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ABSTRACT

In this work, we focus on knowledge transfer in the lifelong learning setting. We
propose a lifelong learner that exploits the similarities between the optimal weight
spaces of tasks, thereby enabling knowledge transfer across tasks in a continual
learning setting. To characterize the “task-parameter relationships”, we propose a
metric called adaptation rate integral (ARI) that measures the expected adaptation
rate over a finite number of steps for a (task, parameter) pair. These task-parameter
relationships are learned by an auxiliary network trained on guided explorations of
parameter space. The learned auxiliary network is then used to heuristically select
the best parameter sets on seen tasks, which are consolidated using a hypernetwork.
We show that the proposed approach can transfer knowledge to new tasks without
any increase in overall model capacity, while naturally mitigating catastrophic
forgetting.

1 INTRODUCTION

An embodied agent that operates in the unbounded partially-observable real-world with its diversity
of tasks, must possess the ability to acquire knowledge and skills continually. An embodied and
therefore finite agent, cannot however feasibly grow its skill set as a set of disjoint abilities learnt
afresh for each task. For complex tasks, this form of learning would be prohibitively expensive.
Conversely, learning a single skill that can be modulated and maintained to be effective on the large
diversity of tasks is unfeasible (a broad proof is provided in the No Free Lunch Theorems;Wolpert &
Macready (1997)). A skill set is therefore necessary - one that allows the agent to benefit from the
redundancies between similar tasks that require similar skills. Skills optimized for previous tasks
may reasonably be leveraged to improve learning quality and efficiency on unseen yet related tasks.

Such mechanisms are widely reflected in fundamental neuro-cognitive processes in human learning
and memory (Tomita et al. (2021); Caramazza & Shelton (1998). The re-use of neural circuitry across
diverse cognitive tasks appears to be a central organizational principle of the brain Anderson (2010).
Shared structures and properties across tasks and environments are exploited. Similar tasks are solved
rapidly and more effectively by re-using acquired skills, while novel experiences are prioritized within
the learning bandwidths (Caramazza & Shelton (1998); Coutanche & Thompson-Schill (2015)). A
continual consolidation of knowledge occurs (Ritvo et al. (2019); Wilson & McNaughton (1994);
Alvarez & Squire (1994)) aimed at retaining salient, widely and frequently re-usable knowledge/skills.
This is particularly evident in memory organization, knowledge consolidation, and the role of novelty
and forgetting in the memory (Tomita et al. (2021); Ritvo et al. (2019)). The aim of our work is to
incorporate these mechanisms within the continual learning (CL) setting.

Modern machine learning (ML) algorithms still struggle to replicate this human ability to learn
continually. The phenomenon of catastrophic forgetting (McCloskey & Cohen (1989); French (1999))
- the difficulty in the retention of old information when new information is acquired, is commonly
observed in training continually across multiple domains. This is a fundamental consequence of
the transfer-interference trade-off (Riemer et al. (2018)) - for a singular finite network continually
adapted to a shifting distribution, catastrophic forgetting is inevitable. The field of continual learning
(CL) has therefore focused largely on mitigating catastrophic forgetting - with limited success in
enabling knowledge transfer (Rebuffi et al. (2017); Lopez-Paz & Ranzato (2017); Kirkpatrick et al.
(2017); Zenke et al. (2017)) due in part to the single network constraints generally applied in CL
(Ramesh & Chaudhari (2021)).
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Figure 1: Illustration of shared structure in the optimal weight manifolds of tasks: Parameters are
shown to be adapted from the initialization set Θ0 ∼ p(Θ) (centered, in grey) for tasks τ1, τ2, τ3
in sequence. We illustrate how parameters trained on tasks with a greater vicinity of their optimal
weight manifolds (W∗), may be transferred with a higher adaptation rate (illustrated as a shorter
path). In this work, we aim to model the relationship between parameters in the weight space and the
adaptation path lengths (and vicinity) to the optimal weight manifold of tasks.

In contrast, an important characteristic of the human learning process is this elevated ‘quality of
convergence’ onto new tasks that share observed structures - a knowledge transfer that enables a
higher rate and quality of learning (varying with the degree and type of shared task structures). In a
lifelong learning setting, an efficient use of continually acquired knowledge necessitates a benefit to
such a quality of adaptation on new, albeit related tasks. In the limit, a continually learning agent
that most rapidly converges on a new task, effectively already understands the task. This manner of
optimization benefits an agent’s supervision/data requirements in learning a new task.

