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Abstract

We consider a regularized expected reward optimization problem in the non-oblivious setting
that covers many existing problems in reinforcement learning (RL). In order to solve such
an optimization problem, we apply and analyze the classical stochastic proximal gradient
method. In particular, the method has shown to admit an O(ϵ−4) sample complexity to an
ϵ-stationary point, under standard conditions. Since the variance of the classical stochastic
gradient estimator is typically large, which slows down the convergence, we also apply an
efficient stochastic variance-reduce proximal gradient method with an importance sampling
based ProbAbilistic Gradient Estimator (PAGE). Our analysis shows that the sample com-
plexity can be improved from O(ϵ−4) to O(ϵ−3) under additional conditions. Our results on
the stochastic (variance-reduced) proximal gradient method match the sample complexity of
their most competitive counterparts for discounted Markov decision processes under similar
settings. To the best of our knowledge, the proposed methods represent a novel approach
in addressing the general regularized reward optimization problem.

1 Introduction

Reinforcement learning (RL) (Sutton & Barto, 2018) has recently become a highly active research area of
machine learning that learns to make sequential decisions via interacting with the environment. In recent
years, RL has achieved tremendous success so far in many applications such as control, job scheduling,
online advertising, and game-playing (Zhang & Dietterich, 1995; Pednault et al., 2002; Mnih et al., 2013), to
mention a few. One of the central tasks of RL is to solve a certain (expected) reward optimization problem
for decision-making. Following the research theme, we consider the following problem of maximizing the
regularized expected reward:

max
θ∈Rn

F(θ) := Ex∼πθ
[Rθ(x)] − G(θ), (1)

where G : Rn → R ∪ {+∞} is a closed proper convex (possibly nonsmooth) function, x ∈ Rd, Rθ : Rd → R
is the reward function depending on the parameter θ, and πθ denotes the probability distribution over a
given subset S ⊆ Rd parameterized by θ ∈ Rn. By adapting the convention in RL, we call πθ a policy
parameterized by θ. Moreover, for the rest of this paper, we denote J (θ) := Ex∼πθ

[Rθ(x)] as the expected
reward function in the non-oblivious setting. The learning objective is to learn a decision rule via finding the
policy parameter θ that maximizes the regularized expected reward. To the best of our knowledge, the study
on the general model (1) has been limited in the literature. Hence, developing and analyzing algorithmic
frameworks for solving the problem is of great interest.

There are large body of works in supervised learning focusing on the oblivious setting (Zhang, 2004; Hastie
et al., 2009; Shapiro et al., 2021), i.e., J (θ) := Ex∼π [Rθ(x)], where x is sampled from an invariant distri-

1

https://openreview.net/forum?id=Ve4Puj2LVT


Published in Transactions on Machine Learning Research (8/2024)

bution π. Clearly, problem (1) can be viewed as a generalization of those machine learning problems with
oblivious objective functions. In the literature, an RL problem is often formulated as a discrete-time and
discounted Markov decision processes (MDPs) (Sutton & Barto, 2018) which aims to learn an optimal policy
via optimizing the (discounted) cumulative sum of rewards. We can also see that the learning objective of
an MDP can be covered by the problem (1) with the property that the function R(x) does not depend on
θ (see Example 3.3). Recently, the application of RL for solving combinatorial optimization (CO) problems
which are typically NP-hard has attracted much attention. These CO problems may include the traveling
salesman problem and related problems (Bello et al., 2016; Mazyavkina et al., 2021), the reward optimiza-
tion problem arising from the finite expression method (Liang & Yang, 2022; Song et al., 2023), and the
general binary optimization problem (Chen et al., 2023), to name just a few. The common key component
of the aforementioned applications is the reward optimization, which could also be formulated as problem
(1). There also exist problems with general reward functions that are outside the scope of cumulative sum
of rewards of trajectories that are used in MDPs. An interesting example is the MDP with general utilities;
see, e.g., (Zhang et al., 2020a; Kumar et al., 2022; Barakat et al., 2023) and references therein.

Adding a regularizer to the objective function is a commonly used technique to impose desirable structures to
the solution and/or to greatly enhance the expression power and applicability of RL (Lan, 2023; Zhan et al.,
2023). When one considers the direct/simplex parameterization (Agarwal et al., 2021) of πθ, a regularization
function using the indicator function for the standard probability simplex is needed. Moreover, by using
other indicator functions for general convex sets, one is able to impose some additional constraints on the
parameter θ. For the softmax parameterization, one may also enforce a bounded constraint to θ to prevent
it taking values that are too large. This can avoid potential numerical issues, including the overflow error
on a floating point system. On the other hand, there are incomplete parametric policy classes, such as the
log-linear and neural policy classes, that are often formulated as {πθ|θ ∈ Θ}, where Θ is a closed convex set
(Agarwal et al., 2021). In this case, the indicator function is still necessary and useful. Some recent works
(see, e.g., (Ahmed et al., 2019; Agarwal et al., 2020; Mei et al., 2020; Cen et al., 2022)) have investigated the
impact of the entropy regularization for MDPs. Systematic studies on general convex regularization for MDPs
have been limited until the recent works (Pham et al., 2020; Lan, 2023; Zhan et al., 2023). Finally, problem
(1) takes the same form as the stochastic optimization problem with decision-dependent distributions (see
e.g., (Drusvyatskiy & Xiao, 2023) and references therein), leading to numerous real-world applications such
as performative prediction (Mendler-Dünner et al., 2020; Perdomo et al., 2020), concept drift (Gama et al.,
2014), strategic classification (Tsirtsis et al., 2024; Milli et al., 2019), and casual inference (Yao et al., 2021).
Consequently, we can see that problem (1) is in fact quite general and has promising modeling power, as it
covers many existing problems in the literature.

The purpose of this paper is to leverage existing tools and results in MDPs and nonconvex optimization for
solving the general regularized expected reward optimization problem (1) with general policy parameteri-
zation, which, to the best of our knowledge, has not been formally considered in the RL literature. It is
well known that the policy gradient method (Williams, 1992; Sutton et al., 1999; Baxter & Bartlett, 2001),
which lies in the heart of RL, is one of the most competitive and efficient algorithms due to its simplicity
and versatility. Moreover, the policy gradient method is readily implemented and can be paired with other
effective techniques. In this paper, we observe that the stochastic proximal gradient method, which shares
the same spirit of the policy gradient method, can be applied directly for solving the targeted problem (1)
with convergence guarantees to a stationary point. Since the classical stochastic gradient estimator typically
introduces a large variance, there is also a need to consider designing advanced stochastic gradient estimators
with smaller variances. To this end, we shall also look into a certain stochastic variance-reduced proximal
gradient method and analyze its convergence properties. In particular, the contributions of this paper are
summarized as follows.

• We consider a novel and general regularized reward optimization model (1) that covers many existing
important models in the machine learning and optimization literature. Thus, problem (1) admits a
promising modeling power which encourages potential applications.

• In order to solve our targeted problem, we consider applying the classical stochastic proximal gradient
method and analyze its convergence properties. We first demonstrate that the gradient of J (·)
is Lipschitz continuous under standard conditions with respect to the reward function Rθ(·) and
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the parameterized policy πθ(·). Using the L-smoothness of J (·), we then show that the classical
stochastic proximal gradient method with a constant step-size (depending only on the Lipschitz
constant for ∇θJ (·)) for solving problem (1) outputs an ϵ-stationary point (see Definition 3.4)
within T := O(ϵ−2) iterations, and the sample size for each iteration is O(ϵ−2), where ϵ > 0 is a
given tolerance. Thus, the total sample complexity becomes O(ϵ−4), which matches the current
state-of-the-art sample complexity of the classical stochastic policy gradient for MDPs; see e.g.,
(Williams, 1992; Baxter & Bartlett, 2001; Zhang et al., 2020b; Xiong et al., 2021; Yuan et al., 2022).

• Moreover, in order to further reduce the variance of the stochastic gradient estimator, we utilize an
importance sampling based probabilistic gradient estimator which leads to an efficient single-looped
variance reduced method. The application of this probabilistic gradient estimator is motivated by
the recent progress in developing efficient stochastic variance-reduced gradient methods for solving
stochastic optimization (Li et al., 2021b) and (unregularized) MDPs (Gargiani et al., 2022). We show
that, under additional technical conditions, the total sample complexity is improved from O(ϵ−4) to
O(ϵ−3). This result again matches the results of some existing competitive variance-reduced methods
for MDPs (Papini et al., 2018; Xu et al., 2019; Pham et al., 2020; Huang et al., 2021; Yang et al.,
2022; Gargiani et al., 2022). Moreover, to the best of our knowledge, the application of the above
probabilistic gradient estimator is new for solving the regularized expected reward optimization (1).

The rest of this paper is organized as follows. We first summarize some relative works in Section 2. Next,
in Section 3, we present some background information that are needed for the exposition of this paper.
Then, in Section 4, we describe the classical stochastic proximal gradient method for solving (1) and present
the convergence properties of this method under standard technical conditions. Section 5 is dedicated to
describing and analyzing the stochastic variance-reduced proximal gradient method with an importance
sampling based probabilistic gradient estimator. Finally, we make some concluding remarks, and list certain
limitations and future research directions of this paper in Section 6.

