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Abstract

As LLM inference shifts to multi-tenant GPU clusters, co-batching improves1

throughput but obscures per-tenant usage and limits control. Enabling fractional2

sharing of the inference engine requires a real-time, per-request attribution primitive3

that is accurate and light enough to run inside the scheduling loop. We present4

LLMVisor, a roofline-guided latency attribution model that captures the memory-5

bound and compute-bound phases via a concise piecewise-linear form over features6

proportional to FLOPs and memory I/O traffic. LLMVisor decomposes batch7

latency into additive, per-request shares and runs efficiently at µs-scale. We8

evaluate LLMVisor across Llama3.1-8B and Qwen2.5-14B/32B on A100/H1009

under varying tensor parallelism and workload mixes. Compared to a token-count10

proxy baseline, LLMVisor attains near-perfect R2 and reduces relative error by up11

to 2.5× /3.3× (p90/p99) for prefill and 3.5× /4.4× for decode, despite batching12

variability and sequence divergence.13

1 Introduction14

Large language models (LLMs) now power search, coding assistants, and conversational systems15

at scale [4, 7, 5]. To keep accelerators busy, providers co-batch heterogeneous requests via shared16

public endpoints [15, 2]. While batching boosts throughput, it leaves tenants with opaque, provider-17

tuned scheduling and little leverage to allocate or account for their own usage. The common18

alternative—renting dedicated GPU servers—squanders parallel hardware on interactive, small-batch19

workloads; for example, GPT-J 6B on A100 achieves only 0.4% SM utilization at batch size 1 and20

remains low even for 1,024-token sequences [9].21

We argue for virtualizing the inference engine: tenants reserve fractional shares of GPU time and22

submit requests into shared batches, akin to CPU isolation via VMs, cgroups, and containers [3, 11,23

12], and to credit/burst offerings (e.g., AWS t3.*) [1]. Hardware partitioning (e.g., NVIDIA MIG)24

provides strong isolation but is inflexible for LLM memory footprints [14]. Realizing a software path25

to fractional sharing hinges on a missing primitive: a real-time, per-request latency attribution model26

accurate enough to guide scheduling and light enough to run in the critical path without harming27

batching efficiency. Such attribution directly enables SLO-aware admission (curbing tails by rejecting28

or deferring requests whose shares would exceed budgets), transparent post-hoc accounting, and fast29

“what-if” planning (e.g., alternative batch sizes or mixes) while preserving the benefits of co-batching.30

Designing this primitive is difficult for several reasons. First, co-batching couples requests: their costs31

are not trivially separable. Second, LLM inference has phase-specific bottlenecks, compute-bound32

prefill versus memory-bound decode, that require different treatments. Third, costs scale nonlinearly33

with sequence length (e.g., quadratic self-attention) and depend on context length (KV-cache loads)34

and batch size. Fourth, throughput shifts with model architecture, tensor-parallel layout, and hardware.35

Finally, the scheduler operates at millisecond granularity, so attribution must run at µs scale to be36

∗Equal contribution.
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Figure 1: A typical workflow in modern large language model (LLM) inference engines can be
summarized as follows. Upon arrival, each request is enqueued in a request buffer. At each inference
step, the scheduler selects requests from the queue for execution. LLMVisor operates during the
scheduling stage by providing GPU time attribution, enabling the scheduler to enforce multi-tenant
fairness according to reserved GPU time quotas. Once scheduled, the inference engine dispatches the
requests to the GPU, where the corresponding KV cache and model weights are loaded to perform
the inference computation.

viable. Black-box ML predictors can fit latency trends but lack additivity and are too slow for37

the loop [18]; naive token-count proxies [16] ignore context and batching effects, yielding poor38

high-percentile accuracy.39

We present LLMVisor, a roofline-guided latency attribution model for multi-tenant LLM serving.40

LLMVisor captures prefill and decode with a concise piecewise-linear form over features proportional41

to FLOPs and memory I/O traffic—explicitly encoding quadratic self-attention, context-length–driven42

