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Abstract

Named Entity Recognition (NER) is one of the
most fundamental tasks in natural language pro-
cessing. Span-level prediction (SPANNER) is
more naturally suitable for nested NER than se-
quence labeling (SEQLAB). However, accord-
ing to our experiments, the SPANNER method
is more sensitive to the amount of training data,
i.e., the F1 score of SPANNER drops much
more than that of SEQLAB when the amount
of training data drops. In order to improve
the robustness of SPANNER in low resource
scenarios, we propose a simple and effective
method SMARTSPANNER, which introduces
a Named Entity Head (NEH1) prediction task
to SPANNER and performs multi-task learn-
ing together with the task of span classifica-
tion. Experimental results demonstrate that the
robustness of SPANNER could be greatly im-
proved by SMARTSPANNER in low resource
scenarios constructed on the CoNLL03, FEW-
NERD, GENIA and ACE05 standard bench-
mark datasets.

1 Introduction

NER is a fundamental information extraction task
and plays an essential role in natural language pro-
cessing applications such as information retrieval,
question and answering, machine translation and
knowledge graphs (Liu et al., 2022). The goal of
NER is to extract named entities (NEs) into pre-
defined categories, such as person (PER), location
(LOC), organization (ORG) and geo-political en-
tity (GPE). With the rapid evolution of neural ar-
chitectures (Hochreiter and Schmidhuber, 1997;
Kalchbrenner et al., 2014; Vaswani et al., 2017)
and large pretrained models (Devlin et al., 2019;
Brown et al., 2020; Lewis et al., 2020), recent years
have seen the paradigm shift of NER systems from
sequence labeling (Chiu and Nichols, 2016; Luo

1NEH is the first word of a named entity, for example,
“Carl” is the NEH of “Carl Dinnon” in Fig. 1. If a named
entity has only one word, the NEH is itself.

Reporter0 Carl1 Dinnon2 of3 Britain4 's5  ITN6 filed7 this8 report9 .10

PER PER GPE
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ORG

Figure 1: A sentence from ACE05 with 5 nested NEs.
The superscript of each word indicates its index in the
sentence.
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Figure 2: Averaged F1 scores of SPANNER and
SMARTSPANNER methods over 10 independent runs
on the test datasets of CoNLL03, FEW-NERD, GENIA
and ACE05, where the models are trained on 1,000 sen-
tences randomly sampled from the training data with
the maximum epoch set to 10.

et al., 2020; Lin et al., 2020) to span prediction (Xu
et al., 2017; Mengge et al., 2020; Tan et al., 2020;
Fu et al., 2021). It is pointed out that nested enti-
ties are very common in the field of NER (Finkel
and Manning, 2009), i.e., a named entity can con-
tain or embed other entities as illustrated in Fig. 1.
Compared with SEQLAB, SPANNER has an obvi-
ous advantage: All candidate entities can be eas-
ily found with different sub-sequences, which is
straightforward for nested NER (Fu et al., 2021).

However, our experiments reveal that the per-
formance of SPANNER drops much more than
that of SEQLAB when the amount of training data
drops, which makes SPANNER hard in low re-
source scenarios. In order to mitigate this problem,
we propose a novel method SMARTSPANNER in



this paper. By introducing a Named Entity Head
(NEH) prediction task for each word in given sen-
tences, we perform multi-task learning together
with the task of span classification for NER. We
conduct experiments on both flat and nested stan-
dard benchmark datasets (CoNLL03, FEW-NERD,
GENIA and ACE05). Experimental results demon-
strate that SMARTSPANNER could improve the ro-
bustness in low resource scenarios significantly as
shown in Fig 2.

Our contributions are summarized as follows:

• To the best of our knowledge, we are the first
to highlight the robustness problem of SPAN-
NER in low resource scenarios.

• To mitigate this problem, we develop a simple
and effective method, named SMARTSPAN-
NER. By introducing the task of NEH pre-
diction, SMARTSPANNER can achieve signifi-
cant gains in low resource scenarios.

• We provide an in-depth analysis of the rea-
sons for the strong robustness of the method
SMARTSPANNER.

2 Related Work

There has been a long history of research involv-
ing NER (McCallum and Li, 2003). Traditional
approaches are based on Hidden Markov Model
(HMM; Zhou and Su, 2002) or Conditional Ran-
dom Field (CRF; Lafferty et al., 2001). With the de-
velopment of deep learning technology (Hinton and
Salakhutdinov, 2006), SEQLAB methods such as
LSTM-CRF (Huang et al., 2015) and BERT-LSTM-
CRF (Devlin et al., 2019) achieve very promising
results in the field of NER. However, these methods
cannot directly handle the nested structure because
they can only assign one label to each token.

As it is pointed out that named entities are of-
ten nested (Finkel and Manning, 2009), various
approaches for nested NER have been proposed in
recent years (Wang et al., 2022; Shibuya and Hovy,
2020). One of the most representative directions
is span-based methods that recognize nested en-
tities by classifying sub-sequences of a sentence
(Xu et al., 2017; Mengge et al., 2020; Tan et al.,
2020; Fu et al., 2021; Zaratiana et al., 2022; Weng
and Zhang, 2023). SPANNER methods are nat-
urally suitable for the nested structure because
nested entities can be easily detected in different
sub-sequences. Although the strengths and weak-

Percentage 10% 15% 20% 50% 100%
# sentences 1,498 2,248 2,997 7,493 14,987
SEQLAB 82.26 83.90 85.78 87.81 91.01
SPANNER 26.93 46.13 76.61 88.98 90.72

Table 1: F1 scores of SEQLAB and SPANNER methods
on the test dataset of CoNLL03 with different percent-
ages of training data and the maximum epoch set to 10.

nesses of SPANNER have been systematically in-
vestigated by Fu et al. (2021), its performance in
low resource scenarios is not discussed. To the best
of our knowledge, we are the first to highlight that
the performance of SPANNER drops much more
than that of SEQLAB when the amount of training
data drops, which poses a challenge to the robust-
ness of SPANNER in low resource scenarios. In
order to address this challenge, we propose a novel
method SMARTSPANNER.

It should be noted that the low resource scenarios
in this paper refer to those with at least 1,000 la-
beled sentences, different from the settings for few-
shot NER (Huang et al., 2021; Ding et al., 2021)
and more common in real-world applications.

3 Methodology

3.1 Problem Description

The commonly-used NER standard benchmark
dataset CoNLL03 (English) (Tjong Kim Sang and
De Meulder, 2003) is selected to show the different
sensitivities of SEQLAB and SPANNER methods.2

10%, 20%, 50% and 100% of the training data are
used to train the models respectively, and the F1
scores on the test dataset are reported in Table 1.