2 Related Work

The policy gradient method. One of the most influential algorithms for solving RL problems is the
policy gradient method, built upon the foundations established in (Williams, 1992; Sutton et al., 1999;
Baxter & Bartlett, 2001). Motivated by the empirical success of the policy gradient method and its variants,
analyzing the convergence properties for these methods has long been one of the most active research topics
in RL. Since the objective function J (θ) is generally nonconcave, early works (Sutton et al., 1999; Pirotta
et al., 2015) focused on the asymptotic convergence properties to a stationary point. By utilizing the special
structure in (entropy regularized) MDPs, recent works (Liu et al., 2019; Mei et al., 2020; Agarwal et al.,
2021; Li et al., 2021a; Xiao, 2022; Cen et al., 2022; Lan, 2023; Fatkhullin et al., 2023) provided some exciting
results on the global convergence. Meanwhile, since the exact gradient of the objective function can hardly
be computed, sampling-based approximated/stochastic gradients have gained much attention. Therefore,
many works investigated the convergence properties, including the iteration and sample complexities, for
these algorithms with inexact gradients; see e.g., (Zhang et al., 2020b; Liu et al., 2020; Zhang et al., 2021b;
Xiong et al., 2021; Yuan et al., 2022; Lan, 2023) and references therein.

Variance reduction. While the classical stochastic gradient estimator is straightforward and simple to
implement, one of its most critical issues is that the variance of the inexact gradient estimator can be
large, which generally slows down the convergence of the algorithm. To alleviate this issue, an attractive
approach is to pair the sample-based policy gradient methods with certain variance-reduced techniques.
Variance-reduced methods were originally developed for solving (oblivious) stochastic optimization problems
(Johnson & Zhang, 2013; Nguyen et al., 2017; Fang et al., 2018; Li et al., 2021b) typically arising from
supervised learning tasks. Motivated by the superior theoretical properties and practical performance of the
stochastic variance-reduced gradient methods, similar algorithmic frameworks have recently been applied for
solving MDPs (Papini et al., 2018; Xu et al., 2019; Yuan et al., 2020; Pham et al., 2020; Huang et al., 2021;
Yang et al., 2022; Gargiani et al., 2022).
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Stochastic optimization with decision-dependent distributions. Stochastic optimization is the core
of modern machine learning applications, whose main objective is to learn a decision rule from a limited
data sample that is assumed to generalize well to the entire population (Drusvyatskiy & Xiao, 2023). In the
classical supervised learning framework (Zhang, 2004; Hastie et al., 2009; Shapiro et al., 2021), the underlying
data distribution is assumed to be static, which turns out to be a crucial assumption when analyzing the
convergence properties of the common stochastic optimization algorithms. On the other hand, there are
problems where the distribution changes over the course of iterations of a specific algorithm, and these are
closely related to the concept of performative prediction (Perdomo et al., 2020). In this case, understanding
the convergence properties of the algorithm becomes more challenging. Toward this, some recent progress
has been made on (strongly) convex stochastic optimization with decision-dependent distributions (Mendler-
Dünner et al., 2020; Perdomo et al., 2020; Drusvyatskiy & Xiao, 2023). Moreover, other works have also
considered nonconvex problems and obtained some promising results; see (Dong et al., 2023; Jagadeesan
et al., 2022) and references therein. Developing theoretical foundation for these problems has become a very
active field nowadays.

RL with general utilities. It is known that the goal of an agent associated with an MDP is to seek an
optimal policy via maximizing the cumulative discounted reward (Sutton & Barto, 2018). However, there
are decision problems of interest having more general forms. Beyond the scope of the expected cumulative
reward in MDPs, some recent works also looked into RL problems with general utilities; see e.g., (Zhang
et al., 2020a; Kumar et al., 2022; Barakat et al., 2023) as mentioned previously. Global convergence results
can also be derived via investigating the hidden convex structure (Zhang et al., 2020a) inherited from the
MDP.

3 Preliminary

In this paper, we assume that the optimal objective value for problem (1), denoted by F∗, is finite and
attained, and the reward function Rθ(·) satisfies the following assumption.
Assumption 3.1. The following three conditions with respect to the function Rθ(·) hold:

1. There exists a constant U > 0 such that

sup
θ∈Rn,x∈Rd

|Rθ(x)| ≤ U.

2. Rθ(·) is twice continuously differentiable with respect to θ, and there exist positive constants C̃g and
C̃h such that

sup
θ∈Rn, x∈Rd

∥∇θRθ(x)∥ ≤ C̃g, sup
θ∈Rn, x∈Rd

∥∥∇2
θRθ(x)

∥∥
2 ≤ C̃h.

The first condition on the boundedness of the function Rθ(·), which is commonly assumed in the literature
(Sutton & Barto, 2018), ensures that J (θ) is well-defined. And the second condition will be used to guarantee
the well-definiteness and L-smoothness of the gradient ∇θJ (θ). We remark here that when the reward
function Rθ(x) does not depend on θ (see e.g., Example 3.3), then the second assumption holds automatically.

To determine the (theoretical) learning rate in our algorithmic frameworks, we also need to make some
standard assumptions to establish the L-smoothness of J (·).
Assumption 3.2 (Lipschitz and smooth policy assumption). The function log πθ(x) is twice differential
with respect to θ ∈ Rn and there exist positive constants Cg and Ch such that

sup
x∈Rd, θ∈Rn

∥∇θ log πθ(x)∥ ≤ Cg, sup
x∈Rd, θ∈Rn

∥∥∇2
θ log πθ(x)

∥∥
2 ≤ Ch.

This assumption is a standard one and commonly employed in the literature when studying the convergence
properties of the policy gradient method for MDPs; see e.g., (Pirotta et al., 2015; Papini et al., 2018; Xu
et al., 2020; Pham et al., 2020; Zhang et al., 2021a; Yang et al., 2022) and references therein.
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Under Assumption 3.1 and Assumption 3.2, it is easy to verify that the gradient for the expected reward
function J (θ) can be written as:

∇θJ (θ) = ∇θ

(∫
Rθ(x)πθ(x)dx

)
=
∫ (

∇θRθ(x) + Rθ(x)∇θπθ(x)
πθ(x)

)
πθ(x)dx

= Ex∼πθ
[Rθ(x)∇θ log πθ(x) + ∇θRθ(x)] .

We next present an example on the discrete-time discounted MDP, which can be covered by the general
model (1).
Example 3.3 (MDP). We denote a discrete-time discounted MDP as M := {S, A, P, R, γ, ρ0}, where S and
A denote the state space and the action space, respectively, P (s′|s, a) is the state transition probability from
s to s′ after selecting the action a, R : S × A → [0, U ] is the reward function that is assumed to be uniformly
bounded by a constant U > 0, γ ∈ [0, 1) is the discount factor, and ρ0 is the initial state distribution.

The agent selects actions according to a stationary random policy π̃θ(·|·) : A × S → [0, 1] parameterized by
θ ∈ Rn. Given an initial state s0 ∈ S, a trajectory τ := {st, at, rt+1}H−1

t=0 can then be generated, where
s0 ∼ ρ, at ∼ π̃θ(·|st), rt+1 = R(st, at), st+1 ∼ P (·|st, at), and H > 0 is a finite horizon, and the accumulated

discounted reward of the trajectory τ can be defined as R(τ) :=
H−1∑
t=0

γtrt+1. Then, the learning objective is

to compute an optimal parameter θ∗ that maximizes the expected reward function J (θ) 1, i.e.,

θ∗ ∈ argmaxθ J (θ) := Eτ∼ρθ
[R(τ)] , (2)

where ρθ(τ) := ρ0(s0)
∏H−1

t=0 P (st+1|st, at)π̃θ(at|st) denotes the probability distribution of a trajectory τ being
sampled from ρθ that is parameterized by θ.

In the special case when S = {s} (i.e., |S| = 1) and γ = 0, the MDP reduced to a multi-armed bandit problem
(Robbins, 1952) with a reward function simplified as R : A → R. Particularly, a trajectory τ = {s, a} with
the horizon Hτ = 0 is generated, where a ∼ ρθ(·) := π̃θ(·|s), and the accumulated discounted reward reduces
to R(x) = R(a). As a consequence, problem (2) can be simplified as

max
θ∈Rn

J (θ) = Ea∼ρθ
[R(a)] .

By adding a convex regularizer G(θ) to problem (2), we get the following regularized MDP:

max
θ∈Rn

Eτ∼ρθ
[R(τ)] − G(θ),

which was considered in (Pham et al., 2020). However, it is clear that R(τ) does not depend on θ. Hence,
the above regularized MDP is a special case of the proposed regularized reward optimization problem (1).

One can check that the gradient ∇θJ (θ) has the following form (Yuan et al., 2022):

∇θJ (θ) = Eτ∼ρθ

[
H−1∑
t=0

γtR(st, at)
t∑

t′=0
∇θ log π̃θ(at′ |st′)

]
.

Being a composite optimization problem, problem (1) admits the following first-order stationary condition

0 ∈ −∇θJ (θ) + ∂G(θ). (3)

Here, ∂G(·) denotes the subdifferential of the proper closed and convex function G(·) which is defined as

∂G(θ) := {g ∈ Rn : G(θ′) ≥ G(θ) + ⟨g, θ′ − θ⟩ , ∀θ} .

It is well-known that ∂G(θ) is a nonempty closed convex subset of Rn for any θ ∈ Rn such that G(θ) < ∞
(see e.g., (Rockafellar, 1997)). Note that any optimal solution of problem (1) satisfies the condition (3),
while the reverse statement is generally not valid for nonconcave problems, including the problem (1). The
condition (3) leads to the following concept of stationary points for problem (1).

