only enhances the
transparency and interpretability of the model’s actions
but also contributes to its robustness. The integrated
reasoning module allows for a form of self-correction,
where the generated rationale guides and refines the action
output, leading to more reliable performance even in
the face of unexpected situations or perturbations. This
capability suggests that the model is not simply executing
pre-programmed actions, but rather engaging in a more
flexible, context-aware decision-making process, akin to an
internal dialogue.

4.5. Zero-Shot Bin Picking of Unseen Objects

This section evaluates instance generalization for DiVLA,
focusing specifically on the bin-picking task—a standard
benchmark for assessing robot model performance. In our
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tape
screwdriver

Rubik’s cube
gripper

toy dragonsize

Figure 8: Examples of various unseen objects in zero-shot bin-
picking tasks. The unseen objects vary significantly in size.

(c) Seen Tableware (d) Unseen Tableware

(a) Bimanual Robot Setup (b) Setup for Table Bussing

(e) Seen Trash (f) Unseen Trash

Figure 9: (a) Environmental setup for the bimanual robot, (b)
Table bussing setup, (c-f) All tableware and trash items used in the
bussing table task evaluation.

evaluation, we use 102 unique objects, none of which were
included in the training data. Some of these objects are
shown in Figure 7. We modify the task instruction to “move
any object on the right panel to the left basket.” Figure 2
(right) illustrates the experimental setup. We show some of
the objects used in this test in Figure 7. The challenge in this
evaluation lies in the significant variability across objects,
which includes not only differences in dimensions but also
distinct color patterns, textures, and degrees of deformabil-
ity. Such variability aims to emulate real-world scenarios
where robots must adapt to diverse and unpredictable items.
Figure 8 provides examples of five differently sized objects
from this experiment.

The experimental results are depicted in Figure 4. Di-
VLA achieves a success rate of 63.7%. In comparison,
the success rates of the Diffusion Policy, Octo, TinyVLA,
and OpenVLA are 8.9%, 19.6%, 23.5%, and 28.4%, respec-
tively. These results indicate that DiVLA is resilient across
a broad range of object shapes and sizes, other models often
fail due to reliance on object-specific features that may not
generalize well to new instances. It highlights the poten-
tial for applications in dynamic, unstructured environments
where robots encounter unfamiliar objects and must perform
tasks with minimal human intervention.

4.6. Adapt to Real-World Bimanual Robot

In this section, we examine DiVLA’s adaptability to a dual-
arm robot. Inspired by π0 (Black et al., 2024), we designed
a table bussing task that involves clearing table with various

Table 2: Experimental results for Table Bussing on real biman-
ual robot. Our method significantly outperforms both Diffusion
Policy and OpenVLA by a large margin.

Scenarios Diffusion Policy OpenVLA DiVLA-2B

Seen 45.8 0 72.9
Mixed 31.2 0 70.8

objects. This task was adapted for a bimanual robot setup:
all tableware should be placed on a panel to the left, while
trash items are dropped into a bin on the right. Similar to
our factory sorting task, we evaluated the model’s perfor-
mance using both seen objects and a combination of seen
and unseen objects. The environment setup, along with all
objects used for training and evaluation, is shown in Fig-
ure 9. Our evaluation consisted of twelve trials, with three
to five objects randomly placed on the table. The success
rate is computed by how many objects are correctly placed.

Our results show that our model successfully completes
tasks in most cases when the object has appeared in the
training data, achieving an average success rate of 72.9%
on seen objects. In contrast, the Diffusion Policy and Open-
VLA achieve 45.8% and 0% success rates. For tasks involv-
ing both seen and unseen objects, DiVLA achieves up to a
70.8% success rate, a slight decrease in success rate com-
pared to the seen one, showing remarkable generalization
to objects with different colors and shapes. Finally, Di-
VLA demonstrates the ability to recognize unseen objects,
particularly by responding to object color. For example,
it categorizes a Sprite can as a ”green can” and correctly
places it in the trash bin. This observation further supports
the idea that reasoning contributes to generalization.