From Table 1, although the performances of SE-
QLAB and SPANNER on the entire training data are
almost the same, the F1 score of SPANNER drops
much more than that of SEQLAB when the training
data drops, i.e., the robustness of SPANNER in low
resource scenarios needs to be greatly improved.

3.2 NEH for SPANNER

Given a sentence S = {w1, · · · , wn} with n words,
and a span (i, j) denoting the sub-sequence in S
which starts with wi and ends with wj , wi is an
NEH if there is an NE span (i, j). For example,
the words “Reporter0”, “Carl1” and “Britain4” in
Fig. 1 are NEHs, and the other words are not.

From the above definition, we could conclude
that wi is an NEH, which is a necessary but not suf-

2Details of implementation are described in Experiments.
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Figure 3: An overview of SMARTSPANNER method, which consists of (a) NEH prediction and (b) span classification.
The two parts are jointly trained under the multi-task learning framework, and jointly determine the final results.

ficient condition for span (i, j) to be an NE. That is
to say, if wi is not an NEH, the span (i, j) must not
be an NE. Therefore, if we introduce the NEH pre-
diction task for SPANNER, the number of spans for
semantic tag classification could be greatly reduced
in training and inferring. For example, without the
NEH prediction task, the number of spans in Fig. 1
(all sub-sequences for the sentence with 11 words)
for SPANNER is 66. If the three NEHs in Fig. 1
are correctly predicted, the number of spans (the
sub-sequences starting with the words “Reporter0”,
“Carl1” and “Britain4”) could be reduced to 28.

These are the basic ideas of our method
SMARTSPANNER. With the introduction of the
NEH prediction task, the number of spans for se-
mantic tag classification could be greatly reduced,
so the difficulty of semantic tag classification in
SMARTSPANNER will be easier than in SPANNER.
Meanwhile, the NEH prediction task is obviously
easier than semantic tag classification (fewer cat-
egories and more balanced positive and negative
samples). Therefore, with the help of the NEH
prediction task, SMARTSPANNER reduces the dif-
ficulties of NER and could be more robust in low
resource scenarios.

3.3 SMARTSPANNER

An overview of our SMARTSPANNER method is
shown in Fig. 3, which consists of two parts: NEH
prediction and span classification. NEH prediction
aims to predict whether a word is the first word of

an entity, and span classification aims to classify
spans to corresponding semantic tags. The two
parts are jointly trained under a multi-task learning
framework with a shared encoder. The encoder is
applied to a sentence to obtain contextual word rep-
resentation, which is shared in downstream NEH
prediction and span classification tasks. In this
work, the NEH prediction task is treated as a special
type of span classification, where the span width is
1 and the number of classes is 2. The span classifi-
cation task is to aggregate the span information for
multi-class classification. During inference, only
the words predicted as NEHs are used to generate
candidate spans for span classification.

3.3.1 Encoder

Considering a sentence S with n tokenized words
{wi}ni=1, we convert the words to their contextual
embeddings with BERT (Devlin et al., 2019) en-
coder. We generate the input sequence by concate-
nating a [CLS] token, {wi}ni=1 and a [SEP] token,
and use a series of L stacked Transformer blocks
(TBs) to project the input to a sequence of contex-
tual vectors, i.e.,

h0, · · · ,hn+1 = TBL([CLS], w1, · · · , wn, [SEP]). (1)

3.3.2 Span Classification

Considering a span (i, j), we use the boundary em-
beddings and span length embedding to represent



CoNLL03 FEW-NERD GENIA ACE05

Train Dev Test Train Dev Test Train Dev Test Train Dev Test
# sentences 14,987 3,466 3,684 131,767 18,824 37,648 15,022 1,669 1,855 7,285 968 1,058
# entities 23,499 5,942 5,648 339,617 48,633 96,676 47,006 4,461 5,596 24,700 3,218 3,029
# nested entities - - - - - - 3,222 328 448 2,797 352 339
avg length 13.59 14.82 12.60 24.48 24.59 24.45 26.49 25.67 27.05 18.82 18.77 16.93

Table 2: Statistics of CoNLL03, FEW-NERD, GENIA and ACE05 datasets, where the number of entity types are 4,
66, 5 and 7 respectively.

the span (Fu et al., 2021):

s(i, j) = [hi;hj ; zj−i+1], (2)

where zj−i+1 is the span length embedding, which
could be obtained by a learnable look-up table.

Next, we feed the span representation into a
multi-layer perceptron (MLP) classifier, and ap-
ply a softmax layer to obtain the probability Ps to
predict its semantic tag.

Ps = softmax(MLP(s(i, j))) (3)

Finally, we minimize the cross-entropy loss func-
tion:

Ls = −
k∑

t=1

(yt logP t
s+(1−yt) log(1−P t

s)), (4)

where k is the number of semantic tags, and yt

denotes a label indicating whether the span (i, j) is
in tag t.

3.3.3 NEH Prediction
In this work, we treat NEH prediction as binary
classification for a special span (i, i) (i.e., only
word wi, 1 ≤ i ≤ n) in sentence S. So the NEH
probability Ph is:

Ph = softmax(MLP(s(i, i)))[:, 1], (5)

and the cross-entropy loss function is:

Lh = −(yh logPh + (1− yh) log(1− Ph)), (6)

where yh denotes whether the word wi is an NEH.

3.3.4 Joint Training and Inference
We jointly minimize the following loss for training:

L = wLh + (1− w)Ls, (7)

where Lh and Ls are the losses of the NEH predic-
tion task and span classification task, and w is the
hyper-parameter to balance the two tasks.

During inference, only the words predicted as
NEHs are used to generate candidate spans for span
classification.

Therefore, in order to keep the training and infer-
ring data distributions consistent, training the span
classification model in SMARTSPANNER only re-
quires a part of the spans that are all needed in
SPANNER. A selection strategy is designed for
each span (i, j) in training:

Select((i, j)) =


1, if wi is an NEH
1, if rand < sp
0, otherwise

, (8)

where rand is a randomly generated float number
in [0, 1] and sp is a hyper-parameter of the selection
threshold (0.05 used in this paper).

An example for this selection strategy is pro-
vided to compare the number of total training sam-
ples in SPANNER and SMARTSPANNER: Given
a sentence having n tokens and d named entities,
we could get the number of training samples gen-
erated by this sentence for SPANNER (Nsn) and
SMARTSPANNER (Nssn) respectively when the
max span width is set to the value m:

Nsn = n ∗m− (m− 1) ∗m/2
Nssn ≈ n+ d ∗m+ (n− d) ∗m ∗ sp . (9)

It should be noted that the training samples of
NEH prediction are included in Nssn (the first term
n in the right). Supposing n = 100, d = 5,m =
10, sp = 0.05, we could have Nsn = 955, Nssn ≈
197. This means the training samples are greatly
reduced in SMARTSPANNER, and thus the training
time is also greatly reduced. This is the reason why
we name the method “SMART”.

