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ABSTRACT

Generative steganography is the process of hiding secret messages in generated
images instead of cover images. Existing studies on generative steganography use
GAN or Flow models to obtain high hiding message capacity and anti-detection
ability over cover images. However, they create relatively unrealistic stego images
because of the inherent limitations of generative models. We propose Diffusion-
Stego, a generative steganography approach based on diffusion models that out-
perform other generative models in image generation. Diffusion-Stego projects
secret messages into the latent noise of diffusion models and generates stego im-
ages with an iterative denoising process. Since the naive hiding of secret messages
into noise boosts visual degradation and decreases extracted message accuracy,
we introduce message projection, which hides messages into noise space while
addressing these issues. We suggest three options for message projection to ad-
just the trade-off between extracted message accuracy, anti-detection ability, and
image quality. Diffusion-Stego is a training-free approach, so we can apply it to
pre-trained diffusion models that generate high-quality images, or even large-scale
text-to-image models, such as Stable diffusion. Diffusion-Stego achieved a high
capacity of messages (3.0 bpp of binary messages with 98% accuracy, and 6.0 bpp
with 90% accuracy) as well as high quality (with a FID score of 2.77 for 1.0 bpp
on the FFHQ 64×64 dataset) that makes it challenging to distinguish from real
images in the PNG format.

1 INTRODUCTION

Image steganography is the process that aims at hiding secret messages in images so that the se-
cret messages are not detected or exposed by third-party players. Traditional image steganography
methods (Morkel et al., 2005; Johnson & Jajodia, 1998) conceal secret messages within a natural
cover image. The sender transmits the cover image containing the secret messages, termed a stego
image, to the receiver, who extracts the hidden messages from the stego image. On the contrary, the
third-party players attempt to discriminate the stego images by training steganalyzer models (Xu
et al., 2016; Ye et al., 2017; Fridrich & Kodovsky, 2012), which classify over the cover images and
stego images.

Generative steganography methods (Wu & Wang, 2014; Hu et al., 2018) have been proposed to
deceive steganalyzer models. These approaches apply deep generative models that synthesize stego
images from secret messages without using cover images. It makes them less vulnerable to ste-
ganalyzer models, as there are no cover images for the steganalyzer to train on. Recent generative
steganography studies (Wei et al., 2022a; Zhou et al., 2022; Wei et al., 2022b) using Generative Ad-
versarial Networks (GAN) (Goodfellow et al., 2020) or Flow (Kingma & Dhariwal, 2018) models as
a generator have been proposed. In contrast to their anti-detection ability and high hiding capacity,
they relatively lack image fidelity due to the limitations of the generative models they use.

Therefore, we explore utilizing diffusion-based generative models for steganography. Diffusion
models (Sohl-Dickstein et al., 2015; Ho et al., 2020) are recently popular generative models, which
generate high-quality images (Ramesh et al., 2022; Saharia et al., 2022; Rombach et al., 2022) with
an iterative sampling process. Recent studies (Karras et al., 2022; Xu et al., 2023) have utilized diffu-
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sion models and deterministic samplers (Song et al., 2021; 2020; Karras et al., 2022) for generating
high quality images.

In this paper, we propose Diffusion-Stego, a powerful generative steganography approach utilizing
diffusion models and deterministic sampler. As illustrated in Figure 1(a), Diffusion-Stego hides
secret messages in noise and generates stego images using the deterministic sampler without re-
training the diffusion models. Due to the invertible property of the deterministic sampler, Diffusion-
Stego can generate and extract messages using a single diffusion model. This allows the sender and
the receiver to share only a diffusion model and a hiding method.

However, we have identified that there are two challenges to utilizing a diffusion model in steganog-
raphy. First, diffusion models cannot generate images from noise replaced with binary messages,
which is the naive approach of hiding messages in the noise. Second, the accumulation of slight er-
rors during the reverse process of the deterministic sampler leads to a drop in the extracted message
accuracy. To address these challenges, we propose a novel technique called message projection. Mes-
sage projection modifies noise to the extent that it does not deviate from the distribution of random
noise while preserving the quality of stego images and ensuring high extracted message accuracy.
We offer three types of message projection, which can be adjusted based on the user preference.