5. Conclusion
In this work, we present DiVLA, a state-of-the-art vision-
language-action model that delivers strong performance in
both simulations and real-world scenarios, including single-
arm and dual-arm robots. The core of our method lies in
combining the next-token prediction objectives and diffu-
sion models: the former for task reasoning and the latter for
action prediction. We introduce a reasoning reuse module to
enhance action generation. Through extensive evaluations
in both simulations and across multiple real-world embod-
iments, we demonstrate that DiVLA outperforms several
SOTA robot models. Additionally, we show that DiVLA has
robust generalization capabilities, adapting effectively to
new instructions, tasks, and environments. Our research
offers a novel perspective on designing VLA models, en-
couraging a rethinking of how reasoning can be reused to
facilitate end-to-end policy learning.
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Reuss, M., Yağmurlu, Ö. E., Wenzel, F., and Lioutikov,
R. Multimodal diffusion transformer: Learning versatile
behavior from multimodal goals. 2024.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and
Ommer, B. High-resolution image synthesis with latent
diffusion models. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pp.
10684–10695, 2022.

Shi, L. X., Hu, Z., Zhao, T. Z., Sharma, A., Pertsch, K.,
Luo, J., Levine, S., and Finn, C. Yell at your robot:
Improving on-the-fly from language corrections. arXiv
preprint arXiv:2403.12910, 2024.

Sun, P., Jiang, Y., Chen, S., Zhang, S., Peng, B., Luo,
P., and Yuan, Z. Autoregressive model beats diffusion:
Llama for scalable image generation. arXiv preprint
arXiv:2406.06525, 2024.

Team, C. Chameleon: Mixed-modal early-fusion foundation
models. arXiv preprint arXiv:2405.09818, 2024.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., et al. Llama: Open and efficient foundation lan-
guage models. arXiv preprint arXiv:2302.13971, 2023a.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288,
2023b.

Uehara, M., Zhao, Y., Black, K., Hajiramezanali, E., Scalia,
G., Diamant, N. L., Tseng, A. M., Biancalani, T., and
Levine, S. Fine-tuning of continuous-time diffusion
models as entropy-regularized control. arXiv preprint
arXiv:2402.15194, 2024a.

Uehara, M., Zhao, Y., Black, K., Hajiramezanali, E., Scalia,
G., Diamant, N. L., Tseng, A. M., Levine, S., and Bian-
calani, T. Feedback efficient online fine-tuning of diffu-
sion models. arXiv preprint arXiv:2402.16359, 2024b.

Wang, D., Hart, S., Surovik, D., Kelestemur, T., Huang,
H., Zhao, H., Yeatman, M., Wang, J., Walters, R., and
Platt, R. Equivariant diffusion policy. arXiv preprint
arXiv:2407.01812, 2024a.

Wang, P., Bai, S., Tan, S., Wang, S., Fan, Z., Bai, J., Chen,
K., Liu, X., Wang, J., Ge, W., et al. Qwen2-vl: Enhancing
vision-language model’s perception of the world at any
resolution. arXiv preprint arXiv:2409.12191, 2024b.

Wang, X., Zhang, X., Luo, Z., Sun, Q., Cui, Y., Wang,
J., Zhang, F., Wang, Y., Li, Z., Yu, Q., et al. Emu3:
Next-token prediction is all you need. arXiv preprint
arXiv:2409.18869, 2024c.

Wang, Y., Zhang, Y., Huo, M., Tian, R., Zhang, X., Xie, Y.,
Xu, C., Ji, P., Zhan, W., Ding, M., et al. Sparse diffusion
policy: A sparse, reusable, and flexible policy for robot
learning. arXiv preprint arXiv:2407.01531, 2024d.

Wang, Z., Li, Z., Mandlekar, A., Xu, Z., Fan, J., Narang,
Y., Fan, L., Zhu, Y., Balaji, Y., Zhou, M., et al. One-step
diffusion policy: Fast visuomotor policies via diffusion
distillation. arXiv preprint arXiv:2410.21257, 2024e.

Wen, J., Zhu, Y., Li, J., Zhu, M., Wu, K., Xu, Z., Cheng, R.,
Shen, C., Peng, Y., Feng, F., et al. Tinyvla: Towards fast,
data-efficient vision-language-action models for robotic
manipulation. arXiv preprint arXiv:2409.12514, 2024.

Wu, C., Chen, X., Wu, Z., Ma, Y., Liu, X., Pan, Z., Liu,
W., Xie, Z., Yu, X., Ruan, C., et al. Janus: Decoupling
visual encoding for unified multimodal understanding and
generation. arXiv preprint arXiv:2410.13848, 2024a.

