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ABSTRACT

Selecting urban regions for metro network expansion that serve maximal trans-
portation demands is critical to urban development, while computationally chal-
lenging to solve. First, metro network expansion is dependent on multiple com-
plicated features, such as urban demographics, origin-destination (OD) flow, and
relationships with existing metro lines, requiring a unified model to incorporate
these correlated features for region selection. Second, it is a complex decision-
making task with an enormous solution space and various constraints, due to
the large number of candidate regions and restrictions on urban geography. In
this paper, we present a reinforcement learning framework to solve a Markov
decision process on an urban heterogeneous multi-graph, achieving metro net-
work expansion by intelligently selecting a set of nodes on the graph. A novel
graph neural network is proposed, which unifies the complicated features and
learns effective representations for urban regions. In addition, we design an at-
tentive reinforcement learning agent with action masks to efficiently search the
large solution space and avoid infeasible solutions indicated by the various con-
straints. Experiments on real-world urban data of Beijing and Changsha show that
our proposed approach can improve the satisfied transportation demands substan-
tially by over 30% compared with state-of-the-art reinforcement learning methods.
Further in-depth analysis demonstrates that MetroGNN can provide explainable
results in scenarios with much more complicated initial conditions and expan-
sion requirements, indicating its applicability in real-world metro network design
tasks. Codes are released at https://anonymous.4open.science/r/
MetroGNN-31DD.

1 INTRODUCTION

Metro network expansion is a geometrical combinatorial optimization (CO) problem, where a set of
urban regions are selected for building metro stations from a large candidate region pool (Nikolić
& Teodorović, 2013). The goal is to maximize the transportation demands between different re-
gions that can be served by the expanded metro network, under a given budget. Meanwhile, there
exist various constraints, such as station spacing and line straightness, restricting the feasible re-
gions for selection. Due to its intrinsic complexity, it is almost impossible to obtain the optimal
network expansion. Numerous computational approaches have been proposed to search for effi-
cient metro network, however, their inferior performance indicates that this problem is still largely
unsolved (Guihaire & Hao, 2008).

Solving metro network expansion is nontrivial due to two primary challenges. On the one hand,
complicated features need to be taken into consideration. Specifically, numerical features capturing
urban demographics of each region (Driscoll et al., 2018), matrix transportation flow between differ-
ent regions, and the relationship with existing metro lines are all crucial factors for metro network
expansion. It is necessary to model these features in diverse forms with unified representations.
On the other hand, selecting regions for metro network expansion is an NP-hard problem with an
enormous solution space composed of all candidate regions, which makes it impossible to conduct
an exhaustive search (Darvariu et al., 2023; Yolcu & Póczos, 2019). For example, a medium-sized
city with 1000 regions can have a solution space over 1030, far beyond what exact solution can
handle. Meanwhile, the problem is even more complex due to the various constraints from urban
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Figure 1: (a) Real region division in Beijing determined by road network. (b) Heterogeneous multi-
graph, where each red node represents a region. The black solid line and the orange dashed line are
two types of edges, corresponding to spatial contiguity and OD associations between regions. (c)
Schematic of our approach. At each step, the agent receives states and rewards from the environment
and outputs the selected region for metro network expansion. Best viewed in color.

geography (Bagloee & Ceder, 2011), including the spacing and angles between stations and line
segments.

Existing approaches for metro network expansion can be divided into two categories. First, heuris-
tics are proposed to select regions, such as simple greedy rules(Zarrinmehr et al., 2016), or using
genetic algorithms(Nayeem et al., 2018). Simulated annealing(Yu et al., 2012; Feng et al., 2018) and
ant colony methods(Yu et al., 2005; Yang et al., 2007) are also adopted to better navigate the search
space. However, the various constraints can not be well handled by these heuristics, which leads
to infeasible solutions. Second, mathematical programming approaches(Wei et al., 2019; Gutiérrez-
Jarpa et al., 2018) eliminate the solution space by restricting the selected regions in narrow corridors,
and solve the reduced mixed integer programming problem using optimization solvers. Not surpris-
ingly, the corridor approximation is oversimplified, which blocks out solutions of high quality and
thus results in sub-optimal performance of the expanded metro network. Recently, Wei et al. (2020)
made the first attempt to solve this problem via reinforcement learning (RL). Nonetheless, the cor-
related features are ignored by this approach, and the RL agent only considers the region location
to build a new metro line. Moreover, they select regions on n × n grids, which induces large er-
rors from the original problem form, where urban regions are actually a graph of irregularly-shaped
geometries that distribute non-uniformly instead of simple grids.

In this paper, we propose a systematic RL framework for solving complex Markov decision process
(MDP) on the graph. The metro network is expanded by selecting nodes intelligently on a heteroge-
neous multi-graph representing urban regions. To address the challenge of complicated features, we
design a novel graph neural network (GNN) to learn effective representations for the heterogeneous
multi-graph, which unify the complicated features with learnable graphical embeddings. Indepen-
dent message propagation and neighbor aggregation are developed to capture both spatial contiguity
and transportation flow between urban regions. To achieve efficient search of the solution space for
NP-hard problem, we propose an attentive policy network with an action mask to select regions. The
solution space is greatly explored by attending more on high-quality actions, and maintain necessary
exploration of regions with low benefits. Meanwhile, with the various constraints of metro network
well handled by the action mask, we guarantee the feasibility of the obtained solutions.