Diffusion-Stego does not require fine-tuning pre-trained models or training additional models such
as extractors or decoders. By using well-learned pre-trained models, Diffusion-Stego generates high-
quality stego images, FID score (Heusel et al., 2017) of 2.77 on FFHQ 64×64 (Karras et al., 2019)
images while hiding 1.0 bits per pixel (bpp) messages. Additionally, using pre-trained diffusion
models trained on AFHQv2 64×64 (Choi et al., 2020), Diffusion-Stego achieves hiding 6.0 bpp
messages with high extracted message accuracy. Furthermore, we show that Diffusion-Stego can be
easily applied to text-to-image models (Ramesh et al., 2022; Saharia et al., 2022), such as Stable
diffusion (Rombach et al., 2022), by leveraging only secret messages and text prompts.

2 PRELIMINARIES

2.1 GENERATIVE STEGANOGRAPHY

In generative steganography, two players, the sender and the receiver, communicate secret messages
M through generated stego image XS . Unlike traditional steganography methods (Morkel et al.,
2005), the sender in generative steganography uses a generator G to generate XS from M without
cover image XC . The receiver extracts secret messages M′ from XS using an extractor E. The
process is defined as follows :

G(M) = XS , E(XS) = M′. (1)

In generative steganography, both image quality and extracted message accuracy are significant.
Image quality is an indicator of how stego images are photorealistic like real images. The stego
images should be visually and statistically similar to the real images to deceive the steganalyzer.
Additionally, the generator needs to produce stego images in such a way that the receiver can extract
the secret messages. In Diffusion-Stego, we utilize diffusion models as both a generator and an
extractor of generative steganography.

2.2 DIFFUSION MODELS

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) generate images through an iterative
denoising process from Gaussian noise. The sampling process can be viewed as solving the ODE
process, with time t going from T to 0, using deterministic samplers (Song et al., 2021). This process
is termed probability flow ODE (Song et al., 2020) and follows below equation:

dx = [f(x, t)− 1

2
g(t)2sθ(x, t)]dt, (2)

where f is drift coefficient, g is diffusion coefficient and sθ is score function trained as neural net-
work. The score function estimates ∇xlogpt(x), where pt(x) is the probability distribution of x(t).

Through Equation equation 2, diffusion models generate the image x(0) from Gaussian noise
x(T ) = σT z, where σT is constant of T and z is standard Gaussian noise, z ∼ N (0, I). We
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Figure 1: The overview of Diffusion-Stego. (a) Generative steganography process of Diffusion-
Stego. (b) The example of three message projection processes when messages are ‘1001’.

can establish a bijective function between z and image x(0) using ODE, namely, x(0) = fθ(z). The
function fθ is invertible, we can express another equation z = f−1

θ (x(0)).

3 METHOD

3.1 DIFFUSION-STEGO

Settings We propose Diffusion-Stego, a new generative steganography framework leveraging pre-
trained diffusion models. Diffusion-Stego can hide n bpp binary messages, M ∈ {0, 1}n×W×H in
images X ∈ Z3×W×H , where W and H denote the width and height of images.

In Diffusion-Stego, we consider two players, the sender and the receiver. The sender projects the
secret binary messages M into Gaussian noise and generates stego images XS from the projected
noise using a diffusion model. Then, the receiver extracts the hidden noise using the same diffusion
model and projects it onto the binary message. We note that the sender and the receiver should share
the same diffusion model and the projection process to use Diffusion-Stego. There are no restrictions
on the shared diffusion models, so two players can use any pre-trained diffusion models.

Wei et al. (2022b) demonstrated that saving images as float type using TIFF format resulted in higher
performance in extracted message accuracy than saving as integer type using PNG or JPEG formats.
However, in our research, we mainly use PNG format to save images because integer type formats
are more widely used than TIFF. We will present our result in Section 4, including the results of
using the TIFF format.

Procedure Generative steganography requires two models: G, which generates images from mes-
sages, and E, which extracts messages from images. Previous works have trained two separate mod-
els for G and E, similar to the fθ and f−1

θ described in Section 2.2. However, both models can be
performed by a single diffusion model. Thus, we can use diffusion models as generative steganogra-
phy, provided that message projection projects M into the same domain as Gaussian noise z. We use
deterministic samplers such as DDIM sampler (Song et al., 2021) or Heun’s sampler of EDM (Karras
et al., 2022) for the invertible function fθ.

