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Abstract

As LLM inference shifts to multi-tenant GPU clusters, co-batching improves
throughput but obscures per-tenant usage and limits control. Enabling fractional
sharing of the inference engine requires a real-time, per-request attribution primitive
that is accurate and light enough to run inside the scheduling loop. We present
LLMVisor, a roofline-guided latency attribution model that captures the memory-
bound and compute-bound phases via a concise piecewise-linear form over features
proportional to FLOPs and memory 1I/O traffic. LLMVisor decomposes batch
latency into additive, per-request shares and runs efficiently at us-scale. We
evaluate LLMVisor across Llama3.1-8B and Qwen2.5-14B/32B on A100/H100
under varying tensor parallelism and workload mixes. Compared to a token-count
proxy baseline, LLMVisor attains near-perfect R? and reduces relative error by up
to 2.5 x /3.3x (p90/p99) for prefill and 3.5 x /4.4x for decode, despite batching
variability and sequence divergence.

1 Introduction

Large language models (LLMs) now power search, coding assistants, and conversational systems
at scale [4}[7,15)]. To keep accelerators busy, providers co-batch heterogeneous requests via shared
public endpoints [15} 2]]. While batching boosts throughput, it leaves tenants with opaque, provider-
tuned scheduling and little leverage to allocate or account for their own usage. The common
alternative—renting dedicated GPU servers—squanders parallel hardware on interactive, small-batch
workloads; for example, GPT-J 6B on A100 achieves only 0.4% SM utilization at batch size 1 and
remains low even for 1,024-token sequences [9].

We argue for virtualizing the inference engine: tenants reserve fractional shares of GPU time and
submit requests into shared batches, akin to CPU isolation via VMs, cgroups, and containers [3, |11}
12], and to credit/burst offerings (e.g., AWS t3. ) [1]. Hardware partitioning (e.g., NVIDIA MIG)
provides strong isolation but is inflexible for LLM memory footprints [[14]. Realizing a software path
to fractional sharing hinges on a missing primitive: a real-time, per-request latency attribution model
accurate enough to guide scheduling and light enough to run in the critical path without harming
batching efficiency. Such attribution directly enables SLO-aware admission (curbing tails by rejecting
or deferring requests whose shares would exceed budgets), transparent post-hoc accounting, and fast
“what-if” planning (e.g., alternative batch sizes or mixes) while preserving the benefits of co-batching.

Designing this primitive is difficult for several reasons. First, co-batching couples requests: their costs
are not trivially separable. Second, LLM inference has phase-specific bottlenecks, compute-bound
prefill versus memory-bound decode, that require different treatments. Third, costs scale nonlinearly
with sequence length (e.g., quadratic self-attention) and depend on context length (KV-cache loads)
and batch size. Fourth, throughput shifts with model architecture, tensor-parallel layout, and hardware.
Finally, the scheduler operates at millisecond granularity, so attribution must run at us scale to be
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Figure 1: A typical workflow in modern large language model (LLM) inference engines can be
summarized as follows. Upon arrival, each request is enqueued in a request buffer. At each inference
step, the scheduler selects requests from the queue for execution. LLMVisor operates during the
scheduling stage by providing GPU time attribution, enabling the scheduler to enforce multi-tenant
fairness according to reserved GPU time quotas. Once scheduled, the inference engine dispatches the
requests to the GPU, where the corresponding KV cache and model weights are loaded to perform
the inference computation.

viable. Black-box ML predictors can fit latency trends but lack additivity and are too slow for
the loop [[18]; naive token-count proxies [16] ignore context and batching effects, yielding poor
high-percentile accuracy.

We present LLMVisor, a roofline-guided latency attribution model for multi-tenant LLM serving.
LLMVisor captures prefill and decode with a concise piecewise-linear form over features proportional
to FLOPs and memory I/O traffic—explicitly encoding quadratic self-attention, context-length—driven
KV-cache traffic, and batch-size effects—so end-to-end batch latency decomposes into additive, per-
request shares. The resulting structure supports online us-scale “what-if”” queries for admission
control and budgeting while preserving batching efficiency. A lightweight prototype integrated into
vLLM runs in the scheduling path with negligible overhead and achieves low error across diverse
models and GPUs.