To summarize, the contributions of this paper are as follows,

• We propose a graph-based RL framework for solving complex MDP, which is able to address the
challenging geometrical CO problem of metro network expansion.

• We design a novel GNN and an attentive policy network with an action mask to learn representa-
tions for urban regions and select new metro stations. The proposed model encodes complicated
features into unified graphical representations, and successfully search the large solution space.

• Extensive experiments are conducted on metro network expansion using real-world urban data of
Beijing and Changsha, and the results demonstrate that the proposed MetroGNN can substantially
improve OD flow satisfaction by over 30% against state-of-the-art approaches.

2



Under review as a conference paper at ICLR 2024

𝑠0 𝑎0 𝑠1 𝑎1 𝑠2 𝑎2 𝑠𝐾−1 𝑎𝐾−1

…

a

b

(a)

(b)

Spatial-aware and OD-aware 
Message Passing

𝑛1

𝑛2

𝑛4

𝑛3

𝑛5

node score

Masked Attentive Policy Network

mask

(c)

𝛼32

𝛼35

𝑛𝑗 ∈ ℳ

Figure 2: (a) Metro network expansion. At each step, the agent selects a node that either extends
existing lines (a0 for the yellow line) or constructs new lines (a1 for the red line). We use distinct
colors for various lines, and highlight interchange points in purple. (b) The proposed GNN model.
We design spatial-aware and OD-aware message passing to learn effective node representations. (c)
The proposed masked attentive policy network for node selection. Infeasible regions are blocked by
the action mask, and an attention module is designed to capture the relationship between each node
and the metro network. Best viewed in color.

2 PROBLEM STATEMENT

Given a set of nodes, N = {n1, n2, ..., nk}, representing the centroids of urban regions that are
divided by the road network (see Figure 1(a)), a metro network M = (V, E) can be described with
a subset of nodes V ∈ N , and the edges E (metro lines segments) connecting nodes. Then metro
network expansion can be defined as the sequential selection of nodes for station construction that
grows a metro network to maximize its total satisfied OD flow, quantified as follows:

Cod(M) =
∑

(ni,nj)∈E

EucDis(ni, nj)

PathDis(ni, nj)
∗ Fij , (1)

where EucDis(ni, nj) is the distance between ni and nj , PathDis(ni, nj) is the path length between
ni and nj via M, and Fij denotes the OD flow between ni and nj .

Particularly, metro lines must adhere to constraints such as total budget, spacing between stations,
line straightness, etc. The problem can be formulated as follows:

Input: The metro network M = (V, E) with an OD flow matrix F , construction cost C, total budget
B, and maximum number of new metro lines constructed L.

Output: A sequence of regions S from N representing the expansion order of stations.

Objective: Maximize Cod(M), the overall satisfied OD of the expanded metro network.

3 METHOD

3.1 OVERALL FRAMEWORK

We propose a graph-based RL framework to solve the complex MDP, where the agent selects one
node at each step and connects it to the current metro network, on a heterogeneous multi-graph (Fig-
ure 2(a)). Specifically, to incorporate complicated features, we design a novel GNN state encoder to
learn effective representations for urban regions, unifying these features into graphical embeddings.
As shown in Figure 2(b), independent message passing mechanisms for spatial contiguity and OD
flow are developed to capture different information through the heterogeneous edges. To efficiently
search the enormous solution space, we propose an attentive policy network with a carefully de-
signed action mask, as illustrated in Figure 2(c).
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3.2 MARKOV DECISION PROCESS

We propose a DRL model to solve the sequential decision-making problem, where an intelligent
agent learns to automatically select regions for expansion by interacting with the metro network
environment, as shown in Figure 1(c). The metro network expansion can be expressed as a Markov
Decision Process (MDP) with the following critical components:

• State. The state St is a three-tuple (Mt, bt, lt) containing the current metro network Mt =
(Vt, Et), the remaining budger bt, and the number of new metro lines that can be built lt.

• Action. The action At corresponds to the selection of a single node in N . Considering that the
metro network expansion includes the extension of existing lines and the construction of new lines
and needs to satisfy corresponding constraints, available actions are defined as:

A(St = (Mt, bt)) = {n ∈ N |n ∈ ((X e(Mt, bt) ∪ (X c(Mt, bt, lt)),

where X e(Mt, bt) and X c(Mt, bt, lt) represents to the set of regions that are available for exten-
sion and construction based on specific constraints (definition in Section A.1), respectively.

• Reward. Referring to the definition of total satisfied OD flow in Equation 1, the intermediate
reward Rt for action At is defined as Cod(Mt)− Cod(Mt−1).

3.3 HETEROGENEOUS MULTI-GRAPH MODEL

We utilize a heterogeneous multi-graph to faithfully describe the urban regions. In this graph model,
the node set N = {n1, · · · , nk} represents the regions divided by the road network. We introduce
two types of edges to effectively capture the relationships between regions, as illustrated in Fig-
ure 1(b). The first type links contiguous nodes, capturing their proximity on small spatial scales.
The second type connects pairs of nodes with significant OD trips, capturing flow patterns between
urban regions on a larger scale. In specific, the heterogeneous edges are denoted as follows,

esij = 1{0 < EucDis(ni, nj) ≤ t1}, eoij = 1{Fij ≥ t2}, ∀ni, nj ∈ N (2)

where t1 and t2 are threshold values.

We conduct preprocessing on this graph to facilitate reasonable metro network expansion (see Sec-
tion A.2). By expressing the problem with a graphical model, our framework can comprehensively
express the spatial relationships and OD characteristics within the city.