In Diffusion-Stego, we edit Gaussian noise z with message noise zm, where zm is the noise hiding
M. The number of channels of zm to hide messages depends on the message quantity. When the
length of messages is n bpp, we use n channels of zm while retaining the noise in the unused
channels. Messages projection Pr is function that maps z and M into zm, zm = Pr(z,M). If Pr is
invertible, we can generate a stego image XS and extract hidden messages M′ by solving the ODE
process, xs(0) = fθ(Pr(z,M)) and M′ = Pr−1(f−1

θ (xs(0))) while considering XS as xs(0), as
shown in Figure 1(a).

3.2 CHALLENGING PROBLEMS OF DIFFUSION-STEGO

This section introduces two challenging problems when using diffusion models for generative
steganography.
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(a) (b) (c) (d)

Figure 3: Images generated by diffusion models. (a) Normally generated images. (b) Collapsed
images hiding 1.0 bpp, mean of zm differs from z. (c) Collapsed images hiding 1.0 bpp, variance
of zm differs from z. (d) Collapsed images hiding 1.0 bpp using se-S2IRT (Zhou et al., 2022)
algorithm (each value of zm is not independent). Additional samples of image collapse are provided
in Appendix A.

Image collapse In Diffusion-Stego, we utilize the invertible property of the deterministic sampler
of diffusion models. Diffusion models have learned to map Gaussian noise to images. If the projec-
tion Pr is defined in a simplistic manner, the distribution of zm can differ from that of Gaussian
noise. In this case, image quality may be harmed or even collapse, as shown in Figure 3. We refer to
this issue as image collapse.
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Figure 2: Density distribution of z −
z′, where the error between the in-
put noise z and the extracted noise
z′ = f−1

θ (fθ(z)). The orange line: the
error without discretization. The blue
line: the error with discretization into
integers.

To prevent the image collapse, we need to make the distri-
bution of zm similar to that of Gaussian noise. We identify
three conditions which zm need to satisfy: (1) The mean
of zm is close to 0: if the mean is higher than 0, the output
image becomes white, while if it is lower than 0, it becomes
dark. (2) The variance of zm is similar to 1: when the vari-
ance is too high or too low, the output image may not be
properly denoised or may be oversimplified. (3) The values
of zm are independent: when the values are not indepen-
dent, diffusion models do not work normally. Figure 3 illus-
trates the results when zm does not meet these conditions.

Extraction error As the deterministic sampler solves the
ODE process with a numerical integrator, errors accumulate
in both the forward and backward processes of the ODE.
This can lead to a decrease in the extracted message accu-
racy, which we term as extraction error. Additionally, in the
steganography process, the sender needs to save images in integer formats, such as PNG or JPEG, to
send to the receiver. Discretization during image saving amplifies the error. In Figure 2, we show the
accumulated error between input noise and extracted noise. Small errors occur during the numerical
integrator (the orange line), and the errors become larger due to discretization (the blue line).

3.3 MESSAGE PROJECTION Table 1: Mathematical expression
of message noise. M denotes mes-
sages, n represents random noise,
s is randomly sampled sign value
from the set {-1, 1}.

Options zm

MN abs(n) · (2M − 1)
MB 2M − 1
MC

√
2M · s

In this section, we describe message projection, the key ingre-
dient for solving both problems, the image collapse and the
extraction error. We suggest three options for message pro-
jection, which are designed depending on which problem to
focus on. Examples of our message projections are shown in
Figure 1(b), and the corresponding mathematical expressions
are exhibited in Table 1

Message to Noise (MN) We propose MN projection PrN
to solve the image collapse. The projection PrN maps the messages to z ∼ N (0, I), so that the
distribution of message noise zm is equivalent to that of Gaussian noise.
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To implement the MN projection, we first sample standard Gaussian noise z. Then, we project z
into zm using the following rule: change the sign of z to a positive number where M is 1, and to
a negative number where M is 0. The receiver can extract the messages by applying the inverse
projection Pr−1

N , which checks whether the value of extracted zm is greater than 0 or not.

Since the probability distribution of zm is the same as that of the Gaussian noise, generated images
fθ(PrN (z,M)) are challenging to distinguish from normally generated images. However, using
MN projection is vulnerable to the extraction error because some values of zm are situated near the
decision boundary of Pr−1

N , which is 0. Therefore, we suggest other projection options to improve
the extracted message accuracy.

