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Figure 1: Robot state estimation by Legolas across diverse environments and robotics plat-
forms. Legolas operates at a high frequency to predict small incremental motions of a robot by
only utilizing leg and IMU sensing. We introduce the first accurate, purely data-driven method for
predicting odometry.

Abstract: Estimating odometry, where an accumulating position and rotation is
tracked, has critical applications in many areas of robotics as a form of state es-
timation such as in SLAM, navigation, and controls. During deployment of a
legged robot, a vision system’s tracking can easily get lost. Instead, using only the
onboard leg and inertial sensor for odometry is a promising alternative. Previous
methods in estimating leg-inertial odometry require analytical modeling or col-
lecting high-quality real-world trajectories to train a model. Analytical modeling
is specific to each robot, requires manual fine-tuning, and doesn’t always capture
real-world phenomena such as slippage. Previous work learning legged odome-
try still relies on collecting real-world data, this has been shown to not perform
well out of distribution. In this work, we show that it is possible to estimate the
odometry of a legged robot without any analytical modeling or real-world data
collection. In this paper, we present Legolas, the first method that accurately esti-
mates odometry in a purely data-driven fashion for quadruped robots. We deploy
our method on two real-world quadruped robots in both indoor and outdoor en-
vironments. In the indoor scenes, our proposed method accomplishes a relative
pose error that is 73% less than an analytical filtering-based approach and 87.5%
less than a real-world behavioral cloning approach. More results are available at:
learned-odom.github.io.
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1 Introduction

Many robotics tasks require tracking the state of the robot, one of these states that is commonly
tracked is the pose of the robot. Doing so with odometry requires estimating and accumulating
small incremental ego-centric displacements of the robot at a high frequency. Within robotics, these
estimates are used in many downstream tasks. An example application is within SLAM, where
odometry estimates are used as motion estimates to improve mapping [1]. It is also common in
controls to use odometry estimates as a source of feedback [2, 3]. Odometry has applications across
various fields where fast tracking is required. Some notable examples include VR [4], pedestrian
motion estimation [5], and autonomous car navigation [6].

A typical deployment of a robot will often incorporate visual components into its odometry [7, 8, 9,
10]. These components are useful for creating a map to reduce drift and to assist when other sensors
fail. However, in many cases, a quadruped will need to act in an environment where it is required
to perform quick movements such as going up and down stairs or dodging obstacles. These quick
motions cause the visual component to lose tracking and cause the odometry system to fail. During
these failure modes we seek to estimate odometry through just the proprioceptive and inertial sensing
that are ubiquitously found onboard quadruped platforms. Fig. 1 and the accompanying videos show
examples of our robots estimating odometry across many environments.

Previous methods for solving leg-inertial odometry can be split into analytical and learned meth-
ods. Analytical methods for estimating odometry on a legged robot often require direct sensing or
estimating the foot contact [11, 12, 13, 14]. However, foot contact sensors are not always available
on robots, and estimating the foot contacts can be challenging due to modeling the robot’s interac-
tions with the environment such as slippage, and deformable surfaces. Due to the analytical models
only being correct for a studied robot, immediate transfer to a different robot configuration may not
be possible. On the learning-based side, recent methods have shown that it is possible to estimate
odometry by training a model from real-world data [15, 16, 17]. However, collecting a diverse and
large dataset of trajectories with high-quality labels is challenging. Challenges include making the
training environments diverse, limitations of devices that can be used to obtain the target pose, and
time to collect the dataset. These systems have also previously relied on analytical models and
utilized the prediction in their update step rather than only using the learned estimate.

In this work, we introduce Legolas, or Legged odometry learned as simulated as a purely data-
driven solution for solving leg-inertial odometry. In contrast to analytical filtering methods and
recently developed learned odometry prediction models, our proposed work does not require analyt-
ical modeling such as sensing modeling, kinematic modeling, or foot contact estimation.

This work builds off the recent success in robot locomotion and navigation [18, 19, 20, 21] in sim-to-
real transfer. These works demonstrated that complex planning, mapping, and analytical modeling
are not necessary for deploying their methods to real-world platforms. We extend this line of work
by showing that predicting the robot’s odometry can be successfully learned from simulation as a
first step toward sim-to-real transfer of explicit state estimation. Through simulation, months’ worth
of trajectory data across diverse scenes are collected in a single day. After training, a direct sim-
to-real transfer of odometry prediction on the Unitree Go2 and DEEP Robotics Lite3 quadrupeds
is demonstrated. After training individual models for each of the quadrupeds, no additional manual
tuning is required for deployment. This is in contrast to many current filtering-based and factor
graph methods for predicting odometry that suffer from the “Curse of Manual Fine-Tuning” [22].
Furthermore, Legolas can predict odometry at a high frequency at an accuracy much higher than
previous filtering and learned baselines while being competitive with a visual odometry method in
indoor scenes.