Wu, Y., Zhang, Z., Chen, J., Tang, H., Li, D., Fang, Y.,
Zhu, L., Xie, E., Yin, H., Yi, L., et al. Vila-u: a unified
foundation model integrating visual understanding and
generation. arXiv preprint arXiv:2409.04429, 2024b.

11



Scaling Robot Foundation Models via Unified Diffusion and Autoregression

Xie, J., Mao, W., Bai, Z., Zhang, D. J., Wang, W., Lin, K. Q.,
Gu, Y., Chen, Z., Yang, Z., and Shou, M. Z. Show-o: One
single transformer to unify multimodal understanding and
generation. arXiv preprint arXiv:2408.12528, 2024.

Yan, G., Wu, Y.-H., and Wang, X. Dnact: Diffusion
guided multi-task 3d policy learning. arXiv preprint
arXiv:2403.04115, 2024.

Yuan, Z., Wei, T., Cheng, S., Zhang, G., Chen, Y., and Xu, H.
Learning to manipulate anywhere: A visual generalizable
framework for reinforcement learning. arXiv preprint
arXiv:2407.15815, 2024.

Zawalski, M., Chen, W., Pertsch, K., Mees, O., Finn, C., and
Levine, S. Robotic control via embodied chain-of-thought
reasoning. arXiv preprint arXiv:2407.08693, 2024.

Ze, Y., Chen, Z., Wang, W., Chen, T., He, X., Yuan, Y.,
Peng, X. B., and Wu, J. Generalizable humanoid manipu-
lation with improved 3d diffusion policies. arXiv preprint
arXiv:2410.10803, 2024a.

Ze, Y., Zhang, G., Zhang, K., Hu, C., Wang, M., and Xu,
H. 3d diffusion policy: Generalizable visuomotor policy
learning via simple 3d representations. In ICRA 2024
Workshop on 3D Visual Representations for Robot Ma-
nipulation, 2024b.

Zhai, X., Mustafa, B., Kolesnikov, A., and Beyer, L. Sig-
moid loss for language image pre-training. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision, pp. 11975–11986, 2023.

Zhang, Z., Zheng, K., Chen, Z., Jang, J., Li, Y., Wang, C.,
Ding, M., Fox, D., and Yao, H. Grape: Generalizing
robot policy via preference alignment. arXiv preprint
arXiv:2411.19309, 2024.

Zhao, C., Song, Y., Wang, W., Feng, H., Ding, E., Sun, Y.,
Xiao, X., and Wang, J. Monoformer: One transformer
for both diffusion and autoregression. arXiv preprint
arXiv:2409.16280, 2024.

Zhao, T. Z., Tompson, J., Driess, D., Florence, P.,
Ghasemipour, S. K. S., Finn, C., and Wahid, A. Aloha
unleashed: A simple recipe for robot dexterity. In 8th
Annual Conference on Robot Learning.

Zheng, J., Li, J., Liu, D., Zheng, Y., Wang, Z., Ou, Z.,
Liu, Y., Liu, J., Zhang, Y.-Q., and Zhan, X. Universal
actions for enhanced embodied foundation models. arXiv
preprint arXiv:2501.10105, 2025.

Zhou, C., Yu, L., Babu, A., Tirumala, K., Yasunaga, M.,
Shamis, L., Kahn, J., Ma, X., Zettlemoyer, L., and
Levy, O. Transfusion: Predict the next token and dif-
fuse images with one multi-modal model. arXiv preprint
arXiv:2408.11039, 2024.

Zhu, M., Zhu, Y., Li, J., Wen, J., Xu, Z., Liu, N., Cheng,
R., Shen, C., Peng, Y., Feng, F., et al. Scaling diffusion
policy in transformer to 1 billion parameters for robotic
manipulation. arXiv preprint arXiv:2409.14411, 2024.

12



Scaling Robot Foundation Models via Unified Diffusion and Autoregression

Supplementary Material

6. Evaluation Tasks and Detailed Results
6.1. Evaluation Tasks

As described in Section 4, we evaluate our DiVLA and
baselines on multi-task learning, factory sorting, zero-shot
bin-picking, and table bussing. In this section, we provide
details on these tasks. All of these tasks are depicted in
Figure 10 and 11.