Message to Binary (MB) The MB projection is designed to solve the aforementioned problem,
the extraction error. In the MB projection, the receiver identifies the messages by inverse projection
Pr−1

B , the same as that of the MN projection. Pr−1
N . The MB projection PrB maps the values of

zm as far as possible from 0, which corresponds to the decision boundary of Pr−1
B .

To maximize the minimum distance from the boundary, PrB equals all the values that denote the
same messages. To ensure that the variance of zm becomes 1, PrB set the value of zm to 1 where
M is 1 and to -1 where M is 0.

Message to Centered Binary (MC) While the MN projection resolves the image collapse, it
performs worse in terms of extracted message accuracy than the MB projection. The MB projection
well addresses the extraction error. However, the distribution of zm deviates from that of Gaussian
noise, which causes a slight degradation in image quality. Therefore, we suggest a compromise
between the two projections, called the MC projection.

Similar to the MB projection, MC projection PrC projects the values which denote the same mes-
sages into coherent values. Since the mode of Gaussian noise is 0, we set the value of zm to 0, where
M is 0. When M is 1, we randomly map the value of zm to either

√
2 or −

√
2, so that the mean and

variance of zm are equal to those of Gaussian noise. Inverse projection Pr−1
C checks the values of

zm are close to
√
2, −

√
2, or 0.

The MC projection performs higher extracted message accuracy than the MN projection and better
sample quality than the MB projection, which will be demonstrated in Section 4.

3.4 TRICK OF HIDING LARGE MESSAGES

Generally, input noise for diffusion models consists of 3 channels. When applying the projections
referred to in Section 3.3, the maximum capacity of secret messages is 3.0 bpp. In order to conceal
more messages than 3.0 bpp, we should hide more than 1.0 bpp messages in a single channel.

We hide multiple bits following MB, which we call Multi-bits projection. Two bits messages consist
of four cases: 00, 01, 10, and 11. We set four values and keep them as far away from each other
as possible while maintaining the mean and variance of zm. For 2 bits, we define the value as
−3/

√
5,−1/

√
5, 3/

√
5, or 1

√
5, where M is 00, 01, 10, or 11. We can hide 6.0 bpp messages by

hiding 2 bits in each channel and more messages by applying this projection.

4 EXPERIMENTS

Datasets and pre-trained models We consider three commonly used image datasets for genera-
tive models: CIFAR-10 (Krizhevsky et al., 2009), FFHQ 64×64 (Karras et al., 2019) and AFHQv2
64×64 (Choi et al., 2020). Several previous works (Song et al., 2020; Karras et al., 2022; Xu et al.,
2022; 2023) provide pre-trained models trained on these datasets. In our experiments, we use pre-
trained models and deterministic Heun’s sampler of EDM (Karras et al., 2022). For the FFHQ 64×64
and AFHQv2 64×64 datasets, we processed fθ and f−1

θ with 40 inference steps, while for the
CIFAR-10 dataset, we used 18 inference steps. We conduct our experiments using 4 Nvidia Titan
Xp GPUs.

Our method can utilize high-resolution pre-trained models, as demonstrated in the Appendices E
and F. We show that our model can be applied to 256x256 pre-trained models and Stable Diffusion.
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Table 2: Comparison of extracted message accuracy (Acc, %), anti-detection ability (Pe), and image
quality (FID) with baseline methods. †: our re-implementation.

1.0 bpp 2.0 bpp 3.0 bpp

Method Acc ↑ Pe ↑ FID ↓ Acc ↑ Pe ↑ FID ↓ Acc ↑ Pe ↑ FID ↓
GSN† 97.15 0.183 13.4 79.62 0.022 24.8 72.74 0.049 30.4

S2IRT† 99.94 0.003 72.6 97.79 0.002 78.2 97.13 0.003 67.8
Diffusion-Stego 98.12 0.427 2.77 98.19 0.361 3.30 98.76 0.310 4.30

Metrics We evaluate extracted message accuracy, anti-detection ability, and image quality of
our methods. The accuracy (Acc) measures the accuracy of the extracted message, which may
be distorted through the steganography process fθ and f−1

θ . We calculate Acc as follows: Acc
= 1 − M⊕M′

len(M) , where M is original binary messages, M′ is extracted binary messages through
the steganography process, ⊕ is XOR operator, and len(M) is length of the messages. The detec-
tion error (Pe) is an indicator of the performance of classifier models. Pe is defined as follows: Pe
= minPFA

1
2 (PFA + PMD), where PFA and PMD are the rates of false-alarm and miss-detection

errors. A Pe value of 0.5 means that the classifier can not distinguish two classes completely. We use
Xu-Net (Xu et al., 2016) models to evaluate Pe of steganalyzer models and assess the anti-detection
ability of our method. Frechet inception distance (FID) score (Heusel et al., 2017) is an image qual-
ity assessment indicator, where a lower FID score indicates better image quality. Bit per pixel (bpp)
is a unit for the message quantity hiding in images. We calculate bpp as follows: len(M)

W×H ,where W
and H are width and height of image.