3.4 ENCODING COMPLICATED FEATURES WITH GNN

We design a novel GNN model as the encoder to learn unified representations of complicated fea-
tures for regions through the heterogeneous edges. Two groups of features are incorporated for each
region. The first group directly relates to the OD trips of the region, which includes the total OD
access flows FD

1 , the OD flows with neighboring regions FD
2 and the OD flows with the regions V

where metro stations located FD
3 . And the second group contains auxiliary features, including the

population size FA
1 , the type and number of Points of Interests (POIs) in each urban region FA

2 , as
well as topological features in the graphical model (including FA

4 ,FA
5 and FA

6 ), such as degree.

In order to obtain a unified representation of these complicated features, we first encode them into
dense embeddings for each node with the input attributes Ai = [FA

1 ∥ . . . ∥FA
3 ∥FD

1 ∥ . . . ∥FD
6 ].

Then we design independent message propagation and neighbor aggregation for the heterogeneous
graph, capturing spatial contiguity and OD flow, respectively. We let the set X s

i and X o
i consist of

nodes connected to ni via esij and eoij , respectively. As demonstrated in Figure 2(b), we aggregate
neighbors’ representations at different scales through two types of heterogeneous edges, as follows,

h
(l)
s,i =

∑
nj∈X s

i

W(l)
s h

(l)
j , h

(l)
o,i =

∑
nj∈Xo

i

W(l)
o h

(l)
j , h

(0)
i = WAAi (3)

where WA, Ws and Wo are linear transformation layer, h(0)
i is the dense embedding obtained from

the initial encoding. Next, we update the node embeddings by combining neighbor information and
the node itself, as follows,

h
(l+1)
i = tanh(W(l)

c (h
(l)
s,i ∥h

(l)
o,i) + h

(l)
i ), (4)
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where W
(l)
c is a linear transformation layer, ∥ means concatenation.

With the proposed GNN model, we unify the complicated features for metro network expansion,
and obtain effective node representations from these features, with spatial contiguity and OD flow
information injected into them. The representations from GNN are shared across the policy and
value networks, enabling effective node selection and return prediction.

3.5 PLANNING WITH MASKED ATTENTIVE POLICY NETWORK

As a conservative estimate, assume that each region is spatially adjacent to 4 other regions, and
the metro network initially has 3 lines, with 40 more stations to be added. This results in a total
of approximately C5

40 ∗ 440 ≈ 1030 possible solutions. The solution space expands exponentially
with the number of expansion stations, making it exceedingly challenging to find optimal solutions,
especially when considering various constraints such as straightness and spacing. To search the
massive solution space under various constraints, we propose an attentive policy network with an
action mask for efficient exploration of feasible solutions. The proposed policy network assigns
scores to feasible nodes based on embeddings computed by GNN, substantially reducing the action
space and emphasizing high-quality node selection.

Attentive policy and value network. To effectively explore the large solution space, we utilize
attention to emphasize actions of high quality that are strongly correlated with the current metro
network. Specifically, as shown in Figure 2(c), we measure the relevance to the current metro
network of each node ni using representations from GNN as follows,

wij =
(WQh

(L)
i )

T
(WKh

(L)
j )

√
d

, αij =
exp(wij)∑
j exp(wij)

, ∀ni ∈ N , vj ∈ V, (5)

where d is the embedding dimension, WQ,WK are learnable parameters, and αij is the attention
score. Node scores are then computed according to the attentive importance through a multi-layer
perceptron (MLP) as follows,

ai = tanh(
∑

vj∈M
αij · h(L)

j + h
(L)
i ), si = MLPp(ai), p(ni|M) =

exp(si)∑
i exp(si)

(6)

where nodes are selected and added to the metro network based on a probability distribution deter-
mined by the score si with carefully-designed action mask (see Section A.1).

A value network is also developed, which takes the average of node embeddings to summarize the
current network state and uses an MLP to estimate returns as follows,

aavg =
1

|N |

|N |∑
i=1

ai, r̂ = MLPv(aavg), (7)

where r is the estimated performance of metro network expansion.

By training the proposed model with Proximal Policy Optimization (PPO) (Schulman et al., 2017),
our proposed approach can effectively avoid infeasible solutions via action mask, and at the same
time, efficiently explore the vast solution space, since most nodes of low quality in the original action
space will not be frequently sampled by the proposed attentive policy and value network.

4 EXPERIMENTS

4.1 EXPERIMENT SETTINGS

Data.

We conduct experiments based on the metro networks in two of the largest cities in China, Beijing
and Changsha. Specifically, we adopt the actual urban region divisions split by the authentic road
structure. Real OD flow data for the whole year of 2020 is utilized, which is collected from Tencent
Map, a prominent mapping and transportation service application in China. Table 1 shows the basic
information of the dataset.
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City Beijing Changsha
Nodes 1166 469
Edges 4656 1642

Avg Degree 3.99 3.50
Avg Area 1.21km2 1.17km2

T-APL 20.37 13.02
T-MSPL 55 39
M-APL 34.38km 20.81km

M-MSPL 101.73km 63.48km

Table 1: Statistical Overview of the
Dataset. T denotes topological mea-
sures, while M denotes metric mea-
sures. APL represents average path
length, and MSPL refers to maximum
shortest path length. For example, T-
APL represents the average topological
path length.