For multi-task learning, we evaluate all methods on 5 tasks
for multi-task learning and 5 visual generalization tasks. We
evaluate each method with a total of 77 trials for multi-task
learning and 45 trials for visual generalization. We provide
the number of demonstrations and the average length of
these tasks in 3. A brief description of these tasks is as
follows:

• Object selection. In this task, we evaluate the model’s
ability to comprehend and act on user intent effectively.
To do so, we design three distinct instructions, each
requiring the robot to identify and pick up the appropri-
ate object based on the user’s expressed intent. These
instructions are intentionally diverse to test the model’s
versatility and robustness in understanding varying con-
texts and nuances of user commands.

• Flip the vertically placed pot. In this task, we evaluate
the model’s commonsense reasoning abilities. Specifi-
cally, the model must determine whether a vertically
placed pot is oriented to the right or left and accurately
identify its direction to position it correctly. This test
assesses the model’s capacity to understand spatial ori-
entation and apply logical reasoning to achieve the
desired outcome.

• Place cube inside box with closed lid. In this task, we
evaluate the model’s ability to reason about and exe-
cute a multi-step operation that involves manipulating
objects with physical constraints. The robot must first
identify the box with the closed lid, open the lid, and
then place the cube inside the box. This task assesses
the model’s planning, understanding of spatial relation-
ships, and ability to perform actions in a sequence to
achieve a desired goal.

• Place cup onto the plate. In this task, we test the
model’s ability to perceive and reason about the spatial
arrangement of objects in a structured environment. A
plate is placed on a two-tiered shelf, and the robot must
first identify which tier the plate is located on. And the
robot needs to carefully place the cup onto the plate
without disturbing the surrounding setup. This task
evaluates the model’s spatial reasoning and precision
in action.

• Place cube into yellow/blue Box. In this task, we
assess the model’s ability to follow instructions and
demonstrate spatial reasoning. The robot is presented
with an instruction specifying a designated box, either
yellow or blue, and is required to accurately identify
the correct box based on the given instruction. Once
identified, the robot must then place a cube inside the
chosen box. This task tests not only the model’s com-
prehension of language-based directives but also its
ability to integrate spatial awareness and execute pre-
cise actions.

Setup for visual generalization. In this setting, we assess
the model’s robustness and ability to generalize its visual
perception to different environmental conditions. The robot
is required to perform manipulation tasks under challenging
visual variations, including randomly placed distractors,
distracting lighting conditions, and a colorful background.
These variations test the model’s capacity to maintain focus
on the primary task while filtering out irrelevant visual noise
and adapting to dynamic visual environments. The goal is
to ensure the robot can accurately identify and interact with
objects despite significant deviations from standard settings.

Moreover, detailed descriptions for factory sorting, zero-
shot bin-picking, and table bussing are provided in Sec-
tions 4.3, 4.5, and 4.6, respectively.

Table 3: Summarization for the number of demonstrations and
average trajectory length for our real-world tasks.

# Task # of Demonstrations Avg. Traj. Length

1 Object selection 160 91
2 Flip the vertically placed pot 120 137
3 Place cube inside box with closed lid 50 146
4 Place cup onto the plate 100 107
5 Place cube into yellow/blue Box 100 90

6.2. Detailed Results

In this section, we present the complete evaluation results
for both the Franka and Bimanual AgileX robots, as detailed
in Table 4. DiVLA-2B consistently demonstrates superior
performance across the majority of tasks. Additionally, our
findings highlight DiVLA-2B’s robust visual generalization
capabilities, effectively adapting to changes in the surround-
ing environment.

7. Implementation Details
For the baselines, we follow a uniform training strategy to
ensure consistency. For OpenVLA, the original implemen-
tation uses only a single camera view. Since our method
use three camera views on both single arm Franka robot
and bimanual AgileX robot, it would be unfair to compare
the vanilla implementation of OpenVLA that uses only a
single camera view. Therefore, for the purpose of fair com-
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Figure 10: Multi-task Learning and Visual Generalization. We evaluate each method on multi-task learning and visual generalizations,
including adding additional distractors, changing the background, and implementing colorful lighting. Each set of three images represents
the initial state, intermediate state, and final state of one trial.

parison, we extend OpenVLA to utilize three camera views,
processing each view through the same visual encoder and
concatenating their outputs for further analysis. OpenVLA’s
pre-trained weights are used, and we fine-tune the model
on our dataset with a learning rate of 2e-5. Training is con-
ducted over 20 epochs, as we find that OpenVLA typically
requires longer training times for convergence. For the Dif-
fusion Policy, we employ DistilBERT to encode language
instructions, adopting a methodology similar to YAY (Shi
et al., 2024). Table 7 shows the performance of the single-
view OpenVLA baseline. In the sorting task, the success
rate drops significantly from 45.3% with three views to just
12.7% with a single view, highlighting the importance of
our proposed multi-view approach.

