
Cache Saver: A Modular Framework for Efficient, Affordable, and

Reproducible LLM Inference

Nearchos Potamitis * 1 Lars Klein * 2 Chongyang Xu 3 Attreyee Mukherjee 3 Bardia Mohammadi 3

Niket Tandon 4 Laurent Bindschaedler 3 Akhil Arora 1

Abstract

Inference constitutes the majority of costs through-

out the lifecycle of a large language model (LLM).

While numerous LLM inference engines focusing

primarily on low-level optimizations have been de-

veloped, there is a scarcity of non-intrusive client-

side frameworks that perform high-level optimiza-

tions. In this paper, we introduce Cache Saver, a
modular, plug-and-play, and asynchronous frame-

work that facilitates high-level inference optimiza-

tions, thereby integrating cleanly into existing sys-

tems without requiring changes to the end-user

application logic or the underlying LLM. The key

novelty is a namespace-aware list-valued cache

that ensures statistical integrity of LLM responses

by generating i.i.d. responses within a namespace

as well as ensuring reproducibility. Moreover,

as a direct consequence of operating at a high

level, Cache Saver supports both local and on-

line models. We conduct extensive experiments

with five representative state-of-the-art reasoning

strategies, five diverse benchmark tasks, and three

different LLMs. On average across all methods,

tasks, and LLMs, Cache Saver reduces cost by

≃ 25% and CO2 by ≃ 35%. Notably, Cache
Saver excels in practical machine learning sce-

narios such as benchmarking acrossmultiple meth-

ods or conducting ablation analysis of a specific

method, obtaining substantial cost and carbon

footprint reduction of ≃ 60%. Cache Saver
is publicly available at https://github.com/
au-clan/cachesaver.
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1. Introduction

Large language models (LLMs) have taken the world by

storm. Most mainstream web applications (e.g., Facebook,

Twitter/X, WhatsApp, Reddit, Google/Bing Search, etc.)

now offer some form of LLM-based companion or assis-

tant. Not surprisingly, LLMs are estimated to account for

≃ 2% of global electricity consumption and greenhouse

emissions (Crawford, 2021), a figure projected to rise to

≃ 8% by 2030 (IEA, 2025). Most costs in an LLM’s lifecy-

cle come from inference (Fu et al., 2024), which is expensive,

especially with the rise of autonomous agents (Fan et al.,

2022), test-time scaling (Muennighoff et al., 2025), multi-

step reasoning strategies (Yao et al., 2024; Klein et al., 2024;

Shinn et al., 2023; Hao et al., 2023), and native reasoning

models (OpenAI, 2024). For instance, OpenAI’s o3 costs

≃1000$ per task on the ARC-AGI benchmark (Chollet et al.,

2019).

Existing work and challenges. To address this issue, nu-

merous LLM inference engines–most notably vLLM (Kwon

et al., 2023c)–have been developed in recent years. How-

ever, owing to their focus on low-level optimizations such

as efficient key-value (KV) caching and memory manage-

ment (Kwon et al., 2023b; Ainslie et al., 2023; Park et al.,

2025), it is non-trivial to leverage these engines for novel

applications/LLMs without either modifying the application

logic or the LLM or both. Notably, these engines cannot be

used with online API-based LLMs. While recent work on

client-side caching (Bang, 2023; Helicone; LangChain) is

a step in the right direction, these approaches are typically

limited to generic semantic matching, and lack guarantees

for reproducibility, statistical integrity, or support for com-

plex experimental workflows. Moreover, since in many

practical application scenarios, such as stochastic sampling,

uncertainty estimation, or ensuring policy diversity, rea-

soning strategies require multiple independent responses to

the same prompt, a naïve KV cache that maps each unique

prompt to a single LLM response is undesirable. Please see

Appx. A for additional details on related works.

Reuse potential. To better illustrate the reuse potential, con-

sider a math puzzle solved step-by-step using a tree search.
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Figure 1: (Left) Search trees T1 and T2 corresponding to independent executions of two search strategies, and T1∪ T2, the

combined search tree as seen by Cache Saver recognizing the reuse potential through the common states. (Right) Analyzing
the prompt redundancy for three different Cache Saver configurations across 5 representative SOTA methods and tasks.

On average, Cache Saver results in 21%, 36%, and 45% cost savings, respectively.

Each node represents a state in the solution trajectory, and

a prompt asks the LLM to suggest the next step. While

a breadth-first search (BFS) may try to discover all child

nodes of a current node by repeatedly calling the next-step

prompt and aggregating suggestions, a depth-first search

(DFS), by contrast, will commit to one path and go deep,

expanding it repeatedly before backtracking. Both strate-

gies use the same prompts and may visit similar regions

of the state space. It is necessary for their samples to be

independent within each search, so that repeated queries

for the next step can discover branches in the search tree.

However, to compare these two strategies fairly, it is im-

portant that they explore the same graph, i.e., when they

encounter the same state, they receive the same samples.

This is a form of statistical coupling and can be achieved by

reusing samples across frameworks. Fig. 1(Left) shows for

toy data how two tree-search strategies (T1 and T2) may be

coupled to explore the same tree, and how the partial views

onto the search space are assembled into a shared latent tree

(T1∪ T2) in the cache. Further, Fig. 1(Right) presents the

real-world reuse potential by showcasing average prompt

redundancy across 5 representative state-of-the-art (SOTA)

methods and tasks. Notably, we observe substantial dupli-

cates ≃50–65% both during executions of a single method

(Bars 1 and 3), which is expected owing to similarity across

variations of a single method, and across methods (Bar 2),

which is an interesting and novel finding of our work.

Present work (Cache Saver). We implement Cache
Saver (Fig. 2) as a set of pluggable, composable components
that together form a modular request pipeline between the

user and the LLMwithout imposing architectural constraints

or design patterns. At its heart is a fundamentally novel

caching paradigm operationalized using a list-valued cache

and managed using the concept of namespacing to control

how and where samples may be reused. Within a names-

pace, samples are guaranteed to be i.i.d., whereas across

namespaces, samples may be reused. An implementation of

Fig. 1(Left) would rely on two namespaces ”T1” and ”T2”.

Beyond the novel cache, Cache Saver also substantially

benefits by managing incoming queries with minimal redun-

dancy and maximum efficiency (batcher and deduplicator),

ensuring deterministic request handling and consistent out-

put ordering for reproducibility (reorderer), and precise

tracking of prompt-response mappings (cacher), enabling

controlled experimentation and more reliable benchmarking

across diverse configurations. On average, Cache Saver
results in 21%, 36%, and 45% cost savings, respectively,

across the three scenarios presented in Fig. 1(Right).

Contributions.

• We convincingly motivate (both intuitively and empiri-

cally) the existence of a substantial prompt reuse potential

in both intra- and inter-framework settings (§ 1 and § 3).