We motivate this re-use of acquired skills for improved adaptation quality on new tasks, as an
important trait of a generally learning agent. A faster ‘rate of adaptation’ (or convergence) in ML can
be formulated as a shorter adaptation trajectory to the basin of convergence. This can be achieved by
an initialization with a higher affinity to the basin or by enforcing a more direct trajectory (Flennerhag
et al. (2018)) through auxiliary feedback/constraints. In contrast, work on mitigating catastrophic
forgetting is focused on retaining parameters within the (optimal) weight manifolds learned for a
task (Riemer et al. (2018)). In this work we begin first, with the hypothesis that the shared structure
between tasks may be captured in the optimal weight spaces of the (networks trained on the) tasks.
And second, to allow skill re-use for a new task, a heuristic to search the explored (or previously
learned) weights set for the most promising weights is required.

To this end, we make the following contributions: i) To measure ’adaptation quality‘ for a (parameter
θ, task τ ), we formulate a metric - adaptation rate integral (ARI) that captures the convergence
rate and performance of a parameter θ trained on a task τ . ii) We then develop a heuristic that
can efficiently search the observed space of parameters (base model weights trained on previous
tasks) by estimating the adaptation quality of any (parameter θ, task τ ) pair. iii) Finally, in order to
efficiently store the parameters learned from previous tasks, we employ a meta model that stores
all observed parameters in its representation. This approach does not require any additional model
capacity compared to a single (base) model. We leverage these contributions to incrementally learn
and explore the observed space of parameters, improving the the degree of knowledge transfer as well
as the retained accuracy of the continual learner. We show that the benefits to knowledge transfer
come with no increase in overall model capacity, while mitigating catastrophic forgetting naturally.

2 PRELIMINARIES

In a supervised learning setting, a hypothesis h : X → Y, h ∈ H is learned on the input and label
spaces X , and Y (H is the hypothesis space). The learner h ≡ f(·; θ) : X → Y can be defined
as a ML model f parameterized by θ. The input and label spaces are related by a joint probability
distribution P (x, y) | x ∈ X and y ∈ Y . The empirical risk minimization (ERM) principle formulates
this problem of learning h as a minimization of the population risk eP (h) = P(h(x) ̸= y). For a
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Figure 2: Overall Method: During training, a set of parameters are trained on the given task and
their corresponding ARIs are calculated. After filtering using the ARI Maximization algorithm,
the selected parameters are stored in the hypernetwork for future retrieval. At Inference, from the
parameter set ΘM stored in the hypernetwork, the parameter θi with the maximum predicted ARI for
the given inference task τk is fetched and evaluated.

finite sample set S ≡ (X,Y ) = {xi, yi}i∈[1,N ] of size N seen by the learner h, the empirical risk is
êS(h) = 1

N

∑N
i=1 1h(xi )̸=yi where 1z is an indicator function. The constrained ERM optimization

problem is therefore defined as:

ERM Optimization: min
∀ h∈H

êS(h). (1)

While in a typical continual learning (CL) setting (Gupta et al. (2020b)), the learner observes a
sequence of M tasks [τ1, τ2, ..., τM ]; τi ∼ P (τ) sampled from a distribution of tasks P (τ). Here, a
task τi is defined as a set of Ni input, label pairs: Si ≡ (Xi,Y i) = {xn, yn}n∈[1,Ni]. Typically, the
objective is to find parameters θ that minimize the cumulative loss on all m seen tasks τ[1:m], while
having limited access to data Si from previous tasks τi (i < m). The CL objective is:

min
θ

m∑
i=1

ESi

[
li( f(Xi; θ),Y i)

]
= min

θ
ES[1:m]

[
Lm(f(X [1:m]; θ),Y [1:m])

]
(2)

where li is the loss on task τi and Lm is the sum of all m task-specific losses Lm =
∑m
i=1 li.

3 METHODOLOGY

Our proposed continual learning algorithm operates in the meta space of parameters (where we
refer to the weights of a ‘base’ model trained on each task as a parameter (θ). It uses a heuristic
to incrementally explore the meta space and consolidate parameters in a knowledge base that are
estimated to perform well on the distribution of observed tasks.