1Here, the trajectory τ and the distribution ρθ correspond to x and πθ in (1), respectively.
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Definition 3.4. A point θ ∈ Rn is called a stationary point for problem (1) if it satisfies the condition (3).
Given a tolerance ϵ > 0, a stochastic optimization method attains an (expected) ϵ-stationary point, denoted
as θ ∈ Rn, if

ET

[
dist (0, −∇θJ (θ) + ∂G(θ))2

]
≤ ϵ2,

where the expectation is taken with respect to all the randomness caused by the algorithm, after running it T
iterations, and dist(x, C) denotes the distance between a point x and a closed convex set C.
Remark 3.5 (Gradient mapping). Note that the optimality condition (3) can be rewritten as

0 = Gη(θ) := 1
η

[ProxηG (θ + η∇θJ (θ)) − θ] ,

for some η > 0, where

ProxηG(θ) := argminθ′

{
G(θ′) + 1

2η
∥θ′ − θ∥2

}
denotes the proximal mapping of the function G(·). The mapping Gη(·) is called the gradient mapping in the
field of optimization (Beck, 2017). It is easy to verify that if for a θ ∈ Rn, it holds that

dist (0, −∇θJ (θ) + ∂G(θ)) ≤ ϵ,

then there exists a vector d satisfying ∥d∥ ≤ ϵ such that

d + ∇θJ (θ) ∈ ∂G(θ),

which is equivalent to saying that

θ = ProxηG (ηd + θ + η∇θJ (θ)) .

Moreover, we can verify that (by using the firm nonexpansiveness of ProxηG(·); see e.g., (Beck, 2017))

∥Gη(θ)∥ = 1
η

∥ProxηG (θ + η∇θJ (θ)) − θ∥ ≤ ∥d∥ ≤ ϵ.

Therefore, we can also characterize an (expected) ϵ-stationary point by using the following condition

ET

[
∥Gη(θ)∥2

]
≤ ϵ2.

The main objective of this paper is to study the convergence properties, including iteration and sample
complexities, of the stochastic (variance-reduced) proximal gradient method to a ϵ-stationary point with
a pre-specified ϵ > 0. Note that all proofs of our results are presented in the appendix. Moreover, we
acknowledge that our analysis is drawn upon classical results in the literature.

4 The stochastic proximal gradient method

In this section, we present and analyze the stochastic proximal gradient method for solving the problem (1).
The fundamental idea of the algorithm is to replace the true gradient ∇θJ (θ), which are not available for most
of the time, with a stochastic gradient estimator in the classical proximal gradient method (Beck, 2017). The
method can be viewed as extensions to the projected policy gradient method with direct parameterization
(Agarwal et al., 2021) and the stochastic policy gradient method for unregularized MDPs (Williams, 1992).
The detailed description of the algorithm is presented in Algorithm 1.

For notational simplicity, we denote

g(x, θ) := Rθ(x)∇θ log πθ(x) + ∇θRθ(x).

From Algorithm 1, we see that at each iteration, N data points, namely {xt,1, . . . , xt,N }, are sample according
to the current probability distribution πθt . Using these data points, we can construct a REINFORCE-type
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Algorithm 1 The stochastic proximal gradient method
1: Input: initial point θ0, sample size N and the learning rate η > 0.
2: for t = 0, . . . , T − 1 do
3: Compute the stochastic gradient estimator:

gt := 1
N

N∑
j=1

g(xt,j , θt),

where {xt,1, . . . , xt,N } are sampled independently according to πθt .
4: Update

θt+1 = ProxηG
(
θt + ηgt

)
.

5: end for
6: Output: θ̂T selected randomly from the generated sequence {θt}T

t=1.

stochastic gradient estimator gt. Then, the algorithm just performs a proximal gradient ascent updating.
Let T > 0 be the maximal number of iterations, then a sequence {θt}T

t=1 can be generated, and the output
solution is selected randomly from this sequence. Next, we shall proceed to answer the questions that how
to choose the learning rate η > 0, how large the sample size N should be, and how many iterations for the
algorithm to output an ϵ-stationary point for a given ϵ > 0, theoretically. The next lemma establishes the
L-smoothness of J (·) whose proof is given at Appendix A.1.
Lemma 4.1. Under Assumptions 3.1 and 3.2, the gradient of J is L-smooth, i.e.,

∥∇θJ (θ) − ∇θJ (θ′)∥ ≤ L ∥θ − θ′∥ , ∀θ, θ′ ∈ Rn,

with L := U(C2
g + Ch) + C̃h + 2CgC̃g > 0.

Remark 4.2 (L-smoothness in MDPs). For an MDP with finite action space and state space as in Example
3.3, the Lipschitz constant of ∇θJ (·) can be expressed in terms of |A|, |S| and γ. We refer the reader to
(Agarwal et al., 2021; Xiao, 2022) for more details.

As a consequence of the L-smoothness of the function J (·), we next show that the learning rate can be chosen
as a positive constant upper bounded by a constant depends only on the Lipschitz constant of ∇θJ (·). For
notational complicity, we denote ∆ := F∗ − F(θ0) > 0 for the rest of this paper.
Theorem 4.3. Under Assumptions 3.1 and 3.2, if we set η ∈

(
0, 1

2L

)
, then Algorithm 1 outputs a point θ̂T

satisfying

ET

[
dist

(
0, −∇θJ (θ̂T ) + ∂G(θ̂T )

)2
]

≤
(

2 + 2
ηL(1 − 2ηL)

)
1
T

T −1∑
t=0

ET

[∥∥gt − ∇θJ (θt)
∥∥2
]

+ ∆
T

(
2
η

+ 4
η(1 − 2ηL)

)
,

where ET is defined in Definition 3.4.

The proof of the above theorem is provided in Appendix A.2. From this theorem, if one sets gt = ∇θJ (θt),
i.e., ∥gt − ∇θJ (θt)∥2 = 0, then there is no randomness along the iterations and the convergence property is
reduced to

min
1≤t≤T

dist
(

0, −∇θJ (θ̂t) + ∂G(θ̂t)
)

= O

(
1√
T

)
,

which is implied by classical results on proximal gradient method (see e.g., (Beck, 2017)). However, since
the exact full gradient ∇θJ (θ) is rarely computable, it is common to require the variance (i.e., the trace of
the covariance matrix) of the stochastic estimator to be bounded. The latter condition plays an essential
role in analyzing stochastic first-order methods for solving nonconvex optimization problems, including RL
applications; see, e.g., (Beck, 2017; Papini et al., 2018; Shen et al., 2019; Lan, 2020; Yang et al., 2022).
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Lemma 4.4. Under Assumptions 3.1 and 3.2, there exists a constant σ > 0 such that for any θ,

Ex∼πθ

[
∥g(x, θ) − ∇θJ (θ)∥2

]
≤ σ2.

The proof of Lemma 4.4 is given in Appendix A.3. By choosing a suitable sample size N , we can rely on
Lemma 4.4 to make the term ET

[
∥gt − ∇θJ (θt)∥2

]
in Theorem 4.3 small, for every t ≤ T . Then, Theorem

4.3 implies that Algorithm 1 admits an expected O(T −1) convergence rate to a stationary point. These
results are summarized in the following theorem; see Appendix A.4 for a proof.
Theorem 4.5. Suppose that Assumptions 3.1 and 3.2 hold. Let ϵ > 0 be a given accuracy. Running the
Algorithm 1 for

T :=
⌈

∆
ϵ2

(
4
η

+ 8
η(1 − 2ηL)

)⌉
= O(ϵ−2)

iterations with the learning rate η < 1
2L and the sample size

N :=
⌈

σ2

ϵ2

(
4 + 4

ηL(1 − 2ηL)

)⌉
= O(ϵ−2)

outputs a point θ̂T satisfying

ET

[
dist

(
0, −∇θJ (θ̂T ) + ∂G(θ̂T )

)2
]

≤ ϵ2.

Moreover, the sample complexity is O(ϵ−4).

As already mentioned in the introduction, the total sample complexity of Algorithm 1 to an ϵ-stationary point
is shown to be O(ϵ−4), which matches the most competitive sample complexity of the classical stochastic
policy gradient for MDPs (Williams, 1992; Baxter & Bartlett, 2001; Zhang et al., 2020b; Xiong et al., 2021;
Yuan et al., 2022).
Remark 4.6 (Sample size). Note that the current state-of-the-art iteration complexity for the (small-batch)
stochastic gradient descent method is T := O(ϵ−2) with ηt := min{O(L−1), O(T −1/2)}; see, e.g., (Ghadimi
& Lan, 2013). The reason for requiring larger batch-size in Theorem 4.5 is to allow a constant learning
rate. To the best of our knowledge, to get the same convergence properties as Theorem 4.5 under the same
conditions for problem (1), the large batch-size is required.
Remark 4.7 (Global convergence). As mentioned in introduction, some recent progress has been made for
analyzing the global convergence properties of the policy gradient methods for MDPs, which greatly rely on
the concepts of gradient domination and its extensions (Agarwal et al., 2021; Mei et al., 2020; Xiao, 2022;
Yuan et al., 2022; Gargiani et al., 2022). This concept is also highly related to the classical PŁ-condition
(Polyak, 1963) and KŁ-condition (Bolte et al., 2007) in the field of optimization. One of the key ideas is
to assume or verify that the difference between the optimal objective function value, namely F∗, and F(θ)
can be bounded by the quantity depending on the norm of the gradient mapping at an arbitrary point. In
particular, suppose that there exists a positive constant ω such that

∥Gη(θ))∥ ≥ 2
√

ω (F∗ − F(θ)) , ∀ θ ∈ Rn,

where Gη is defined in Remark 3.5 (see e.g., (Xiao, 2022)). Then, after running Algorithm 2 for T = O(ϵ−2)
iterations, one can easily check that

ET

[
F∗ − F(θ̂T )

]
≤ 1

2
√

ω
ϵ.