• We propose Cache Saver, a modular, plug-and-play,
and asynchronous framework for efficient and reproducible

LLM inference. Additional advantages include low memory

overhead owing to a disk resident cache and its extendibility:

reasoning strategies can be added largely unchanged (§ 2).

• Powered by structured namespace-aware caching, ours

is the first work to enable response reuse in LLMs without

sacrificing the statistical integrity of the generative LLM

(§ B.1).

•We conduct extensive experiments on five reasoning strate-

gies1 and benchmark tasks using three LLMs as base models.

On average across all methods, tasks, and LLMs, Cache
Saver reduces cost by≃ 25% and CO2 by≃ 35%. Notably,

Cache Saver excels in performing practical tasks such as
benchmarking or ablation analysis, obtaining substantial

cost and carbon footprint reduction of ≃ 60%.

2. Cache Saver

Overview. Cache Saver is a modular framework com-

posed of three key modules: (1) a Batcher (§ B.2), (2) a

Deduplicator (§ B.2), and (3) a Cacher (§ B.1). Fig. 2

1Single-step reasoning methods such as IO, CoT, CoT-SC, have
no reuse potential as there are no repetitions, and as such, they
cannot benefit from a framework like Cache Saver.
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Figure 2: Overview of our Cache Saver framework: (Top) Cold-start and (Bottom) Warm-start.

presents an overview of its inner workings using a toy exam-

ple, where three search strategies, independently exploring

a dynamic search tree in their own namespace (NS1 through

NS3), request responses for the same prompt 𝑄. Fig. 2

(top) illustrates the cold-start scenario, where the cache is

empty. The asynchronous batcher collates the five incoming

requests into a single batch and passes it to the deduplica-

tor, which groups identical prompts for each namespace

and emits two aggregate requests, requesting three and two

i.i.d. responses to 𝑄 for NS1 and NS2, respectively. The

cacher, which relies on a system of asynchronous mutexes

to avoid redundant or overlapping requests, receives these

two aggregate requests and sends a single request to the

LLM, asking for three responses to 𝑄. Finally, the LLM

responses ([𝑅1, 𝑅2, 𝑅3]) are stored in the cache and used to
resolve the requests from NS1 and NS2. In the warm-start

scenario (Fig. 2 bottom), an aggregate request asking for

four i.i.d. responses to 𝑄 is triggered from NS3, however,

since three responses are already cached, the cacher asks

for one additional response from the LLM and stores it in

the cache. The four requests are then resolved by serving

([𝑅1, 𝑅2, 𝑅3]) from the cache along with the newly gener-

ated response (𝑅4). For additional details ((detailed method

descriptions, pseudocode, practical considerations: cache

eviction, consistency, etc.), please see Appx. B.

3. Experiments

We assess the effectiveness of Cache Saver through ex-

tensive experiments and analyses comprising 6 reason-

ing strategies, 5 benchmark tasks, and 3 LLMs. Addi-

tional details, e.g., implementation, hyperparameters, ad-

ditional results, etc. are presented in Appx. C. The re-

sources for reproducing our experiments are available at

https://github.com/au-clan/cachesaver.

3.1. Setup

Base model. We use GPT4.1-Nano as the base model for

the main results presented in this paper. To showcase the

generalizability of our findings, we report results with other

base models, namely, Llama4-Scout and Claude3.5-Haiku

in the Appendix. While Llama4-Scout is run locally on

a machine with 8 H200 GPUs, an AMD EPYC 9555 64-

Core Processor, and 2TB of RAM, experiments with other

LLMswere performed viaAPI calls to their respective online

platforms.

Number of runs. For § 3.2, 3.3, and § C.6.1, we run each

experiment 10 times and report both mean and standard

error of the evaluation metrics. For cost reasons2, other

experiments were only run once.

Prompts. To ensure a fair assessment of the benchmarked

reasoning strategies, we reuse the prompts provided by the

existing methods. For cases where there are no existing

prompts, e.g., novel tasks or base LLMs, we adapt the origi-

nal prompts provided by the methods For details, please see

Appx. C.4.

Tasks and data. We conduct experiments on a judicious

mix of 5 benchmark tasks that require a variety of reason-

ing, planning, and general problem-solving skills. Our

2Since we report results for multiple reasoning strategies, tasks,
and base LLMs, costs blow up owing to a combinatorial explosion;
thus, experiments crucial for the main takeaways were prioritized
for multiple runs.
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Figure 3: Reuse potential: Analyzing the prompt redun-

dancy for (Left) each method by averaging over all tasks

and (Right) each task by averaging over all methods.

tasks span diverse application domains: (1) mathemati-

cal reasoning: Game of 24 (Yao et al., 2024), (2) coding:

HumanEval (Chen et al., 2021), (3) question answering:

HotpotQA (Zhilin et al., 2018), (4) scientific reasoning:

SciBench (Wang et al., 2024a), and (5) creative writing:

Shakespearean Sonnet Writing (Suzgun & Kalai, 2024). For

evaluation, we use the test sets as provided in the original

benchmarks. For additional details, please see Appx. C.1.

Reasoning strategies. We conduct experiments with 5 rep-

resentative SOTA reasoning strategies: (1) React (Yao et al.,

2023), (2) ToT (Yao et al., 2024), (3) RAP (Hao et al., 2023),

(4) ReST-MCTS (Zhang et al., 2024), and (5) FoA (Klein

et al., 2024). We only include methods that have made their

code available for at least one task benchmarked in this study.

Thus, we exclude GoT (Besta et al., 2024), TouT (Mo&Xin,

2024), and RecMind (Wang et al., 2024b). Moreover, we

exclude BoT (Yang et al., 2024), where although the code is

available, an important resource (the meta-buffer) to repro-

duce their results is unavailable. We exclude LATS (Zhou

et al., 2024) owing to its exorbitant cost footprint. Finally,

owing to their lack of reuse potential, we exclude all single-

step reasoning strategies such as IO prompting, CoT (Wei

et al., 2022), CoT-SC (Wang et al., 2023), and AoT (Sel

et al., 2024). For details, please see Appx. C.2.

Evaluation metrics. We assess the efficacy: Quality, effi-

ciency: Latency, Throughput, #Tokens, and Running Time,

and cost. For API-based LLMs, we report the cost (in USD),

whereas for locally hosted LLMs, we report the energy con-

sumption (in kWh) and the carbon footprint (CO2 emissions

in grams) measured using Carbontracker (Anthony et al.,

2020). For details, please see Appx. C.3.

3.2. Basis for Cache Saver Effectiveness

Fig. 3 shows the reuse potential using GPT4.1-Nano as the

base LLM by analyzing the percentage of duplicate prompts

across all tasks and reasoning strategies benchmarked in this

study. Results with Llama4-Scout are similar and are there-

fore presented in the Appendix. It is evident that overall ≃
50% prompts are duplicates, which implies that there exists

a large overall reuse potential, which is not an artefact of

a particular reasoning strategy or benchmark task or base

LLM. Moreover, Fig. 3(Left) further shows that while all

methods possess a similar number of duplicate prompts, Re-

act reports a substantially low reuse potential. This is largely

expected as, despite being an iterative strategy, React only

performs 2 retrials, which is consistent with conventions

in the literature (Shinn et al., 2023). Thus, more retrials

should result in a larger reuse potential. On the other hand,

Fig. 3(Right) does not show any aberrations.

