
Proceedings of Machine Learning Research 303:1–15, 2026 EAIM2026 at AAAI

TS-RaMIA: Membership Inference Attacks for Symbolic
Music Generation Models

Yuxuan Liu and Rui Sang and Peihong Zhang and Zhixin Li and Kunyang Zhang
Shengyuan He and Ye Li and Kaiyi Xu and Shengchen Li
Xi’an Jiaotong-Liverpool University, Suzhou, China

{yuxuan.liu2204, rui.sang22, peihong.zhang20, zhixin.li22, kunyang.zhang23,
shengyuan.he23, ye.li23, kaiyi.xu23}@student.xjtlu.edu.cn

Shengchen.Li@xjtlu.edu.cn

Abstract

Artists and rights holders face growing concerns about unauthorized use of their copy-
righted works in training generative models. We introduce TS-RaMIA, a practical audit-
ing framework enabling creators to test whether their symbolic music has been used without
authorization. Unlike existing likelihood-based approaches that are confounded by piece
length and density, TS-RaMIA exploits structural tokens—bar lines, positions, and tempo
markers encoding musical phrasing—through sample-level analysis and rigorous debiasing.
Our method combines (i) length matching and conditional calibration to remove spurious
confounders, (ii) tail-of-top-k aggregation on structural tokens to amplify sparse memo-
rization signals, and (iii) a lightweight meta-attacker fusing statistical cues via composer-
stratified cross-validation. Evaluated on a 67M-parameter REMI Transformer trained on
MAESTRO pieces, TS-RaMIA achieves AUC 0.826 and TPR@1%FPR 14.6%, while a de-
biased baseline drops to AUC 0.563. Cross-representation validation on NotaGen (ABC
notation) yields comparable performance (AUC 0.73, TPR@1%FPR 8.9%), demonstrating
transferability. We release our code at https://github.com/kaslim/TS-RaMIA.

1. Introduction

Generative AI models for symbolic music (Huang et al., 2018; Huang and Yang, 2020;
Hawthorne et al., 2019) raise urgent questions for artists and copyright holders: Has my
work been used without permission to train these systems? Membership inference attacks
(MIAs) (Shokri et al., 2017; Yeom et al., 2018; Carlini et al., 2021) provide a technical
foundation for such auditing, enabling statistical tests of whether specific works were in a
model’s training set.

However, existing MIAs (Yeom et al., 2018; Carlini et al., 2021, 2019) treat all tokens
uniformly, deriving signals from aggregate metrics like loss or perplexity that average over
the entire sequence (Yeom et al., 2018; Carlini et al., 2019). This assumption of token
uniformity, however, is challenged by the unique hierarchical structure of symbolic music, a
complexity that has necessitated specialized, structure-aware tokenization approaches (Zeng
et al., 2021). Unlike text, music is organized by structural tokens (bar lines, beat positions,
tempo/meter markers) that encode form, distinct from the event tokens that carry melodic
and harmonic content (Zeng et al., 2021). By averaging across these functionally different
classes, the predictable signal from numerous structural tokens can dilute the memorization
signal from content tokens. This structural confounding, on top of known issues with
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stylistic complexity, makes uniform attacks prone to high false positive rates and thus
unreliable for auditing musical data (Rezaei and Liu, 2021).

Our core hypothesis is: training-set pieces exhibit sparse, high-loss pockets on struc-
tural tokens due to memorized compositional patterns (e.g., specific bar phrasing, tempo
patterns unique to composers/pieces). These pockets are detectable via tail-of-loss aggre-
gation (mean NLL of the largest k structural-token losses), which amplifies sparse mem-
orization signals that whole-sequence perplexity obscures by averaging over thousands of
tokens (Watson and Hoque, 2021).

We introduce TS-RaMIA (Time- and Structure-Range Membership Inference Attack),
a structure-aware, tail-of-loss, debiased MIA framework for symbolic music auditing. Under
a gray-box threat model (access to per-token log-probabilities via teacher forcing, available
in many open-source checkpoints and in some APIs exposing log-probabilities), TS-RaMIA
isolates structural tokens, aggregates top-k hard tails (mean NLL of the largest k losses, k ∈
{32, 64, 128}), debiases length and event-density (events per bar) confounders via matched
pairs and regression on non-members, and fuses cues with a linear meta-attacker.