2 Related Works

Filtering-Based State Estimators: An Extended Kalman Filter (EKF) is a class of filtering-based
methods that use non-linear analytical modeling of the robots’ kinematics and sensors to estimate the
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state of the robot [23]. EKF methods [24, 25] for tracking the state of legged robots are promising
as the roll and pitch orientations are fully observable and drift-free on quadrupeds [26]. However,
the models to build the EKF often assume that at least one foot is in contact with the ground at all
times [12]. Additionally, for quadruped models, it is often assumed that there is no or little slippage
on the floor [12, 27]. In contrast to these filtering-based methods, Legolas makes no assumption
about analytical modeling, meaning that Legolas can be used to train an odometry model on any
robot configuration. Furthermore, Legolas makes no assumptions about the environment as Legolas
is trained in simulation, it collects data across many environment variations and configurations.
Furthermore, filtering-based methods will often require or model the foot contacts of the robot [28].
As foot sensing is not straightforward to model [29], susceptible to damage through impact [30],
and not all pedal robots have this sensor, Legolas does not require the use of this sensor.

Learning-Based Inertial Odometry: There is a broad range of literature that is interested in learn-
ing odometry through just an IMU [16, 31, 32] as IMUs are cheap and prevalent. These methods
have been applied to applications outside of robotics such as consumer phones [4] and drones [33].
Work such as Cioffi et al. [33] apply this idea to robotics and have shown that it is possible to use
only sensing from an IMU collected from real-world trajectories, in conjunction with a model-based
system to predict accurate odometry estimates. However, Buchanan et al. [34] has shown that these
predictions degrade when the robot’s behavior is out of distribution from the training dataset. In
contrast to these previous methods, as Legolas is trained in simulation, months worth of trajectories
of the robots moving in diverse environments such as over stones, stairs, and inclines are collected a
single day without the need for analytical models. This allows us to train a robust odometry predic-
tion model that is less likely to go out of distribution during deployment. Furthermore, in this work,
we will show that predictions from just an IMU lead to degraded predictions, and demonstrate supe-
rior performance by adding additional observations that are readily available on quadruped robots.

Robot Sim-To-Real Transfer: Sim-to-real transfer has been notably of interest recently due to the
promising scale of simulators, safety, and the difficulty in collecting real-world data on physical
systems [35, 36, 37]. RMA [19] used a two-phase learning procedure to adapt the locomotion
policy to unknown environment parameters. Agarwal et al. [18] extended the two-phase framework
by first training with low-resolution scandots. Then in the second phase, supervised training from
the first phase policy is performed with depth images in the observation. Both this method and
RMA were demonstrated to transfer to the real world on difficult locomotion tasks such as climbing
stairs and moving through slippery environments without fine-tuning. Hoeller et al. learns a state
representation over a sequence of images and the trajectory of the robot in simulation to perform
obstacle avoidance while reaching a goal. This method was shown to even dodge dynamic obstacles
after transfer to the real world. Zhuang et al. [38] demonstrated successful transfer of highly precise
and reactive parkour skills. Adding onto this line of work, Legolas shows a successful sim-to-real
transfer of state estimation from simulation across multiple robot embodiments.

3 Legolas

The goal is to train a pose difference prediction model P that predicts small incremental motions
of the robot at each time step. This model takes as input a vector of size R44 containing previous
actions and command velocities as well as IMU and proprioceptive sensing which are common on
quadruped platforms. The IMU data corresponds the gyroscope (R3) and roll and pitch estimates
(R2). The command velocity is in the x, y, and angular directions (R3). The proprioceptive sensing
corresponds to the joint angle and velocity of each joint of size R12. Finally, the previous actions
are given as desired joint angles, this is of size R12. P outputs a prediction and variance vector of
shape R18 on how much the robot has translated (R3) and rotated as represented by a 6D rotation,
R6 [39]. This representation was chosen as it was found to lead to the lowest error on the validation
dataset as discussed in Sec. C. A variance is also predicted for each element of the translation and
rotation component R9. An additional head is introduced to predict confidence (R1) whether the
robot is moving to perform zero-velocity updates [40]. The connection between data collection and
training is visualized in Fig. 2a.
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A relative pose prediction error is utilized in the proposed loss that compares the predicted and
ground truth incremental motions of the robot. A key insight into this loss as visualized in Fig. 2b,
is that this error should not be propagated to future predictions. This formulation allows for the
creation of independent data points in the collected dataset.

In this section, we will first provide details on dataset collection in Sec. 3.1. After this, we will
discuss the loss used to train P in Sec. 3.2 and finally training details in Sec. 3.3.
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(a) Overview of data collection and training Legolas.
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(b) Relative prediction errors.

Figure 2: Legolas overview. (a) 13.7M data points containing a history of the robot’s observations
and ground-truth pose are collected from simulation. P takes in a history of observations and outputs
the change in the pose of the robot. In conjunction with the ground truth pose difference, an error is
calculated. (b) The key idea behind the proposed error is to calculate the magnitude of the difference
between the predicted and ground truth pose changes.