Baselines and evaluation. We compare our model with
mathematical programming approaches (Wei et al., 2019)
utilizing two different solvers, CBC (MPC) and GUROBI
(MPG). Heuristics baselines are also compared, including
Greedy Strategy (GS) (Laporte & Pascoal, 2015), Genetic
Algorithm (GA) (Owais & Osman, 2018), Simulated An-
nealing Algorithm (SA) (Fan & Machemehl, 2006), and
Ant Colony Optimization (ACO) (Yang et al., 2007). We
further include the state-of-the-art RL approach, DRL-
CNN (Wei et al., 2020) for comparison. Details of the
adopted baselines are provided in Section A.3. For each
method, we vary the seeds and conduct each experimental
configuration 10 times. To evaluate the effect of metro
network expansion, we calculate the OD flows satisfied
by the expanded metro network according to (1).

Model Implementation. We implement the proposed
model using PyTorch (Paszke et al., 2019). We carefully
tune the hyper-parameters of our model, including the
learning rate, regularization, etc (details in Section A.4).
The model is trained on a single server equipped with an
Nvidia GeForce 2080Ti GPU, which typically costs ap-
proximately 8 hours.

4.2 PERFORMANCE COMPARISON

We evaluate each method under different scenarios by changing the total budget for expansion in
billion to various values and assessing the corresponding performance. Results of our model and
baselines are illustrated in Table 2. From the results, we have the following observations,

• Heuristic algorithms are ineffective for metro network expansion. Among all the methods,
heuristic algorithms are the least effective, with the satisfied OD only about 50% of other ap-
proaches in most cases. Particularly, they often generate infeasible solutions in the initial popula-
tion, leading to insufficient exploration of the solution space.

• DRL-based methods have significant advantages over other approaches. DRL-CNN outper-
forms other baselines in most cases, achieving higher satisfied OD with an average improvement
of 4.4%, demonstrating the superior ability of RL to search a large solution space. Nevertheless,
DRL-CNN suffers from severe performance deterioration in complicated scenarios (B=60), with
the satisfied OD 5.1% worse than MPC and MPG on average.

• Our proposed model achieves the best performance in different scenarios. Our approach
substantially surpasses existing baselines under all budgets, substantially improving the satisfied
OD flow by over 15.9% against the best baseline in average of three different expansion budgets.
Notably, in contrast to DRL-CNN that fails to outperform baselines in complicated scenarios,
our approach exhibits more significant advantages in complicated scenarios with a higher budget,
with improvements on satisfied OD even over 30%. The proposed novel GNN that unifies com-
plicated features is able to capture the intricate connections between regions and the underlying
transportation patterns, which guarantees decent performance and avoids the oversimplification of
grid-based approximation adopted by DRL-CNN.

4.3 METRO NETWORK EXPANSION IN COMPLICATED SCENARIOS

To further explore the performance in various scenarios, we evaluate different methods by varying
the number of initial lines (IL) as well as the maximum number of newly constructed lines (ML),
as shown in Figure4. Notably, our method exhibits significant advantages in diverse scenarios, and
the advantages become more pronounced as the complexity of the scenarios increases. For
instance, when expansion permits the construction of more lines, the improvement against DRL-
CNN increases from 6.8% to an impressive 23.3%. The improvement also gradually increases from
a minimum of 16.4% to 27.6% as the complexity of the initial metro network rises.
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Method Beijing Changsha
B=40 B=50 B=60 B=40 B=50 B=60

GS 8.25±0.00 9.31±0.00 10.40±0.00 10.11±0.00 11.26±0.00 12.58±0.00

GA 9.95±1.78 10.13±1.98 12.87±2.27 14.24±1.46 15.34±1.65 16.55±1.89

SA 9.59±1.57 10.70±1.59 12.29±2.08 13.84±1.63 15.02±1.55 16.39±1.72

ACO 11.01±1.14 12.42±1.30 13.66±1.45 16.61±1.59 17.67±1.52 17.17±1.97

MPC 14.40±0.28 15.11±0.61 16.60±1.19 17.47±0.60 18.34±0.91 20.43±1.30

MPG 14.40±0.28 15.16±0.93 16.81±1.13 17.47±0.91 18.07±1.26 20.17±1.63

DRL-CNN 14.46±0.92 15.78±1.33 16.38±1.48 18.30±1.03 18.98±1.98 19.21±1.81

MetroGNN (ours) 15.88∗
±0.73 18.93∗∗±0.87 21.45∗∗

±1.02 20.79∗
±1.07 22.72∗∗±1.13 24.65∗∗

±1.36

impr% v.s. DRL-CNN +9.8% +20.0% +31.0% +13.6% +19.7% +28.3%

Table 2: Evaluation of metro network expansion performance across varying budgets (B), higher is
better. Statistical significance is determined using a t-test to compare MetroGNN with DRL-CNN,
denoted as ∗p-value < 0.1 and ∗∗p-value < 0.05.

(a) MPC (b) DRL-CNN (c) MetroGNN

Figure 3: Metro network expansion results by MPC, DRL-CNN and MetroGNN for Beijing. We use
colors to distinguish between different metro lines, and use boldface to indicate expansion outcome
from initial conditions. Black dots indicate stations on the initial lines and their extensions, and red
dots represent stations on new lines. Red and green circular indicate areas where population and
POIs are clustered, respectively. The darker the color, the higher the density. Best viewed in color.