In our experiments, We sampled 6,000 stego images from each model to calculate the accuracy.
We divide the stego images into 5,000 training sets and 1,000 test sets for training and evaluating
steganalyzer models. We train Xu-Net on 5,000 stego images and 5,000 real images and test on
1,000 stego images and 1,000 real images for each steganography model, following in Zhou et al.
(2022). We sample 50,000 stego images that hide random messages to calculate FID scores.

Steganalyzer settings As generative steganography models do not have cover images, third-party
players cannot train their steganalyzer models. Therefore, we utilize the real images as a substitute of
cover images, assuming that third-party players would adopt the strict strategy in their steganalysis.

Baseline We select two baseline generative steganography models which can hide messages above
1.0 bpp, Generative Steganography Network (GSN) (Wei et al., 2022a) and Secret to Image Re-
versible Transformation (S2IRT) (Zhou et al., 2022).

GSN is a GAN-based (Goodfellow et al., 2020) method that consists of four models: generator,
discriminator, steganalyzer, and extractor. In our experiments, we train each GSN model from
scratch with different payload settings. S2IRT is a generative steganography method that applies
Glow (Kingma & Dhariwal, 2018) models. We train Glow and use Separate Encoder based S2IRT
(SE-S2IRT) scheme. The SE-S2IRT scheme splits random values into K clusters and assigns each
message to the corresponding cluster based on the order of values. Increasing K leads to a higher
message capacity but lower accuracy. In our experiments, we choose a low value of K to optimize
extracted message accuracy.

Discretization In our experiments, we discretize stego images into integer values and save them
in PNG format. Wei et al. (2022b) proposed that using the TIFF format shows good performance
in terms of extracted message accuracy because TIFF format saves an image in continuous values.
Following Wei et al. (2022b), we also conduct experiments using TIFF format and present the results
in Appendix C.

4.1 COMPARISON WITH BASELINE MODELS.

We compare Diffusion-Stego with two high-capacity generative steganography models, GSN and
S2IRT, which are trained on the FFHQ 64×64 dataset. The comparison is performed using the MB
projection in three payload settings: 1.0 bpp, 2.0 bpp, and 3.0 bpp.
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(a) (b) (c)

Figure 4: FFHQ 64×64 stego images hiding 1.0 bpp messages. (a) GSN, (b) S2IRT, (c) Diffusion-
Stego. Diffusion-Stego is superior to the baseline methods in sample quality.

Table 3: Ablation study results of three projection options on FFHQ 64×64 and AFHQv2 64×64
datasets. The original EDM models have FID scores of 2.39 on FFHQ and 2.17 on AFHQv2.

Datasets Projections 1.0 bpp 2.0 bpp 3.0 bpp
Acc ↑ Pe ↑ FID ↓ Acc ↑ Pe ↑ FID ↓ Acc ↑ Pe ↑ FID ↓

FFHQ
MN 88.00 0.422 2.41 86.75 0.433 2.42 87.06 0.427 2.45
MB 98.12 0.427 2.77 98.19 0.361 3.30 98.76 0.310 4.30
MC 93.17 0.445 2.58 91.97 0.414 2.75 93.09 0.409 3.11

AFHQv2
MN 87.32 0.399 2.14 85.68 0.390 2.20 86.64 0.403 2.13
MB 98.03 0.396 2.21 98.57 0.388 2.35 99.19 0.376 2.46
MC 92.65 0.407 2.22 91.00 0.404 2.26 93.40 0.405 2.26

The results are shown in Table 2. The results presented in Figure 4 and Table 2 show that Diffusion-
Stego outperforms the other baseline models in terms of anti-detection ability and image quality.
S2IRT shows higher accuracy than the other two models when the message capacity of stego images
is 1.0 bpp. However, when the message capacity is higher than 1.0 bpp, Diffusion-Stego showed
higher accuracy than S2IRT. Although S2IRT achieves high accuracy (99.94% at 1.0 bpp) when the
number of the clusters K is 2, its message capacity is limited to 1.5 bpp. To hide 2.0 bpp messages,
K should be at least 3, which decreases the extracted message accuracy. GSN shows competitive
accuracy in the payload setting of 1.0 bpp, but it decreases rapidly as the payload increases.