Our contributions are threefold:

o Inference-aware modeling: An interpretable, roofline-guided, piecewise-linear formulation that
embeds LLM execution mechanics: compute-bound prefill vs. memory-bound decode, quadratic
self-attention, KV-cache traffic via context length, and batch-size utilization effects. The model is
additive by design, yielding closed-form per-request latency shares suitable for multi-tenant control.

o Efficiency: Microsecond-level runtime per scheduling step (100x faster than common ML predic-
tors), enabling deployment inside the scheduler without disrupting batching.

e Accuracy and generality: Across Llama3.1-8B and Qwen2.5-14B/32B on A100/H100 with
varying tensor parallelism and workload mixes, LLMVisor attains near-perfect R? and reduces
relative error by up to 2.5 x /3.3x (p90/p99) for prefill and 3.5 x /4.4x for decode.

2 LLMVisor Design

Design requirements. The state-of-the-art inference engine workflow is illustrated in Fig. |1} LLMVi-
sor assists the scheduler in ensuring that each tenant receives its reserved share of GPU time. To be
practical in high-frequency scheduling loops (e.g., every decode step), LLM Visor must combine three
properties: it must be accurate, providing reliable predictions of end-to-end batch latency; it must
support attribution fidelity, decomposing that latency into per-request and per-tenant contributions;
and it must be efficient, introducing negligible overhead so that scheduling can operate at each ste
LLMVisor is designed to satisfy all three simultaneously.

Problem formulation. Formally, let B = {1,...,|B|} denote a batch of requests and u(¢) the tenant
of request . We seek a model f that (i) predicts the end-to-end latency of the batch, f(B) ~ Tg,

2Step is the minimal execution unit in LLM inference. During decoding, one step corresponds to all active
requests in the batch generating a single token. During prefill, one step corresponds to all requests in the batch
completing their entire prompt processing.
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and (ii) assigns each request a nonnegative share f(i | B) ~ t; such that ), _, f(i | B) = f(B).
These per-request attributions capture each request’s latency contribution and aggregate naturally to
per-tenant usage Ly = ;. ,,;y—, f(i | B), supporting fairness, admission control, and billing.

Related work. Prior studies on LLM latency prediction follow two main approaches. The first
uses ML predictors [6]], which can be accurate but cannot attribute latency to individual requests,
limiting their usefulness for multi-tenant scheduling. The second relies on analytical, roofline-style
modeling [18], classifying inference as compute- or memory-bound and estimating latency from
FLOPs and memory traffic relative to GPU peaks. While interpretable, these models are often
inaccurate in practice due to modeling assumptions and time-varying GPU throughput, and they do
not provide lightweight, per-request attribution in real time. VTC [16] attributes usage by token
counts, which is imprecise because compute and I/O vary with token position [8]].

2.1 Piecewise roofline-guided linear latency model

LLMVisor builds on the intuition of roofline analysis but adapts it for higher accuracy and real-time
use. Rather than hand-computing FLOPs and memory bytes from model architecture and dividing by
peak GPU rates, we construct a small set of request-level features proportional to FLOPs and I/0
traffic and fit their coefficients using short warm-up profiling runs. This preserves interpretability
while improving accuracy and keeping runtime cost negligible.

Let p; denote the number of tokens processed for request ¢ in the current step (all prompt tokens
during prefill; p; = 1 during decode), and let ¢; denote the context tokens that must be attended and
whose KV cache must be loaded (zero in prefill; prior prompt length in decode). With batch size | B,
we model latency as a two-segment linear function corresponding to the two bottleneck phases:

Bpre + a1, pi +a2d i +asd . p? + a4y, |B|, Compute-bound,
Ty = (D
Baec +d1y_; pi + d2d; i +d3d o, p? +dsd,; |B], Memory-bound.