8. More Experiments
8.1. View Shifting Generalization

Imitation learning often struggles to generalize its capabil-
ities to novel viewpoints. In this study, we evaluate the
view generalization performance of DP, OpenVLA, and
DiVLA-2B in a factory sorting task. The experimental
setup is illustrated in Figure 12. As shown in Table 6, Open-
VLA exhibits poor generalization to view shifts. In contrast,
DiVLA-2B demonstrates notable robustness in view gen-
eralization, achieving a success rate of 60%. This result
highlights the advantages of leveraging pretraining on large-
scale robotic datasets to enhance generalization capabilities.

8.2. Efficient Inference

Fast inference speed is critical for deploying VLA models
in real-world applications. However, as models grow in
size and complexity, their inference speed tends to decrease
significantly on server-grade hardware. To address this
challenge and enhance model performance, we deploy our
models on the vLLM framework (Kwon et al., 2023). This
approach leverages optimized infrastructure to maximize in-
ference efficiency. In Table 5, we present a comparative anal-
ysis of control frequencies for DiVLA-2B, DiVLA-7B, and
OpenVLA (a 7B model). Our results demonstrate remark-
able speed improvements: the DiVLA-2B model achieves
an impressive 82 Hz on an A6000 GPU, showcasing ex-
ceptional performance. Similarly, DiVLA-7B achieves a
control frequency of 42 Hz, which is 8 times faster than
OpenVLA at the same model size. These findings under-
score the effectiveness of our optimizations in maintaining
scalability without sacrificing speed, paving the way for
broader real-world applicability of VLA models.

While vLLM accelerates our method, the improvement in
inference time is less dramatic than reported for LLMs.
Even without vLLM, DiVLA-2B and DiVLA-7B achieve
respectable frame rates of 74Hz and 30Hz, respectively.
Notably, this is still six times faster than OpenVLA, which
has a similar model size (7 billion parameters).

Another key observation is that our model experiences sig-
nificant performance degradation when evaluated at lower
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Figure 11: Factory Sorting, Zero-Shot Bin-Picking and Table Bussing. We further evaluate all robot policies on additional challenging
tasks, including factory sorting, zero-shot bin-picking, and bimanual table bussing. These tasks involve previously unseen objects with
diverse textures, varying heights, and different degrees of deformability (as illustrated in Figure 7 and Figure 8). Each set of three images
represents the progression of a single trial, showcasing the initial state, intermediate state, and final state.

View Shifting

Original

OriginalNew

New

Figure 12: View Generalization. We evaluate DP, OpenVLA, and
DiVLA-2B in the view shifting setting, where we use completely
different camera positions to capture images. The blue part indi-
cates the original camera positions, while the red part indicates the
new camera positions.

bit precisions, such as 8-bit and 4-bit. This aligns with
findings in OpenVLA, which highlight performance fluctua-
tions introduced by quantization. These results suggest that
current VLA models may require specifically designed quan-
tization methods to maintain performance while achieving
fast inference speeds at low precision.

8.3. Following Novel Instruction

The previous section primarily evaluated the model’s per-
formance on in-distribution task commands. In this section,
we assess the model’s ability to follow novel instructions,
specifically focusing on its generalization to previously un-
seen commands. We introduce new instructions that prompt

the model to pick up unseen items and follow sequential
instructions. Specifically, the instruction templates are “Pick
up {obj}.” and “Pick up {obj} first, then pick up the {obj},
finally pick up {obj}.” We tested the model on four objects:
1) a watermelon, 2) a lemonade, 3) a blue paper trash, and 4)
a red pepper. This is an extremely challenging task, as these
novel instructions are absent from both the Droid dataset
and our collected data. We evaluated four new instructions,
with results summarized in Table 9.