KV-cache traffic, and batch-size effects—so end-to-end batch latency decomposes into additive, per-43

request shares. The resulting structure supports online µs-scale “what-if” queries for admission44

control and budgeting while preserving batching efficiency. A lightweight prototype integrated into45

vLLM runs in the scheduling path with negligible overhead and achieves low error across diverse46

models and GPUs.47

Our contributions are threefold:48

• Inference-aware modeling: An interpretable, roofline-guided, piecewise-linear formulation that49

embeds LLM execution mechanics: compute-bound prefill vs. memory-bound decode, quadratic50

self-attention, KV-cache traffic via context length, and batch-size utilization effects. The model is51

additive by design, yielding closed-form per-request latency shares suitable for multi-tenant control.52

• Efficiency: Microsecond-level runtime per scheduling step (100x faster than common ML predic-53

tors), enabling deployment inside the scheduler without disrupting batching.54

• Accuracy and generality: Across Llama3.1-8B and Qwen2.5-14B/32B on A100/H100 with55

varying tensor parallelism and workload mixes, LLMVisor attains near-perfect R2 and reduces56

relative error by up to 2.5× /3.3× (p90/p99) for prefill and 3.5× /4.4× for decode.57

2 LLMVisor Design58

Design requirements. The state-of-the-art inference engine workflow is illustrated in Fig. 1. LLMVi-59

sor assists the scheduler in ensuring that each tenant receives its reserved share of GPU time. To be60

practical in high-frequency scheduling loops (e.g., every decode step), LLMVisor must combine three61

properties: it must be accurate, providing reliable predictions of end-to-end batch latency; it must62

support attribution fidelity, decomposing that latency into per-request and per-tenant contributions;63

and it must be efficient, introducing negligible overhead so that scheduling can operate at each step2.64

LLMVisor is designed to satisfy all three simultaneously.65

Problem formulation. Formally, let B = {1, . . . , |B|} denote a batch of requests and u(i) the tenant66

of request i. We seek a model f that (i) predicts the end-to-end latency of the batch, f(B) ≈ TB,67

2Step is the minimal execution unit in LLM inference. During decoding, one step corresponds to all active
requests in the batch generating a single token. During prefill, one step corresponds to all requests in the batch
completing their entire prompt processing.
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and (ii) assigns each request a nonnegative share f(i | B) ≈ ti such that
∑

i∈B f(i | B) = f(B).68

These per-request attributions capture each request’s latency contribution and aggregate naturally to69

per-tenant usage Lu =
∑

i:u(i)=u f(i | B), supporting fairness, admission control, and billing.70

Related work. Prior studies on LLM latency prediction follow two main approaches. The first71

uses ML predictors [6], which can be accurate but cannot attribute latency to individual requests,72

limiting their usefulness for multi-tenant scheduling. The second relies on analytical, roofline-style73

modeling [18], classifying inference as compute- or memory-bound and estimating latency from74

FLOPs and memory traffic relative to GPU peaks. While interpretable, these models are often75

inaccurate in practice due to modeling assumptions and time-varying GPU throughput, and they do76

not provide lightweight, per-request attribution in real time. VTC [16] attributes usage by token77

counts, which is imprecise because compute and I/O vary with token position [8].78

2.1 Piecewise roofline-guided linear latency model79

LLMVisor builds on the intuition of roofline analysis but adapts it for higher accuracy and real-time80

use. Rather than hand-computing FLOPs and memory bytes from model architecture and dividing by81

peak GPU rates, we construct a small set of request-level features proportional to FLOPs and I/O82

traffic and fit their coefficients using short warm-up profiling runs. This preserves interpretability83

while improving accuracy and keeping runtime cost negligible.84

Let pi denote the number of tokens processed for request i in the current step (all prompt tokens85

during prefill; pi = 1 during decode), and let ci denote the context tokens that must be attended and86

whose KV cache must be loaded (zero in prefill; prior prompt length in decode). With batch size |B|,87

we model latency as a two-segment linear function corresponding to the two bottleneck phases:88

TB =


βpre + a1

∑
i pi + a2

∑
i ci + a3

∑
i p

2
i + a4

∑
i |B|, Compute-bound,

βdec + d1
∑

i pi + d2
∑

i ci + d3
∑

i p
2
i + d4

∑
i |B|, Memory-bound.