4 Experiments

4.1 Datasets

Four standard benchmark datasets CoNLL03 En-
glish (Tjong Kim Sang and De Meulder, 2003),



# Sents Methods CoNLL03 FEW-NERD GENIA ACE05

P R F1 P R F1 P R F1 P R F1

1,000
SPANNER 45.33 10.92 17.28 0.00 0.00 0.00 42.73 17.28 23.06 66.58 12.46 20.44
SMARTSPANNER 77.85 67.75 72.45 49.74 12.19 19.57 41.36 65.46 50.66 51.03 60.60 55.38
SEQLAB 75.24 82.52 78.38 14.47 20.99 17.10 - - - - - -

2,000
SPANNER 73.98 59.11 65.69 21.85 0.00 0.01 38.26 45.67 41.54 53.92 45.02 48.98
SMARTSPANNER 87.16 80.66 83.78 48.54 27.02 34.69 54.50 77.35 63.94 62.64 76.37 68.82
SEQLAB 80.85 86.37 83.52 27.08 35.31 30.71 - - - - - -

5,000
SPANNER 87.24 84.98 86.09 55.39 19.29 28.62 57.00 73.72 64.28 63.99 77.62 70.14
SMARTSPANNER 89.98 89.88 89.93 57.97 58.56 58.26 65.67 81.20 72.61 70.49 84.33 76.79
SEQLAB 85.07 89.20 87.08 44.64 53.11 48.50 - - - - - -

ALL
SPANNER 90.15 91.29 90.72 67.62 70.99 69.26 70.26 81.94 75.65 73.11 85.83 78.96
SMARTSPANNER 91.25 91.56 91.40 67.45 70.23 68.81 71.61 82.22 76.54 77.51 87.05 82.00
SEQLAB 89.87 92.19 91.01 67.05 69.40 68.20 - - - - - -

Table 3: Overall results of SPANNER, SMARTSPANNER and SEQLAB on CoNLL03, FEW-NERD, GENIA and
ACE05. The P , R and F1 are the mean values in 10 independent runs. Best F1 scores are in bold. “# Sents” stands
for the number of sentences used for training.

FEW-NERD (SUP) (Ding et al., 2021), GENIA
(Kim et al., 2003) and ACE053 English are selected
for evaluation, where CoNLL03 and FEW-NERD
are for flat NER and the others are for nested NER.
The statistics of these datasets are shown in Table 2.
It should be pointed out that we follow Shibuya and
Hovy (2020)’s preprocessing steps4 to split GENIA
and ACE05 into train, development, and test sets.

4.2 Experiment Settings
In experiments, we implement the SPANNER and
SMARTSPANNER methods based on the source
codes5 by Fu et al. (2021), where the pretrained
model bert-base-uncased6 is used as the en-
coder. And we implement BERT-CRF as the SE-
QLAB method for comparison.

The training datasets for low resource scenarios
are constructed by random.shuffle on the entire
training sentences and extracting the first 1,000,
2,000 or 5,000 sentences, where the random seeds
in 10 runs are set to 1, 2, 3, 4, 5, 6, 7, 8, 9 and 42
respectively. In addition, the random seed for the
results in Table 1 is set to 42. The development
datasets of CoNLL03, GENIA and ACE05 are all
used in the constructed low resource scenarios. As
the development data in FEW-NERD is very large
(18,824 sentences), we choose the first 2,000 sen-
tences as the development data when the training
data contains 1,000, 2,000 or 5,000 sentences.

For the SPANNER and SMARTSPANNER meth-
ods, the embedding size of the span width is set

3catalog.ldc.upenn.edu/LDC2006T06
4https://github.com/yahshibu/

nested-ner-tacl2020
5https://github.com/neulab/SpanNER
6https://huggingface.co/bert-base-uncased

to 50, the max span width is set to 207. The MLP
for span classification takes two layers, which is
the same as the setting by Fu et al. (2021). Con-
sidering that NEH classification is less challenging
compared to span classification, we use single-layer
MLP for NEH classification.

The training epoch number is set to 10, and
the batch size is set to 16. During training, the
SPANNER, SMARTSPANNER and SEQLAB mod-
els are optimized by AdamW (Loshchilov and Hut-
ter, 2019) with the learning rate set to 0.00001
and a linear warmup scheduler. The values of the
hyper-parameters w for joint training and sp for
span selection in SMARTSPANNER are set to 0.2
and 0.05 respectively. All models are trained using
a single NVIDIA V100 GPU.

4.3 Main Results

The results of SPANNER, SMARTSPANNER and
SEQLAB on the test datasets of CoNLL03, FEW-
NERD, GENIA and ACE05 are reported in Table 3,
where the values of the precision (P ), recall (R)
and F1 score are included (SEQLAB only for flat
NER datasets, not for nested).

From the results of SPANNER and SMARTSPAN-
NER on 1,000, 2,000, and 5,000 training sentences,
it is obvious that the F1 scores of SMARTSPAN-
NER are greatly better that those of SPANNER on
all the four datasets. Specially, when the train-
ing data is 1,000 sentences, compared with SPAN-
NER, SMARTSPANNER has the most obviously
improvement in F1 scores (17.28% to 72.45%
on CoNLL03, 0.00% to 19.57% on FEW-NERD,

7This setting is to ensure the proportions of entities with a
length exceeding 20 in the four datasets do not exceed 1%.

catalog.ldc.upenn.edu/LDC2006T06
https://github.com/yahshibu/nested-ner-tacl2020
https://github.com/yahshibu/nested-ner-tacl2020
https://github.com/neulab/SpanNER
https://huggingface.co/bert-base-uncased


# Sents Methods CoNLL03 FEW-NERD GENIA ACE05

1,000
SN 6.9 10.0 10.5 8.0

SSN
4.9 6.4 7.1 5.7

↓ 29% ↓ 36% ↓ 33% ↓ 29%

2,000
SN 13.7 19.8 21.2 15.9

SSN
9.9 12.8 14.2 11.3

↓ 28% ↓ 36% ↓ 33% ↓ 29%

5,000
SN 33.6 49.5 53.7 35.1

SSN
24.4 31.9 35.7 26.0

↓ 27% ↓ 35% ↓ 34% ↓ 26%

ALL
SN 100.1 1311.3 162.4 58.3

SSN
72.6 844.8 108.0 41.2

↓ 27% ↓ 36% ↓ 33% ↓ 29%

Table 4: Training time (in seconds) of SPANNER (SN)
and SMARTSPANNER (SNN) methods on the datasets
of CoNLL03, FEW-NERD, GENIA and ACE05.