To provide a deeper understanding of the reliability and practical applicability of our planning so-
lution within real-world contexts, we offer detailed explanations for the outcomes of our model. In
Figure 3, we present the results generated by the MP, DRL-CNN, and MetroGNN methods based on
Beijing, respectively. Specifically, we illustrate the areas where populations and POIs are densely
clustered to analyze the generated results. Compared to baselines, the planning solution generated
by our approach covers almost all the areas with high population and POI densities, which naturally
correspond to numerous travel demands.

Notably, our solution takes into account the efficiency of the transportation network. As shown in
Figure 3, the new lines generated by our approach are interconnected, and each new line introduces
at least two additional interchange stations to the metro network. These comprehensive analyses
demonstrate the practical implications and strengths of the proposed MetroGNN expansion strategy.

4.4 ABLATION STUDY

We conduct ablation experiments to showcase the efficacy of the graph model and the incorporated
complicated features, and the results are consolidated and presented in Figure 5.

Graph Modeling. The urban regions exhibit intricate spatial correlations characterized by both
short-range proximity and long-range OD flow patterns. By harnessing the graph modeling approach
and GNN, our approach effectively captures these complexities among urban regions. As shown in
Figure 5(a), when the graph model is omitted, the satisfied OD flow of the expanded metro network
drops significantly from 21.80 to only 14.02. This stark change underscores the pivotal role of the
graph model in the metro network expansion task.

Spatial-aware and OD-aware Message Passing. In the proposed GNN model, we design two
independent message propagation mechanisms, spatial-aware and OD-aware message passing. We
experiment on two variants of our GNN model, each preventing message propagation through one
kind of edge, to study their corresponding effect. As illustrated in Figure 5(a), removing either
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Figure 4: Performance of MPC, DRL-CNN and MetroGNN methods for different IL and ML for
Beijing (BJ) and Changsha (CSX), respectively, higher is better. Best viewed in color.
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Figure 5: Performance of MetroGNN and its variants that remove different elements, including
whole graph model (G), spatial edges (Et), transportation flow edges (Eo), OD direct (FD) and
auxiliary (FA) features. Best viewed in color.

spatial or transportation edges leads to a significant deterioration in performance, with a decrease
of 28.8% and 30.8%, respectively. These results affirm the essential roles of spatial-aware and
OD-aware message propagation, which aggregates a wide range of OD flow information to nodes,
facilitating our proposed GNN in acquiring meaningful node representations.

OD Direct and Auxiliary Features. As shown in Figure 5(b), when the three OD direct features are
excluded, our method observes varying degrees of performance degradation. In particular, removing
FD3 results in the largest performance drop (-20.4%), which is reasonable since it reflects the direct
benefit of adding a region to the metro network.

We also add auxiliary features to support decent metro network expansion, since they are valuable
supplementary information associated with OD trips. As demonstrated in Figure 5(c), removing
these auxiliary features indeed leads to worse performance, with the satisfied OD flow dropping by
8.4% to 19.9%. Among these features, removing population (FA1) brings about the largest deteri-
oration, as population information is quite important when considering metro network expansion.
Meanwhile, terminal station (FA6) also plays a vital role, and removing it leads to a 22.8% drop in
satisfied OD flows.

4.5 CONVERGENCE ANALYSIS

Reducing the action space is essential for enhancing the efficiency of model training, especially for
metro network expansion that exhibits an enormous search space. Here, we remove the attention
module from the policy network and only retain the MLP module, to investigate the impact of the
attentive policy network on the solution space. As illustrated in Figure 6(a), when employing the
attentive policy network, our approach achieves performance close to that of DRL-CNN (14.81)
and converges after only about 25 iterations. In contrast, the performance of the MLP-only pol-
icy network is only comparable to the worst baseline (9.60) at this point, and does not converge
until approximately 50 iterations. As shown in Figure 6(b), where we show the probability distribu-
tion of the first action, it is evident that the probabilities of the attentive policy network are almost
concentrated in one region, while the MLP-only policy network exhibits a more even probability
distribution across four different regions. This observation highlights the significance of the atten-
tion mechanism in the policy network. It guides the agent to focus more on high-quality nodes with
a strong correlation to the current network, promoting more efficient exploration.

We also investigate the influence of critical hyper-parameters and the transferability of the proposed
model, which are provided in Section A.6 and Section A.5, respectively. Section A.7 shows how our
method responds to different evaluation metrics, such as social equity.
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Figure 6: (a) Schematic of the probability distribution (greater than 1e-3) of the first action after 40
iterations of training. Each circle corresponds to a candidate region, and darker color and smaller
radius indicate higher selection probabilities. (b) The effect of the attention design in policy network
on model training convergence. Best viewed in color.

5 RELATED WORK

Deep Reinforcement Learning for Planning. Deep reinforcement learning (DRL) (Mnih et al.,
2015) approaches, which combines RL algorithms with deep neural networks (DNN) as function
approximators, have demonstrated excellent performance and become the new state-of-the-art, es-
pecially in complex planning tasks such as gaming (Mnih et al., 2013; Silver et al., 2016; Ye et al.,
2020), autonomous driving (Kiran et al., 2021; Li et al., 2022; Shi et al., 2020), natural language pro-
cessing (Li et al., 2016; He et al., 2015; Tan et al., 2022), recommender system (Zheng et al., 2018;
Zhao et al., 2018; Wang et al., 2021b), and solving mathematical problems Fawzi et al. (2022); Bello
et al. (2016); Bengio et al. (2021). On the one hand, the efficient approximators such as DQN (Mnih
et al., 2013; 2015) can accurately handle high-dimensional inputs. On the other hand, the actor-
critic framework (Konda & Tsitsiklis, 1999) is effective in narrowing down the action space and
improving exploration efficiency.