3.1 PROPOSED CL ALGORITHM

The proposed method relies on i) a meta model FΦ that efficiently stores parameters as a knowledge
base (ΘM) and ii) a small auxiliary network q̂ that estimates the ‘quality of convergence’ of a
parameter θ trained on a task τ .
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Training consists of an Exploration and a Consolidation phase. Let’s take Θ0 as a set of randomly
initialized parameters. i) Exploration: A combined training set ΘTr of parameters from the knowledge
base and initialization set (ΘTr ⊆ ΘM ∪ Θ0) is selected and adapted on task τ . A measure of the
convergence quality of all ΘTr parameters on task τ is calculated and retained. ii) Consolidation:
The calculated convergence qualities from all observed (parameter, task) pairs is used to train the
auxiliary network q̂. Finally, the subset of the combined knowledge base and adapted training set
(ΘM ∪ Θ̂Tr), that has the highest estimated quality of convergence on the observed distribution of
tasks, is retained in the updated knowledge base ΘM.
Testing consists of selecting the parameter from the knowledge base, with the highest estimated
quality of convergence for the task, fine-tuning and evaluating it.

A training budget Q can be enforced by simply using the auxiliary network q̂ to select the top
candidate networks for training on a task. Further, as the architectures are the same, data streams
(identical &) independent and only the initializations differ, training of the parameter set is fully
parallelizable with negligible overhead to training time complexity.

3.2 CONVERGENCE QUALITY MEASURE: ADAPTATION RATE INTEGRAL (ARI)

To formalize the ‘quality of convergence’ of a given parameter to the task space, we introduce
the Adaptation Rate Integral (ARI) metric. In a typical supervised learning setting, solving the
ERM optimization (eq. 1) involves iteratively modifying an initial hypothesis h(0) in discrete steps
h(t+1) = h(t)+α(t).δ(t). Here, t ∈ [0, T ] denotes the step index, h(t) represents the hypothesis at
step t, α(t) denotes the learning rate, and δ(t) is typically an estimate of the gradient of the empirical
risk. We define the adaptation rate integral or ARI, as simply the step-averaged area under the curve
of (1− êS(h(t))) ∀ t ∈ [0, T ]. For a continuous step space with infinitesimally small step sizes dt,

ψ (ARI) = 1− 1

T

∫ T

0

êS(h(t)) dt (3)

If the optimizer is allowed a maximum of T steps to solve eq. 1, the adaptation rate integral (ARI) is
maximized when the step averaged empirical risk on sample set S over T steps is minimum. Ideally,
a learning algorithm should converge to a good quality solution (one that achieves global minimum
of the empirical risk) in the fewest possible steps. The ARI value attempts to measure both the
quality of the converged solution and how fast this solution can be reached. The challenge lies in
how to estimate the value of ψ given an initial hypothesis h(0) and the optimizer, without explicitly
constructing the complete adaptation trajectory h.

3.2.1 PROPOSED CL OBJECTIVE: ARI Maximization

Let the initial parameters of function f(·; θ) adapting on task τ with a loss function l be θ0. Then, an
SGD operator U(θ0) acting on parameter θ0 is defined as follows: U(θ0) = θ1 = θ0 − α∇θ0 l(θ0).
Thus, the parameters θT obtained after T adaptation steps can be composed as UT (θ0) = U ◦U · · · ◦
U(θ0) = θT . In the CL setting, for a model f with initial parameters θ0 adapted on task τi over T
steps, the adaptation rate integral is defined as:

ψ(θ0, τi, T ) = 1− 1

T

T∑
t=0

êSi
(f(Xi; θt),Y i) ; Ut(θ0) = θt (4)

Now, in order to learn the optimal initial parameters θ∗0 ∈ Θ that maximizes the rate of adaptation
on a distribution of tasks τ ∼ P(τ), the learning objective using ARI (adaptation rate integral)
maximization becomes:

max
θ0∈Θ

Eτi∼P(τ)

[
ψ(θ0, τi, T )

]
= max
θ0∈Θ

Eτi∼P(τ) [1−
1

T

T∑
t=0

êSi
(f(Xi; θt),Y i)] (5)

For the continual learning setting, the ARI maximization objective can thus be expressed as:

ARI-Maximization Objective for CL: max
θ0∈Θ

m∑
i=1

ψ(θ0, τi, T ) = max
θ0∈Θ

Ψ(θ0, τ[1:m], T ) (6)
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where the learner has a budget of T iterations/steps to converge to each task τ , and Ψ(θ0, τ[1:m], T ) =∑m
i=1 ψ(θ0, τi, T ). In simple terms, given a new task τ where a learner’s initial parameter θ0 is

evolved across T adaptation steps θT = UT (θ0), we would like to find the optimal θ0 ∈ Θ such that
expected step-averaged empirical risk on τ across the T steps is minimized (Eq. 5). The proposed
objective explicitly attempts to maximize the quality of adaptation of the learner to the observed task
set as well as new tasks, which are sampled from the same task distribution.