3.3. Statistical integrity of Cache Saver

Figs. 4(a)-(b) shows the quality across all tasks and reason-

ing strategies benchmarked in this study using GPT4.1-Nano

and Llama4-Scout, respectively. We report the average and

standard error over 10 independent runs. It is clear that

the quality values with and without Cache Saver are sta-

tistically indistinguishable (overlapping intervals), which

further provides strong empirical validation to our claim

(by construction) regarding the statistical integrity of Cache
Saver (§ B.1). At the same time, Figs. 4(c)-(d) portray

substantial cost (≃25%) and carbon emission (≃35%) sav-

ings, respectively, with the biggest improvements achieved

for RAP while the least for React, which is consistent with

the findings from Fig. 3(Left). It is important to note that

while the absolute values (e.g., cost in Fig. 4c) might ap-

pear small, which is just due to the extremely low cost of

GPT4.1-Nano, we report relative percentage savings. In

fact, we conducted the same experiment with GPT4.1, and

found that RAP required 34.87 and 12.56 US$ with and

without Cache Saver, respectively, roughly portraying a
similar savings as for GPT4.1-Nano.

4. Discussion and Concluding Insights

4.1. Summary of Findings

Reasoning strategies portray ≃ 50% prompt redun-

dancy. We show, both intuitively (§ 1) and empirically

(§ 3.2), the existence of substantial prompt reuse potential

across five representative SOTA reasoning strategies and

diverse benchmark tasks.

Namespaced caching preserves statistical integrity of

LLM responses. We convincingly present the statistical

correctness of Cache Saver by construction (§ B.1) and

experiments (§ 3.3).

Other advantages. Cache Saver saves up to 60% cost

and carbon emissions of LLM reasoning strategies across

a variety of reasoning strategies and benchmarks. More-

over, Cache Saver does not possess any memory overhead,
is plug-and-play, and easily extendible to new reasoning

strategies or benchmark tasks.
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Figure 4: Comparing the (a)-(b) quality, (c) cost (US$), and (d) CO2 (gm) for each method with and without Cache Saver,
using GPT4.1-Nano (OpenAI API) and Llama4-Scout (deployed locally) as base LLMs, respectively.

4.2. Implications and Broader Impact

Integrity in Experimentation. We have introduced a prin-

cipled approach to LLM evaluation by enforcing consistent

seeding and input ordering, enabling statistically sound and

reproducible experimentation.

Environmental Efficiency. We have demonstrated that

avoiding redundant computation leads to substantial reduc-

tions in energy usage and carbon emissions, contributing to

more sustainable LLM experimentation.

Accessibility, Reproducibility, and Collaboration. We

have designed the cache to be publicly shareable with the

broader ML community, particularly benefiting researchers

conducting applied work with LLMs. This facilitates low

cost follow-up studies, ensures reproducibility of benchmark

results, and significantly accelerates new community-driven

research by making shared resources easily accessible.

Limitations

Currently, we evaluate each method in a plug-and-play fash-

ion; however, the implementations could be further opti-

mized to fully leverage the capabilities of the Cache Saver
framework. Additionally, we could extend our workflows to

optimize multi-step pipelines by optimizing and then lever-

aging the parallelizatino between independent steps.

While the Cache Saver framework is designed to be mod-
ular and compatible with existing inference engines, op-

timizations within our system may not always align with

those in other frameworks. For example, caching strategies

or batching heuristics used by Cache Saver may conflict

with the parallelism, memory management, or scheduling

decisions employed by underlying inference systems. At

present, we do not focus on co-optimization across such

system boundaries.

Our caching mechanism currently relies on exact matches,

which limits reuse when inputs vary slightly. In future

work, we aim to explore more advanced strategies. Fuzzy

caching could support approximate or semantic matches to

increase hit rates. Cascading caches across memory tiers

(e.g., RAM, SSD, distributed) could help balance latency

and cost. Sparsity-aware caching could store only the most

relevant context fragments, especially for long prompts. Ad-

ditionally, improving cache observability—through tools for

hit/miss analysis, error tracing, and adaptive tuning—will

be essential for enhancing performance and debugging.

Because the framework operates at the user level, our current

focus is on high-level orchestration rather than hardware- or

system-level optimization. Future work will explore low-

level improvements such as a hardware-optimized batcher

that groups requests by context length or cache affinity to im-

prove GPU utilization. We also plan to implement prefetch-

ing strategies that proactively load or generate likely-needed

cache entries, thereby reducing latency and improving re-

sponsiveness.

Ethics statement

In our opinion, this work has no major ethical considerations.

All the datasets and resources used in this work are publicly

available and do not contain any private or sensitive infor-

mation about human subjects. Moreover, we use standard

and vetted benchmark datasets following the corresponding

licensing and fair use terms and conditions. Finally, the

research presented in this paper does not involve any in-

teractions whatsoever with human subjects. That said, and

similar to all other LLM-based research, our work does have

a negative impact on the environment, in particular by con-

tributing to the stark rise in greenhouse gas emissions and

electricity consumption on account of generative AI models

and tools. However, with Cache Saver, our work provides
an explicit solution to mitigate the negative impact of LLM-

based research on the environment by reducing the inference

time, cost, and carbon footprint of LLM-based reasoning

frameworks. Furthermore, all the resources required to re-

produce the experiments in this paper are publicly available

in a well-documented and organized GitHub repository.
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A. Related Works

Backend optimizations. LLM serving engines optimize inference on the server side, with many optimizations focusing on

efficient memory management and KV cache reuse (Kwon et al., 2023b; Del Corro et al., 2023; Hooper et al., 2024; Chu et al.;

Ainslie et al., 2023; Zheng et al., 2024a; Yao et al., 2025; Park et al., 2025). PagedAttention treats the attention key-value

cache like a virtual memory system, reducing fragmentation and allowing KV cache sharing within and across requests (Kwon

et al., 2023b). KVQuant reduces memory usage by quantizing the KV cache (Hooper et al., 2024). Grouped Query Attention

improves memory and computation efficiency by grouping queries to reduce redundant attention computations (Ainslie et al.,

2023). CaR introduces a multi-tier caching system to facilitate the reuse and sharing of attention KV caches across different

requests (Chu et al.). Additional optimizations target prompt batching and scheduling efficiency (Agrawal et al., 2023; Li

et al., 2024; Stojkovic et al., 2025; Zheng et al., 2024b; Yu et al., 2022), as well as improvements in attention and decoding

operations (Dao et al., 2022; Ye et al., 2025; Leviathan et al., 2023). For example, FlashAttention-2 enhances attention

computation through improved parallelism and work partitioning (Dao et al., 2022). Most production-grade LLM serving

systems, such as vLLM (Kwon et al., 2023c), Hugging Face Transformers (Wolf et al., 2020), and NVIDIA Triton Inference

Server (Triton), incorporate several such optimizations. Other engines, including DeepSpeed-FastGen (Holmes et al.,

2024), llama.cpp (ggml.ai, 2023), MLC LLM (MLC-AI, 2023), SGLang (Zheng et al., 2024a), and LightLLM (Lightllm

Team, 2023), further specialize for low-latency decoding, efficient edge deployment, and server-side batching and memory

management. Overall, these optimizations remain largely invisible to the practitioners and aim to reduce costs for the model

providers. However, they may increase opacity, potentially diminish the quality of results, and the cost savings are rarely

passed on to the end user.