Our findings indicate that both OpenVLA and DiVLA-2B
can recognize these unseen objects and perform basic pick-
and-place tasks. However, when it comes to complex se-
quential tasks, OpenVLA fails to interpret the instructions
accurately, instead randomly selecting items. In contrast,
our method correctly follows the instructions, picking up
objects in the specified sequence. We hypothesize that by
learning to decompose long tasks into subtasks, our method
acquires a generalized ability to understand complex, multi-
step instructions. While OpenVLA can execute simpler
commands like “Pick up the watermelon,” it struggles with
more advanced instructions requiring item selection in a
specific order. Additionally, we observe a decrease in grasp-
ing precision when the model processes novel instructions,
indicating that the novelty of instructions introduces further
complexity to task execution.

3



Scaling Robot Foundation Models via Unified Diffusion and Autoregression

Table 4: Detailed Experimental Results on both Franka and AgileX Aloha.

Type Task Trails DP TinyVLA Octo OpenVLA DiVLA-2B

Multi-Task Learning

Object Selection 33 22 23 19 24 33
Flip the Vertically Placed Pot. 11 4 5 3 2 11
Place Cube into Yellow/Blue Box 11 0 3 3 6 10
Place Cup onto Plate 11 4 5 1 4 7
Place Cube inside Box with Closed Lip 11 0 4 2 2 7

Visual Generalization

Object Selection 9 1 4 4 5 4
Flip the Vertically Placed Pot. 9 1 4 1 1 6
Place Cube into Yellow/Blue Box 9 0 2 0 3 6
Place Cup onto Plate 9 2 2 0 3 6
Place Cube inside Box with Closed Lip 9 0 1 2 0 4

More Challenging Tasks

Factory Sorting (Seen) 80 27 39 33 45 61
Factory Sorting (Mixed) 80 11 25 27 36 50
Factory Sorting (Cluttered Seen) 65 16 21 17 30 43
Factory Sorting (Cluttered Mixed) 65 6 14 15 22 40
Zero-Shot Bin-Picking 102 10 24 4 29 65
Table Bussing (Seen) 48 22 - - 0 35
Table Bussing (Mixed) 48 15 - - 0 34

Table 5: Inference speed for DiVLA. We report the inference
speed for DiVLA on A6000 GPU.

Method DiVLA-2B DiVLA-7B OpenVLA-7B

Control Frequency 82Hz 42Hz 5Hz

Table 6: Experimental results for view shifting generalization.
We conduct view shifting generalization on factory sorting task.
The experimental setup is shown in Figure 12. We report the
success rate for each policy. Each method is evaluate with 5 trails.

Task \ Method DP OpenVLA DiVLA-2B

Factory Sorting 0 0 60

8.4. Ablation Study on Reasoning Injection Module

Our core contribution is the proposed reasoning module,
which enables the network to complete long-horizon tasks
via direct prompting. This section presents an ablation study
of this module, following the real-world experimental setup
described in Section 4.2. We train a model using the same
methodology, but without the reasoning injection module.
Table 8 presents the results. We observe a significant per-
formance drop compared to our baseline model when the
reasoning injection module is removed. We hypothesize that
the reasoning module facilitates task decomposition, result-
ing in more fine-grained action generation, which simplifies
the learning process.

8.5. Model Scaling

An important consideration for pure end-to-end neural net-
works is assessing their ability to scale effectively. As the

Table 7: Ablation study on OpenVLA using one camera view
and three camera views. For a fair comparison, our main experi-
ments evaluate OpenVLA using three camera views with existing
methods. This section presents an ablation study comparing these
results with those obtained using a single-camera view to demon-
strate the benefits of our multi-view approach.

Method/Sorting Seen Mixed Cluttered Seen Cluttered Mixed Avg.

OpenVLA (3 views) 56.2 46.2 45.0 33.8 45.3
OpenVLA (1 view) 26.4 17.5 4.8 2.1 12.7

Table 8: Ablation study on reasoning injection module.

In-Distribution
Model \ Tasks Task 1 Task 2 Task 3 Task 4 Task 5 Avg.