3.3 OVERALL LIFELONG LEARNER & COMPONENTS

As a lifelong learner, our proposed approach operates as a compressed knowledge base ΘM =
{θ1, θ2, · · · , θN } of explored base model parameters that are optimized for maximal ‘adaptation
quality’ to the distribution of tasks τ ∼ P (τ) (while requiring the parameter budget of a single base
model). Typically, models are often over-parameterized in continual learning with wider layers to
mitigate the degree of interference. We circumvent the problem of interference, by searching the
space of base model parameters and maintaining the subset of parameters with maximal expected
ARI on the observed task distribution.

Algorithm 1 Lifelong Learning Algorithm
Input: Observed Tasks: τ[1:i−1] = {τ1, τ2, · · · , τi−1}, memory budget B, training budget Q
Require: ARI Estimator: q̂ϕ, meta model FΦ and embedding vectors EM, model and task encoders:
Eparam, Etask that generate model, task encodings ηθ,ητ resp. , Generated initialization set Θ0 =
{θ10, θ20, .., θN0 }
Ensure: |ΘM | ≤ B and |ΘTr| ≤ Q

Knowledge BaseΘM,Training Set ΘTr,Buffer S = {}
1: for Training on task τi do
2: ΘM ← {FΦ(ei)∀ei ∈ EM} Generate from meta-model

▷ Exploration
3: Select training set ΘTr | ΘTr ⊆ (ΘM ∪Θ0) as,

ΘTr ← argminΘTr,|ΘTr|≤Q
∑
θ0∈ΘTr

q̂ϕ(ηθ0 ,ητi)

4: Train ΘTr using SGD to obtain Θ̂Tr | Θ̂Tr ← {UT (θjTr)},∀ θ
j
Tr ∈ ΘTr

5: ψ(θTr, τi, T )← Calculate true adaptation rate integral ∀ θTr ∈ ΘTr on τi (Eq. 4)
6: Add true ARIs to buffer S = S ∪ {ψ(θTr, τi, T ),ηθTr

,ητi}∀ θTr ∈ ΘTr
▷ Consolidation

7: Train ARI Estimator q̂ϕ on S,
ϕ← ϕ− ν∇ϕ

∑
{ψ,ηθ,ητ}∈S

||ψ − q̂ϕ(ηθ,ητ )||22 (Eq. 7)
8: Consolidate ΘM to retain parameter subset that optimizes:

ΘM ← argminΘM⊆(Θ̂Tr∪ΘM),|ΘM|≤B
∑
θj∈ΘM

q̂ϕ(θj , τ[1:i], T )

9: Train meta-model FΦ on ΘM :
Φ← Φ− ν′∇Φ

∑
θk∈ΘM

||θk − FΦ(ek)||22
ek ← ek − ν′∇ek ||θk − FΦ(ek)||22; ∀k ∈ [1, n(ΘM)]

10: EM = {ek}n(ΘM)
k=1

11: end for
▷ Inference

12: for Inference on task τm do
13: ΘM ← {FΦ(ei)∀ei ∈ EM} Generate from meta-model
14: θ∗ ← argmaxθ∗∈ΘM

q̂ϕ(θ∗, τm, T )
15: θ∗ ← Finetune θ∗ using exemplar memory D, then infer on τm
16: end for

The proposed overall lifelong learning algorithm is detailed in Algorithm 1. Below, we detail the
various components of the CL learner:
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3.3.1 ARI ESTIMATOR

As searching exhaustively through a large space of parameters is prohibitively expensive, we require
a heuristic to search the parameter space efficiently for parameters that most effectively adapt to
observed and new tasks. Such a heuristic would effectively characterize the model-task relationships.