Client-side caching. Client-side caching addresses the challenges of reducing redundant requests, minimizing latency, and

lowering operational costs. While Retrieval-Augmented Generation (RAG) methods reduce the need for LLMs to generate

answers from scratch by retrieving relevant information from external sources (Lewis et al., 2021), their primary focus is

not caching. Instead, we examine various client-side caching systems that aim to optimize LLM performance. Helicone

implements a key-based caching mechanism by storing LLM responses at the edge using Cloudflare Workers (Helicone).

GPTCache is an open-source semantic cache that transforms queries and LLM responses into embeddings, conducting

similarity searches to retrieve cached responses (Bang, 2023). Developer frameworks like LangChain offer a framework-

specific caching layer that supports both exact and semantic matching (LangChain). GPT Semantic Cache utilizes semantic

embedding caching by storing query embeddings in in-memory storage systems, such as Redis (Regmi & Pun, 2024).

MeanCache introduces a user-centric semantic caching system that preserves privacy through a learned federated similarity

model (Gill et al., 2024). GenerativeCache goes beyond traditional caching by synthesizing new responses from multiple

cached entries (Iyengar et al., 2025). LLMProxy is a proxy service that implements a single endpoint for applications,

supporting model selection, context management, and caching (Martin et al., 2024). In summary, client-side caching

solutions for large language models (LLMs) are commonly used, primarily addressing generic workloads through semantic

caching (Zhu et al., 2024).

Key differences. Existing client-side solutions often lack guarantees for statistical integrity and reproducibility. To the best

of our knowledge, by employing a namespace-aware list-valued cache, Cache Saver is the only framework that enables
response reuse without sacrificing the statistical integrity of the generative LLM.

B. Cache Saver: Additional Details
The pseudocode for different modules of the Cache Saver framework are presented in Algorithms 1–4. Additionally, each

building block of Cache Saver is described below.

B.1. The Cacher

As motivated in Fig. 1 (§ 1), the prompts issued by internal reasoning steps of multi-step reasoning strategies are highly

repetitive. Moreover, in many practical application scenarios, such as stochastic sampling, uncertainty estimation, or

ensuring policy diversity, reasoning strategies require multiple independent responses to the same prompt. A naïve KV

cache that maps each unique prompt to a single LLM response is undesirable in such scenarios.

Our cacher circumvents the aforementioned concerns by employing a list-valued cache (Appx. C.4 shows a snapshot of the

cache on real-world tasks) that maintains a sequence of responses for each unique prompt. Additionally, to enable response
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Table 1: Sample allocation: (Left) Independent vs. (Right) Cache Saver-coupled experiments.

Experiment Observed Samples (Independent) Observed Samples (Coupled)

𝐸1 (NS1) 𝑍1, 𝑍2, 𝑍3, … , 𝑍𝑛1
𝑍1, 𝑍2, 𝑍3, … , 𝑍𝑛1

𝐸2 (NS2) 𝑍𝑛1+1, 𝑍𝑛1+2, … , 𝑍𝑛1+𝑛2
𝑍1, 𝑍2, 𝑍3, … , 𝑍𝑛2

𝐸3 (NS3) 𝑍𝑛1+𝑛2+1, 𝑍𝑛1+𝑛2+2, … , 𝑍𝑛1+𝑛2+𝑛3
𝑍1, 𝑍2, 𝑍3, … , 𝑍𝑛3

⋮ ⋮ ⋮

reuse without sacrificing the statistical integrity of the generative model (in this case, an LLM), we introduce the concept

of namespaced caching. This implies that all responses to a given prompt are independent within a namespace, whereas

responses may be reused across namespaces. In other words, responses can never be reused within a namespace. Revisiting

the example presented in Fig. 2, let’s say that the search strategy in NS1 now requires two additional responses to 𝑄. The

cache contains four responses ([𝑅1, 𝑅2, 𝑅3, 𝑅4]) to 𝑄, of which the first three have already been used once in NS1; thus,

they cannot be reused. Following namespaced caching, one new response 𝑅5 will be obtained by the LLM, and [𝑅4, 𝑅5]
will be used to resolve the request. Formally, namespaced caching is achieved via a stochastic coupling of LLM responses.

Sample reuse through stochastic coupling. Consider an LLM as a probabilistic oracle. Given a prompt 𝑝 and a parameter
set 𝜃 (e.g., sampling temperature, top-𝑝 threshold, etc.), LLM responses follow a probability distribution 𝜌𝑝,𝜃. We assume

that the pair (𝑝, 𝜃) fully parameterizes this distribution.

Initially, consider a scenario with a series of experiments 𝐸𝑘 (corresponding to namespaces NS𝑘), each independently

requesting samples drawn i.i.d. from 𝜌𝑝,𝜃. Formally, let (𝑍𝑖)∞
𝑖=1 denote an infinite sequence of random variables with

𝑍𝑖
iid∼ 𝜌𝑝,𝜃. Each experiment independently accesses distinct samples leading to a non-overlapping partitioning of the infinitie

sequence.

However, in practice, generating independent samples for each experiment is inefficient. Cache Saver explicitly couples
these experiments by using a shared prefix of the same infinite sequence (𝑍𝑖)∞

𝑖=1. Intuitively, this corresponds to using a

shared random seed across all experiments and caching seeded random samples. Within each experiment 𝐸𝑘, samples are

i.i.d. by construction, directly inherited from the infinite sequence (𝑍𝑖). For two experiments𝐸𝑖 and𝐸𝑗, let𝑚 = min(𝑛𝑖, 𝑛𝑗).
Their first 𝑚 samples coincide almost surely: 𝑓𝑖(𝑍)𝑘 = 𝑓𝑗(𝑍)𝑘 = 𝑍𝑘 ∀𝑘 ≤ 𝑚.

Table 1 shows a side-by-side comparison of the two sampling strategies. The cacher (Alg. 1) ensures a shared seed for all

coupled random variables. The first evaluation of a random variable sets its value across all experiments. Race conditions

between experiments are resolved by the use of a dynamically generated asynchronous mutex table.