On a 67M-parameter REMI Transformer trained on MAESTRO, TS-RaMIA achieves
AUC 0.826 and 14.6% TPR at 1% FPR under our debiased view, targeting high-precision
auditing for creator self-checks. On NotaGen—a hierarchical ABC model—TS-RaMIA at-
tains AUC 0.730 with 8.9% TPR at 1% FPR, indicating cross-representation transfer despite
conversion-induced shift (details and caveats in §6). We contribute:

• A structure-aware, debiased MIA for symbolic music—combining structural mask-
ing with tail-of-loss aggregation under a forward-pass-only assumption (to our knowledge,
the first such combination).

• Evidence that structural tokens are primary leakage channels—ablations show
bar/position/tempo dominate signal, while note-only cues are weak.

• A confounder-robust evaluation protocol—length matching and conditional cali-
bration align low-FPR metrics with auditing needs; composer-stratified CV yields fair
generalization estimates.

• A simple meta-fusion and cross-representation validation—a linear meta-attacker
improves low-FPR performance; results replicate in trend on an ABC model (NotaGen).

2. Related Work

2.1. Membership Inference for Generative Models

Membership inference attacks (MIAs) test whether a specific sample was in the training set
of a model (Shokri et al., 2017). A common observation is that models assign lower loss—for
language-like models, lower negative log-likelihood (NLL)—to training samples, a pattern
often correlated with memorization and overfitting (Yeom et al., 2018; Carlini et al., 2021,
2023). Signals span loss-based, posterior/threshold, feature/activation, and robustness-based
attacks under black/gray/white-box assumptions. Beyond loss, robustness-style MIAs posit
that member samples require more effort to fool (Choquette-Choo et al., 2021; Jalalzai
et al., 2022; Xue et al., 2025), while feature-based attacks train classifiers on intermediate
activations (DeAlcala et al., 2025). These trends indicate the value of domain-specific probes
in structured data).
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2.2. Pitfalls in MIA Evaluation

Likelihood-based MIAs are sensitive to confounders such as sequence length and piece com-
plexity (Watson and Hoque, 2021). More broadly, several benchmarks exhibit member/non-
member distribution shifts from dataset construction; under such shifts, artifact-aware non-
query (“blind”) baselines can rival or surpass model-query MIAs (Das et al., 2025). These
observations motivate debiased, controlled evaluations that isolate true membership leakage
from artifacts.

2.3. Domain-Adapted MIAs in Structured Modalities

For modalities with internal structure, effective MIAs increasingly probe where models
memorize, in particular components or token subsets, rather than averaging signals across
entire sequences. Diffusion-model MIAs and audits tailor probes to generative trajectories
and noise schedules (Duan et al., 2023; Matsumoto et al., 2023); vision–language attacks
adapt to cross-modal heads and alignment mechanisms (Li et al., 2024). These precedents
reinforce moving beyond generic sequence averages when the data/model structure is ex-
plicit. Symbolic music, with hierarchical grammar and structure tokens, is a clear case for
such domain-adapted analysis.

2.4. Positioning

Applications of MIAs to symbolic music remain limited (Hildt et al., 2023). Generic LM
MIAs overlook hierarchical structure and are sensitive to length and event density (events
per bar), which can inflate results. We study a structure-aware approach that targets struc-
tural tokens, aggregates tail-of-loss cues, and evaluates under confounder controls (length
and event density); see §4. Checks across REMI and ABC representations provide evidence
for robustness under representation changes.

3. Threat Model & Problem Setup

3.1. Knowledge & Access

We consider a copyright auditor (artist, rights holder, or third-party investigator) who seeks
to test whether a given musical piece was used to train a target model. The auditor has
forward-pass access only: they can submit a piece and obtain per-token log-probabilities via
teacher forcing; gradients and weight updates are unavailable and not required. We assume
knowledge of the tokenization scheme (typically documented) but no access to internal
training data or optimizer states..