We learn a small-capacity auxiliary network q̂ϕ that estimates the true ARI ψ(θ, τ, T ) for a (parameter,
task) pair (θ, τ), θ ∈ Θ, τ ∼ P (τ). Thus, when a new task τ is observed, an estimation of adaptation
rate of the parameter θ to the task τ can be generated off hand by the auxiliary network, without
requiring a full training pass over the task. However, this first requires a projection of parameters
and tasks into a shared space γ, which is informative of a parameter θ’s adaptation rates for a task
and a task τ ’s characteristics. We learn two auxiliary encoders - a parameter encoder Eparam and a
task encoder Etask. Following the approach in Jeong et al. (2021b), we extract functional signatures
of the parameters gα(θ) and the task gβ(τ) and pass them to the encoders to generate the respective
embeddings ηθ = Eparam(gα(θ)) and ητ = Etask(gβ(τ)). These embeddings are then used by the ARI
estimator network q̂ϕ, which learns to regress the true ARI measured when parameter θ is adapted on
task τ for T steps via solving the following optimization objective.

min
ϕ
||ψ(θj , τi, T )− q̂ϕ(ηθj ,ητi)||

2
2 ∀ θj ∈ ΘM, τi ∈ τ[1:t], (7)

where ΘM is the set of explored parameters (knowledge base) that has been adapted on the m
observed tasks τ [1 : m]. Note that ϕ includes the parameters of the two encoders Eparam and Etask as
well as the regression model q̂. Given an embedding space that captures degrees of structural/domain
similarity across the task distribution, the auxiliary network q̂ϕ generalizes to predict the rate of
adaptability to new tasks similar to the observed set. The training objective (Eq. 7) is continually
‘consolidated’ and naturally becomes more stable as number of observed tasks increases.

3.4 KNOWLEDGE BASE REPRESENTATION USING HYPERNETWORKS

In order to efficiently maintain the set of explored parameters (knowledge base) ΘM without explicitly
storing them, we leverage a hypernetwork meta model FΦ. Hypernetworks (Ha et al. (2016)) are
meta models that learn to map embedding vectors to parameters (Von Oswald et al. (2019)), and can
be thought of as weight generators. They have been show to efficiently retain a large parameter set
with no decrease in the evaluated performance of the parameters (Von Oswald et al. (2019)).

We train the hypernetwork FΦ to map the knowledge base ΘM to a set of learned embedding vectors
{ei}n(Θ)

i=1 that can be thought of as indices for parameters in ΘM. Thus, given a parameter index i,
the parameter θi can be be readily generated using the hypernetwork as θi = FΦ(ei). This effectively
reduces the storage complexity of the knowledge base from |ΘM| to |FΦ|, where |FΦ| ≊ |θ|, θ ∈ ΘM.
We discuss the details of the hyper-network architecture and hyperparameters in Section 4.4.

4 EXPERIMENTS

Following earlier continual learning literature Lopez-Paz & Ranzato (2017); Chaudhry et al. (2018b);
Rebuffi et al. (2017), and owing to compute restrictions (involved in training a number of base models
parallely) we conduct experiments and ablations using 4 smaller scale continual learning benchmarks
- Split-MNIST Chaudhry et al. (2018a), Permuted-MNIST Zenke et al. (2017), Split CIFAR-10 Zenke
et al. (2017), Split CIFAR-100 Rebuffi et al. (2017). We evaluate against prominent baselines - GEM
Lopez-Paz & Ranzato (2017), iCaRL Rebuffi et al. (2017), EWC Kirkpatrick et al. (2017).

4.1 DATASETS

We briefly describe the datasets employed in our experiments:

Split-MNIST and Permuted-MNIST: Consecutive classes from the MNIST dataset (LeCun (1998))
are paired and presented as 5 incremental tasks in Split-MNIST (Chaudhry et al. (2018a)). In
Permuted-MNIST, each task is a unique spatial permutation of the original MNIST data. 10 per-
mutations of MNIST resulting in 10 tasks, are generated. While Split-MNIST represents a set of
incremental tasks where the number of classes is expanded within a shared data distribution, the
Permuted-MNIST dataset represents a set of tasks that may be sampled from disjoint data distributions.
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Following the protocol in (Lopez-Paz & Ranzato (2017)), 1000 images per task are considered for
training, while the entire test set is considered for evaluation. Split CIFAR-10 and Split CIFAR-100:
Classes are grouped from CIFAR-10 (Krizhevsky et al. (2009)) and CIFAR-100 (Krizhevsky et al.
(2009)) to generate independent incremental tasks. 5 and 10 classes are grouped within CIFAR-10,
CIFAR-100 to generate 10 and 20 tasks respectively. As followed in (Lopez-Paz & Ranzato (2017)),
2500 images per task are considered for training, while the entire test set is considered for evaluation.