# Sents Methods CoNLL03 FEW-NERD GENIA ACE05

1,000
SN 40.5 1029.2 37.6 12.7

SSN
14.7 301.7 12.2 5.4

↓ 64% ↓ 71% ↓ 68% ↓ 57%

2,000
SN 40.7 1026.7 37.9 12.7

SSN
14.0 280.3 11.8 5.1

↓ 66% ↓ 73% ↓ 69% ↓ 60%

5,000
SN 41.0 1041.0 37.8 12.7

SSN
13.5 277.3 11.5 5.2

↓ 67% ↓ 73% ↓ 70% ↓ 59%

ALL
SN 41.1 1041.7 37.8 12.7

SSN
13.5 270.1 11.1 5.2

↓ 67% ↓ 74% ↓ 71% ↓ 59%

Table 5: Inferring time (in seconds) of SPANNER
(SN) and SMARTSPANNER (SNN) methods on the
test datasets of CoNLL03, FEW-NERD, GENIA and
ACE05.

23.06% to 50.66% on GENIA, and 20.44% to
55.38% on ACE05). Therefore, SMARTSPANNER

is much more robust in low resource scenarios.
From the comparison results of SEQLAB and

SMARTSPANNER on the two flat NER datasets, it
can be seen that the F1 scores of SMARTSPANNER

are better than those of SEQLAB on all low resource
settings except on the 1,000 sentences of CoNLL03.
It is worth mentioning that SMARTSPANNER is
more effective than SEQLAB on all the low re-
source settings of FEW-NERD — using such set-
tings poses a significant challenging due to the
large number of entity types in FEW-NERD.

Therefore, by introducing the NEH prediction
task, SMARTSPANNER greatly improves the ro-
bustness of SPANNER in low resource scenarios,
even better than SEQLAB.

4.4 Efficiency

According to our analysis, compared with SPAN-
NER, SMARTSPANNER reduces the number of
samples (spans) for training and inferring. To ver-
ify this, we compare the efficiencies of SPANNER

and SMARTSPANNER in this section. Table 4 and

# Sents Methods Tasks # CAT # PS # NS # PS / # NS

1,000
SSN

NEH 2 3,072 15,553 1/5.1
SP 8 3,341 47,168 1/13.1

SN SP 8 3,341 207,281 1/62.0

2,000
SSN

NEH 2 6,100 30,874 1/5.1
SP 8 6,668 87,177 1/13.1

SN SP 8 6,668 412,529 1/61.9

5,000
SSN

NEH 2 15,584 78,179 1/5.0
SP 8 16,973 222,745 1/13.1

SN SP 8 16,973 1,053,331 1/62.1

ALL
SSN

NEH 2 22,614 114,524 1/5.1
SP 8 24,614* 323,921 1/13.2

SN SP 8 24,614* 1,545,836 1/62.8
* The value is 24,614, not 24,700 shown in Table 2. This is because spans exceeding

the max span width (set to 20 in experiments) are not used for training.

Table 6: Descriptions of ACE05’s training data for
the tasks in SMARTSPANNER (SSN) and SPANNER
(SN) methods, where # CAT, # PS and # NS mean
the number of classification categories, the number of
positive samples and the number of negative samples
respectively.

Table 5 report the running time of the two meth-
ods on the four datasets (CoNLL03, FEW-NERD,
GENIA and ACE05) during training and inferring.
For training, the running time is the average time
to train one epoch. For inferring, the running time
is the time to complete NER on the test datasets.

From Table 4, it could be seen that SMARTSPAN-
NER takes at least 26% less training time than
SPANNER on both all low resource settings and the
entire data of all the four datasets. This is because
much fewer negative samples for span classifica-
tion are used in the training of SMARTSPANNER,
according to the selection strategy.

From Table 5, it could be seen that the inferring
time of SMARTSPANNER is at least 57% shorter
than that of SPANNER on the four test datasets
of CoNLL03, FEW-NERD, GENIA and ACE05.
This is because only the spans that start with the
predicted NEHs are used for span classification in
SMARTSPANNER, which reduces the number of
spans for inferring greatly.

From the comparison results in Table 4 and Ta-
ble 5, SMARTSPANNER is much more efficient
than SPANNER during training and inferring on all
low resource settings and the entire data of all the
four datasets.

5 Analysis

We have shown the robustness of SMARTSPANNER

in low resource scenarios. In this section, we aim to
take a deeper look and understand what contributes
to its final performance.



Methods Tasks # Sentences
1,000 2,000 5,000 ALL

SSN
NEH 17,909 17,909 17,909 17,909
SP 40,743 38,409 37,874 37,553

SN SP 192,302 192,302 192,302 192,302

Table 7: Number of inferring samples for the tasks in
SMARTSPANNER (SSN) and SPANNER (SN) methods
on the test dataset of ACE05 (1,000, 2,000, 5,000 and
all sentences for training respectively).

5.1 Task Analysis
SMARTSPANNER has two tasks, i.e., NEH predic-
tion task and span classification (SP) task, while
SPANNER has one task, i.e., SP task. We first pro-
vide a detailed comparison of training data for these
tasks on ACE05, which are shown in Table 6.

From Table 6, it could be found that the task of
NEH prediction is the easiest, because the num-
ber of classification categories is the smallest and
the balance of positive and negative samples8 is
the best. Meanwhile, due to the more balanced
positive and negative samples brought by the se-
lection strategy, the task of span classification in
SMARTSPANNER is much easier than that in SPAN-
NER. Although deep learning methods can solve
difficult problems, they require large amounts of
data. Therefore, SMARTSPANNER is more effec-
tive than SPANNER for NER in low-resource sce-
narios. Furthermore, it could be seen that the total
samples of SMARTSPANNER for training are much
less than those of SPANNER (about 70% reduction).
This is why the training time of SMARTSPANNER

is much less than that of SPANNER.
Next, we compare the number of inferring sam-

ples for the tasks in SMARTSPANNER and SPAN-
NER on the test dataset of ACE05 when 1,000,
2,000, 5,000 and all sentences are used for training,
as shown in Table 7. It could be clearly seen that
the total inferring samples in SMARTSPANNER are
greatly less than those in SPANNER (more than
70% reduction). This is why the inferring time of
SMARTSPANNER is much less.

Finally, we provide the results of the two tasks
in SMARTSPANNER on the test dataset of ACE05
when 1,000, 2,000, 5,000 and all sentences are used
for training data. In Table 8, the rows of “NEH”
list the results of the NEH prediction task, the rows
of “SP” list the results of the SP task on all the
possible spans, and the rows of “NEH + SP” list

8The positive samples means the spans are NEHs in NEH
prediction task or NEs in span classification task, otherwise
they are negative samples.