As a conclusion, by assuming or verifying stronger conditions, one can typically show that any stationary
point of the problem (1) is also a globally optimal solution. This shares the same spirit of (Zhang et al.,
2020a) for MDPs with general utilities. We leave it as a future research to analyze the global convergence of
the problem (1).
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5 Variance reduction via PAGE

Recall from Theorem 4.3 that, there is a trade-off between the sample complexity and the iteration complexity
of Algorithm 1. In particular, while there is little room for us to improve the term ∆

T

(
2
η + 4

η(1−2ηL)

)
which corresponds to the iteration complexity, it is possible to construct gt in an advanced manner to
improve the sample complexity. Therefore, our main goal in this section is to reduce the expected sample

complexity while keeping the term 1
T

T −1∑
t=0

ET

[∥∥∇θJ (θt) − gt
∥∥2
]

small. We achieve this goal by considering

the stochastic variance-reduced gradient methods that have recently attracted much attention. Among these
variance-reduced methods, as argued in (Gargiani et al., 2022), the ProbAbilistic Gradient Estimator (PAGE)
proposed in (Li et al., 2021b) has a simple structure, and can lead to optimal convergence properties. These
appealing features make it attractive in machine learning applications. Therefore, in this section, we also
consider the stochastic variance-reduced proximal gradient method with PAGE for solving the problem (1).

PAGE is originally designed for the stochastic nonconvex minimization in the oblivious setting:

min
θ∈Rn

f(θ) := Ex∼π[F (x, θ)]

where π is a fixed probability distribution and F : Rd × Rn → R is a certain differentiable (and possibly
nonconvex) loss function. For stochastic gradient-type methods, a certain stochastic gradient estimator for
f is required for performing the optimization. At the t-th iteration, given a probability pt ∈ [0, 1] and the
current gradient estimator gt, PAGE proposed to replace the vanilla mini-batch gradient estimator with the
following unbiased stochastic estimator:

∇f(θt+1) ≈ gt+1 :=


1

N1

N1∑
j=1

∇θF (xj , θt+1), with probability pt,

gt + 1
N2

 N2∑
j=1

∇θF (xj , θt+1) −
N2∑
j=1

∇θF (xj , θt)

 , with probability 1 − pt,

where {xj} are sampled from π, N1, N2 denote the sample sizes. Some key advantages of applying PAGE
are summarized as follows. First, the algorithm is single-looped, which admit simpler implementation com-
pared with existing double-looped variance reduced methods. Second, the probability pt can be adjusted
dynamically, leading to more flexibilities. Third, one can choose N2 to be much smaller than N1 to guarantee
the same iteration complexity as the vanilla SGD. Thus, the overall sample complexity can be significantly
reduced. However, the application of PAGE to our setting needs significant modifications and extensions,
which we shall demonstrate below. To the best of our knowledge, the application of PAGE for solving the
general regularized reward optimization problem in the non-oblivious setting considered in this paper is new.

For notational simplicity, for the rest of this section, we denote

gw(x, θ, θ′) = πθ(x)
πθ′(x)g(x, θ),

for θ, θ′ ∈ Rn, x ∈ Rd, where πθ(x)
πθ′ (x) denotes the importance weight between πθ and πθ′ . Note also that

Ex∼πθ′

[
πθ(x)
πθ′(x)

]
= 1.

The description of the proposed PAGE variance-reduced stochastic proximal gradient method is given in
Algorithm 2.

It is clear that the only difference between Algorithm 1 and Algorithm 2 is the choice of the gradient
estimator. At each iteration of the latter algorithm, we have two choices for the gradient estimator, where,
with probability p, one chooses the same estimator as in Algorithm 1 with a sample size N1, and with
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Algorithm 2 The variance-reduced stochastic proximal gradient method with PAGE
1: Input: initial point θ0, sample sizes N1 and N2, a probability p ∈ (0, 1], and the learning rate η > 0.
2: Compute

g0 := 1
N1

N1∑
j=1

g(x0,j , θ0),

where {x0,j}j are sampled independently according to πθ0 .
3: for t = 0, . . . , T − 1 do
4: Update

θt+1 = ProxηG
(
θt + ηgt

)
.

5: Compute

gt+1 =


1

N1

N1∑
j=1

g(xt+1,j , θt+1), with probability p,

1
N2

N2∑
j=1

g(xt+1,j , θt+1) − 1
N2

N2∑
j=1

gw(xt+1,j , θt, θt+1) + gt, with probability 1 − p,

where {xt+1,j}j are sampled independently according to πθt+1 .
6: end for
7: Output: θ̂T selected randomly from the generated sequence {θt}T

t=1.

probability 1−p, one constructs the estimator in a clever way which combines the information of the current
iterate and the previous one. Since the data set {xt+1,1, . . . , xt+1,N2} is sampled according to the current
probability distribution πθt+1 , we need to rely on the importance weight between θt and θt+1 and construct

the gradient estimator 1
N2

N2∑
j=1

gw(xt+1, θt, θt+1), which is an unbiased estimator for ∇θJ (θt), so that gt+1

becomes an unbiased estimator of ∇θJ (θt+1). Indeed, one can easily verify that for any θ, θ′ ∈ Rn, it holds
that

Ex∼πθ′ [gw(x, θ, θ′)] = ∇θJ (θ), (4)
i.e., g(x, θ, θ′) is an unbiased estimator for ∇θJ (θ) provided that x ∼ πθ′ .

Next, we shall analyze the convergence properties of Algorithm 2. Our analysis relies on the following
assumption on the importance weight, which essentially controls the change of the distributions.
Assumption 5.1. Let θ, θ′ ∈ Rn, the importance weight between πθ and πθ′ is well-defined and there exists
a constant Cw > 0 such that

Ex∼πθ′

[(
πθ(x)
πθ′(x) − 1

)2
]

≤ C2
w.

Clearly, the significance of the constant Cw (if exists) may depend sensitively on θ and θ′. To see this, let
us assume that for any θ ∈ Rn, πθ = θ is a discrete distribution over a set of finite points {xk}n

k=1 for which
πθ(xk) = θk > 0 for all k = 1, . . . , n. Now, suppose that θ = θ′ + ∆θ with |∆θk| ≤ 1. Then, a simple
calculation shows that

Ex∼πθ′

[(
πθ(x)
πθ′(x) − 1

)2
]

=
n∑

k=1

(
θk

θ′
k

− 1
)2

θ′
k =

n∑
k=1

θk∆θk

θ′
k

≤
n∑

k=1

θk

θ′
k

.

However, it is possible that there exists a certain θ′
k = 0 or tiny. In this case, Cw can be huge or even

infinity. Fortunately, the regularization term G(θ) can help to avoid such undesired situations via imposing
the lower-bounded constraints θk ≥ δ > 0 for all k. In this case, we see that

∑n
k=1

θk

θ′
k

≤
∑n

k=1
θk

δ = 1
δ .
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Remark 5.2. Note that Assumption 5.1 is also employed in many existing works (Papini et al., 2018; Xu
et al., 2019; Pham et al., 2020; Yuan et al., 2020; Gargiani et al., 2022). However, this assumption could
be too strong, and it is not checkable in general. Addressing the relaxation of this assumption through the
development of a more sophisticated algorithmic framework is beyond the scope of this paper. Here, we would
like to mention some recent progress on relaxing this stringent condition for MDPs. By constructing addi-
tional stochastic estimators for the Hessian matrix of the objective function, (Shen et al., 2019) proposed
a Hessian-aided policy-gradient-type method that improves the sample complexity from O(ϵ−4) to O(ϵ−3)
without assuming Assumption 5.1. Later, by explicitly controlling changes in the parameter θ, (Zhang et al.,
2021a) developed a truncated stochastic incremental variance-reduced policy gradient method to prevent the
variance of the importance weights from becoming excessively large leading to the O(ϵ−3) sample complex-
ity. By utilizing general Bregman divergences, (Yuan et al., 2022) proposed a double-looped variance-reduced
mirror policy optimization approach and established an O(ϵ−3) sample complexity, without requiring Hessian
information or Assumption 5.1. Recently, following the research theme as (Shen et al., 2019), (Salehka-
leybar et al., 2022) also incorporated second-order information into the stochastic gradient estimator. By
using momentum, the variance-reduced algorithm proposed in (Salehkaleybar et al., 2022) has some ap-
pealing features, including the small batch-size and parameter-free implementation. Recently, by imposing
additional conditions, including the Lipschitz continuity of the Hessian of the score function ∇θ log πθ and
the Fisher-non-degeneracy condition of the policy, (Fatkhullin et al., 2023) derived improved (global) con-
vergence guarantees for solving MDPs. We think that the above ideas can also be explored for solving the
general model (1).

The bounded variance of the importance weight implies that the (expected) distance between g(x, θ′) and
gw(x, θ, θ′) is controlled by the distance between θ and θ′, for any given θ, θ′ ∈ Rd. In particular, we have
the following lemma, whose proof is provided in Appendix A.5.
Lemma 5.3. Under Assumption 3.1, Assumption 3.2 and Assumption 5.1, then it holds that

Ex∼πθ′

[
∥g(x, θ′) − gw(x, θ, θ′)∥2

]
≤ C ∥θ − θ′∥2

,

where C > 0 is a constant defined as

C := 6U2C2
h + 6C2

g C̃2
g + 6C̃2

h +
(

4U2C2
g + 4C̃2

g

)
(2C2

g + Ch)(C2
w + 1).