3.1 Odometry Dataset Collection

In the simulator Issac Gym [35], a trajectory is collected by using a robust locomotion policy π̂
for n steps in order to ensure diverse dataset collection. The choice of this policy, whether it is
a learned or an analytical approach, for example, will be compatible with Legolas. Legolas only
assumes that a given policy π̂, that takes in the current observations and returns an action a, is
available both in the simulator and the real world. The simulation environment contains many
scenes that a robot would encounter such as tripping hazards, uneven surfaces, and stairs. Collected
trajectories contain both the current observation Oi and the ground truth pose of the robot. Oi

contains the proprioceptive angle and velocity, IMU gyroscope and roll and pitch estimates, the
previous commanded joint angles from π̂, and commanded velocity. While creating this dataset,
thousands of robots are simulated to create trajectories in parallel. Data collection for both the Go2
and the Lite3 are the same. Details and visualizations of dataset collection can be found in Sec. B.

3.2 Displacement Error and Training Loss

The error is calculated by comparing trajectories represented as a k length sequence of SE(3) ma-
trices where Q ∈ Rk×4×4 is the ground truth trajectory and P ∈ Rk×4×4 is the predicted trajectory.
At a given timestep i, the ground truth pose is Qi ∈ SE(3) and the predicted pose is Pi ∈ SE(3).
The incremental ground truth and predicted motion from time step i to i− 1 is Q−1

i−1Qi and P−1
i−1Pi

respectively. The pose difference, D ∈ SE(3) between these incremental motions, is defined in (1).

D = (Q−1
i−1Qi)

−1(P−1
i−1Pi) (1)

To formulate the proposed loss as independent predictions in the training procedure, the difference
in the predicted trajectory (∆P ) is estimated directly from P as shown in (2). ∆P is composed
of ∆Pt ∈ R3, the incremental motion in the (x, y, z) directions as well as a rotation component
∆PR ∈ R6. (Q−1

i−1Qi) is then converted into a translational and 6D vector, denoted as ∆Q.

D = ∆Q−∆P (2)

Training with just D as the error, i.e. e = ∥D∥22 leads to an accumulation of drift while the robot
is stationary. To counteract this a masking head is introduced into the network. The purpose of
the masking head is to learn to manage zero-velocity updates [40]. In practice the masking head
performs binary classification on whether the robot is stationary, outputting mi = 0 when stationary
and mi = 1 when in movement. Therefore with the masking head, the final error is defined in (3).

e = mi · ∥D∥22 + (1−mi) · ∥(∆Q)∥22 (3)
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The error can be thought of as just ∥(∆Q)∥22 when the robot is predicted to be stationary. This error
is minimized when the robot is standing still and penalized when the robot is actually moving. The
error is otherwise equivalent to e = ∥D∥22 when the robot is predicted to be moving.

Training is started with an MSE loss as shown in (4) and then switched to a Gaussian Maximum
Likelihood Loss as shown in (5) after training for a sufficient number of samples.

LMSE =
1

N

N∑
j=1

∥ej∥22 (4)

LGML =
1

N

N∑
j=1

− log

exp(− 1
2 ∥ej∥

2
Σ̂j
)√

8π3det(Σ̂j)

 =
1

N

N∑
j=1

(
1

2
log det(Σ̂j) +

1

2
∥ej∥2Σ̂j

) + Cst (5)

Where ej is the error for a given data point in a mini-batch of size N , and Σ̂j is the covariance
matrix predicted by P to represent uncertainty. Using the Gaussian Maximum Likelihood Loss
improves the motion prediction and facilitates predicting variance. The variance allows for more
interpretability of the output of Legolas and facilitates downstream integration with SLAM systems.
However, starting training with LMSE was found to improve P and reduce training instability.
Further details regarding these losses can be found in Sec. C.

3.3 Training Procedure

After the trajectories are collected as specified in Sec. 3.2, each trajectory is split into n
H+1 parts

to form an offline dataset to train P . Where n is the length of the trajectory and H is the num-
ber of previous observation steps that will be given to the model. Each data point contains the
current observations of the robot as well as a history of the last H − 1 observations before it,
{Oi−H , Oi−H−1, ..., Oi−1, Oi}. These observations provide a history for the model to improve
the prediction of the odometry. Finally, each data point also contains the relative pose difference
over the ground truth trajectory for the last step, Q−1

i−1Qi.

After collecting the ground truth observations, noise is added to each sensor. For the Go2 dataset,
13.7M data points are collected, equivalent to 160 days of data collection. This took approximately
48 hours to collect. During training, for each data point, P takes in the observations {Oi−H , ..., Oi}
and predicts incremental motion ∆P and a covariance matrix Σ̂. During training and deployment,
H = 50. This is equivalent to taking the last one second of observation history and predicting the
incremental motion over the last 0.02 seconds. Consistent with prior work that estimates odome-
try [15, 17], a 1D ResNet architecture [41] is adopted for P . Further details can be found in Sec. B.