# Sents Tasks P R F1

1,000
NEH 78.03 91.84 84.33
SP 39.33 62.12 48.13
NEH + SP 51.03 60.60 55.38 (↑ 7.25)

2,000
NEH 84.44 94.86 89.34
SP 48.60 77.98 59.87
NEH + SP 62.64 76.37 68.82 (↑ 8.95)

5,000
NEH 87.66 95.91 91.60
SP 60.68 85.92 71.12
NEH + SP 70.49 84.33 76.79 (↑ 5.67)

ALL
NEH 89.76 95.91 92.73
SP 65.04 88.51 73.71
NEH + SP 77.51 87.05 82.00 (↑ 8.29)

Table 8: The average values of precision (P ), recall
(R) and F1 scores of the two tasks (NEH and SP) in
SMARTSPANNER on the test dataset of ACE05 in 10
independent runs (1,000, 2,000, 5,000 and all sentences
for training respectively).

the results of SMARTSPANNER (only the spans
that start with the predicted NEHs are used for
span classification).

From Table 8, it could be seen that the F1 scores
of NEH prediction tasks are higher than those of
span classification tasks due to the lower task dif-
ficulty. When span classification in SMARTSPAN-
NER is used for all possible spans, the precision
suffers because of the inconsistent distributions of
training and test data (worse than that of SPAN-
NER in Table 3). When NEH prediction is used
before span classification (i.e., only the spans that
start with the predicted NEHs are used for span
classification), the precision rates are greatly im-
proved (more than 10%), the recall rates are slightly
decreased (less than 2%), and the F1 scores are
significantly improved (more than 5%). The reason
for the drop of recall rates is that the recall rates of
NEH are not 100%. Two cases from the test dataset
of ACE05 are shown in A.1.

The analyses on CoNLL03, FEW-NERD and
GENIA are provided in A.2.

5.2 Hyper-Parameter Analysis

There are two hyper-parameters (sample selection
probability sp and joint training weight w) for train-
ing SMARTSPANNER. In this section, we provide a
detailed analysis for the values of these two hyper-
parameters respectively.

5.2.1 Sample Selection Probability
We vary the sample selection probability parameter
sp from 0 to 1 with step 0.05, and perform 10
independent runs of SMARTSPANNER for each
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Figure 4: The average values of Precision, Recall and
F1 scores of NEH prediction on the test dataset of
ACE05 with different sample selection probabilities sp
(from 0 to 1 with step 0.05) in 10 independent runs
when 1,000, 2,000, 5,000 and all sentences are used for
training respectively.
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Figure 5: The average values of Precision, Recall and
F1 scores of SMARTSPANNER on the test dataset of
ACE05 with different sample selection probabilities sp
(from 0 to 1 with step 0.05) in 10 independent runs
when 1,000, 2,000, 5,000 and all sentences are used for
training respectively.

value of sp on the dataset ACE05. Fig. 4 and Fig. 5
show the results (Precision, Recall and F1 scores)
of NEH prediction and NER in SMARTSPANNER

respectively when the parameter sp varies (the joint
training weight w remains at 0.2).

From Fig. 4, it could be seen that the recall rates
of NEH prediction hardly change and the precision
rates improve slightly with the increase of the pa-
rameter sp. Therefore, the change of the parameter
sp has little effect on the task of NEH prediction.
That is to say, despite the parameter sp changes,
the distribution of the data for span classification
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Figure 6: The average values of Precision, Recall and
F1 scores of SMARTSPANNER on the test dataset of
ACE05 with different joint training weight w (from 0.1
to 0.9 with step 0.1) in 10 independent runs when 1,000,
2,000, 5,000 and all sentences are used for training
respectively.

in SMARTSPANNER during inference is stable.

From Fig. 5, it could be seen that the F1 scores
of NER in SMARTSPANNER decreases with the
increase of the parameter sp, especially when the
training data is small (such as 1,000 sentences).
This is due to the inconsistency between training
data and inferring data for span classification in
SMARTSPANNER (the larger the parameter sp, the
higher the inconsistency). Since the robustness of
deep learning methods will improve as the amount
of data increases, SMARTSPANNER is less sen-
sitive to the parameter sp when the training data
increases (such as all sentences). From Fig. 5, it
could be seen that 0.05 is a good choice for the
parameter sp in low resource scenarios.

5.2.2 Joint Training Weight

We vary the joint training weight w from 0.1 to
0.9 with step 0.1 and perform 10 independent runs
of SMARTSPANNER for each value of w on the
dataset ACE05. Fig. 6 shows the results (Precision,
Recall and F1 scores) of NER when the parameter
w varies (the sample selection probability parame-
ter sp remains at 0.05).

From Fig. 6, it could be found that the value of
parameter w between 0.2 and 0.4 is suitable for
SMARTSPANNER according to the F1 scores. And
the sensitivity of SMARTSPANNER to parameter w
decreases with the increase of training data.



6 Conclusion

In this paper, it is found that the SPANNER method
is sensitive to the amount of training data, i.e., the
performance of SPANNER is worse than SEQLAB

in low resource scenarios. In order to alleviate this
problem, SMARTSPANNER is proposed by intro-
ducing the NEH prediction task into SPANNER in
a multi-task learning manner. The comparison re-
sults of experiments designed on the CoNLL03,
FEW-NERD, GENIA and ACE05 datasets demon-
strate that SMARTSPANNER is much more robust
in low resource scenarios than SPANNER, and
greatly reduces the running time of training and
inferring. In addition, the reasons for the strong
robustness of SMARTSPANNER are analyzed in
depth on the dataset ACE05.

Limitations

The SMARTSPANNER method proposed in this
paper is very effective in low resource scenar-
ios. However, when the training data contains
more than 10,000 sentences, compared with SPAN-
NER, the advantages of SMARTSPANNER on the
CoNLL03 and GENIA datasets are not so obvious.
Furthermore, when all the training data of the FEW-
NERD dataset (more than 100,000 sentences) is
used, the results of SMARTSPANNER even drop a
bit. Therefore, SMARTSPANNER is not strongly
recommended in high resource scenarios.

Ethics Statement

In this section, we discuss the ethical consideration
of this work from the following two aspects. First,
for SMARTSPANNER, the code, data and pretrained
models adopted from previous works are granted
for research-purpose usage. Second, SMARTSPAN-
NER improves the robustness of SPANNER in low
resource scenarios by introducing the NEH predic-
tion task. Hence we do not foresee any major risks
or negative societal impact of our work. However,
like any other ML models, the named entities recog-
nized by our model may not always be completely
accurate and hence should be used with caution for
real-world applications.

References
Tom Brown, Benjamin Mann, Nick Ryder, Melanie

Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,

Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Jason P.C. Chiu and Eric Nichols. 2016. Named entity
recognition with bidirectional LSTM-CNNs. Trans-
actions of the Association for Computational Linguis-
tics, 4:357–370.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Ning Ding, Guangwei Xu, Yulin Chen, Xiaobin Wang,
Xu Han, Pengjun Xie, Haitao Zheng, and Zhiyuan
Liu. 2021. Few-NERD: A few-shot named entity
recognition dataset. In Proceedings of the 59th An-
nual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 3198–3213, Online. Association
for Computational Linguistics.