4.2 BASELINES

We briefly describe the baseline formulations below: Single model - A naive baseline where a single
model is trained continually on all tasks. GEM (Lopez-Paz & Ranzato (2017)) - an approach that
leverages the exemplar memory to explicitly bound the model’s loss on previous task samples. iCaRL
(Rebuffi et al. (2017)) - a class-incremental learning approach that uses a nearest-mean-of-exemplars
classification strategy, with a knowledge distillation loss over feature representations of past tasks to
limit catastrophic forgetting. EWC (Kirkpatrick et al. (2017)) - A regularization based approach to
mitigate catastrophic forgetting, where the parameters crucial to the performance on previous tasks,
as measured by the Fisher Information Matrix (FIM), are not modified. Specifically, we consider the
approach in EWC++ (Chaudhry et al. (2018a)) and online EWC (Schwarz et al. (2018)) to calculating
FIM as a moving average.

4.3 EVALUATION METRICS

Following previous works (Lopez-Paz & Ranzato (2017); Chaudhry et al. (2018a)), we consider the
metrics of Average Accuracy (ACC) and Backward Transfer (BWT) for all experiments. After the
model is trained on task ti, it is evaluated on the test-sets of all tasks in task-set T , resulting in a
matrix R ∈ RT×T . Each element Rij is the test-classification accuracy of the model on task tj after
learning on examples from task ti. Average accuracy (ACC ∈ [0, 100]) after learning task T can be
defined as: ACC = 1

T

∑T
i=1RT,i. Average Forgetting (F ∈ [−100, 100]) after learning the T th task

can be defined as: F = 1
T−1

∑T−1
i=1 (maxl∈{1,..,T−1}Rl,i −RT,i).

4.4 EXPERIMENTAL SETTINGS

We follow the protocols in Lopez-Paz & Ranzato (2017); Riemer et al. (2018) for our choice
of experimental settings and build on the implementation provided by Gupta et al. (2020b) and
Von Oswald et al. (2019) to implement our baselines and hypernetwork meta-models respectively.
For MNIST experiments, we follow Lopez-Paz & Ranzato (2017) and use a two layer, 100-neuron
each, fully-connnected neural network with ReLU activation for the MNIST datasets. As a meta
model, we use a fully-connected two-hidden layer ([100, 100]) chunked hypernetwork (Von Oswald
et al. (2019)) with a chunk size of 200 and embedding vectors of size 8. The meta model contains
59,668 weights in comparison to a single base model with 89,400 weights. All baselines including
ours are implemented using a single-headed base network. For CIFAR, we use a modified version of
the ResNet18 (He et al. (2016)) with one-third the feature maps across all layers, as in Lopez-Paz
& Ranzato (2017). As a meta model, we use a larger hypernetwork with structured chunking that
internally maintains 6 smaller composite two hidden layer ([25, 25]) hypernetworks, for a total of
166,610 weights (compared to 181,495 for a single base model). The baselines for CIFAR are all
multi-headed and task-aware, while base models of our method are trained as single-headed networks
(for each task). The hypernetworks are all trained with embedding vectors of size 8. Similar to
baselines Lopez-Paz & Ranzato (2017), we maintain a small exemplar memory D of size 200 for
MNIST experiments and 400 for CIFAR. For our ARI estimator, we follow Jeong et al. (2021a) in
generating task or parameter signatures by the activations of a pre-trained ResNet18 on samples per
class (of each task) or the activations of the parameters on random gaussian noise, respectively. The
activations are normalized and padded to a size of 2048, before being projected to 128 dimensions.
The ARI estimator used is a simple two hidden layer ([100, 100]) network with ReLU activations.
We enforce a maximum size of 20 base parameters in our knowledge base, and a training budget of
10 base models trained per task. Our initialization set contains 3 random generated parameters.
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Table 1: Average Accuracy (A) and Average Forgetting (F) for baselines across four datasets.