Transportation Network Design. As a widely studied engineering task (Guihaire & Hao, 2008;
Ibarra-Rojas et al., 2015; Farahani et al., 2013; Kepaptsoglou & Karlaftis, 2009; Laporte et al.,
2011; Wang et al., 2021a), existing solutions to this problem can be classified into three primary
categories: mathematical programming methods, heuristic methods, and deep reinforcement learn-
ing methods. Mathematical programming methods(Escudero & Muñoz, 2009; Wang et al., 2023;
Gutiérrez-Jarpa et al., 2013; Owais et al., 2021) typically formulate it as an Integer Linear Program-
ming (ILP) problem and then apply a solver to find the optimal solution. For example, Wei et al.
(2019) applied the minimum distance to the utopia point to handle the bi-objective Mixed-Integer
Linear Programming (MILP) problem. However, the computational complexity increases drastically
as the problem scales up, making it challenging to find optimal solutions within a reasonable time
limit. Heuristic methods, including Tabu Search (Dufourd et al., 1996; Fan & Machemehl, 2008),
Simulated Annealing (Fan & Machemehl, 2006; Kumar et al., 2020; Zhao & Zeng, 2006), and
Evolutionary Algorithms (Mumford, 2013; Arbex & da Cunha, 2015; Chakroborty, 2003; Nayeem
et al., 2018; Bourbonnais et al., 2021), have also emerged to address this problem. However, it is dif-
ficult to handle the diverse constraints of metro networks with suitable heuristic operators, and these
methods often invest substantial time in exploring impractical solutions. Recently, Wei et al. (2020)
explored the usage of RL for metro line planning. However, they ignore the complicated features,
and the adopted grid-like city representation induces significant errors from real-world scenarios.

6 CONCLUSION

In this paper, we investigate the problem of metro network expansion, and propose MetroGNN, a
systematic graph-based RL framework that can solve complex node selection MDPs on the graph.
The proposed model unifies complicated features with GNN and explores the solution space effi-
ciently with an attentive policy network and a carefully designed action mask. Through extensive
experiments, we demonstrate the effectiveness of our approach, which can improve the satisfied OD
flow by over 15.9% compared to state-of-the-art baselines. Notably, the advantage of our method
is even more significant in complex scenarios, indicating its potential in solving real-world metro
network design problems where there tend to be much more complicated initial conditions and con-
straints. Looking ahead, we plan to investigate the performance of the proposed systematic RL
framework in other graph-based decision tasks, such as influence maximization on a social network.
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A APPENDIX

A.1 RULES FOR METRO NETWORK EXPANSION

The expansion of the metro network is subject to specific constraints to ensure the systematic and
feasibility. To fully describe these constraints, we introduce the following notations: V±1 ⊂ V
denotes the set of terminal stations for all metro lines, and V±2 ⊂ V denotes the set of subterminal
stations directly connected to the terminal stations in V±1. As introduced in Section 3.2, the expan-
sion of metro network can be divided into the extension of existing lines and the construction of new
lines. Regions available for the extension of existing lines must maintain reasonable station spacing
and avoid sharp bends in the topology, as follows,

te(M) = {ni ∈ N\V |EucDis(ni, nj) ∈ [t3, t4]∧∠ninjnk ∈ [90◦, 180◦]∧nj ∈ V±1∧nk ∈ V±2∧(nk, nj) ∈ E}

where te(M) represents the set of topologically feasible regions for extension, and t3, t4 are pre-
defined thresholds.

Taking into account the budget constraint, we use Ce(n,M) to denote the minimum cost of adding
region n in an extended manner, then the set of the feasible regions for extension X e(M, bt) can be
expressed as follows,

X e(M, bt) = {n ∈ te(M) | |Ce(n,M)| ≤ bt}.

If a region is unsuitable for extension, we then consider whether it can serve as the starting station
for a new metro line, topologically governed only by spacing rules,

tc(M) = {ni ∈ N\V |EucDis(ni, nj) ∈ [t3, t4]}.

When considering limitations on the number of lines and budgets, the feasible regions for construct-
ing new lines can be formulated as

X c(M, bt, lt) = {n ∈ tc(M) | |Cc(n,M)| ≤ bt ∧ lt > 0},

where Cc(n,M) denotes to the minimum cost of adding region n in an constructive manner.

Despite the feasibility of regions, prioritization exists in the way regions expand the metro network.
Specifically, if region ni satisfies both ni ∈ X e(M, bt) and ni ∈ X c(M, bt, lt) simultaneously, it
will be prioritized as an extension of an existing line. If ni can be used as an extension of multiple
line, the least costly extension is considered.

A.2 PREPROCESS OF THE GRAPH AND OD FLOWS

Graph model. To facilitate proper metro network expansion, the delineation of regions follows spe-
cific preprocessing steps. Initially, following the methodology outlined in Wei et al. (2020), smaller
regions that are geographically close to each other are merged. This approach prevents excessive
delineation of the road network structure. Additionally, regions with larger areas but lower traffic
demands, typically corresponding to remote areas such as mountains or rivers, are excluded. This
step focuses the analysis to regions characterized by higher travel demand and activity. Furthermore,
regions that are distant from the initial metro lines are also omitted from consideration. This is often
due to budgetary constraints, as these remote regions are challenging to access within the constraints
of the available budget. Through these preprocessing steps, we can obtain a series of appropriate
regions, laying the foundation for an efficient and fast strategy for metro network expansion.