4 Experiments

4.1 Experimental Setup

Ground truth trajectories are collected on real-world quadruped robots. Ground truth information is
collected with motion capture for indoor scenes and RTK-GPS for outdoor scenes. When neither is
available due to their limitations, SLAM with a LIDAR [42] is used to obtain the ground truth pose.
Legolas is deployed onto the Unitree Go2 quadruped and the DEEP Robotics Lite3 quadruped at 50
Hz to match the simulation training speed. In the following experiments, more focus is given to the
Go2 as baselines are more readily available for this platform.

We benchmark using filtering-based, behavioral cloning, and visual baselines and variations:
• EKF [26]: Analytical filter-based approach, stemming from the work of Cerberus2.0 [25]. The
kinematic modeling in the EKF is modified to match the Go2 rather than the Go1. Manual fine-
tuning on its parameters is performed [43].
• BC: Trained by collecting trajectories in the real world. These trajectories are then processed into
a dataset in the same manner as performed in Sec. 3.3 to create a dataset of 90,000 data points.
Training also follows the same as Legolas with the same loss in Sec. 3.2.
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Indoors Outdoors
# Method RPE@1m ↓ ATEo ↓ ATEu ↓ ATEo ↓ ATEu ↓
1 EKF [26, 25] 0.38 0.116 0.062 0.23 0.07
2 BC 0.81 0.175 0.099 0.20 0.12
3 Ours w/ Go1 0.12 0.022 0.014 0.08 0.04
4 Ours 0.11 0.026 0.015 0.04 0.03
5 VINS-Fusion [7] 0.09 0.022 0.011 - -

Table 1: Legolas vs. prior method on real-world deployment. In the indoor setting, Legolas
achieves performance at a level comparable to a visual baseline and outperforms relevant leg-inertial
baselines. However, in the outdoor setting, where the visual baseline fails to deploy, Legolas still
surpasses the other leg-inertial baseline.

• VINS-Fusion [7]: Visual-inertial odometry baseline. Additional hardware and manual fine-tuning
was required for suitable deployment [44, 43]. See Sec. D for more details. Has access to stereo
images, whereas Legolas and the other baselines do not.
• Ours w/ Go1: Legolas, but instead of collecting a training dataset in the simulator with the Go2, a
Go1 is simulated and its respective π̂ is utilized instead.

4.2 Metrics

The RPE and ATE metrics [45] are utilized as they are standard in visual odometry and SLAM [46].
The RPE metric is more relevant to odometry as this metric is an average error of the odometry
models across predictions. Both metrics are utilized to be consistent with relevant literature [15, 33].

RPE: Relative Pose Error is a “local” error that ignores drift between Q and P , it is defined in (6).

RPErmse :=

√√√√( 1

n

n∑
i=1

∥∥t((Q−1
i Qi+∆)−1(P−1

i Pi+∆))
∥∥2) (6)

Where ∆ corresponds to the index of the next pose in the ground truth trajectory that is some distance
away from Qi. In the following experiments, a distance of 1 meter is utilized, therefore this metric
is reported as RPE@1m.

ATE: Absolute Trajectory Error is a “global” error that penalizes drift and mismatches between the
ground-truth Q and predicted trajectory P of lengths n. In this work, the root mean squared error of
the ATE, which is defined in (7) is reported:

ATErmse :=

√√√√( 1

n

n∑
i=1

∥t(QiSPi)∥2
)

(7)

Where t() retrieves the translation component of the matrix, S is a transformation that aligns Q and
P , and N is the number of steps in a given trajectory. S is necessary as the trajectories are not
guaranteed to be immediately aligned. In this work ATE is utilized in two manners, the first is when
S is a transformation that aligns the first frame of both trajectories. The second is when S is found
using Umeyama’s method [47] to find the best transformation to align all points across both Q and
P . These metrics are referred to as ATEo and ATEu respectively. In addition to the above, the error is
normalized by the path length so the metric is not dominated by long trajectories.

4.3 Real-World Quadruped Odometry

Legolas and baselines are deployed in the real world across 11 indoor and 5 outdoor scenes. These
scenarios cover a range of locomotion tasks on flat and hilly terrains across diverse trajectory varia-
tions. In Tab. 1 the metrics achieved by each method on both indoor and outdoor scenes are reported.
In the outdoor scenes, the RPE@1m metric is forgone as GPS does not accurately report the heading.

Legolas achieves near vision-based performance on indoor scenes (indoors rows 4 and 5).
While Legolas (row 4) does fall behind VINS-Fusion for indoor scenes, on methods with equal
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(a) Indoors trajectory tracking across all methods. (b) Outdoors trajectory.

Figure 3: Indoor and outdoor trajectories collected on Go2 quadruped. Across indoor and
outdoor scenes, Legolas demonstrates successful deployment. (a) Legolas and VINS-Fusion most
closely track the ground-truth. EKF captures a relevant shape but does not track the ground-truth.
(b) Legolas produces accurate odometry estimation even in large environments. More full rollouts
can be found in Sec. E

sensing, Legolas exceeds the baselines. When compared to the EKF-based approach (indoors row
1), Legolas achieves a 73% lower RPE@1m. Furthermore, when compared to the real-world behav-
ioral cloning approach, Legolas achieves an 87% lower RPE@1m.