Under the considered assumptions, we are able to provide an estimate for the term
T −1∑
t=0

ET

[∥∥gt − ∇θJ (θt)
∥∥2
]
, which plays an essential role in deriving an improved sample complexity

of Algorithm 2. The results are summarized in the following Lemma 5.4; see Appendix A.6 for a proof
which shares the same spirit as (Li et al., 2021b, Lemma 3 & 4).
Lemma 5.4. Suppose that Assumption 3.1, Assumption 3.2, and Assumption 5.1 hold. Let {gt} and {θt}
be the sequences generated by Algorithm 2, then it holds that(

1 − (1 − p)Cη

pN2L(1 − 2ηL)

) T −1∑
t=0

ET

[∥∥gt − ∇θJ (θt)
∥∥2
]

≤ pσ2T + σ2

pN1
+ 2η(1 − p)C∆

pN2(1 − 2ηL) .

We are now ready to present the main result on the convergence property of the Algorithm 2 by showing
how to select the sample sizes N1 and N2, probability p, and the learning rate η. Intuitively, N1 is typically a
large number and one does not want to perform samplings with N1 samples frequently, thus the probability
p and the sample size N2 should both be small. Given N1, N2 and p, we can then determine the value of η
such that η < 1

2L . Consequently, the key estimate in Theorem 4.3 can be applied directly. Our results are
summarized in the following theorem. Reader is referred to Appendix A.7 for the proof of this result.
Theorem 5.5. Suppose that Assumption 3.1, Assumption 3.2 and Assumption 5.1 hold. For a given ϵ ∈
(0, 1), we set p := N2

N1+N2
with N1 := O(ϵ−2) and N2 :=

√
N1 = O(ϵ−1). Choose a learning rate η satisfying

11
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η ∈
(
0, L/(2C + 2L2)

]
. Then, running Algorithm 2 for T := O(ϵ−2) iterations outputs a point θ̂T satisfying

ET

[
dist

(
0, −∇θJ (θ̂T ) + ∂G(θ̂T )

)2
]

≤ ϵ2.

Moreover, the total expected sample complexity is O(ϵ−3).

By using the stochastic variance-reduce gradient estimator with PAGE and the importance sampling tech-
nique, we have improved the total sample complexity from O(ϵ−4) to O(ϵ−3), under the considered conditions.
This result matches with the current competitive results established in (Xu et al., 2019; Yuan et al., 2020;
Pham et al., 2020; Gargiani et al., 2022) for solving MDPs and is applicable to the general model (1). Finally,
as mentioned in Remark 4.7, by assuming or verifying stronger conditions, such as the gradient domination
and its extensions, it is also possible to derive some global convergence results. Again, such a possibility is
left to a future research direction.

6 Conclusions

We have studied the stochastic (variance-reduced) proximal gradient method addressing a general regularized
expected reward optimization problem which covers many existing important problem in reinforcement
learning. We have established the O(ϵ−4) sample complexity of the classical stochastic proximal gradient
method and the O(ϵ−3) sample complexity of the stochastic variance-reduced proximal gradient method with
an importance sampling based probabilistic gradient estimator. Our results match the sample complexity of
their most competitive counterparts under similar settings for Markov decision processes.

Meanwhile, we have also suspected some limitations in the current paper. First, due to the nonconcavity of
the objective function, we found it challenging to derive global convergence properties of the stochastic prox-
imal gradient method and its variants without imposing additional conditions. On the other hand, analyzing
the sample complexity for achieving convergence to second-order stationary points—thereby avoiding saddle
points—may be more realistic and feasible (Arjevani et al., 2020). Second, the bounded variance condition
for the importance weight turns out to be quite strong and can not be verified in general. How to relax this
condition for our general model deserves further investigation. Last but not least, since we focus more on
the theoretical analysis in this paper and due to the space constraint, we did not conduct any numerical
simulation to examine the practical efficiency of the proposed methods. We shall try to delve into these
challenges and get better understandings of the proposed problem and algorithms in a future research.

Finally, this paper has demonstrated the possibility of pairing the stochastic proximal gradient method with
efficient variance reduction techniques (Li et al., 2021b) for solving the reward optimization problem (1).
Beyond variance-reduced methods, there are other possibilities that allow one deriving more sophisticated
algorithms. For instance, one can also pair the stochastic proximal gradient method with the ideas of the
actor-critic method (Konda & Tsitsiklis, 1999), the natural policy gradient method (Kakade, 2001), policy
mirror descent methods (Tomar et al., 2020; Lan, 2023), trust-region methods (Schulman et al., 2015; Shani
et al., 2020), and the variational policy gradient methods (Zhang et al., 2020a). We think that these possible
generalizations can lead to more exciting results and make further contributions to the literature.
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João Gama, Indrė Žliobaitė, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid Bouchachia. A survey on
concept drift adaptation. ACM computing surveys (CSUR), 46(4):1–37, 2014.

Matilde Gargiani, Andrea Zanelli, Andrea Martinelli, Tyler Summers, and John Lygeros. Page-pg: A
simple and loopless variance-reduced policy gradient method with probabilistic gradient estimation. In
International Conference on Machine Learning, pp. 7223–7240. PMLR, 2022.

Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex stochastic
programming. SIAM journal on optimization, 23(4):2341–2368, 2013.

Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and Jerome H Friedman. The elements of statistical
learning: data mining, inference, and prediction, volume 2. Springer, 2009.

13



Published in Transactions on Machine Learning Research (8/2024)

Feihu Huang, Shangqian Gao, and Heng Huang. Bregman gradient policy optimization. arXiv preprint
arXiv:2106.12112, 2021.

Meena Jagadeesan, Tijana Zrnic, and Celestine Mendler-Dünner. Regret minimization with performative
feedback. In International Conference on Machine Learning, pp. 9760–9785. PMLR, 2022.

Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance reduction.
Advances in neural information processing systems, 26, 2013.

Sham M Kakade. A natural policy gradient. Advances in neural information processing systems, 14, 2001.

Vijay Konda and John Tsitsiklis. Actor-critic algorithms. Advances in neural information processing systems,
12, 1999.

Navdeep Kumar, Kaixin Wang, Kfir Levy, and Shie Mannor. Policy gradient for reinforcement learning with
general utilities. arXiv preprint arXiv:2210.00991, 2022.

Guanghui Lan. First-order and stochastic optimization methods for machine learning, volume 1. Springer,
2020.

Guanghui Lan. Policy mirror descent for reinforcement learning: Linear convergence, new sampling com-
plexity, and generalized problem classes. Mathematical programming, 198(1):1059–1106, 2023.

Gen Li, Yuting Wei, Yuejie Chi, Yuantao Gu, and Yuxin Chen. Softmax policy gradient methods can take
exponential time to converge. In Conference on Learning Theory, pp. 3107–3110. PMLR, 2021a.

Zhize Li, Hongyan Bao, Xiangliang Zhang, and Peter Richtárik. Page: A simple and optimal probabilistic
gradient estimator for nonconvex optimization. In International conference on machine learning, pp.
6286–6295. PMLR, 2021b.

Senwei Liang and Haizhao Yang. Finite expression method for solving high-dimensional partial differential
equations. arXiv preprint arXiv:2206.10121, 2022.

Boyi Liu, Qi Cai, Zhuoran Yang, and Zhaoran Wang. Neural proximal/trust region policy optimization
attains globally optimal policy. arXiv preprint arXiv:1906.10306, 2019.

Yanli Liu, Kaiqing Zhang, Tamer Basar, and Wotao Yin. An improved analysis of (variance-reduced) policy
gradient and natural policy gradient methods. Advances in Neural Information Processing Systems, 33:
7624–7636, 2020.

Nina Mazyavkina, Sergey Sviridov, Sergei Ivanov, and Evgeny Burnaev. Reinforcement learning for combi-
natorial optimization: A survey. Computers & Operations Research, 134:105400, 2021.

Jincheng Mei, Chenjun Xiao, Csaba Szepesvari, and Dale Schuurmans. On the global convergence rates
of softmax policy gradient methods. In International Conference on Machine Learning, pp. 6820–6829.
PMLR, 2020.

Celestine Mendler-Dünner, Juan Perdomo, Tijana Zrnic, and Moritz Hardt. Stochastic optimization for
performative prediction. Advances in Neural Information Processing Systems, 33:4929–4939, 2020.

Smitha Milli, John Miller, Anca D Dragan, and Moritz Hardt. The social cost of strategic classification. In
Proceedings of the Conference on Fairness, Accountability, and Transparency, pp. 230–239, 2019.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, and
Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

Lam M Nguyen, Jie Liu, Katya Scheinberg, and Martin Takáč. Sarah: A novel method for machine learning
problems using stochastic recursive gradient. In International conference on machine learning, pp. 2613–
2621. PMLR, 2017.

14



Published in Transactions on Machine Learning Research (8/2024)

Matteo Papini, Damiano Binaghi, Giuseppe Canonaco, Matteo Pirotta, and Marcello Restelli. Stochastic
variance-reduced policy gradient. In International conference on machine learning, pp. 4026–4035. PMLR,
2018.

Edwin Pednault, Naoki Abe, and Bianca Zadrozny. Sequential cost-sensitive decision making with rein-
forcement learning. In Proceedings of the eighth ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 259–268, 2002.

Juan Perdomo, Tijana Zrnic, Celestine Mendler-Dünner, and Moritz Hardt. Performative prediction. In
International Conference on Machine Learning, pp. 7599–7609. PMLR, 2020.

Nhan Pham, Lam Nguyen, Dzung Phan, Phuong Ha Nguyen, Marten Dijk, and Quoc Tran-Dinh. A hybrid
stochastic policy gradient algorithm for reinforcement learning. In International Conference on Artificial
Intelligence and Statistics, pp. 374–385. PMLR, 2020.