4.2 ABLATION STUDY

We compare the performance of our message projection options in our experiments using the FFHQ
and AFHQv2 datasets. The results of our comparison are presented in Table 3. Using the MB pro-
jection outperforms the other two projections in Acc. When hiding small messages with payloads of
1.0 bpp, the Pe and FID scores of each projection are similar. However, hiding large messages, such
as with payloads of 3.0 bpp, the anti-detection ability and image quality of using the MB projection
decreases rapidly compared to using the MN projection. In the FFHQ dataset, the MC projection
shows compromised results of Acc, Pe, and FID between the MN projection and the MC projection
as the payload of messages increases.

4.3 PERFORMANCE OF HIDING VARIOUS BPP MESSAGES

We evaluate Diffusion-Stego on various payload settings, ranging from 1.0 bpp to 6.0 bpp for each
dataset. In payloads from 1.0 to 3.0 bpp, we use the MB projection. In payloads from 4.0 and 5.0
bpp, we use both the MB projection and the Multi-bits projection. In 6.0 bpp payloads, we only use
the Multi-bits projection.

Figure 5 shows the stego images generated by AFHQv2 models. As shown in Table 4, using the
MB projection alone (from 1.0 to 3.0 bpp) results in higher extracted message accuracy compared to
using the Multi-bits projection. However, using the Multi-bits projection (from 4.0 to 6.0 bpp) pro-
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(a) 1.0 bpp (b) 2.0 bpp (c) 3.0 bpp (d) 4.0 bpp (e) 5.0 bpp (f) 6.0 bpp

Figure 5: AFHQv2 64×64 images which are hiding messages with pre-trained EDM models.
Diffusion-Stego can hide 6.0 bpp messages without the image collapse.

Table 4: Results of various message payloads, 1.0 to 6.0 bpp. The original EDM models have FID
scores of 2.39 on FFHQ, 2.17 on AFHQv2, and FID scores of 1.97 on CIFAR-10.

Datasets metric 1.0 2.0 3.0 4.0 5.0 6.0

AFHQv2 64×64
Acc ↑ 98.03 98.57 99.19 96.39 93.15 91.93
Pe ↑ 0.396 0.388 0.376 0.364 0.390 0.394

FID ↓ 2.21 2.35 2.46 2.42 2.35 2.34

FFHQ 64×64
Acc ↑ 98.12 98.19 98.76 95.57 92.38 91.12
Pe ↑ 0.427 0.361 0.310 0.334 0.345 0.385

FID ↓ 2.77 3.30 4.30 3.90 3.67 3.37

CIFAR-10
Acc ↑ 95.38 95.07 95.19 89.93 86.43 84.83
Pe ↑ 0.434 0.460 0.434 0.417 0.446 0.441

FID ↓ 2.09 2.30 2.66 2.48 2.37 2.31

vides better anti-detection ability and image quality. This is because the distribution of zm projected
by the Multi-bits projection is more similar to that of Gaussian noise than that of the MB projection.
When the model is trained on the CIFAR-10 dataset, the extracted message accuracy is lower than
those trained on other datasets. This is due to the susceptibility of generated CIFAR-10 images to
discretization, which will be presented in Appendix C.

As the number of bits to hide in channels increases, the extracted message accuracy decreases due
to the same reason as the MN projection. We hide 9.0 bpp messages using EDM models trained on
the AFHQv2 dataset and the Multi-bits projection. The extracted message accuracy from the stego
images hiding 9.0 bpp messages is 83.18%.

4.4 COMPARISON WITH IMAGE STEGANOGRAPHY

We compare Diffusion-stego with image steganography, FNNS (Kishore et al., 2021). Specifically,
we employ the CIFAR-10 pfgm++ (Xu et al., 2023) model and hiding 3 bpp messages using the MB
method. We integrated diffusion models as the decoder within FNNS.