In Fig. 3a, the predicted trajectory across methods is compared. Both VINS-Fusion and Legolas
closely track the ground-truth trajectory. EKF does capture a relevant shape but fails to closely track
the ground truth over time. We find that this common error mode stems from foot contact estimation
being required. However, this estimate comes directly from the foot contact sensor which is prone
to noise and degradation [30]. We find that BC can successfully reproduce trajectories it was trained
on, but fails to generalize to novel trajectories. This is due to the low amount of data used to train the
model when compared to Legolas. This phenomenon has been found in other works as well [34].

Legolas improves over baselines in the outdoors dataset split (outdoors rows 1, 2, 4) The out-
doors dataset split was notably challenging as there were variations in weather conditions and terrain.
Despite this, in Fig. 3b Legolas tracks the robot in a slippery environment, where the ground is cov-
ered in rain. Across all baselines in the outdoor dataset split, Legolas improves over the baselines.

VINS-Fusion was tuned for indoor environments and immediate outdoor deployment failed. More
fine-tuning didn’t improve performance due to brightness changes, using a downward-facing cam-
era, and quick motions. These failure modes are described in-depth along with an example of how
Legolas can be integrated with a VIO method to improve robustness can be found in Sec. D.

Legolas works across embodiment (indoors rows 3 and 4). While trained with a different physical
robot and policy than the one used in deployment, Legolas is capable of accurate odometry predic-
tion in indoor scenes. Notably, when trained with the Go1 and deployed on the Go2, a decrease in
ATEo from 0.024 to 0.019 and ATEu from 0.014 to 0.013 (indoor rows 3 and 4) occurs. However, the
more relevant metric for odometry, RPE@1m, increases from 0.11 to 0.12.

4.4 Simulator Odometry Prediction

In this experiment, a validation dataset is collected in simulation to perform ablations on the obser-
vations given to Legolas. This dataset consists of 4 trajectories collected over 90m of walking over
a rugged ground environment. Results are showcased in Tab. 2.

Using the full sensor suite and actions history is critical for effective odometry prediction.
Notably, only using the IMU for odometry prediction, yields a RPE@1m of 0.32 and an ATEo of
0.244 (row 1). Just adding the last actions performed by the robot to the observation space improves
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Observation Space Modalities Metrics

# Proprioceptic Last Action IMU RPE@1m ↓ ATEo ↓ ATEu ↓
1 ✘ ✘ ✔ 0.32 0.244 0.094
2 ✘ ✔ ✘ 0.40 0.243 0.111
3 ✘ ✔ ✔ 0.27 0.186 0.053
4 ✔ ✘ ✘ 0.34 0.255 0.111
5 ✔ ✘ ✔ 0.36 0.247 0.109
6 ✔ ✔ ✘ 0.24 0.132 0.087
7 ✔ ✔ ✔ 0.05 0.051 0.016

Table 2: Effect of inputs on Legolas. Thre of the inputs to the Legolas system are Proprioceptic
(angle and velocity), the Last Action performed, and IMU. Removing any of the inputs affects the
best-performing variation (row 7) of Legolas. When compared to the complete system, the Last
Action is most crucial removing this yields an increase in ATEo of 484% (row 5), followed by
Proprioceptic with a 364% larger error (row 3), and then IMU with an increase of 258% (row 6).
Predicting with just the IMU (row 1) as done in previous methods leads to a 478% increase of ATEo.

this result to a RPE@1m of 0.27 and an ATEo of 0.186, a 15.6% and a 23.7% decrease respectively
(rows 1 and 3). Finally, adding the proprioceptic sensing to the observation space yields a RPE@1m
of 0.05 and an ATEo of 0.051, an incredibly large 81.4% and 72.5% decrease respectively (rows
3 and 7). Rollouts of Legolas trained with the full sensing suite and only the IMU are visualized
in Sec. E. The improved odometry predictions clearly show Legolas is capable of closely estimating
the ground truth trajectory while only using the IMU leads to degraded behavior.

4.5 Real-World Lite3 Deployment

Legolas, when trained for the Lite3, is able to deploy onto real-world hardware as demonstrated
in Fig. 4. As visualized in Fig. 4b, Legolas tracks the ground-truth trajectory of the robot, showcas-
ing that Legolas is able to deploy across multiple robots. A visualization of the physical robot with
ground truth and predicted trajectories in the scene is shown in Fig. 4a.

5m

(a) Predicted and ground truth
trajectory imposed on a map.

(b) Lite3 deployment with predicted and
ground truth trajectories visualized.