B.2. Beyond Caching

Batcher. Cache Saver’s position between the reasoning strategy and the LLM allows for a range of additional, transparent

optimizations. As shown in Fig. 2, we extend the caching layer into a pipeline of modular and composable building blocks.

The first of these is a batching layer (Alg. 2), which uses an asynchronous producer-consumer queue to collect incoming

requests and group them into batches. The batching mechanism is governed by two tunable parameters: a timeout and a

batch size, which together control the trade-off between responsiveness and throughput. Under light load, small batches pass

through quickly with minimal delay; under heavy load, larger batches form naturally, improving efficiency. This batching

is immediately beneficial for local models, where it allows better hardware utilization. In combination with other Cache
Saver building blocks, it also improves efficiency and reproducibility in online API settings.

Reordering Requests for Reproducible Results. The order in which requests are resolved in asynchronous computing

is non-deterministic and can therefore change results even across identical runs. To ensure reproducibility, Cache Saver
includes a reordering module (Alg. 3) that ensures a deterministic order within each batch. Requests are sorted by a stable

identifier before being passed to the LLM and reordered back to their original positions after the LLM responds. The

asynchronous reorderer can guarantee reproducible request resolution in scenarios where the asynchronous batcher is able to

group all in-flight requests into a single batch.
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Deduplicator. Many LLM inference engines support efficient same-input, multiple-response use cases, which are enabled

by optimizations such as paged attention, prefix prompt caching, input sharing, etc.. Such optimizations are afforded by

most online platforms (e.g., OpenAI, Anthropic, etc.), allowing users to request multiple i.i.d. samples for a given prompt,

charging for input tokens only once, and returning a list of completions; and can be enabled for local deployments via

inference engines such as vLLM (Kwon et al., 2023a). Overall, these optimizations incentivize grouping identical requests

to reduce redundant input processing. Cache Saver’s deduplication module (Alg. 4) takes advantage of this by identifying
requests within a batch that share the same prompt, parameters, and namespace. These requests are merged into a single

LLM call with an aggregated sample count, reducing both cost and latency.

Algorithm 1 Cacher
1: Global State:

2: Cache 𝒞 ∶ (𝑝, 𝜃) ↦ [𝑍1, 𝑍2, … ], initially empty
3: Usage counters 𝒰 ∶ (𝐸𝑘, 𝑝, 𝜃) ↦ 𝑢 ∈ ℕ0, initially 0
4: Mutex table ℳ ∶ (𝑝, 𝜃) ↦ async lock

5:

6: Asynchronous Procedure RequestSamples(𝑟)
7: Input: Request 𝑟 = (𝐸𝑘, 𝑝, 𝜃, 𝑛, id)
8: Output: Future 𝑓 resolving to (𝑍𝑢+1, … , 𝑍𝑢+𝑛)
9: 𝑓 ← new Future

10: key ← (𝑝, 𝜃)
11: if key ∉ ℳ then

12: ℳ[key] ← new async mutex

13: end if

14: async acquire ℳ[key]
15: if key ∉ 𝒞 then

16: 𝒞[key] ← [ ]
17: end if

18: if (𝐸𝑘, 𝑝, 𝜃) ∉ 𝒰 then

19: 𝒰[(𝐸𝑘, 𝑝, 𝜃)] ← 0
20: end if

21: 𝑢 ← 𝒰[(𝐸𝑘, 𝑝, 𝜃)]
22: 𝑍 ← 𝒞[key]
23: 𝑛fresh ← max(0, 𝑢 + 𝑛 − |𝑍|)
24: if 𝑛fresh > 0 then
25: Draw fresh samples (𝑍|𝑍|+1, … , 𝑍|𝑍|+𝑛fresh

) iid∼ 𝜌𝑝,𝜃
26: Extend: 𝒞[key] ← 𝑍 + (𝑍|𝑍|+1, … , 𝑍|𝑍|+𝑛fresh

)
27: 𝑍 ← 𝒞[key]
28: end if

29: Extract samples: (𝑍𝑢+1, … , 𝑍𝑢+𝑛)
30: Resolve 𝑓 with value (𝑍𝑢+1, … , 𝑍𝑢+𝑛)
31: Update usage: 𝒰[(𝐸𝑘, 𝑝, 𝜃)] ← 𝑢 + 𝑛
32: release ℳ[key]
33: return 𝑓

B.3. Cache management: storage and eviction

Since retrieving cached responses from the disk is many orders of magnitude faster than issuing a new LLM query, especially

for remote APIs, Cache Saver persists all cache entries to the disk by default. Unlike typical in-memory caches, where
storage is a limiting factor, here storage is cheap and recomputation is costly, so no advanced eviction policy is necessary

for most use cases. That said, should eviction be required (e.g., due to storage constraints), the simplest approach is to evict

all responses associated with a given prompt and parameter set. When the evicted prompt is encountered again, the cache

miss results in requests to the underlying LLM, and the newly generated responses are stored in the cache. This preserves

the cache’s guarantee of i.i.d. samples within each namespace.
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Algorithm 2 Async Batcher
1: Global State: Queue 𝒬 ← [ ]
2: Parameters: batch size 𝑁, timeout 𝛿, overflow flag overflow
3:

4: Asynchronous Procedure RequestSamples([𝑟1, … , 𝑟𝑚])
5: Input: List of 𝑚 requests 𝑟𝑖 = (𝐸𝑖

𝑘, 𝑝𝑖, 𝜃𝑖, 𝑛𝑖, id𝑖)
6: Output: List of futures [𝑓1, … , 𝑓𝑚], where each 𝑓𝑖 resolves to 𝑛𝑖 samples

7: for 𝑖 = 1 to 𝑚 do

8: 𝑡 ← current time

9: 𝑓𝑖 ← new Future

10: enqueue (𝑟𝑖, 𝑡, 𝑓𝑖) into 𝒬
11: end for

12: return [𝑓1, … , 𝑓𝑚]
13:

14: Asynchronous Background Task BatchWorker()
15: while true do

16: (𝑟1, 𝑡1, 𝑓1) ← async 𝒬.get()
17: Initialize: ℬ ← [𝑟1], ℱ ← [𝑓1]
18: 𝑡start ← 𝑡1
19: while true do

20: 𝜏 ← 𝛿 − (current time − 𝑡start)
21: if |ℬ| ≥ 𝑁 or 𝜏 ≤ 0 then break
22: try

23: (𝑟𝑖, 𝑡𝑖, 𝑓𝑖) ← async 𝒬.get() with timeout 𝜏
24: Append 𝑟𝑖 to ℬ, 𝑓𝑖 to ℱ
25: catch timeout: break

26: end while

27: if overflow then

28: while 𝒬 is not empty do

29: (𝑟𝑖, 𝑡𝑖, 𝑓𝑖) ← 𝒬.get_nowait()
30: Append 𝑟𝑖 to ℬ, 𝑓𝑖 to ℱ
31: end while

32: end if

33: responses ← model.batch_request(ℬ)
34: for 𝑖 = 1 to |ℬ| do
35: resolve 𝑓𝑖 ← responses[𝑖]
36: end for

37: end while

B.4. Cache consistency

To ensure cache consistency in concurrent asynchronous environments, Cache Saver utilizes per-key mutex locks. When

a request is received, a unique hash-based key is generated, and a corresponding mutex is initialized if no other request

holds the mutex. Alternatively, if a different request currently holds the mutex, it is retrieved from that request once it is

freed. This mutex guards access to the critical section where the cache, potentially updated with fresh model responses, is

read, and usage counters are incremented. By serializing access to cache entries on a per-key basis, the implementation

prevents race conditions and ensures accurate tracking of response usage. At the same time, requests for different keys

proceed concurrently, maintaining overall efficiency.