The results of this comparison are presented in Table 5. As the number of iterations in the FNNS
task increases, the accuracy of the message increases, but the anti-detection ability decreases. Image
steganography methods have an advantage in terms of message accuracy, while generative steganog-
raphy methods excel in anti-detection ability. We provide the comparison results with LISO (Chen
et al., 2022) in the Appendix G.

5 RELATED WORK

5.1 STEGANOGRAPHY WITH DEEP LEARNING

Steganography methods employing deep learning techniques have emerged, encompassing various
machine learning tasks. Some approaches (Baluja, 2017; Zhang et al., 2019; Zhu et al., 2018; Jing
et al., 2021) utilize encoder-decoder architectures to conceal secrets within provided cover images
using trained models. Other methods (Kishore et al., 2021; Chen et al., 2022) employ optimization
techniques to manipulate the cover images in such a way that the secret becomes visible when
decoding the altered cover images.
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Table 5: Comparison result between Diffusion-stego and FNNS using same diffusion models. The
result of 0 iterations is that of Diffusion stego.

Metric 0 iters (Ours - MB ) 1 iter 2 iters 3 iters 4 iters

Acc ↑ 95.60 99,47 99.67 99.69 99.70
Pe ↑ 0.456 0.435 0.218 0.211 0.179

FID ↓ 2.51 2.66 3.05 3.11 3.19

5.2 GENERATIVE STEGANOGRAPHY

Generative steganography is a method where generative models synthesize images from secret mes-
sages without using any cover images. Generative steganography offers several advantages over
traditional steganography methods that use cover images. One of the main benefits is that it can
avoid detection by steganalysis methods because it does not modify images. Further, steganalysis
methods that are trained on such images cannot detect the presence of hidden data.

Early studies of generative steganography hide messages in simple images, such as texture or finger-
print images. Wu & Wang (2014) and Xu et al. (2015) proposed approaches to hide secret messages
in texture messages. Li & Zhang (2018) proposed the method to use fingerprint images. These ap-
proaches generate low-quality and unnatural images, which are prone to be detected by third-parties.

Steganography approaches using generative models have been proposed to make high-quality and
natural stego images. Especially, GAN models (Goodfellow et al., 2020) have been used for gener-
ative steganography. Liu et al. (2017) and Zhang et al. (2020) hide messages in label embedding of
conditional GANs (Mirza & Osindero, 2014; Odena et al., 2017), Hu et al. (2018); Yu et al. (2021);
Wang et al. (2018); Wei et al. (2022a) train new extractor models. Zhou et al. (2022); Wei et al.
(2022b) proposed an approach to use invertible Flow models (Kingma & Dhariwal, 2018) to enable
high capacity of hidden messages.

5.3 DIFFUSION MODELS

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020) generate im-
ages through the stochastic iterative process of denoising from Gaussian noise. While this process
incurs a high computational cost, it enables the generation of high-quality images. Several stud-
ies (Song et al., 2021; 2020) have proposed deterministic sampling methods for diffusion models.
These methods aim to remove the stochastic property of diffusion models while sampling images
using an invertible process. Song et al. (2021) proposed an implicit sampling by changing the dif-
fusion process to a non-Markov process. Song et al. (2020) proposed probability flow ODE, which
considers sampling processes as ODEs. Liu et al. (2022); Zhang & Chen (2022); Lu et al. (2022);
Karras et al. (2022) solve probability flow ODE efficiently using high order numerical integrator. In
our approach, we utilize Heun’s sampler from the EDM (Karras et al., 2022) to take advantage of
the invertible property of the deterministic sampler.

6 CONCLUSION

We propose Diffusion-Stego, a novel approach to generative steganography using deterministic sam-
plers of diffusion models. We investigate the factors that affect the quality and extracted message
accuracy when diffusion models generate stego images. We suggest three options for message pro-
jection, which have the trade-off of image quality, anti-detection, and extracted message accuracy.
Our approach can hide large messages (more than 1.0 bpp, even 6.0 bpp with an accuracy of 90%)
while maintaining the image quality of pre-trained diffusion models.

Our limitations include a trade-off between image quality, anti-detection ability, and extracted mes-
sage accuracy. Our observations will enable future research to enhance these capabilities. Further-
more, since our approach uses pre-trained diffusion models, it can be extended to other domains
such as video (Ho et al., 2022), sound (Kong et al., 2020), and text (Li et al., 2022).
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