Figure 4: Legolas deploys across robotics platforms. After collecting a new dataset of Lite3 roll-
outs in simulation and training a new model, Legolas successfully deploys to the new platform. The
reconstructed trajectory is visualized from the top-down in Fig. 4a and in the real-world in Fig. 4b.

5 Conclusion

In this work, we introduced Legolas, a leg-inertial model capable of achieving odometry prediction
at a level near visual odometry without explicit modeling of the robot or the environment. Legolas
was trained by first collecting a dataset in a simulator to take advantage of its ability to parallelize
and produce a diverse dataset. After this, Legolas is trained across multiple quadruped embodiments
with successful real-world transfer for both. Through real-world experiments in both indoor and
outdoor scenarios, we demonstrated Legolas’s capabilities of estimating odometry at an accuracy
higher than both filtering-based and other learning-based baselines.
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Appendix – Legolas: Deep Leg-Inertial Odometry

In this Appendix, we include additional details about the following:

A Limitations of the proposed method.
B Further details regarding the training of Legolas such as improvements to the chosen archi-

tecture and details of data collection.
C Elaborations of the loss used to train Legolas.
D Explanation of the steps taken to improve deployment of the baseline methods and details

of the deployment of Legolas.
E Additional trajectories visualizations on the validation dataset and in real-world deploy-

ments.

A Limitations

We provide a comprehensive overview of potential failure modes and limitations, along with strate-
gies for future improvements. (1) Legolas is locomotion-specific. Through testing, it has been
found that Legolas’s odometry prediction becomes poor when the locomotion policy used during
deployment is different than the one used in training. A potential solution to this could be by col-
lecting a diverse set of walking gaits in simulation and using this as a larger, more diverse source to
train Legolas. (2) Legolas has no immediate solution for removing accumulating drift. Integrating
the predictions of Legolas into a SLAM system as an odometry estimate, which is very common
across modern SLAM systems [48, 42] could fix this. (3) Our proposed method is constrained by
the fidelity and capabilities of the simulator. These limitations include simple foot-contact physics,
limited sensing models resulting in poorer sim-to-real transfer, and a lack of dynamic obstacles in
our current simulation framework.

B Further Training and Data Collection Details of Legolas

Training and data collection details are provided to improve the reproducibility of Legolas.

B.1 Training Details

During deployment, it was found that the default 1D ResNet architecture [41] had too many pa-
rameters, causing slower than desired model prediction on real-world hardware. Fine-tuning of the
model, by reducing the number of residual layers from 3 to 2 decreased the number of parameters
in the network from 4.7M to 1.5M allowing for successful deployment. As shown in Tab. 3, this led
to no substantial change in the relevant metrics.

# Model Parameter Sized RPE@1m ↓ ATEu ↓
1 4.7M 0.045 0.017
2 1.5M (Ours) 0.050 0.016

Table 3: Effect of Model Size on Validation Performance. While decreasing the size of the model
reduced model performance in RPE@1m, ATEu improved slightly when using the smaller model.
Due to the changes not substantially changing the relevant metrics, but boosting on-board speed, the
smaller model was utilized for deployment.

B.2 Data Collection

Simulator Ground-Truth Data: The ground truth sensor data is generated from the simulator
Isaac-Gym with the real-time physics engine ’PhysX.’ PhysX simulates the robot’s configuration by
integrating forces, velocities, and constraints based on the robot’s properties (such as mass, and kine-
matic configuration) and environmental factors (such as friction, gravity, and other applied forces).
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During each simulation step, PhysX updates the robot’s state, including its position, orientation, and
velocities, and accurately resolves any interactions with the environment. This detailed simulation
data is then made available within Isaac-Gym, allowing seamless access to the ground-truth sensor
data for use in various applications. Slippage is handled through PhysX through the coulomb friction
model [49].

Additive Noise: We utilize the noise model from Rudin et al. [50] where the noise is sampled from
a uniform distribution and then added to the observations. Tab. 4 includes the relevant minimum
and maximum values of this distribution.

Observation Min and Max Values of Unif. Distribution

IMU Gyro ±0.2 rad/s
IMU Pitch and Roll ±0.05 rad

Command Velocity X/Y ±0.0 m/s
Command Velocity Angular ±0.0 rad/s

Joint Angle ±0.01 rad
Joint Velocity ±1.5 rad/s
Policy Action ±0.0 rad

Table 4: Sensor Noise. Additive noise is sampled over a uniform distribution from the minimum
and maximum values given. These ranges were found to be more noisy than their real-world coun-
terparts.

Simulator Dataset Collection: The only difference in Legolas for training the pose prediction
model P for the Go2 and Lite3 occurs during dataset collection, the ‘urdf’ file that describes the
robot’s kinematics is changed for the respective robots.

Figure 5: Snapshot of robots collecting trajectories in simulation as performed in Sec. 3.1.