Datasets→ Split MNIST Permuted MNIST Split CIFAR-10 Split CIFAR-100

Methods ↓ ACC (↑) F (↓) ACC (↑) F (↓) ACC (↑) F (↓) ACC (↑) F (↓)
Single 30.2± 1.3 96.1± 1.1 63.4± 1.2 14.2± 1.1 71.3± 1.9 13.5± 3.9 34.3± 1.2 21.4± 1.9

EWC Kirkpatrick et al. (2017) 43.9± 1.1 94.4± 1.2 72.36± 3.8 11.3± 1.1 59.1± 2.2 10.1± 1.9 34.1± 0.1 19.6± 1.6
GEM Lopez-Paz & Ranzato (2017) 81.1± 3.2 19.5± 2.2 82.8± 1.2 1.4± 1.2 75.3± 1.1 4.9± 1.3 44.3± 3.1 0.9± 0.3

iCaRL Rebuffi et al. (2017) 85.4± 0.9 1.1± 0.3 - - 66.2± 1.2 3.9± 2.1 31.9± 1.9 2.9± 0.9
Ours 88.7± 0.1 0.5± 0.1 84.2± 1.3 0.2± 0.0 81.9± 0.2 0.3± 0.2 48.8± 1.2 0.3± 1.1

Table 2: Ablation Study: Evaluating the ARI Estimator

Datasets→ Split MNIST Permuted MNIST Split CIFAR-10 Split CIFAR-100

Methods ↓ ACC (↑) F (↓) ACC (↑) F (↓) ACC (↑) F (↓) ACC (↑) F (↓)
Random Selection 60.1± 0.3 40.1± 5.1 45.4± 8.1 68.2± 3.9 49.4± 4.1 20.2± 3.4 31.4± 3.3 24.4± 2.9

ARI Estimator (Ours*) 88.7± 0.1 0.5± 0.1 84.2± 1.3 0.2± 0.0 81.9± 0.2 0.3± 0.2 48.8± 1.2 0.3± 1.1

4.5 TRAINING DETAILS

To train the base model across all baselines we use the Adam (Kingma & Ba (2014)) optimizer set
with an initial learning rate of 0.001, weight decay of 0.001 and a batch size of 10, similar to baseline
methods (Lopez-Paz & Ranzato (2017); Rebuffi et al. (2017); Kirkpatrick et al. (2017)). We also
utilize a small buffer S to store the collected (ARI, task & parameter encoding) tuples. For our
method, the ARI values for each parameter, task pair are calculated based on empirical steps required
till convergence. The ARI estimator is trained for 1000 epochs with a batch size of 250 (parameter
& task embeddings, ARI) tuples. Finally, the meta-models are trained using the SGD optimizer till
convergence (an MSE error of 1e-3), and perform a single pass of the entire parameter in one batch.

5 RESULTS AND DISCUSSION

The performance comparison of our approach against baseline approaches on the four standard
continual learning benchmarks (Split-MNIST, Permuted-MNIST, Split CIFAR-10, Split CIFAR-100)
is shown in Table 1. The performance for PermutedMNIST is not reported for iCaRL (Rebuffi et al.
(2017)) as the approach does not support Domain-Incremental methodology.

Our approach is observed to achieve near consistent gains over the baselines across the datasets, with
the performance gains being higher for CIFAR - the more complex dataset amongst the benchmarks.
Our approach achieves a higher rate of accuracy on majority of the tasks, with a consistently lower
forgetting metric. ICaRL (Rebuffi et al. (2017)) achieves lower forgetting on most datasets compared
to the baselines, which we believe is attributable to it’s auxiliary knowledge distillation loss (Hinton
et al. (2015)) that constraints any significant change in logits from previous tasks. Nevertheless,
our approach outperforms ICaRL (Rebuffi et al. (2017)) even on the forgetting measure on Split
CIFAR-10. We do not consider A-GEM (Chaudhry et al. (2018b)) due to it’s marginal improvements
over GEM (Lopez-Paz & Ranzato (2017)). We observe that the removal of experience replay causes
a significant decrease in the overall accuracy, as well as an increase in the degree of forgetting across
all datasets. This is to be expected given that the base models used are simple, and therefore need to
be replayed stored examples.