B.5. Batcher: Handling batch overflows

To improve efficiency in scenarios where multiple clients issue identical requests concurrently, Cache Saver includes an
option that allows the batch to overflow. When enabled, this mechanism allows additional requests to be added to a batch
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Algorithm 3 Async Reorderer
1: Asynchronous Procedure RequestSamples([𝑟1, … , 𝑟𝑚])
2: Input: List of 𝑚 requests 𝑟𝑖 = (𝐸𝑖

𝑘, 𝑝𝑖, 𝜃𝑖, 𝑛𝑖, id𝑖)
3: Output: List of futures [𝑓1, … , 𝑓𝑚], each resolving to 𝑛𝑖 samples

4: Create futures: 𝑓𝑖 ← new Future for 𝑖 = 1 to 𝑚
5: Let ℛ ← [𝑟1, … , 𝑟𝑚] and ℱ ← [𝑓1, … , 𝑓𝑚]
6: Compute sorted indices: ℐsorted ← sort indices of ℛ by id𝑖

7: Reorder requests and futures:

8: ℛsorted ← ℛ[ℐsorted]
9: ℱsorted ← ℱ[ℐsorted]
10: asynchronously:

11: responses ← await model.request(ℛsorted)
12: for 𝑖 = 1 to 𝑚: resolve ℱsorted[𝑖] ← responses[𝑖]
13: return [𝑓1, … , 𝑓𝑚]

Algorithm 4 Async Deduplicator
1: Asynchronous Procedure RequestSamples([𝑟1, … , 𝑟𝑚])
2: Input: List of 𝑚 requests 𝑟𝑖 = (𝐸𝑖

𝑘, 𝑝𝑖, 𝜃𝑖, 𝑛𝑖, id𝑖)
3: Output: List of futures [𝑓1, … , 𝑓𝑚], each resolving to 𝑛𝑖 samples

4: Initialize:

5: 𝒦 ← {} {Deduplication key ↦ (𝐸𝑘, 𝑝, 𝜃)}
6: 𝒩 ← {} {Key ↦ total requested samples}

7: ℳ ← {} {Key ↦ list of (future, count) pairs}

8: for 𝑖 = 1 to 𝑚 do

9: 𝑟𝑖 = (𝐸𝑖
𝑘, 𝑝𝑖, 𝜃𝑖, 𝑛𝑖, id𝑖)

10: 𝑘𝑖 ← Hash(𝐸𝑖
𝑘, 𝑝𝑖, 𝜃𝑖)

11: 𝑓𝑖 ← new Future

12: Append (𝑓𝑖, 𝑛𝑖) to ℳ[𝑘𝑖]
13: 𝒦[𝑘𝑖] ← (𝐸𝑖

𝑘, 𝑝𝑖, 𝜃𝑖)
14: 𝒩[𝑘𝑖] ← 𝒩[𝑘𝑖] + 𝑛𝑖

15: end for

16: for each key 𝑘 do

17: (𝐸𝑘, 𝑝, 𝜃) ← 𝒦[𝑘]
18: 𝑛total ← 𝒩[𝑘]
19: asynchronously:

20: responses ← await model.request(𝐸𝑘, 𝑝, 𝜃, 𝑛total)
21: resolve all futures in ℳ[𝑘] using responses, in order
22: end for

23: return [𝑓1, … , 𝑓𝑚]

even after the specified batch size has been reached, but only if they are duplicates, i.e., they share the same input (prompt

and decoding parameters) as an existing request in the batch. Overall, this enables the deduplicator module of Cache Saver
to work at full efficiency, improving the overall performance of the Cache Saver pipeline.

B.6. Practical considerations

Cache Saver is built from modular building blocks, allowing users to flexibly compose different pipelines that combine

caching, batching, deduplication, and reordering in any order or subset, depending on their application needs. In particular,

the choice of namespace assignment gives precise control over the trade-off between strict sample independence (one

namespace per benchmark) for unbiased benchmarking and maximal cost savings (one namespace per benchmark puzzle or

𝑁 namespaces per benchmark, where 𝑁 is the number of puzzles in the benchmark) for large-scale ablations or production
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deployments. For example, users can construct pipelines with full independence across benchmarks or enable aggressive

reuse within a benchmark as appropriate.

C. Additional Experimental Details

C.1. Detailed Task Descriptions

C.1.1. Game of 24

The Game of 24 is a math puzzle where players are given four numbers and must use each of them exactly once, along with

the basic arithmetic operations (+, –, ×, ÷), to form an expression that evaluates to 24.

Our benchmark includes 1,362 such puzzles collected from 4nums.com, organized in ascending order of difficulty. Each

puzzle provides four input numbers, and the goal is to generate a valid equation that results in 24. Following the approach of

ToT (Yao et al., 2024), we designate puzzles numbered 901 to 1000 as our test set.

C.1.2. SciBench

SciBench (Wang et al., 2024a) is a scientific reasoning benchmark designed to evaluate college-level problem-solving

abilities across subjects such as mathematics, physics, and chemistry. Each task presents an open-ended problem that

requires multi-step reasoning, domain-specific knowledge, and advanced computations, including calculus and differential

equations. Problems are drawn from widely used textbooks and university exams.

Following the approach of ReST-MCTS (Zhang et al., 2024), we sampled 109 problems spanning different subjects to form

the test set. Quality is measured using an accuracy metric, defined as the proportion of problems correctly solved according

to the official solutions (exact matching).

C.1.3. HumanEval

HumanEval (Chen et al., 2021) is a code generation benchmark where participants are given natural language docstrings and

must generate Python functions that correctly implement the described behavior. Each problem includes a hidden test suite

used to verify functional correctness.

Following the setup from Reflexion (Shinn et al., 2023), the benchmark consists of 100 programming tasks in the test set.

We evaluate performance using the pass@1 metric, which measures the proportion of problems solved correctly on the first

attempt.

C.1.4. HotpotQA

HotpotQA (Zhilin et al., 2018) is a large-scale question answering benchmark that tests an agent’s ability to perform

multi-hop reasoning across multiple documents. Multi-step approaches, such as ToT, are permitted to interact with an API

that enables document retrieval and targeted information lookup.