Jenny Rose Finkel and Christopher D. Manning. 2009.
Nested named entity recognition. In Proceedings of
the 2009 Conference on Empirical Methods in Natu-
ral Language Processing, pages 141–150, Singapore.
Association for Computational Linguistics.

Jinlan Fu, Xuanjing Huang, and Pengfei Liu. 2021.
SpanNER: Named entity re-/recognition as span pre-
diction. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 7183–7195, Online. Association for Computa-
tional Linguistics.

Geoffrey E. Hinton and Ruslan Salakhutdinov. 2006.
Reducing the dimensionality of data with neural net-
works. Science, 313(5786):504–507.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Computation, 9(8):1735–
1780.

Jiaxin Huang, Chunyuan Li, Krishan Subudhi, Damien
Jose, Shobana Balakrishnan, Weizhu Chen, Baolin
Peng, Jianfeng Gao, and Jiawei Han. 2021. Few-
shot named entity recognition: An empirical baseline
study. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Process-
ing, pages 10408–10423, Online and Punta Cana,

https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.1162/tacl_a_00104
https://doi.org/10.1162/tacl_a_00104
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2021.acl-long.248
https://doi.org/10.18653/v1/2021.acl-long.248
https://aclanthology.org/D09-1015
https://doi.org/10.18653/v1/2021.acl-long.558
https://doi.org/10.18653/v1/2021.acl-long.558
https://doi.org/10.1126/science.1127647
https://doi.org/10.1126/science.1127647
https://doi.org/10.18653/v1/2021.emnlp-main.813
https://doi.org/10.18653/v1/2021.emnlp-main.813
https://doi.org/10.18653/v1/2021.emnlp-main.813


Dominican Republic. Association for Computational
Linguistics.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirec-
tional lstm-crf models for sequence tagging. Cite
arxiv:1508.01991.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blun-
som. 2014. A convolutional neural network for mod-
elling sentences. In Proceedings of the 52nd Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 655–665,
Baltimore, Maryland. Association for Computational
Linguistics.

Jin-Dong Kim, Tomoko Ohta, Yuka Tateisi, and Junichi
Tsujii. 2003. Genia corpus - a semantically annotated
corpus for bio-textmining. Bioinformatics, 19 Suppl
1:i180–2.

John D. Lafferty, Andrew McCallum, and Fernando
C. N. Pereira. 2001. Conditional random fields:
Probabilistic models for segmenting and labeling se-
quence data. In Proceedings of the Eighteenth In-
ternational Conference on Machine Learning, ICML
’01, page 282–289, San Francisco, CA, USA. Morgan
Kaufmann Publishers Inc.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Bill Yuchen Lin, Dong-Ho Lee, Ming Shen, Ryan
Moreno, Xiao Huang, Prashant Shiralkar, and Xi-
ang Ren. 2020. TriggerNER: Learning with entity
triggers as explanations for named entity recogni-
tion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
8503–8511, Online. Association for Computational
Linguistics.

Pan Liu, Yanming Guo, Fenglei Wang, and Guohui Li.
2022. Chinese named entity recognition: The state
of the art. Neurocomput., 473(C):37–53.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019. OpenRe-
view.net.

Ying Luo, Fengshun Xiao, and Hai Zhao. 2020. Hi-
erarchical contextualized representation for named
entity recognition. In The Thirty-Fourth AAAI Con-
ference on Artificial Intelligence, AAAI 2020, The
Thirty-Second Innovative Applications of Artificial
Intelligence Conference, IAAI 2020, The Tenth AAAI
Symposium on Educational Advances in Artificial In-
telligence, EAAI 2020, New York, NY, USA, February
7-12, 2020, pages 8441–8448. AAAI Press.

Andrew McCallum and Wei Li. 2003. Early results for
named entity recognition with conditional random
fields, feature induction and web-enhanced lexicons.
In Proceedings of the Seventh Conference on Natural
Language Learning at HLT-NAACL 2003, pages 188–
191.

Xue Mengge, Bowen Yu, Zhenyu Zhang, Tingwen Liu,
Yue Zhang, and Bin Wang. 2020. Coarse-to-Fine Pre-
training for Named Entity Recognition. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
6345–6354, Online. Association for Computational
Linguistics.

Takashi Shibuya and Eduard Hovy. 2020. Nested named
entity recognition via second-best sequence learning
and decoding. Transactions of the Association for
Computational Linguistics, 8:605–620.

Chuanqi Tan, Wei Qiu, Mosha Chen, Rui Wang, and
Fei Huang. 2020. Boundary enhanced neural span
classification for nested named entity recognition.
Proceedings of the AAAI Conference on Artificial
Intelligence, 34:9016–9023.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In
Proceedings of the Seventh Conference on Natural
Language Learning at HLT-NAACL 2003, pages 142–
147.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proceedings of the 31st International
Conference on Neural Information Processing Sys-
tems, NIPS’17, page 6000–6010, Red Hook, NY,
USA. Curran Associates Inc.

Yu Wang, Hanghang Tong, Ziye Zhu, and Yun Li. 2022.
Nested named entity recognition: A survey. ACM
Trans. Knowl. Discov. Data, 16(6).

Maobin Weng and Weiwen Zhang. 2023. Named entity
recognition based on bert-bilstm-span in low resource
scenarios. In 2023 15th International Conference
on Computer Research and Development (ICCRD),
pages 32–37.

Mingbin Xu, Hui Jiang, and Sedtawut Watcharawit-
tayakul. 2017. A local detection approach for named
entity recognition and mention detection. In Proceed-
ings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 1237–1247, Vancouver, Canada. Association
for Computational Linguistics.

Urchade Zaratiana, Nadi Tomeh, Pierre Holat, and
Thierry Charnois. 2022. Named entity recognition
as structured span prediction. In Proceedings of the
Workshop on Unimodal and Multimodal Induction
of Linguistic Structures (UM-IoS), pages 1–10, Abu
Dhabi, United Arab Emirates (Hybrid). Association
for Computational Linguistics.