5.1 ABLATION: TRIVIAL HEURISTIC TO PICK CANDIDATE MODELS

In our ablation study, we evaluate the benefit from our ARI estimator. Table 2 shows the performance
of our approach with the proposed ARI estimator along with the performance of the same method with
a random selection heuristic. In this random selection heuristic, the parameters from the hypernetwork
are selected during training and inference using a random heuristic. We observe a clear and large
reduction in the average accuracy as well as an increase in the degree of forgetting observed. Without
the proposed ARI estimator based heuristic, the approach collapses as it fails to select the appropriate
parameters for the test tasks. Random selection also prevents retaining the optimal weights in the
hypernetwork (memory).
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5.2 MEMORY COMPLEXITY

Across all benchmarks, we utilize the same or smaller base models as compared to established
baselines (Lopez-Paz & Ranzato (2017)). Only the parameters of the hypernetwork themselves
are retained in memory, and the weights of the trained base models are discarded after training.
Thus, the total parameter size stored in memory remains constant and equal to the parameters of the
hypernetwork (which are also 1.4x (in case of MNIST) and equal or less than the parameters of a
single base model in other benchmarks).

6 RELATED LITERATURE

6.1 NEUROSCIENCE

Vital to the process of learning and ‘memorization’ in humans is the continual familiarity-based
modification of input instances within the Hippocampus (Kumaran et al. (2016); Caramazza &
Shelton (1998); Wilson & McNaughton (1994); Alvarez & Squire (1994)). Input patterns that are
similar to a familiar/stored pattern are modified to either be more similar (pattern completion) or
differentiated (pattern separation) to those stored patterns (Kumaran et al. (2016)). New memory
is allocated if the input instance is sufficiently distinct from stored instances. In case there is high
overlap between input instance and one of the stored instances, the input instance is modified to be
closer to the matched stored instance.

6.2 CONTINUAL LEARNING

Over the last few years, several directions of work have attempted to address these issues of catas-
trophic forgetting and beneficial knowledge transfer in a continual learning setting. Methods retain
past knowledge either by replaying stored (Rebuffi et al. (2017); Lopez-Paz & Ranzato (2017)) or
generated samples (Shin et al. (2017); van de Ven & Tolias (2018)), regularizing task-specific weights
(Kurle et al. (2019); Titsias et al. (2019); Chaudhry et al. (2018a)), or scaling parameters to account
for new tasks (Mallya & Lazebnik (2018); Serra et al. (2018); Diethe et al. (2019)). In attempting to
explicitly prevent the learning dynamics that cause the loss of task-specific knowledge, approaches
have inevitably focused on modelling the transfer-interference trade-off between gradients of different
tasks (Saha et al. (2021); Deng et al. (2021); Lopez-Paz & Ranzato (2017)). In Ramesh & Chaudhari
(2021), authors introduce the idea of building a growing zoo of small capacity multi-tasking models,
where synergistic tasks share models, enabling transfer of knowledge between them.

6.3 META LEARNING APPROACHES FOR CL

Online-aware Meta Learning (OML) Finn et al. (2019) introduced the application of Meta Learning
approaches to the lifelong learning setting. A meta-objective was used to learn the task distribution in
an offline manner, which could then be leveraged for efficient online continual learning. More recent
Meta-learning approaches to continual learning such as MER (Riemer et al. (2018)) and La-MAML
(Gupta et al. (2020b)) leverage gradient alignments to enforce compatibility of tasks within a finite
capacity. MER (Riemer et al. (2018)) enforces gradient alignment between observed and future tasks
using replay while La-MAML (Gupta et al. (2020a)) incrementally modulates parameter-specific
learning rates based on gradient alignment across tasks to reduce forgetting. Recent works also
investigate orthogonal setups in which a learning agent uses all previously seen data to adapt quickly
to an incoming stream of data, thereby ignoring the problem of catastrophic forgetting.

7 CONCLUSION

In this work, we motivate this focus on quality of adaptation to improve knowledge transfer in the
lifelong learning setting. We propose to represent task-model relationships as the expected adaptation
rate of a (model, task) pair. In order to leverage (model, task) relationships, we replace a single
network used for lifelong learning with an equivalent set of small-capacity networks such that the
overall model capacity is conserved. We show that the proposed approach can transfer knowledge
to new tasks without any increase in overall model capacity, while naturally mitigating catastrophic
forgetting.
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A APPENDIX

You may include other additional sections here.
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