DiVLA-2B 100 100 63.6 63.6 90.9 83.6
w/o reasoning injection 66.7 66.7 45.5 45.5 27.3 50.3

model size and data volume grow, the performance of the
model should ideally improve. To evaluate this scalability,
we conducted additional experiments on two challenging
tasks: factory sorting and zero-shot bin-picking. These tasks
provide rigorous benchmarks to measure how increased
model capacity and pre-training data influence performance.
The detailed experimental results are presented in Table 10.

Our analysis highlights significant performance improve-
ments when larger models and more extensive pre-training
datasets are utilized. For example, the DiVLA-7B model
demonstrates substantial gains over the DiVLA-2B model,
achieving improvements of 8.7% and 3.0% in success rates
for the factory sorting and bin-picking tasks, respectively.
This underscores the benefits of scaling model size, which
enables better representation learning and decision-making
capabilities.
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Table 9: Experimental Results for Following Novel Instruction.
We report the success rate, calculated as the number of successful
trials divided by the total trials, for the novel instruction-following
abilities of OpenVLA and DiVLA-2B. Our method successfully
picks up items based on given instructions and can follow sequen-
tial instructions to retrieve items in the correct order.

Model \ Tasks Following Novel Instruction on Four Tasks

Watermelon Watermelon → Blue Paper Trash → Lemonade

OpenVLA (Kim et al.) 2/3 0/3
DiVLA-2B 2/3 2/3

Model \ Tasks Red Pepper → Blue Cup Watermelon → Lemonade → Blue Paper Trash

OpenVLA (Kim et al.) 0/3 0/3
DiVLA-2B 1/3 1/3

Moreover, scaling up to 72B parameters yields even greater
performance boosts. These larger models not only achieve
higher success rates in in-distribution scenarios but also
exhibit superior generalization to out-of-distribution setups.
This improvement reflects the models’ enhanced ability
to handle variability in task environments, unseen object
properties, and dynamic conditions.

Table 10: Experimental results for model scaling.

Tasks/Models DiVLA-2B DiVLA-7B DiVLA-72B

Sorting 66.2 74.9 82.4
Bin Picking 63.7 66.7 75.9

8.6. DiVLA can do Visual-Question-Answering

Previous works, such as RT-2 (Brohan et al., 2023) and
ECoT (Zawalski et al., 2024), have suggested that co-
training with vision-language data helps preserve basic con-
versational functionality for Vision-Language Action (VLA)
data. In this section, we demonstrate that despite not being
co-trained with vision-language data, our method retains its
chatting capability and is proficient in performing common
visual-question-answering (VQA) tasks. However, these
works have neither provided concrete examples of chat in-
teractions nor open-sourced their results, leaving it unclear
to what extent conversational capabilities are retained in
such models. We give a few examples in Table 11.

When prompted to identify objects, we observe that the
model demonstrates the ability to recognize some items ac-
curately, such as tulips and oranges. However, it struggles
with more nuanced distinctions; for instance, DiVLA mis-
takenly identifies a toy dragon as a toy tiger, likely due to its
reliance on color features rather than other distinguishing
characteristics like shape or texture.

Interestingly, we observe that the model demonstrates strong
sensitivity to color, consistently providing correct answers
to all three questions focusing on an object’s color. This
highlights a notable strength in color recognition but also

Table 11: VQA for DiVLA. We test DiVLA’s ability to answer
questions based on visual signals.

Question Object/Scene Answer Correct

What is the object?
Toy Tiger ✗

Tulip ✓

Orange ✓

What is the object’s color?
Brown ✓

Blue ✓

Green ✓

Describe the scene. The cube is on the right side of yellow pepper ✓

The ball is on the top of a holder ✗

reveals limitations in processing broader visual features for
complex tasks. To further assess its capabilities, we tested
the model with a simple scene description task, requiring
it to describe spatial relationships between objects. The
model successfully interpreted spatial relationships, such as
identifying that one object is on the right or on top of another.
However, it often failed to recognize objects correctly. For
example, DiVLA misclassified a football as a regular ball.

Notably, these objects were not included in the model’s pre-
training or fine-tuning data. However, the pre-trained VLM
may have encountered similar objects during its pre-training
phase, enabling it to recognize them correctly in some cases.
This observation underscores the importance of leveraging
pre-trained VLMs as a foundation for end-to-end visuomo-
tor learning, as they provide a strong prior understanding of
visual concepts that can significantly enhance downstream
performance in complex tasks.
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