To collect a given trajectory, a robot follows its policy π̂ with a random velocity command with
a target linear velocity uniformly sampled from [−2.0, 2.0] m

s . A target linear velocity between
[−0.15, 0.15] m

s is instead set to 0 in order to add standing and rotating in-place behaviors into our
dataset. A target angular velocity in yaw is then uniformly sampled from [−π, π] rad

s . If an angular
velocity is chosen between [−0.05, 0.05] rad

s , the angular velocity is set to 0 to create more walking
forward behaviors in our dataset as this is a common motion in the real world. This large range of
linear and angular velocities covers the full range of motions possible with π̂. A visualization of the
training environment can be found in Fig. 5.

C Training Loss Details

During training and deployment, different rotation representations were utilized. Using a 6D rep-
resentation [39] during training improved performance on relevant metrics on the validation split
as demonstrated in Tab. 5. Testing was performed against a yaw-pitch-roll representation and a
combined translational representation. The combined translation representation is a logarithm map
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# Rotation Representation RPE@1m ↓ ATEu ↓
1 Yaw-Pitch-Roll 0.233 0.023
2 Log(SE(3)) Loss 0.085 0.022
3 6D [39] (Ours) 0.050 0.016

Table 5: 6D rotation improves validation metrics. Predicting changes in the 6D rotation produced
better odometry prediction (RPE@1m decreased by 78.5%) when compared to predicting the changes
in yaw, pitch, and roll.

of SE(3) with a velocity vector and axis-angle representation for rotation [51]. During training,
∆PR is a 6D representation, and the ground-truth incremental motion of the robot is converted into
a 6D representation. Otherwise, during deployment and data collection, a matrix representation is
utilized.

D Robotics Experiment Details

The average trajectory length for the indoor and outdoor datasets are 24m and 325m respectively.
The indoor dataset consists of scenes in an office building with flat, carpeted and stone floors as well
as a stairs trajectory. The outdoor dataset consists of urban scenes on concrete, dirt, and grass.

Legolas is deployed on real-world hardware with a frequency of 50 Hz to match the frequency used
in the simulator. However, with the optimizations provided in Sec. B.1, the model is capable of
being run at up to 600 Hz on the Jetson Orin Nano.

During deployment of Legolas, the incremental motion of the robot is predicted at every time step.
To estimate the trajectory of the robot, these predictions are accumulated. After converting the
output of the models to an SE(3) matrix at some arbitrary step i, Si, the state at the current step, j,
can be computed as S = SjSj−1...S0.

D.1 Visual-Inertial Odometry Deployment Details

(a) 0.0 seconds (b) 0.25 seconds (c) 0.5 seconds (d) 0.75 seconds (e) 1.0 seconds

Figure 6: Quick motions and large changes in rotation occuring over one second. These quick
motions cause degraded image captures on the quadruped affecting the deployment of the visual
baseline. Changes in pitch (Fig. 6a,6b,6c,6d,6e) and roll (Fig. 6a and Fig. 6e) are notable.

VINS-Fusion found successful deployment when carefully tuned using tools including
‘imu utils’ [43, 52] and ‘Kalibr’ [44]. imu tools is utilized to retrieve relevant IMU statistics used
by both the EKF and VINS-Fusion baselines such as the gyroscope’s and accelerometer’s bias and
noise. Kalibr was used to find the extrinsic matrix of the camera frame with respect to the IMU
frame and to find the timing offset between the camera and the IMU. With these steps, more manual
fine-tuning of the parameters was required for deployment.

However, direct deployment to outdoor environments of the previously tuned and measured param-
eters failed. We found that quick motions and rotations such as the one visualized in Fig. 6 became
exaggerated on a quadruped robot. Furthermore, interactions between the sun and the onboard cam-
era caused degraded depth prediction and tracking. Using a polarized film with a metal shield around
the camera reduced this error mode, but still didn’t lead to consistent results as shown in Fig. 7.
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(a) Stereo camera without shield
and full cloud coverage.

(b) Stereo camera with shield and
full cloud coverage.

(c) Stereo camera with shield and
no cloud coverage.

Figure 7: A camera shield is necessary for VINS-Fusion deployment. Without the camera shield,
the stereo camera equipped on the robot fails to capture the scene due to interference. However, we
still find issues with outdoor deployment of VINS-Fusion if the environment is sunny even when
equipped with shielding.

D.2 Improving VIO with Legolas

Figure 8: Legolas improves VIO: RTAB-Map as a visual baseline loses tracking while the robot is
moving. However, with Legolas integration, RTAB-Map is able to continue mapping.

As Legolas predicts both an odometry estimate as well as a covariance, these estimates can be used in
downstream SLAM applications. RTAB-Map [48] is utilized in this experiment as it allows for easy
integration of odometry estimates from outside sources. In Fig. 8, adding Legolas to RTAB-Map
allows for the method to continue mapping even when visual tracking fails. The complementary
video for this experiment is available at: https://learned-odom.github.io/index.html#rtabmap.

D.3 Details on Training Test Dataset

A visualization of the collected indoors dataset is visualized in Fig. 9. Ground truth was collected
with a motion capture and a LiDAR-SLAM system.
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(a) Forward motion, ground truth collected with motion capture.