Following prior work (Zhou et al., 2024; Shinn et al., 2023), we evaluate on a set of 100 randomly selected questions. The

quality of a response is judged based on exact match (EM) with the oracle answer.

C.1.5. Shakespearean Sonnet Writting

Shakespearean Sonnet Writing (Suzgun & Kalai, 2024) is a creative generation task where the goal is to compose a 14-line

sonnet adhering to the classic rhyme scheme “ABAB CDCD EFEF GG”. Each sonnet must include three provided words

verbatim.

Following Suzgun et al. (Suzgun & Kalai, 2024), we randomly sampled 50 datapoints to form the test set. Quality is

measured using an accuracy metric, which reflects the proportion of sonnets that both satisfy the rhyme scheme and include

all three required words exactly as given.
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C.2. Detailed Descriptions of Reasoning Strategies

Multi-step reasoning strategies can be broadly grouped into two high-level categories: (1) structured reasoning and (2)

iterative reasoning, which capture the major design paradigms in the space of LLM reasoning. To systematically assess

the effectiveness of Cache Saver in contemporary multistep reasoning settings, we pick three and two representative

state-of-the-art (SOTA) methods from the two categories, respectively, that incorporate distinct algorithmic choices and

reasoning dynamics. Specifically, we pick ToT and FoA from structured reasoning, and React, RAP, and ReST-MCTS from

iterative reasoning. The five representatives are described below.

• Tree of Thoughts (ToT): Decomposes the problem into multiple chains of thoughts, organized in a tree structure. Thought

evaluation and search traversal algorithms are utilized to solve the problem (Yao et al., 2024).

• Fleet of Agents (FoA): Decomposes the problem into multiple chains of thoughts. Employs a genetic-type particle

filtering approach to navigate through dynamic tree searches to solve the problem (Klein et al., 2024).

• React: is a reasoning method that interleaves reasoning (thought generation) and acting (taking environment-interacting
actions) to solve problems interactively. Each action’s output informs subsequent reasoning, enabling adaptive and dynamic

problem-solving (Yao et al., 2023).

• Reasoning via Planning (RAP): is a reasoning framework that equips Large Language Models (LLMs) with an internal

world model and employs Monte Carlo Tree Search (MCTS) for strategic exploration of reasoning paths. RAP repurposes

the LLM to simulate future states and evaluate potential actions, enabling deliberate planning and improved problem-solving

performance (Hao et al., 2023)

• ReST-MCTS: is a reasoning method that employs a modified Monte Carlo Tree Search (MCTS) algorithm, guided by a

process reward model (PRM), to explore and evaluate reasoning paths. In this work, we only evaluate in-context reasoning

strategies; thus, we utilize only the MCTS* component of ReST-MCTS, excluding the self-training aspects involving policy

and reward model updates (Zhang et al., 2024).

C.3. Detailed Descriptions of Evaluation Metrics

• Quality indicates how well a reasoning strategy performs on a benchmark task. It depends on the task type and can be

measured by accuracy, score, or success rate. The exact definition of the quality metric is provided with the description

of each benchmark task in Appx. C.1.

• Latency measures how long it takes for an LLM to respond to a request. For each reasoning strategy and benchmark

task, we report the average latency, i.e., the average time required per call.

• Throughput. Let each datapoint in a benchmark task be referred to as a puzzle. For each reasoning strategy, we report

the number of puzzles solved per second. Overall, throughput reflects a system’s ability to process multiple tasks

concurrently.

• #Tokens denote the total number of tokens used by a reasoning strategy to solve a benchmark task. We report the total,

including both the input tokens sent to the model and the output tokens in the response generated by an LLM.

• Time refers to the wall clock time, i.e., the total time taken by a reasoning strategy to solve a benchmark task from start

to finish, including all processing and waiting times.

• Cost (API-based LLMs only) denotes the total monetary cost (in USD) of executing a reasoning strategy on a

benchmark task when using an LLM via an API call to an online platform. We compute the cost based on the number

of tokens processed and the platform provider’s pricing.

• Energy consumption and Carbon footprint (Local LLMs only)measures the total energy consumption (in kWh) and

the estimated CO2 emissions (in grams) to run a reasoning strategy for a benchmark task. We measure these quantities

using Carbontracker (Anthony et al., 2020).
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C.4. Implementation Details

C.4.1. Platforms, Model checkpoints, and Prices

The GPT models were accessed through the OpenAI API while Claude models were accessed through the Anthropic API.

For our local experiments, our models were deployed using the vLLM (Kwon et al., 2023c) inference engine.

To compute the costs of the online experiments, we used the current model prices indicated by the corresponding platform.

The specific models snapshot used in this work, along with their respective prices, are presented in 2. Note that Llama4-Scout

was run locally, and thus, the cost is listed as N/A.

Table 2: Base LLM snapshot prices. OpenAI and Anthropic prices for each model used during the implementation of the

project.

US$ per 1M prompt tokens US$ Per 1M completion tokens

GPT4.1-Nano-2025-04-14 0.10 0.40

Claude3.5-Haiku 0.8 4

Llama4-Scout-17B-16E-Instruct N/A N/A

C.4.2. Model configurations

Generation parameters specified when making calls to any of the models used throughout this project. These parameters

were not defined by us, but by the implementation where the respective prompts were introduced. However, as newer models

were used for this study, we only adjusted the maximum allowed completion tokens as needed to ensure compatibility and

successful completion of responses.

C.4.3. Cache Saver Hyperparameters

The Cache Saver framework itself has two hyperparameters: (1) batch size and (2) timeout of the asynchronous batcher.
The batch size should be chosen large enough to allow the deduplicator to identify and group duplicate prompts efficiently.

At the same time, too large a batch size can trigger timeouts. We use Cache Saver in a setup where many tasks, frameworks,
configurations, etc. are evaluated asynchronously and choose a batch size of 300 and a timeout of 2 seconds.

Importantly, when running a set of experiments at the same time, tuning the batch size carefully can lead to further cost

savings. The batch size for the asynchronous batcher may be larger than batch sizes that can be processed within the memory

constraints of a local model or the rate limits of a third-party API to a model hosted at an online platform. Slicing a batch

into optimal chunks is a downstream task and should be implemented in a model-specific wrapper.

C.4.4. Prompts

Due to the large number of methods and tasks presented in this paper, including all corresponding prompts would be

impractical within the main text. Therefore, we provide a comprehensive collection of all prompts used in our experiments

on our GitHub repository: https://github.com/au-clan/cachesaver/blob/main/prompts.md.