OD flows. We obtain inter-regional OD flows by processing a large number of user spatio-temporal
trajectories. Specifically, if an individual travel from region A to region B and remains in B for at
least 15 minutes, this travel event contributes a count of 1 to the OD flows from A to B. Furthermore,
if the individual subsequently travels to region C, the entire movement will be considered as two
separate trips: one from A to B and another from B to C.
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A.3 IMPLEMENTATION DETAILS OF BASELINE

We compare our MetroGNN method with the following baselines.

• GS selects new region that meets the largest OD trips with previously selected region at each step.
• GA generates an initial population of metro lines and employs well-designed crossover and vari-

ance operators on individuals to generate the solutions. We set the initial population size as 200
and limit the number of iteration to 2000. We also designed genetic operators for crossover and
mutation which ensure the viability of the new population, and the probability of crossover and
mutation are both 0.8.

• SA commences with an initial solution and introduces stochastic modifications to explore the
solution space. The algorithm progressively adapts to embrace the stochastic nature of suboptimal
solutions during iterations, enabling it to transcend local optima and advance towards improved
solutions. We set the initial temperature to 1500, the cooling coefficient to 0.98, the termination
temperature to 0.1, and 200 iterations for each temperature. Additionally, we set the acceptance
threshold of SA to 0.1.

• ACO runs with agents deposit pheromones on paths and establish connections with probabilistic
rules. It iteratively updates pheromone levels based on evaluation metrics, thus steering the agents
to better solutions. We limit the maximum number of iterations of ACO to 3000 and include 128
instances per iteration. Other parameters of ACO aligns with Yang et al. (2007).

• MP formulates the metro expansion problem as an mixed integer programming model, and using
solver to obtain solution. Considering the solution time, we use part of the expansion solutions of
DRL-CNN and MetroGNN as a reference for the corridors to reduce to solution space. Specif-
ically, we consider regions within 10km of the existing metro network as the corridors, where
regions are available candidates for metro network expansion. Additionally, the final metro net-
work generated by MP may be discrete and need be manual adjustment.

• DRL-CNN trains a actor-critic model to design new metro line based on the hidden state of current
metro network. At each step, it takes the embedded features as reference and the hidden state as
query to select next region. We adopt the network structure from Wei et al. (2020) to generate the
metro network expansion solutions.

A.4 EXPERIMENT SETTINGS

For the metro network expansion task, there are four key parameters, construction cost, construction
budget, initial metro lines (IL) and maximum new lines (ML). We list all the values of above param-
eters for metro network expansion and the hyper-parameters of our method in Table 3, with default
parameters indicated in bold. Specifically, for the estimation of construction cost, we adopted the
values of Wang et al. (2023) and fixed this setting in subsequent experiments.

A.5 THE TRANSFERABILITY.

In this section, we demonstrate how our proposed method adapts to the dynamics of growing cities
and changing OD flows. To simulate the expansion of the city, we initially remove the outer 20%
regions of Beijing and train MetroGNN on this reduced city for metro network expansion. Subse-
quently, we apply the model to directly generate expansion solutions for the complete city area, and
we also fine-tune the model for 10 additional iterations and evaluate its performance. As shown in
the Table 4, the trained model can directly provide new metro network expansion solutions for the
expanded city with performance close to that of DRL-CNN. Remarkably, with further fine-tuning
on the expanded city, the model produces outstanding expansion solutions, showcasing a signifi-
cant improvement of more than 10.2% compared to DRL-CNN. Furthermore, recognizing that OD
flows may change as urban functions shift, we explore the performance of the proposed method
when confronted with varying OD trips. As illustrated in Table 5, in the face of unpredictable OD
trips, MetroGNN provides expansion solutions with an improvement of over 12.84% compared to
DRL-CNN, and the p-value < 0.3% further confirms the statistical significance of this substantial
improvement. Notably, the well-trained model can provide effective solutions for different urban
areas within 20 seconds. In contrast, other methods either yield solutions of poor quality or need to
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Table 3: Parameter values of MetroGNN.
Category Parameter Value

Cost
Cost per normal station (million RMB) 300

Cost per interchange station (million RMB) 600
Cost per kilometer (million RMB) 500

Expansion
The number of Initial lines 2,4,6

Maximum new lines 2,3,4
Budget for expansion (billion RMB) 40,50,60

Network

GNN layer 2
GNN node dimension 32

Attention Head 2
Policy Head MLPp [32, 1]
Value Head MLPv [32, 32, 1]

PPO

gamma 0.99
tau 0

Entropy Loss β 0.01
Value Loss γ 0.5

Train
optimizer Adam

weight decay 0
learning rate 0.0004

Table 4: The transferability of MetroGNN on expended city compared with DRL-CNN. Statisti-
cal significance is determined using a t-test to compare MetroGNN with DRL-CNN, denoted as
∗p-value < 0.1 and ∗∗p-value < 0.05.

From Scratch Directly Transfer Fine-Tune DRL-CNN
18.93± 0.87∗∗ 15.64± 1.25 17.39± 1.04∗ 15.78± 1.33

train from scratch for at least 3 hours, have difficulties in handling diverse urban scenarios. These ex-
periments on transferability highlight the excellent adaptability of our model in the face of changing
urban regions and OD flows, underscoring its practical utility in real-world applications.