Here, 3, captures fixed per-batch costs (e.g., model weight I/O); > , pi relates to MLP and causal
attention compute; Y, ¢; captures KV-cache memory traffic; >, p? models quadratic self-attention
costs; and |B| captures utilization gain. Coefficients (a.,d., 8.) are fit via ordinary least squares on
the profiling data.

Because Tj is linear in sums of per-request terms, LLM Visor naturally admits closed-form, additive
per-request attributions via Eq.[T} yielding each request’s estimated latency contribution in the critical
path.

Additionally, in terms of efficiency, Eq.|I|is over 100x faster than ML predictors such as Random
Forest. In our measurements, LLM Visor operates at the microsecond level per request, whereas
more complex ML models like Random Forest require milliseconds for inference. This efficiency
makes LLMVisor well-suited for integration into LLM inference engine scheduling, which runs at
millisecond granularity.

3 Evaluation

In this section, we evaluate LLM Visor across a diverse range of real-world LLM serving configurations
and compare its predictions against ground truth measurements.

3.1 Experimental Setup

We evaluate LLM Visor inside vLLM (v0.7.3) [10] using its internal profiler for per-step ground truth,
spanning two server classes (H100 SXM and A100 SXM) with multiple tensor parallel sizes, three
open-source models (Llama3.1-8B [13]], Qwen2.5-14B/32B [17]), and workloads with 128-2048
concurrent requests and heterogeneous sequences that push total tokens to ninety percent of the
engine KV-cache capacity (C). We cover both prefill and decode, report coefficient of determination
(r?) and relative error at the 90th and 99th percentiles, and compare against VTC [16], a token based
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Model Llama3.1-8B Qwen2.5-14B Qwen2.5-32B

Parallelism Al H1 H4 H1 H2 H4 A2 H2 H4
VTC R? 0.998 0998 0.995 | 1.000 0.997 0.998 | 1.000 1.000 1.000
VTC Errpoo 0.08 0.09 0.04 0.03 0.14 0.08 0.02 0.03 0.02
VTC Errpgo 0.50 0.79 0.16 0.09 1.24 0.57 0.10 0.07 0.11
LLMVisor R? 1.000 0.999 1.000 | 1.000 1.000 1.000 | 1.000 1.000 1.000

LLMVisor Errpgo | 0.03 0.10 0.01 0.02 0.02 0.01 0.01 0.02 0.03
LIMVisor Errpge | 0.14 0.92 0.08 0.08 0.08 0.13 0.05 0.07 0.08
Table 1: Prefill step latency modeling accuracy of VTC and LLMVisor.

Model Llama3.1-8B Qwen2.5-14B Qwen2.5-32B
Parallelism Al H1 H2 H1 H2 H4 A2 H2 H4
VTC R? 0.947 0958 0.778 | 0.991 0948 0938 | 0.972 0.991 0.992
VTC Errpgo 0.23 0.24 0.42 0.12 0.24 0.27 0.15 0.12 0.11
VTC Errpgg 0.50 0.54 0.88 0.18 0.45 0.63 0.29 0.20 0.31
LLMVisor R? 0.974 0997 0995 | 0998 0997 0996 | 0.979 0.997 0.999

LLMVisor Errpgo | 0.10 0.04 0.05 0.04 0.04 0.07 0.11 0.06 0.03
LLMVisor Errpge | 0.16 0.08 0.09 0.06 0.07 0.10 0.16 0.10 0.05
Table 2: Decode step latency modeling accuracy of VTC and LLM Visor.

proxy that does not model batch size or context length. Further details of the evaluation setup are
provided in Sec.

3.2 Prefill Latency Modeling

The performance of LLMVisor and the VTC baseline on the prefill latency modeling task is pre-
sented in Across all evaluated models and hardware configurations, LLM Visor consistently
outperforms VTC in modeling prefill latency.