Table 3: Generation parameters specified when making requests to a base LLM.

max_tokens temperature top_p stop

Game of 24 200 0.7 1 Null

SciBench 300 0.7 1 Null

HumanEval 200 0.7 1 Null

HotpotQA 300 0.7 1 Null

Sonnet Writing 800 1.0 1 Null
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C.5. Additional Results

C.5.1. Cache Saver for practical applications

In this experiment, we evaluate Cache Saver’s ability to support practical machine learning applications, namely, A1:
tuning hyperparameters, A2: performing ablation analysis of a reasoning strategy, and A3: benchmarking multiple reasoning

strategies to identify the best. In all cases, we use GPT4.1-Nano as the base LLM, three benchmark tasks, namely “Game of

24”, “HumanEval”, and “SciBench”, and report average cost (with and without Cache Saver) and the marginal cost (with
Cache Saver), which represents the additional cost of adding a new method (A3) or a new hyperparameter configuration

(A1). The results are presented in Fig. 5.

A1: Hyperparameter tuning. For A1, we tune the hyperparameters for ToT (Yao et al., 2024) by conducting a grid-search

over tree-width: [1, 3, 5], tree-depth: [2, 3, 4], and #evaluations of the value prompt: [1, 2, 3]. We find that Cache Saver
reports substantial performance improvements: 6x lower cost, tokens, and latency and 7x higher throughput. While average

(with CS, yellow bar) presents the realistic setting of executing the full experiment, the marginal (with CS, green bar) is also

valuable as it presents the added cost of incorporating a new variation in the experiment.

A2: Ablation analysis. For A2, we analyze the three major variations of the FoA (Klein et al., 2024) algorithm, in particular,

by removing the (1) selection phase, backtracking mechanism, and resampling strategy. Here, Cache Saver only obtains a

2.5x performance improvement. We hypothesize that running the same method with a different hyperparameter configuration

should result in a more similar reasoning strategy when compared to running a different variation of a method, which offers

a plausible explanation for the differences in the observed performance improvements.

A3: Benchmarking. For A3, we evaluate all the structured reasoning strategies benchmarked in our study, i.e., ToT (Yao

et al., 2024), GoT (Besta et al., 2024), and FoA (Klein et al., 2024). Here, Cache Saver obtains a 2x (slightly lower than
A2) performance improvement. The hypothesis remains similar: the potential for reuse is even lower when considering

entirely different reasoning strategies than variations of a specific reasoning strategy. That said, a cross-framework reuse

potential is an interesting and novel finding in its own right.
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Figure 5: Comparing the performance of conducting 3 practical machine learning tasks: A1: hyperparameter tuning, A2:

ablation analysis, and A3: benchmarking, with and without Cache Saver using GPT4.1-Nano as base LLM.

C.6. Analyses

C.6.1. Impact of Namespace Size

§ B.1 formalized the relationship between the namespace configuration and statistical integrity of an experiment. Let 𝑛 and

𝑁 be the number of datapoints in a namespace and a benchmark, respectively. We define namespace fraction (NF) to be

𝑛/𝑁, which naturally lies between [0, 1] as 𝑛 is upper-bounded by 𝑁. Here, we analyze the impact of NF on the cost and

carbon footprint (Fig. 6 presents the results). Recall that NF=1 corresponds to the statistically correct configuration (§ B.1),

whereas NF=0 corresponds to the maximum cost-saving configuration. We find that the cost and carbon footprint increase

with increasing NF; however, interestingly, we noticed that the quality still remains statistically indistinguishable across all

NF values. While all the main results reported in the paper correspond to NF=1, in practical settings, NF could even be set

to a lower value to increase cost savings even further.
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Figure 6: Namespace impact: Analyzing the impact on cost as a function of the percentage of puzzles sharing the same

namespace for GPT-4.1-Nano (Left, cost in USD) and LLaMA4-Scout (Right, cost in estimated CO2 emissions).
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Figure 7: Ablation analysis to study the impact of the deduplicator and cacher modules of Cache Saver on the performance
of FoA (Klein et al., 2024) in the Game of 24 task with GPT4.1-Nano as the base LLM.

C.6.2. Cache Saver Ablation Analysis

Fig. 7 presents the impact of the deduplicator and cacher of Cache Saver. We report performance metrics: (1) without

Cache Saver, (2) with only deduplicator, (3) with only cacher, and (4) with Cache Saver. We find that the cacher

contributes the most to the improvements seen by Cache Saver, followed by the batcher. This result shows the strength of
our novel caching paradigm, while also highlighting the practical improvements obtained by other Cache Saver modules.

C.6.3. Existing optimizations vs. Cache Saver

Finally, we study how much Cache Saver saves over and above existing platform-specific optimizations (such as KV

caching, paged attention, etc.) as already provided by OpenAI or vLLM. Table 4 presents the results. We find that while

existing optimizations lead to savings of ≃3.3% on average, Cache Saver alone obtains ≃20%. However, when both
optimizations are switched on, the overall improvement reported by Cache Saver alongside existing optimizations is ≃14%.

This shows that these optimizations likely collide with each other, which is expected; however, Cache Saver still reports a

substantial overall improvement. That said, studying co-optimization strategies constitutes as future work.
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Figure 8: OpenAI: Hyperparameter tuning for Tree of Thoughts across tasks -> Need to add HumanEval
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Figure 9: Llama: Hyperparameter tuning for Tree of Thoughts across tasks -> Need to add HumanEval

Table 4: Analyzing the impact of existing optimizations and Cache Saver on the cost (in US$) of ToT (Yao et al., 2024)

across Game of 24, SciBench, and HumanEval using GPT-4.1-Nano as the base LLM. Values indicate the percentage

reduction in cost relative to the original.

Task Existing CacheSaver Both

Game 24 7.7% 30.8% 25.5%

SciBench 0.0% 18.2% 6.1%

HumanEval 2.2% 12.1% 7.7%

Average 3.3% 20.4% 13.1%

Cache retrievals (%) ToT FoA Average

Game of 24 50.39 43.04 46.71

Mini Crosswords 1.98 3 52.78 27.38

Average 26.19 47.91 37.04

Table 5: Percentage of prompt responses retrieved from the cache instead of being generated by the LLM during the

intra-framework namespace sharing experiment. By allowing each puzzle instance to reuse responses produced by others

(with one-time usage constraints), CacheSaver significantly reduces redundant generation, highlighting its effectiveness in

promoting efficiency through controlled response sharing.
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Figure 10: OpenAI: Ablation analysis for Fleet of Agents across tasks
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Figure 11: Llama: Ablation analysis for Fleet of Agents across tasks

C.6.4. Hyperparameter tuning

C.6.5. Ablation Analysis

C.6.6. Benchmarking

C.6.7. Impact of Namespace size

C.6.8. Optimization interference

3The best performing implementation of Mini Crosswords for ToT is using its Depth-First Search variation. As a result, by definition
all the states that the algorithm traverses through are unique, and because of this, most prompts are as well. Since the prompts are unique,
minimal reuse is possible and by extension the percentage of cache retrievals is nominal in this experiment.
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Figure 12: Namespace impact: Analyzing the effect of the percentage of puzzles sharing the same namespace on the Game

of 24 task, for the Tree of Thoughts method.
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Figure 13: Namespace impact: Analyzing the effect of the percentage of puzzles sharing the same namespace on the Game

of 24 task, for the Fleet of Agents method.
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