http://arxiv.org/abs/1508.01991
http://arxiv.org/abs/1508.01991
https://doi.org/10.3115/v1/P14-1062
https://doi.org/10.3115/v1/P14-1062
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.752
https://doi.org/10.18653/v1/2020.acl-main.752
https://doi.org/10.18653/v1/2020.acl-main.752
https://doi.org/10.1016/j.neucom.2021.10.101
https://doi.org/10.1016/j.neucom.2021.10.101
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://ojs.aaai.org/index.php/AAAI/article/view/6363
https://ojs.aaai.org/index.php/AAAI/article/view/6363
https://ojs.aaai.org/index.php/AAAI/article/view/6363
https://aclanthology.org/W03-0430
https://aclanthology.org/W03-0430
https://aclanthology.org/W03-0430
https://doi.org/10.18653/v1/2020.emnlp-main.514
https://doi.org/10.18653/v1/2020.emnlp-main.514
https://doi.org/10.1162/tacl_a_00334
https://doi.org/10.1162/tacl_a_00334
https://doi.org/10.1162/tacl_a_00334
https://doi.org/10.1609/aaai.v34i05.6434
https://doi.org/10.1609/aaai.v34i05.6434
https://aclanthology.org/W03-0419
https://aclanthology.org/W03-0419
https://doi.org/10.1145/3522593
https://doi.org/10.1109/ICCRD56364.2023.10080054
https://doi.org/10.1109/ICCRD56364.2023.10080054
https://doi.org/10.1109/ICCRD56364.2023.10080054
https://doi.org/10.18653/v1/P17-1114
https://doi.org/10.18653/v1/P17-1114
https://aclanthology.org/2022.umios-1.1
https://aclanthology.org/2022.umios-1.1


GuoDong Zhou and Jian Su. 2002. Named entity recog-
nition using an HMM-based chunk tagger. In Pro-
ceedings of the 40th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 473–480,
Philadelphia, Pennsylvania, USA. Association for
Computational Linguistics.

A Appendix

0.2 0.4 0.6 0.8

70

75

80

85

90

1,000 Sentences

Precison
Recall
F1 score

0.2 0.4 0.6 0.8
80

85

90

95
2,000 Sentences

0.2 0.4 0.6 0.8

88

90

92

94

96
5,000 Sentences

0.2 0.4 0.6 0.8

90

92

94

96
ALL Sentences

Figure 7: The average values of Precision, Recall and
F1 scores of NEH prediction in SMARTSPANNER on
the test dataset of ACE05 with different joint training
weight w (from 0.1 to 0.9 with step 0.1) in 10 indepen-
dent runs when 1,000, 2,000, 5,000 and all sentences
are used for training respectively.

Dataset SPANNER SMARTSPANNER

P R F1 P R F1

CoNLL03 74.25 56.11 63.67 88.98 88.87 88.92
FEW-NERD 0.00 0.00 0.00 47.81 29.90 36.67
GENIA 50.09 30.64 37.81 61.72 71.61 66.28
ACE05 72.41 12.05 19.60 70.29 76.44 73.23

Table 9: Averaged P , R and F1 values of SPANNER
and SMARTSPANNER methods over 3 independent runs,
where the models are trained on 1,000 sentences ran-
domly sampled from the training data with the maxi-
mum epoch set to 25.

A.1 Case Study
Two cases from ACE05 are shown in Table 10,
where the results of SPANNER and SMARTSPAN-
NER are provided. From Table 10, it could be
clearly seen that SMARTSPANNER performs better
for NER than SPANNER, and the predicted NEHs
are beneficial to improve the precision of NER in
SMARTSPANNER.

A.2 Supplement Experimental Results
We provide the results of task analysis on the
datasets CoNLL03, FEW-NERD and GENIA,

which are shown in Table 11, Table 12 and Table 13.
From Table 11, it could be seen that SMARTSPAN-
NER also obtains much more balanced positive
and negative samples on the three datasets. As
shown in Table 11 and Table 12, SMARTSPANNER

requires significantly fewer samples for training
and inferring on the three datasets than SPANNER,
enabling much faster training and inferring. Ta-
ble 13 demonstrates the results of the two tasks in
SMARTSPANNER on the three datasets, which are
consistent with the results on ACE05.

For reference, we report the results of NEH pre-
diction in SMARTSPANNER on ACE05 with differ-
ent joint training weight w in Fig. 7.

According to the results (Zaratiana et al., 2022),
setting a larger epoch value will lead to better re-
sults for SpanNER. Therefore, we just increase the
training epoch number from 10 to 25 and conduct
three independent experiments on the four datasets
(using random seeds 1, 2 and 42 to obtain 1,000
training sentences). The comparison results are re-
ported in Table 9. It can be seen that setting a larger
epoch number only results in a significant improve-
ment of F1 score for SPANNER on CoNLL03
(with minor improvements on GENIA and ACE05,
and no change on FEW-NERD). Moreover, the
superiority of SMARTSPANNER over SPANNER

remains evident across all four datasets, highlight-
ing the robustness of SMARTSPANNER in low-
resource scenarios.

https://doi.org/10.3115/1073083.1073163
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Case 1

Sentence He0 was1 the2 governor3 of4 my5 state6 of7 Texas8 ,9

where10 there11 are12 a13 whole14 lot15 of16 doctors17 .18

Ground Truth NEs
(Total 7)

(0, 0, PER), (2, 17, PER), (5, 5, PER), (5, 17, GPE),
(8, 8, GPE), (10, 10, GPE), (13, 17, PER)

Ground Truth NEHs
(Total 6)

(0, 0), (2, 2), (5, 5), (8, 8), (10, 10), (13, 13)

NEs by SPANNER
(2 correct, 2 incorrect)

(0, 0, PER, 0.8446), (5, 8, GPE, 0.4203),
(5, 17, PER, 0.4736), (8, 8, GPE, 0.6953)

NEHs by SMARTSPANNER
(6 correct, 1 incorrect)

(0, 0, 0.9961), (2, 2, 0.9769), (5, 5, 0.9995), (8, 8, 0.9005),
(10, 10, 0.9729), (11, 11, 0.7172), (13, 13, 0.9433)

NEs by SMARTSPANNER
(5 correct, 1 incorrect)

(0, 0, PER, 0.9465), (5, 5, PER, 0.8316),
(8, 8, GPE, 0.9542), (10, 10, GPE, 0.7904),
(11, 17, PER, 0.6768), (13, 17, PER, 0.8246)

NEs by SMARTSPANNER
without NEHs
(5 correct, 3 incorrect)

(0, 0, PER, 0.9465), (5, 5, PER, 0.8316),
(6, 8, GPE, 0.6781), (8, 8, GPE, 0.9542),
(10, 10, GPE, 0.7904), (11, 17, PER, 0.6768),
(13, 17, PER, 0.8246), (17, 17, PER, 0.7493)

Case 2

Sentence A0 traveler1 was2 driving3 through4 Arkansas5 when6 he7

lost8 his9 way10 and11 got12 off13 the14 main15 highway16

.17

Ground Truth NEs
(Total 5)

(0, 1, PER), (5, 5, GPE), (7, 7, PER), (9, 9, PER),
(14, 16, FAC)

Ground Truth NEHs
(Total 5)

(0, 0), (5, 5), (7, 7), (9, 9), (14, 14)

NEs by SPANNER
(4 correct, 1 incorrect)