While VTC achieves reasonably high R? values (> 0.995 in most cases), it exhibits much larger
relative errors, particularly at p99. Averaged across all configurations (excluding the two blue-marked
outliers), VTC’s relative error is 0.05 at p90 and 0.30 at p99, while LLMVisor reduces these to 0.02
and 0.09, respectively. This corresponds to an average improvement of roughly 2.5x at p90 and over
3.3x at p99. The high R? values for both methods indicate that VTC’s linear token-based model can
capture coarse latency trends in prefill phase. However, by taking into account the square of input
tokens, which reflects the self-attention computational complexity, LLM Visor is far more reliable for
predicting prefill latency in multi-tenant serving environments.

3.3 Decode Latency Modeling

The performance of LLMVisor and the VTC baseline on the decode latency modeling task is presented
in Compared to the prefill phase, decode latency is substantially more challenging to predict.
This difficulty is evident in VTC’s results: while it achieves moderately strong correlation in most
cases (R? > 0.9), it completely breaks down in others. For example, Llama3.1-8B on H2 yields
only R? = 0.778, indicating that VTC is not even able to capture the overall latency trend. At the
same time, its relative errors remain high across the board, averaging 0.21 at p90 and 0.44 at p99,
and reaching as high as 0.88 at p99. These results show that a simple linear token-based model is
fundamentally inadequate for decode latency, as it ignores the effects of context length and batch size.

In contrast, LLMVisor consistently maintains near-perfect fits, with R? > 0.97 in all cases and
typically above 0.995. More importantly, LLM Visor reduces relative error dramatically: average p90
error drops from 0.21 (VTC) to 0.06, and average p99 error from 0.44 to 0.10, corresponding to 3.5 X
and 4.4x improvements, respectively. Even in the more challenging decode phase, where latency
is influenced by batching variability and sequence divergence, LLM Visor reliably captures both the
overall trend and high-percentile behavior.

Overall, LLMVisor significantly outperforms linear token-based modeling in both prefill and decode
phases, with up to 3.5x and 4.4x improvement on p90 and p99 relative error, respectively. It
consistently predicts latency accurately and reliably, which will benefit the scheduling in multi-tenant
serving environments.
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A Evaluation Setup Details

Our evaluation framework is built on vLLM (v0.7.3) [LO], using its internal profiler to capture ground
truth latency for each processing step. To ensure a comprehensive assessment, we systematically vary
the hardware, models, and workloads.

Hardware We conduct experiments on two distinct server types with five different tensor parallelism
settings to cover various deployment scenarios: a. A server with 4 NVIDIA H100 SXM 80GB GPUs,
a 104-core vCPU, and 1800GiB of memory. Tensor parallel size 1, 2, and 4, denoted as H1, H2, H4.
b. A server with 8 NVIDIA A100 SXM 80GB GPUs, a 240-core vCPU, and 1800GiB of memory.
Tensor parallel size 1 and 2, denoted as A1, A2.

Models We test LLMVisor on three popular open-source LLMs of varying sizes to evaluate its
generalizability: Llama3.1-8B [13]], Qwen2.5-14B [17], and Qwen2.5-32B [17]].

Workloads To simulate realistic, multi-tenant serving environments, we generate workloads with
varying numbers of concurrent requests, from 128 to 2048. To test performance across different
context lengths, we increase the total number of tokens from 4096 to 90% of the engine’s maximum
KV cache capacity (C). These tokens are then randomly distributed among requests with high variance
to ensure a heterogeneous mix of request lengths. Our evaluation covers both the prefill and decode
phases of inference.

Metrics We assess the accuracy of resource modeling methods via two metrics: a. Coefficient
of Determination (r2): Quantifies the linear correlation between the predicted and ground truth
latencies. A higher r? indicates a better fit.  b. Relative Error: Measures the percentage difference
between predicted and actual latency, reported at the 90th (p90) and 99th (p99) percentiles to evaluate
performance.

Baseline We benchmark LLM Visor against VTC [16], a baseline model that estimates request latency
based on a linear model of token number. Unlike LLMVisor, VTC does not account for critical
system-level factors such as batch size and context length.
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