Matteo Pirotta, Marcello Restelli, and Luca Bascetta. Policy gradient in lipschitz markov decision processes.
Machine Learning, 100:255–283, 2015.

Boris T Polyak. Gradient methods for the minimisation of functionals. USSR Computational Mathematics
and Mathematical Physics, 3(4):864–878, 1963.

Herbert Robbins. Some aspects of the sequential design of experiments. 1952.

R Tyrrell Rockafellar. Convex analysis, volume 11. Princeton university press, 1997.

Saber Salehkaleybar, Sadegh Khorasani, Negar Kiyavash, Niao He, and Patrick Thiran. Momentum-based
policy gradient with second-order information. arXiv preprint arXiv:2205.08253, 2022.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region policy
optimization. In International conference on machine learning, pp. 1889–1897. PMLR, 2015.

Lior Shani, Yonathan Efroni, and Shie Mannor. Adaptive trust region policy optimization: Global con-
vergence and faster rates for regularized mdps. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pp. 5668–5675, 2020.

Alexander Shapiro, Darinka Dentcheva, and Andrzej Ruszczynski. Lectures on stochastic programming:
modeling and theory. SIAM, 2021.

Zebang Shen, Alejandro Ribeiro, Hamed Hassani, Hui Qian, and Chao Mi. Hessian aided policy gradient.
In International conference on machine learning, pp. 5729–5738. PMLR, 2019.

Zezheng Song, Maria K Cameron, and Haizhao Yang. A finite expression method for solving high-dimensional
committor problems. arXiv preprint arXiv:2306.12268, 2023.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient methods for
reinforcement learning with function approximation. Advances in neural information processing systems,
12, 1999.

Manan Tomar, Lior Shani, Yonathan Efroni, and Mohammad Ghavamzadeh. Mirror descent policy opti-
mization. arXiv preprint arXiv:2005.09814, 2020.

Stratis Tsirtsis, Behzad Tabibian, Moein Khajehnejad, Adish Singla, Bernhard Schölkopf, and Manuel
Gomez-Rodriguez. Optimal decision making under strategic behavior. Management Science, 2024.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning.
Machine learning, 8:229–256, 1992.

Lin Xiao. On the convergence rates of policy gradient methods. The Journal of Machine Learning Research,
23(1):12887–12922, 2022.

15



Published in Transactions on Machine Learning Research (8/2024)

Huaqing Xiong, Tengyu Xu, Yingbin Liang, and Wei Zhang. Non-asymptotic convergence of adam-type
reinforcement learning algorithms under markovian sampling. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 35, pp. 10460–10468, 2021.

Pan Xu, Felicia Gao, and Quanquan Gu. Sample efficient policy gradient methods with recursive variance
reduction. arXiv preprint arXiv:1909.08610, 2019.

Pan Xu, Felicia Gao, and Quanquan Gu. An improved convergence analysis of stochastic variance-reduced
policy gradient. In Uncertainty in Artificial Intelligence, pp. 541–551. PMLR, 2020.

Long Yang, Yu Zhang, Gang Zheng, Qian Zheng, Pengfei Li, Jianhang Huang, and Gang Pan. Policy opti-
mization with stochastic mirror descent. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 36, pp. 8823–8831, 2022.

Liuyi Yao, Zhixuan Chu, Sheng Li, Yaliang Li, Jing Gao, and Aidong Zhang. A survey on causal inference.
ACM Transactions on Knowledge Discovery from Data (TKDD), 15(5):1–46, 2021.

Huizhuo Yuan, Xiangru Lian, Ji Liu, and Yuren Zhou. Stochastic recursive momentum for policy gradient
methods. arXiv preprint arXiv:2003.04302, 2020.

Rui Yuan, Robert M Gower, and Alessandro Lazaric. A general sample complexity analysis of vanilla policy
gradient. In International Conference on Artificial Intelligence and Statistics, pp. 3332–3380. PMLR, 2022.

Wenhao Zhan, Shicong Cen, Baihe Huang, Yuxin Chen, Jason D Lee, and Yuejie Chi. Policy mirror descent
for regularized reinforcement learning: A generalized framework with linear convergence. SIAM Journal
on Optimization, 33(2):1061–1091, 2023.

Junyu Zhang, Alec Koppel, Amrit Singh Bedi, Csaba Szepesvari, and Mengdi Wang. Variational policy gra-
dient method for reinforcement learning with general utilities. Advances in Neural Information Processing
Systems, 33:4572–4583, 2020a.

Junyu Zhang, Chengzhuo Ni, Csaba Szepesvari, Mengdi Wang, et al. On the convergence and sample
efficiency of variance-reduced policy gradient method. Advances in Neural Information Processing Systems,
34:2228–2240, 2021a.

Junzi Zhang, Jongho Kim, Brendan O’Donoghue, and Stephen Boyd. Sample efficient reinforcement learning
with reinforce. In Proceedings of the AAAI conference on artificial intelligence, volume 35, pp. 10887–
10895, 2021b.

Kaiqing Zhang, Alec Koppel, Hao Zhu, and Tamer Basar. Global convergence of policy gradient methods to
(almost) locally optimal policies. SIAM Journal on Control and Optimization, 58(6):3586–3612, 2020b.

Tong Zhang. Solving large scale linear prediction problems using stochastic gradient descent algorithms. In
Proceedings of the twenty-first international conference on Machine learning, pp. 116, 2004.

Wei Zhang and Thomas G Dietterich. A reinforcement learning approach to job-shop scheduling. In IJCAI,
volume 95, pp. 1114–1120. Citeseer, 1995.

A Proofs

A.1 Proof of Lemma 4.1

Proof of Lemma 4.1. One could establish the L-smoothness of J (·) via bounding the spectral norm of the
Hessian ∇2

θJ (·). To this end, we first calculate the Hessian of J as follows:

∇2
θJ (θ) = ∇θEx∼πθ

[Rθ(x)∇θ log πθ(x) + ∇θRθ(x)]

= ∇θ

∫
(Rθ(x)∇θ log πθ(x)πθ(x) + ∇θRθ(x)πθ(x)) dx

16
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=
∫

Rθ(x)πθ(x)
(
∇2

θ log πθ(x) + ∇θ log πθ(x)∇θ log πθ(x)⊤) dx

+
∫

∇2
θRθ(x)πθ(x) + 2∇θRθ(x)∇θπθ(x)⊤dx

= Ex∼πθ

[
Rθ(x)∇2

θ log πθ(x)
]

+ Ex∼πθ

[
Rθ(x)∇θ log πθ(x)∇θ log πθ(x)⊤]

+ Ex∼πθ

[
∇2

θRθ(x)
]

+ 2Ex∼πθ

[
∇θRθ(x)∇θ log πθ(x)⊤] .

Then, by the triangular inequality, it holds that∥∥∇2
θJ (θ)

∥∥
2 ≤ sup

x∈Rd, θ∈Rn

∥∥Rθ(x)∇2
θ log πθ(x)

∥∥
2 + sup

x∈Rd, θ∈Rn

∥∥Rθ(x)∇θ log πθ(x)∇θ log πθ(x)⊤∥∥
2

+ sup
x∈Rd, θ∈Rn

∥∥∇2
θRθ(x)

∥∥
2 + 2 sup

x∈Rd, θ∈Rn

∥∥∇θRθ(x)∇θ log πθ(x)⊤∥∥
2

≤ U(C2
g + Ch) + C̃h + 2CgC̃g.

Thus, J is L-smooth with L := U(C2
g + Ch) + C̃h + 2CgC̃g, and the proof is completed.

A.2 Proof of Theorem 4.3

Proof of Theorem 4.3. From Lemma 4.1, we see that

J (θt+1) ≥ J (θt) +
〈
∇θJ (θt), θt+1 − θt

〉
− L

2
∥∥θt+1 − θt

∥∥2
. (5)

By the updating rule of θt+1, we see that

−
〈
gt, θt+1 − θt

〉
+ 1

2η

∥∥θt+1 − θt
∥∥2 + G(θt+1) ≤ G(θt), (6)

gt − 1
η

(
θt+1 − θt

)
∈ ∂G(θt+1). (7)

Combining (5) and (6), we see that

J (θt+1) +
〈
gt, θt+1 − θt

〉
− 1

2η

∥∥θt+1 − θt
∥∥2 − G(θt+1)

≥ J (θt) +
〈
∇θJ (θt), θt+1 − θt

〉
− L

2
∥∥θt+1 − θt

∥∥2 − G(θt).

Rearranging terms, we can rewrite the above inequality as

1 − ηL

2η

∥∥θt+1 − θt
∥∥2 ≤ F(θt+1) − F(θt) +

〈
gt − ∇θJ (θt), θt+1 − θt

〉
. (8)

By the Cauchy-Schwarz inequality, we see that〈
gt − ∇θJ (θt), θt+1 − θt

〉
≤ 1

2L

∥∥gt − ∇θJ (θt)
∥∥2 + L

2
∥∥θt+1 − θt

∥∥2
,

which together with (8) implies that

1 − 2ηL

2η

∥∥θt+1 − θt
∥∥2 ≤ F(θt+1) − F(θt) + 1

2L

∥∥gt − ∇θJ (θt)
∥∥2

.

Summing the above inequality across t = 0, . . . , T − 1, we get

1 − 2ηL

2η

T −1∑
t=0

∥∥θt+1 − θt
∥∥2 ≤ F(θT ) − F(θ0) + 1

2L

T −1∑
t=0

∥∥gt − ∇θJ (θt)
∥∥2
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≤ ∆ + 1
2L

T −1∑
t=0

∥∥gt − ∇θJ (θt)
∥∥2

. (9)

Here, we recall that ∆ := F∗ − F(θ0) > 0.