(b) Forward motion, ground truth collected with LiDAR-SLAM system.

(c) Backwards motion, ground truth collected with motion capture.

Figure 9: Collected Indoor Test Dataset: Units in meters. The indoor test dataset consists of
10 collected trajectories. 6 trajectories were collected with the Go2 moving forward. Of the col-
lected forward trajectories, 4 obtained their ground truth from a motion capture system and 2 from a
LiDAR-SLAM system. Four trajectories were collected with the Go2 moving backward with ground
truth obtained from a motion capture system.
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E Additional Trajectory Rollouts

Additional validation rollouts: Fig. 11 demonstrates the superior trajectory reconstruction of using
the full sensing suite rather than just the IMU. The use of the full sensing suite allows Legolas to
directly predict the incremental motions of the robot rather than rely on analytical models of the
robot.

E.1 Real-World Variance Predictions

(a) Building Scene: The robot walks through hallways and carpeted office areas. The predicted magnitude
of the displacements and variances are shown. Notably the Y variance and displacements are much smaller
than the forward-facing X direction as the displacements from swaying are much smaller.

(b) Stairs Scene: the robot goes up stairs. The predicted magnitude in the forward-facing X and upwards Z
direction are cyclical with a matching variance.

Figure 10: Predicted variance and displacements. Across a building scene Fig. 10a and going up
stairs Fig. 10b, results for the predicted magnitude in displacements and variances are shown.

A qualitative analysis of the robot’s predicted variance across two scenes is examined. A companion
video showcasing these rollouts, as well as the confidence intervals, can be found at https://learned-
odom.github.io/index.html#variance.

Building Scene Fig. 10a: In this scenario, the Y displacement and variance are much smaller than
the X displacement. This matches what is expected as the robot is moving forward, and this would
be dominated by an X displacement with a smaller Y displacement from swaying. After completing
the first hallway, the robot turns sharply and causes a dip in displacements, which are matched with a
dip in variance as the robot is moving slower. The lower variances when the robot is moving slower
can also be observed at the start of the plot as the robot starts to move.

Stairs Scene Fig. 10b: While going up the stairs the X and Z displacements are very cyclical with
their peaks being matched with peaks in variance occurring wherever the displacement changes
quickly. When the robot reaches the new floor, variances for X and Z decrease as there is the robot’s
locomotion is more stable.

Mean relative variance increases with task difficulty. As visualized in Fig. 10, the variance
magnitude changes with the robot’s speed; slower movement narrows the range of reasonable pre-
dictions. Differences in error should also occur with varied robot locomotions. Tab. 6 utilizes mean
variance magnitudes divided by prediction magnitudes across scenarios. This metric represents the
certainty of the network in its prediction. During stable locomotion (Building and the last 2 seconds
of Stairs), this ratio is lower meaning that the network is more certain of its prediction. During the
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Environment ∥X∥ Variance
∥X∥ Prediction

∥Y∥ Variance
∥Y∥ Prediction

∥Z∥ Variance
∥Z∥ Prediction

Building 0.0054 0.0032 0.0011
Stairs (Full) 0.0213 0.0184 0.0061
Stairs (Last 2 Seconds) 0.0039 0.0029 0.0008

Table 6: Mean relative variance increases with the difficulty of the task. The mean ratio of the
variance magnitude over the prediction magnitude is lower for simple walking tasks (Building and
last 2 seconds of Stairs). This ratio increases when the robot is climbing up stairs in the full Stairs
environment.

full stairs rollout, where quick motions occur, the ratio increases as predicting changes in motion on
stairs is more challenging.

Additional real-world rollouts: Supplementing the rollout given in Fig. 3a, additional rollouts
are visualized. Fig. 12 demonstrates the robot moving in a straight line in an indoor scene. In
this scenario Legolas tracks the straight line while VINS-Fusion suffers from losing visual tracking
due to reflections on the floor. Fig. 13 demonstrates the robot moving in a double circular pattern
in an indoor environment. In this scenario, Legolas is able to track the ground-truth. The EKF
baseline is capable of reproducing a similar shape up until the 1st completed loop where its trajectory
reconstruction degrades.

Figure 11: Top-Down visualization of rollouts of Legolas trained with different sensing modal-
ities. Legolas demonstrates improved odometry prediction through its use of the full sensing suite
on the robot. Previous work has attempted to estimate displacements through learning with only the
IMU sensor, this produces inferior predictions.
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Figure 12: Straight line rollout. In this scenario the robot moves in a straight line for approximately
23 meters. Legolas tracks the trajectory, while VINS-Fusion suffers from losing visual tracking
around t(s) = 37 and the estimated position of the robot jumps.
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Figure 13: Circular rollout. In this scenario the robot moves in a circle two times, both VINS-
Fusion and Legolas are capable of tracking the ground-truth trajectory. EKF tracks closely until the
first loop is completed. BC is able to track the heading, but poorly track x and y positions.
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