(0, 1, PER, 0.8230), (0, 7, PER, 0.7019),
(5, 5, GPE, 0.7611), (7, 7, PER, 0.8407),
(9, 9, PER, 0.5256)

NEHs by SMARTSPANNER
(5 correct, 0 incorrect)

(0, 0, 0.9886), (5, 5, 0.9680), (7, 7, 0.9959), (9, 9, 0.9899),
(14, 14, 0.9180)

NEs by SMARTSPANNER
(5 correct, 1 incorrect)

(0, 1, PER, 0.9403), (0, 5, PER, 0.5006),
(5, 5, GPE, 0.9541), (7, 7, PER, 0.8839),
(9, 9, PER, 0.7767), (14, 16, FAC, 0.4102)

NEs by SMARTSPANNER
without NEHs
(5 correct, 2 incorrect)

(0, 1, PER, 0.9403), (0, 5, PER, 0.5006),
(1, 1, PER, 0.6204), (5, 5, GPE, 0.9541),
(7, 7, PER, 0.8839), (9, 9, PER, 0.7767),
(14, 16, FAC, 0.4102)

Table 10: Two cases from ACE05. The superscript of each word indicates its index in the sentence, the ground truth
NEs are represented by triples (NE start word index, NE end word index, NE type), and the ground truth NEHs are
represented by special spans (same start and end indexes). The NEs predicted by SPANNER and SMARTSPANNER
are represented by four-tuples (predicted NE start word index, predicted NE end word index, predicted NE type,
predicted probability), and the NEHs predicted by SMARTSPANNER are represented by triples (predicted start
index, predicted end index, predicted probability). The triples or four-tuples in red indicate incorrect predictions.
The rows of “NEs by SMARTSPANNER without NEHs” show the predicted NEs by SMARTSPANNER when all
possible spans are used for NE prediction (i.e., the predicted NEHs are not used for span filtering).



# Sents Methods Tasks CoNLL03 FEW-NERD GENIA

# CAT # PS # NS # PS / # NS # CAT # PS # NS # PS / # NS # CAT # PS # NS # PS / # NS

1,000
SSN

NEH 2 1,620 12,446 1/7.7 2 2,598 22,190 1/8.5 2 2,859 23,223 1/8.1
SP 5 1,620 22,636 1/14.0 67 2,598 46,351 1/17.8 6 3,018 49,478 1/16.4

SN SP 5 1,620 150,140 1/92.7 67 2,598 311,226 1/119.8 6 3,018 333,423 1/110.5

2,000
SSN

NEH 2 3,244 24,794 1/7.6 2 5,214 44,146 1/8.5 2 5,705 46,968 1/8.2
SP 5 3,244 44,843 1/13.8 67 5,214 92,903 1/17.8 6 6,054 99,718 1/16.5

SN SP 5 3,244 298,936 1/92.2 67 5,214 619,037 1/118.7 6 6,054 677,073 1/111.8

5,000
SSN

NEH 2 7,862 61,086 1/7.8 2 12,942 109,878 1/8.5 2 14,513 117,807 1/8.1
SP 5 7,862 107,335 1/13.7 67 12,942 229,465 1/17.7 6 15,423 254,543 1/16.5

SN SP 5 7,862 727,192 1/92.5 67 12,942 1,538,134 1/118.8 6 15,423 1,705,363 1/110.6

ALL
SSN

NEH 2 23,499 181,068 1/7.7 2 339,602 2,880,060 1/8.5 2 43,536 354,703 1/8.1
SP 5 23,499 319,074 1/13.6 67 339,602 6,013,526 1/17.7 6 46,984 766,669 1/16.3

SN SP 5 23,499 2,146,032 1/91.3 67 339,602 40,291,745 1/118.6 6 46,984 5,133,236 1/109.3

Table 11: Descriptions of the training data of CoNLL03, FEW-NERD and GENIA for the tasks in SMARTSPANNER
(SSN) and SPANNER (SN) methods, where # CAT means the number of classification categories, # PS means the
number of positive samples, and # NS means the number of negative samples.

Methods Tasks CoNLL03 (# Sentences) FEW-NERD (# Sentences) GENIA (# Sentences)

1,000 2,000 5,000 ALL 1,000 2,000 5,000 ALL 1,000 2,000 5,000 ALL

SSN
NEH 46,666 46,666 46,666 46,666 919,162 919,162 919,162 919,162 46,878 46,878 46,878 46,878
SP 69,758 62,204 60,424 60,323 1,697,569 1,581,779 1,519,050 1,452,749 93,219 85,390 80,286 78,402

SN SP 477,887 477,887 477,887 477,887 11,595,325 11,595,325 11,595,325 11,595,325 616,491 616,491 616,491 616,491

Table 12: Number of inferring samples for the tasks in SMARTSPANNER (SSN) and SPANNER (SN) methods
on the test datasets of CoNLL03, FEW-NERD and GENIA (1,000, 2,000, 5,000 and all sentences for training
respectively).

# Sents Tasks CoNLL03 FEW-NERD GENIA

P R F1 P R F1 P R F1

1,000
NEH 82.87 95.13 88.52 72.45 91.88 81.01 66.58 88.62 76.02
SP 70.65 69.25 69.94 48.45 12.18 19.46 28.52 69.57 40.45
NEH + SP 77.85 67.75 72.45 (↑ 2.51) 49.74 12.18 19.57 (↑ 0.11) 41.36 65.46 50.66 (↑ 6.21)

2,000
NEH 91.81 97.01 94.34 78.94 93.35 85.54 72.20 90.39 80.27
SP 74.00 81.40 77.52 45.81 27.16 34.07 37.28 82.04 51.26
NEH + SP 87.16 80.66 83.78 (↑ 6.26) 48.54 27.02 34.69 (↑ 0.62) 54.50 77.35 63.94 (↑ 12.68)

5,000
NEH 95.56 97.66 96.60 82.89 93.96 88.08 78.56 90.20 83.98
SP 82.23 90.46 86.15 52.50 59.40 55.74 49.14 86.72 62.74
NEH + SP 89.98 89.88 89.93 (↑ 3.78) 57.97 58.56 58.26 (↑ 2.52) 65.67 81.20 72.61 (↑ 9.87)

ALL
NEH 96.42 97.95 97.18 87.31 94.56 90.79 81.71 89.64 85.49
SP 89.44 91.94 90.68 61.74 71.55 66.28 55.92 88.36 68.47
NEH + SP 91.25 91.56 91.40 (↑ 0.72) 67.45 70.23 68.81 (↑ 2.53) 71.61 82.22 76.54 (↑ 8.07)

Table 13: The average values of precision (P ), recall (R) and F1 scores of the two tasks (NEH and SP) in
SMARTSPANNER on the test datasets of CoNLL03, FEW-NERD and GENIA in 10 independent runs (1,000, 2,000,
5,000 and all sentences for training respectively).