On the other hand, (8) also implies that

2
〈

∇θJ (θt+1) − gt,
1
η

(
θt+1 − θt

)〉
+ 1 − ηL

η2

∥∥θt+1 − θt
∥∥2

≤ 2
η

(
F(θt+1) − F(θt)

)
+ 2

η

〈
∇θJ (θt+1) − ∇θJ (θt), θt+1 − θt

〉
. (10)

Notice that

2
〈

∇θJ (θt+1) − gt,
1
η

(
θt+1 − θt

)〉
=
∥∥∥∥∇θJ (θt+1) − gt + 1

η

(
θt+1 − θt

)∥∥∥∥2
−
∥∥∇θJ (θt+1) − gt

∥∥2 − 1
η2

∥∥θt+1 − θt
∥∥2

.

Then by substituting the above equality into (10) and rearranging terms, we see that∥∥∥∥∇θJ (θt+1) − gt + 1
η

(
θt+1 − θt

)∥∥∥∥2

≤
∥∥∇θJ (θt+1) − gt

∥∥2 + 1
η2

∥∥θt+1 − θt
∥∥2 − 1 − ηL

η2

∥∥θt+1 − θt
∥∥2

+ 2
η

(
F(θt+1) − F(θt)

)
+ 2

η

〈
∇θJ (θt+1) − ∇θJ (θt), θt+1 − θt

〉
≤ 2

∥∥∇θJ (θt) − gt
∥∥2 + 2

∥∥∇θJ (θt+1) − ∇θJ (θt)
∥∥2 + L

η

∥∥θt+1 − θt
∥∥2

+ 2
η

(
F(θt+1) − F(θt)

)
+ 2

η

∥∥∇θJ (θt+1) − ∇θJ (θt)
∥∥∥∥θt+1 − θt

∥∥
≤ 2

∥∥∇θJ (θt) − gt
∥∥2 +

(
2L2 + 3L

η

)∥∥θt+1 − θt
∥∥2 + 2

η

(
F(θt+1) − F(θt)

)
,

where the second inequality is due to the Cauchy-Schwarz inequality and fact that∥∥∇θJ (θt+1) − gt
∥∥2 ≤ 2

∥∥∇θJ (θt) − gt
∥∥2 + 2

∥∥∇θJ (θt+1) − ∇θJ (θt)
∥∥2

,

and the third inequality is implied by Lemma 4.1.

Summing the above inequality across t = 0, 1 . . . , T − 1, we get
T −1∑
t=0

∥∥∥∥∇θJ (θt+1) − gt + 1
η

(
θt+1 − θt

)∥∥∥∥2

≤ 2
T −1∑
t=0

∥∥∇θJ (θt) − gt
∥∥2 +

(
2L2 + 3L

η

) T −1∑
t=0

∥∥θt+1 − θt
∥∥2 + 2

η

(
F(θT ) − F(θ0)

)
≤ 2

T −1∑
t=0

∥∥∇θJ (θt) − gt
∥∥2 + 2

η2

T −1∑
t=0

∥∥θt+1 − θt
∥∥2 + 2∆

η
, (11)

where the last inequality is obtained from the fact that L < 1
2η as a consequence of the choice of the learning

rate.

Consequently, we have that

ET

[
dist

(
0, −∇θJ (θ̂T ) + ∂G(θ̂T )

)2
]

18



Published in Transactions on Machine Learning Research (8/2024)

= 1
T

T −1∑
t=0

ET

[
dist

(
0, −∇θJ (θt+1) + ∂G(θt+1)

)2
]

≤ 1
T

T −1∑
t=0

ET

[∥∥∥∥∇θJ (θt+1) − gt + 1
η

(
θt+1 − θt

)∥∥∥∥2
]

≤ 2
T

T −1∑
t=0

ET

[∥∥∇θJ (θt) − gt
∥∥2
]

+ 2
η2T

T −1∑
t=0

ET

[∥∥θt+1 − θt
∥∥2
]

+ 2∆
ηT

≤ 4
ηT (1 − 2ηL)

(
∆ + 1

2L

T −1∑
t=0

ET

[∥∥gt − ∇θJ (θt)
∥∥2
])

+ 2
T

T −1∑
t=0

ET

[∥∥∇θJ (θt) − gt
∥∥2
]

+ 2∆
ηT

=
(

2 + 2
ηL(1 − 2ηL)

)
1
T

T −1∑
t=0

ET

[∥∥∇θJ (θt) − gt
∥∥2
]

+ ∆
T

(
2
η

+ 4
η(1 − 2ηL)

)
,

where the first inequality is because of (7), the second inequality is due to (11) and the third inequality is
derived from (9). Thus, the proof is completed.

A.3 Proof of Lemma 4.4

Proof of Lemma 4.4. We first estimate Ex∼πθ

[
∥Rθ(x)∇θ log πθ(x) + ∇θRθ(x)∥2

]
as follows

Ex∼πθ

[
∥Rθ(x)∇θ log πθ(x) + ∇θRθ(x)∥2

]
≤ 2Ex∼πθ

[
∥Rθ(x)∇θ log πθ(x)∥2

]
+ 2Ex∼πθ

[
∥∇θRθ(x)∥2

]
≤ 2U2C2

g + 2C̃2
g .

Then, by the fact that E
[
(X − E[X])2

]
≤ E

[
X2] for all random variable X, we have

Ex∼πθ

[
∥Rθ(x)∇θ log πθ(x) + ∇θRθ(x) − ∇θJ (θ)∥2

]
≤ Ex∼πθ

[
∥Rθ(x)∇θ log πθ(x) + ∇θRθ(x)∥2

]
≤ 2U2C2

g + 2C̃2
g ,

which completes the proof.

A.4 Proof of Theorem 4.5

Proof of Theorem 4.5. From Theorem 4.3, in order to ensure that θ̂T is a ϵ-stationary point, we can require(
2 + 2

ηL(1 − 2ηL)

)
ET

[∥∥gt − ∇θJ (θt)
∥∥2
]

≤ 1
2ϵ2, ∀ t = 0, . . . , T − 1, (12)

∆
T

(
2
η

+ 4
η(1 − 2ηL)

)
≤ 1

2ϵ2. (13)

It is easy to verify that gt is an unbiased estimator of ∇θJ (θt). Then, Lemma 4.4 implies that

ET

[∥∥gt − ∇θJ (θt)
∥∥2
]

≤ σ2

N
.

As a consequence, if one chooses N =
⌈

σ2

ϵ2

(
4 + 4

ηL(1−2ηL)

)⌉
, then (12) holds.

On the other hand, (13) holds if one sets T =
⌈

∆
ϵ2

(
4
η + 8

η(1−2ηL)

)⌉
. Moreover, we see that the sample

complexity can be computed as TN = O(ϵ−4). Therefore, the proof is completed.
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A.5 Proof of Lemma 5.3

Proof of Lemma 5.3. First, recall that
Ex∼πθ′

[
πθ(x)
πθ′(x)

]
= 1.

Then, by the definitions of g and gw, we can verify that

Ex∼πθ′

[
∥g(x, θ′) − gw(x, θ, θ′)∥2

]
≤ 2Ex∼πθ′

[
∥g(x, θ′) − g(x, θ)∥2

]
+ 2Ex∼πθ′

[
∥g(x, θ) − gw(x, θ, θ′)∥2

]
= 2

∫
∥Rθ′(x)∇θ log πθ′(x) − Rθ(x)∇θ log πθ(x) + ∇θRθ′(x) − ∇θRθ(x)∥2

πθ′(x)dx

+ 2
∫ ∥∥∥∥Rθ(x)

(
∇θ log πθ(x) − πθ(x)

πθ′(x)∇θ log πθ(x)
)

+ ∇θRθ(x) − πθ(x)
πθ′(x)∇θRθ(x)

∥∥∥∥2
πθ′(x)dx

≤ 6
∫

∥Rθ′(x) (∇θ log πθ′(x) − ∇θ log πθ(x))∥2
πθ′(x)dx + 6

∫
∥(Rθ′(x) − Rθ(x)) ∇θ log πθ(x)∥2

πθ′(x)dx

+ 6
∫

∥∇θRθ′(x) − ∇θRθ(x)∥2
πθ′(x)dx + 4

∫ ∥∥∥∥Rθ(x)
(

1 − πθ(x)
πθ′(x)

)
∇θ log πθ(x)

∥∥∥∥2
πθ′(x)dx

+ 4
∫ ∥∥∥∥∇θRθ(x)

(
1 − πθ(x)

πθ′(x)

)∥∥∥∥2
πθ′(x)dx

≤
(

6U2C2
h + 6C2

g C̃2
g + 6C̃2

h

)
∥θ − θ′∥2 +

(
4U2C2

g + 4C̃2
g

)
Ex∼πθ′

[(
πθ(x)
πθ′(x) − 1

)2
]

=
(

6U2C2
h + 6C2

g C̃2
g + 6C̃2

h

)
∥θ − θ′∥2 +

(
4U2C2

g + 4C̃2
g

)(∫ (πθ(x))2

πθ′(x) dx − 1
)

.

We next consider the function f(θ) :=
∫ (πθ(x))2

πθ′ (x) dx. Taking the derivative of f with respect to θ, we get

∇θf(θ) =
∫ 2πθ(x)∇θπθ(x)

πθ′(x) dx.