A.6 HYPER-PARAMETER STUDY

We tune the hyper-parameters of MetroGNN with a series of hyper-parameter studys. Specifically,
we investigate two key hyper-parameters of our model in this section, which are the number of GNN
layers, the dimenstion of GNN representations.

GNN Layers. We propose a topology-aware and OD-aware message passing mechanism that prop-
agates through heterogeneous edges in a single GNN layer. Stacking multiple GNN layers can
broaden each node’s perception field, allowing it to aggregate features from distant nodes. However,
excessive layer stacking can lead to oversmoothing and a decline in performance (Chen et al., 2020).
We systematically vary the number of GNN layers and evaluate the variants’ performance. Figure
7(a) shows that the model with 2 GNN layers achieved optimal performance, while models with
more or fewer layers exhibited varying degrees of performance degradation, with an average drop
of 10%.

GNN Embedding Dimension. The dimension of GNN embeddings closely related to their repre-
sentational capacity. A higher dimension allows the model to capture more complex spatial rela-
tionships in OD flows between different regions. However, excessively high dimensions can lead to
overfitting, resulting in significant performance degradation. Conversely, too low a dimension may
inhibit the model’s ability to learn effective representations. Meanwhile, with too low dimension,
model fails to learn effective representations. We investigated the impact of varying the dimension
of node embeddings on model performance. As illustrated in Figure 7(b), setting the dimension to
32 for each node resulted in the best performance. Increasing the dimension to 64 led to a perfor-
mance decrease of over 10%, while reducing it to 16 and 8 resulted in performance degradations of
2.5% and 9.8%, respectively.
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Table 5: The expansion performance with varying OD trips.Statistical significance is determined
using a t-test to compare MetroGNN with DRL-CNN.

Method 1 2 3 4 5 6 7 8 9 10
MPG 12.71 12.49 11.87 9.18 13.54 15.77 14.53 18.80 13.61 14.86

DRL-CNN 15.93 14.31 15.86 15.10 16.76 15.71 16.57 17.29 16.57 17.98
MetroGNN∗∗ 18.63 16.93 17.91 16.58 16.69 19.44 18.83 20.17 17.79 17.48

impr% 14.49 15.48 11.45 8.93 -0.42 19.19 12.00 14.28 6.86 -2.86
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Figure 7: Performance of MetroGNN with different values of (a) GNN layers (b) node dimension
for the metro network expansion in Beijing, China.

A.7 METRO NETWORK EXPANSION WITH EQUITY

While the construction of metro networks is primarily driven by public transportation demands,
social factors like equity also play a crucial role in shaping their layout (Arsenio et al., 2016; Be-
hbahani et al., 2019). We first define the inequity of a metro network as the variance in the distance
from all regions to the metro network. Let EucDis(ni,M) denotes to the shortest Euler distance
from region ni to the metro network M, then the inequity of M can be formulated as follows,

IE(M) =
1

|N |
∑
ni∈N

(EucDis(ni,M)− 1

|N |
∑

nj∈N
EucDis(nj ,M))2, (8)

and the equity improvement of the expansion is defined as the decrease in inequity IE(MT ) −
IE(M0), where MT represents the expanded metro network and M0 represents the original metro
network. When equity is included as an evaluation metric, the metro network expansion trans-
forms into a multi-objective optimization problem. The rewards of the MDP can be expressed as a
weighted sum of two metrics as follows,

Rt = α ∗ (Cod(Mt)− Cod(Mt−1)) + β ∗ (IE(Mt)− IE(Mt−1)), (9)

where α and β are the weights of the OD flows and equity, respectively. By varying the weighting
factors in the rewards, we can generate expansion solutions with different preferences. As presented
in Tables 6 and 8, when considering only the satisfaction of OD flows or equity individually, our
method provides significantly superior expansion schemes compared to DRL-CNN, with improve-
ments of 19.96% and 6.44%, respectively. Notably, when factoring in both travel demands and
equity, MetroGNN outperforms DRL-CNN on both metrics, showcasing an average improvement
of more than 20.1%. The powerful graph characterization capability of the GNN module enables
the learning of intricate OD flow characteristics, while the attentive policy network correlates each
region with the metro network layout, facilitating the generation of fairer expansion solutions.
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Table 6: Expansion with reward weights α = 1.0, β = 0.0

Method OD equity weighted
DRL-CNN 15.78± 1.33 12.32± 1.46 15.78± 1.33
MetroGNN 18.93± 0.87∗∗ 11.58± 0.26 18.93± 0.87∗∗

impr% v.s. DRL-CNN 19.96 -6.01 19.96

Table 7: Expansion with reward weights α = 0.5, β = 0.5

Method OD equity weighted
DRL-CNN 13.20± 1.72 20.72± 1.94 16.96± 1.80
MetroGNN 16.50± 1.14∗∗ 23.90± 1.28∗ 20.20± 1.21∗∗

impr% v.s. DRL-CNN 25.00 15.35 19.10

Table 8: Expansion with reward weights α = 0.0, β = 1.0

Method OD equity weighted
DRL-CNN 11.86± 2.32 26.70± 2.16 26.70± 2.16
MetroGNN 10.49± 1.85 28.42± 1.49∗ 28.42± 1.49∗

impr% v.s. DRL-CNN -11.55 6.44 6.44
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