(1)

Here, β⋆ captures fixed per-batch costs (e.g., model weight I/O);
∑

i pi relates to MLP and causal89

attention compute;
∑

i ci captures KV-cache memory traffic;
∑

i p
2
i models quadratic self-attention90

costs; and |B| captures utilization gain. Coefficients (a·, d·, β·) are fit via ordinary least squares on91

the profiling data.92

Because TB is linear in sums of per-request terms, LLMVisor naturally admits closed-form, additive93

per-request attributions via Eq. 1. yielding each request’s estimated latency contribution in the critical94

path.95

Additionally, in terms of efficiency, Eq. 1 is over 100x faster than ML predictors such as Random96

Forest. In our measurements, LLMVisor operates at the microsecond level per request, whereas97

more complex ML models like Random Forest require milliseconds for inference. This efficiency98

makes LLMVisor well-suited for integration into LLM inference engine scheduling, which runs at99

millisecond granularity.100

3 Evaluation101

In this section, we evaluate LLMVisor across a diverse range of real-world LLM serving configurations102

and compare its predictions against ground truth measurements.103

3.1 Experimental Setup104

We evaluate LLMVisor inside vLLM (v0.7.3) [10] using its internal profiler for per-step ground truth,105

spanning two server classes (H100 SXM and A100 SXM) with multiple tensor parallel sizes, three106

open-source models (Llama3.1-8B [13], Qwen2.5-14B/32B [17]), and workloads with 128–2048107

concurrent requests and heterogeneous sequences that push total tokens to ninety percent of the108

engine KV-cache capacity (C). We cover both prefill and decode, report coefficient of determination109

(r2) and relative error at the 90th and 99th percentiles, and compare against VTC [16], a token based110
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Model Llama3.1-8B Qwen2.5-14B Qwen2.5-32B
Parallelism A1 H1 H4 H1 H2 H4 A2 H2 H4
VTC R2 0.998 0.998 0.995 1.000 0.997 0.998 1.000 1.000 1.000
VTC Errp90 0.08 0.09 0.04 0.03 0.14 0.08 0.02 0.03 0.02
VTC Errp99 0.50 0.79 0.16 0.09 1.24 0.57 0.10 0.07 0.11
LLMVisor R2 1.000 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000
LLMVisor Errp90 0.03 0.10 0.01 0.02 0.02 0.01 0.01 0.02 0.03
LLMVisor Errp99 0.14 0.92 0.08 0.08 0.08 0.13 0.05 0.07 0.08

Table 1: Prefill step latency modeling accuracy of VTC and LLMVisor.

Model Llama3.1-8B Qwen2.5-14B Qwen2.5-32B
Parallelism A1 H1 H2 H1 H2 H4 A2 H2 H4
VTC R2 0.947 0.958 0.778 0.991 0.948 0.938 0.972 0.991 0.992
VTC Errp90 0.23 0.24 0.42 0.12 0.24 0.27 0.15 0.12 0.11
VTC Errp99 0.50 0.54 0.88 0.18 0.45 0.63 0.29 0.20 0.31
LLMVisor R2 0.974 0.997 0.995 0.998 0.997 0.996 0.979 0.997 0.999
LLMVisor Errp90 0.10 0.04 0.05 0.04 0.04 0.07 0.11 0.06 0.03
LLMVisor Errp99 0.16 0.08 0.09 0.06 0.07 0.10 0.16 0.10 0.05

Table 2: Decode step latency modeling accuracy of VTC and LLMVisor.

proxy that does not model batch size or context length. Further details of the evaluation setup are111

provided in Sec. A.112

3.2 Prefill Latency Modeling113

The performance of LLMVisor and the VTC baseline on the prefill latency modeling task is pre-114

sented in Table 1. Across all evaluated models and hardware configurations, LLMVisor consistently115

outperforms VTC in modeling prefill latency.116

While VTC achieves reasonably high R2 values (> 0.995 in most cases), it exhibits much larger117

relative errors, particularly at p99. Averaged across all configurations (excluding the two blue-marked118

outliers), VTC’s relative error is 0.05 at p90 and 0.30 at p99, while LLMVisor reduces these to 0.02119

and 0.09, respectively. This corresponds to an average improvement of roughly 2.5× at p90 and over120