Moreover, since

∇2
θ log πθ(x) = 1

(πθ(x))2

(
πθ(x)∇2

θπθ(x) − ∇θπθ(x)∇θπθ(x)⊤)
= 1

πθ(x)∇2
θπθ(x) − ∇θ log πθ(x)∇θ log πθ(x)⊤,

we see that the Hessian of f with respect to θ can be computed as

∇2
θf(θ) =

∫ 2
πθ′(x)

(
∇θπθ(x)∇θπθ(x)⊤ + πθ(x)∇2

θπθ(x)
)

dx

=
∫ 2(πθ(x))2

πθ′(x)
(
2∇θ log πθ(x)∇θ log πθ(x)⊤ + ∇2

θ log πθ(x)
)

dx.

Notice that f(θ′) = 1 and ∇θf(θ′) = 0. Therefore, by the Mean Value Theorem, we get

f(θ) = 1 + 1
2
〈
∇2

θf(θ̃)(θ − θ′), θ − θ′〉 ,

where θ̃ is a point between θ and θ′. Now, from the expression of the Hessian matrix, we see that for any
θ ∈ Rn, ∥∥∇2

θf(θ)
∥∥

2 ≤
∫ 2(πθ(x))2

πθ′(x)
∥∥2∇θ log πθ(x)∇θ log πθ(x)⊤ + ∇2

θ log πθ(x)
∥∥

2 dx
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≤ 2(2C2
g + Ch)

∫ (πθ(x))2

πθ′(x) dx

= 2(2C2
g + Ch)

(
1 + Ex∼πθ′

[(
πθ(x)
πθ′(x) − 1

)2
])

≤ 2(2C2
g + Ch)(C2

w + 1).

As a consequence, we have

Ex∼πθ′

[
∥g(x, θ′) − gw(x, θ, θ′)∥2

]
≤
(

6U2C2
h + 6C2

g C̃2
g + 6C̃2

h

)
∥θ − θ′∥2 +

(
4U2C2

g + 4C̃2
g

)(∫ (πθ(x))2

πθ′(x) dx − 1
)

≤
(

6U2C2
h + 6C2

g C̃2
g + 6C̃2

h +
(

4U2C2
g + 4C̃2

g

)
(2C2

g + Ch)(C2
w + 1)

)
∥θ − θ′∥2

,

which completes the proof.

A.6 Proof of Lemma 5.4

Proof of Lemma 5.4. By the definition of the stochastic gradient estimator given in Algorithm 2, we can see
that for t ≥ 0,

Et+1

[∥∥gt+1 − ∇θJ (θt+1)
∥∥2
]

= pEt+1


∥∥∥∥∥∥ 1

N1

N1∑
j=1

g(xt+1,j , θt+1) − ∇θJ (θt+1)

∥∥∥∥∥∥
2


+ (1 − p)Et+1


∥∥∥∥∥∥ 1

N2

N2∑
j=1

(
g(xt+1,j , θt+1) − gw(xt+1,j , θt, θt+1)

)
+ gt − ∇θJ (θt+1)

∥∥∥∥∥∥
2


= pEt+1


∥∥∥∥∥∥ 1

N1

N1∑
j=1

g(xt+1,j , θt+1) − ∇θJ (θt+1)

∥∥∥∥∥∥
2


+ (1 − p)Et+1


∥∥∥∥∥∥ 1

N2

N2∑
j=1

(
g(xt+1,j , θt+1) − gw(xt+1,j , θt, θt+1)

)
+ ∇θJ (θt) − ∇θJ (θt+1) + gt − ∇θJ (θt)

∥∥∥∥∥∥
2


≤ pEt+1


∥∥∥∥∥∥ 1

N1

N1∑
j=1

g(xt+1,j , θt+1) − ∇θJ (θt+1)

∥∥∥∥∥∥
2


+ (1 − p)Et+1


∥∥∥∥∥∥ 1

N2

N2∑
j=1

(
g(xt+1,j , θt+1) − gw(xt+1,j , θt, θt+1)

)
+ gt − ∇θJ (θt)

∥∥∥∥∥∥
2


≤ pσ2

N1
+ (1 − p)Et+1

[∥∥gt − ∇θJ (θt)
∥∥2
]

+ (1 − p) 1
N2

2

N2∑
j=1

Et+1

[∥∥(g(xt+1,j , θt+1) − gw(xt+1,j , θt, θt+1)
)∥∥2]

≤ pσ2

N1
+ (1 − p)Et+1

[∥∥gt − ∇θJ (θt)
∥∥2
]

+ (1 − p)C
N2

∥∥θt+1 − θt
∥∥2

,

where in the first inequality, we use the facts that E
[
(X − E[X])2

]
≤ E

[
X2] for all random variable X

and gt is unbiased estimator for ∇θJ (θt) for all t ≥ 0, in the second inequality, we rely on the fact that
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{xt+1,j} is independent, and the last inequality is due to Lemma 5.3. By summing the above relation across
t = 0, . . . , T − 2, we see that

T −1∑
t=1

ET

[∥∥gt − ∇θJ (θt)
∥∥2
]

≤ pσ2(T − 1)
N1

+ (1 − p)
T −2∑
t=0

Et+1

[∥∥gt − ∇θJ (θt)
∥∥2
]

+ (1 − p)C
N2

T −2∑
t=0

ET

[∥∥θt+1 − θt
∥∥2
]

,

which implies that

T −1∑
t=0

ET

[∥∥gt − ∇θJ (θt)
∥∥2
]

≤ pσ2T + σ2

pN1
+ (1 − p)C

pN2

T −1∑
t=0

ET

[∥∥θt+1 − θt
∥∥2
]

. (14)

Recall from (9) that

T −1∑
t=0

∥∥θt+1 − θt
∥∥2 ≤ 2η∆

1 − 2ηL
+ η

L(1 − 2ηL)

T −1∑
t=0

∥∥gt − ∇θJ (θt)
∥∥2

,

which together with (14) implies that(
1 − (1 − p)Cη

pN2L(1 − 2ηL)

) T −1∑
t=0

ET

[∥∥gt − ∇θJ (θt)
∥∥2
]

≤ pσ2T + σ2

pN1
+ 2η(1 − p)C∆

pN2(1 − 2ηL) .

Thus, the proof is completed.

A.7 Proof Theorem 5.5

Proof Theorem 5.5. Since p = N2
N1+N2

∈ (0, 1) and

η ≤ pN2L

2(1 − p)C + 2pN2L2 = N2
2 L

2N1C + 2N2
2 L2 ,

we can readily check that

η ∈
(

0,
1

2L

)
, 1 − (1 − p)Cη

N2L(1 − 2ηL) ≥ 1
2 . (15)

Then, we can see that

ET

[
dist

(
0, −∇θJ (θ̂T ) + ∂G(θ̂T )

)2
]

≤
(

2 + 2
ηL(1 − 2ηL)

)
1
T

T −1∑
t=0

ET

[∥∥gt − ∇θJ (θt)
∥∥2
]

+ 1
T

(
2∆
η

+ 4∆
η(1 − 2ηL)

)

≤ 1
T

(
2 + 2

ηL(1 − 2ηL)

)(
1 − (1 − p)Cη

pN2L(1 − 2ηL)

)−1(
pσ2T + σ2

pN1
+ 2η(1 − p)C∆

pN2(1 − 2ηL)

)
+ 1

T

(
2∆
η

+ 4∆
η(1 − 2ηL)

)
≤ 4

T

(
1 + 1

ηL(1 − 2ηL)

)(
Tσ2

N1
+ (N1 + N2)σ2

N1N2
+ 2ηN1C∆

N2
2 (1 − 2ηL)

)
+ 2∆

T

(
1
η

+ 2
η(1 − 2ηL)

)
where ∆ := F∗ − F(θ0) > 0 is a constant, the first inequality is due to Theorem 4.3, the second inequality
is derived from Lemma 5.4, and the third inequality is implied by (15).
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Then, in order to have ET

[
dist

(
0, −∇θJ (θ̂T ) + ∂G(θ̂T )

)2
]

≤ ϵ2 for a given tolerance ϵ > 0, we can simply

set N2 =
√

N1,

η ≤ N2
2 L

2N1C + 2N2
2 L2 = L

2C + 2L2 ,

and require that

4
(

1 + 1
ηL(1 − 2ηL)

)
σ2

N1
≤ ϵ2

3 ,

4
T

(
1 + 1

ηL(1 − 2ηL)

)
(N1 + N2)σ2

N1N2
≤ ϵ2

3 ,

2∆
T

[(
1 + 1

ηL(1 − 2ηL)

)
4ηN1C

N2
2 (1 − 2ηL) + 1

η
+ 2

η(1 − 2ηL)

]
≤ ϵ2

3 .

Therefore, it suffices to set N1 = O(ϵ−2), N2 =
√

N1 = O(ϵ−1) and T = O(ϵ−2). (We ignore deriving the
concrete expressions of T , N1 and N2, in terms of ϵ and other constants, but only give the big-O notation
here for simplicity.)

Finally, we can verify that the sample complexity can be bounded as

N1 + T (pN1 + (1 − p)N2) = N1 + T
2N1N2

N1 + N2
≤ N1 + 2TN2 = O(ϵ−3).

Therefore, the proof is completed.

23


	Introduction
	Related Work
	Preliminary
	The stochastic proximal gradient method
	Variance reduction via PAGE
	Conclusions
	Proofs
	Proof of Lemma 4.1
	Proof of Theorem 4.3
	Proof of Lemma 4.4
	Proof of Theorem 4.5
	Proof of Lemma 5.3
	Proof of Lemma 5.4
	Proof Theorem 5.5