3.3× at p99. The high R2 values for both methods indicate that VTC’s linear token-based model can121

capture coarse latency trends in prefill phase. However, by taking into account the square of input122

tokens, which reflects the self-attention computational complexity, LLMVisor is far more reliable for123

predicting prefill latency in multi-tenant serving environments.124

3.3 Decode Latency Modeling125

The performance of LLMVisor and the VTC baseline on the decode latency modeling task is presented126

in Table 2. Compared to the prefill phase, decode latency is substantially more challenging to predict.127

This difficulty is evident in VTC’s results: while it achieves moderately strong correlation in most128

cases (R2 > 0.9), it completely breaks down in others. For example, Llama3.1-8B on H2 yields129

only R2 = 0.778, indicating that VTC is not even able to capture the overall latency trend. At the130

same time, its relative errors remain high across the board, averaging 0.21 at p90 and 0.44 at p99,131

and reaching as high as 0.88 at p99. These results show that a simple linear token-based model is132

fundamentally inadequate for decode latency, as it ignores the effects of context length and batch size.133

In contrast, LLMVisor consistently maintains near-perfect fits, with R2 > 0.97 in all cases and134

typically above 0.995. More importantly, LLMVisor reduces relative error dramatically: average p90135

error drops from 0.21 (VTC) to 0.06, and average p99 error from 0.44 to 0.10, corresponding to 3.5×136

and 4.4× improvements, respectively. Even in the more challenging decode phase, where latency137

is influenced by batching variability and sequence divergence, LLMVisor reliably captures both the138

overall trend and high-percentile behavior.139

Overall, LLMVisor significantly outperforms linear token-based modeling in both prefill and decode140

phases, with up to 3.5x and 4.4x improvement on p90 and p99 relative error, respectively. It141

consistently predicts latency accurately and reliably, which will benefit the scheduling in multi-tenant142

serving environments.143
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A Evaluation Setup Details189

Our evaluation framework is built on vLLM (v0.7.3) [10], using its internal profiler to capture ground190

truth latency for each processing step. To ensure a comprehensive assessment, we systematically vary191

the hardware, models, and workloads.192

Hardware We conduct experiments on two distinct server types with five different tensor parallelism193

settings to cover various deployment scenarios: a. A server with 4 NVIDIA H100 SXM 80GB GPUs,194

a 104-core vCPU, and 1800GiB of memory. Tensor parallel size 1, 2, and 4, denoted as H1, H2, H4.195

b. A server with 8 NVIDIA A100 SXM 80GB GPUs, a 240-core vCPU, and 1800GiB of memory.196

Tensor parallel size 1 and 2, denoted as A1, A2.197

Models We test LLMVisor on three popular open-source LLMs of varying sizes to evaluate its198

generalizability: Llama3.1-8B [13], Qwen2.5-14B [17], and Qwen2.5-32B [17].199

Workloads To simulate realistic, multi-tenant serving environments, we generate workloads with200

varying numbers of concurrent requests, from 128 to 2048. To test performance across different201

context lengths, we increase the total number of tokens from 4096 to 90% of the engine’s maximum202

KV cache capacity (C). These tokens are then randomly distributed among requests with high variance203

to ensure a heterogeneous mix of request lengths. Our evaluation covers both the prefill and decode204

phases of inference.205

Metrics We assess the accuracy of resource modeling methods via two metrics: a. Coefficient206

of Determination (r2): Quantifies the linear correlation between the predicted and ground truth207

latencies. A higher r2 indicates a better fit. b. Relative Error: Measures the percentage difference208

between predicted and actual latency, reported at the 90th (p90) and 99th (p99) percentiles to evaluate209

performance.210

Baseline We benchmark LLMVisor against VTC [16], a baseline model that estimates request latency211

based on a linear model of token number. Unlike LLMVisor, VTC does not account for critical212

system-level factors such as batch size and context length.213
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