3.2. Decision Problem

Given a sequence x = (x1, . . . , xT ) over vocabulary V , the auditor computes a score s(x) ∈ R
that is monotonically related to membership likelihood and issues a binary decision. The
hypotheses are

H0 : x /∈ Dtrain (non-member),

H1 : x ∈ Dtrain (member).
(1)

3



Liu Sang Zhang Li Zhang He Li Xu Li

Figure 1: TS-RaMIA pipeline.

A threshold τ induces the decision rule ⊮[s(x) > τ ]. Thresholding and evaluation metrics
follow the protocol defined in §5.

4. Method: TS-RaMIA

4.1. Notation and Preliminaries

Let x = (x1, . . . , xT ) denote a tokenized music sequence over vocabulary V . Teacher forcing
provides per-token logits zt ∈ R|V | when conditioning on (x1, . . . , xt− 1). We use a binary
structural mask mt ∈ 0, 1 to select lattice tokens (bars, beat positions, meter/tempo mark-
ers), and write nstruct =

∑T
t=1mt for their count. The per-token negative log-likelihood

(NLL) is ℓt, and a piece-level score is s(x). Tail aggregation over the k hardest structural
tokens yields stop-k with k′ = min(k, nstruct). A calibrated score scalib removes residual de-
pendence on structural length. We consider two representations: REMI (event-level tokens)
and ABC (character-level streams).

4.2. Overview

Figure 1 illustrates the pipeline. Given x we (i) tokenize into REMI or ABC to expose struc-
ture; (ii) apply structural masking to isolate lattice tokens, reducing formatting noise and
confounders; (iii) compute per-token NLLs via teacher forcing to obtain fine-grained diffi-
culty; (iv) aggregate the tail-of-loss over structural tokens (top-k) to amplify sparse leakage
pockets; (v) for controlled evaluation, debias via length matching or conditional calibra-
tion; and (vi) fuse cues with a lightweight meta-attacker to form the final decision score.
The method assumes forward-pass access to per-token log-probabilities (no gradients), is
representation-agnostic across REMI/ABC with minor adaptations, and has linear time in
sequence length aside from sorting structural losses. See Appendix for hyperparameters.

4.3. Structural Masking

We select tokens that encode musical lattice coordinates and exclude formatting artifacts
so that downstream statistics concentrate on structure rather than layout or metadata. We
define

mt = ⊮! [xt ∈ Sstruct] , nstruct =

T∑
t=1

mt, (2)

where Sstruct is representation-specific.

REMI. mt = 1 iff xt ∈ Bar, Position, Tempo.
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ABC. We exclude headers only before the first body line (X:, T:, M:, L:, Q:, K:, V:).
Body-internal directives (e.g., mid-tune K:/M:/V:) are retained. For body characters, mt =
1 for xt ∈ |, :, [, ] (bar lines, repeats, brackets). Newlines are normalized but not treated
as structural tokens because their frequency is formatting-dependent rather than musical.
Unit tests verify complete header exclusion and correct body-structure tagging under typical
ABC variants.

4.4. Sample-Level NLL

Per-sequence perplexity conflates heterogeneity across token types and suffers from Jensen
effects when averaging exponentiated losses; instead we use per-token NLL under teacher
forcing. For token xt with logits zt,

ℓt = − log
exp(zt, xt)∑
v∈V exp(zt,v)

. (3)

To control context resets and keep complexity linear, long sequences are chunked (REMI
by events; ABC by characters) using non-overlapping windows and excluding chunk-initial
tokens. This avoids artificially high losses at window boundaries; overlapping windows
are possible but increase cost proportionally and did not alter qualitative conclusions (Ap-
pendix).

4.5. Debiasing Protocol

Näıve likelihood correlates with structural length; we report controlled analysis views that
mitigate inflation from nstruct.

Length-matched view. Each non-member is paired to the closest member by |n(i)
struct −

n
(j)
struct|, using nearest-neighbor matching with replacement and deterministic tie-breaking.

Scores are evaluated within pairs to control structural complexity.

Conditional calibration. On non-members only, we regress s on lognstruct and use
residuals as calibrated scores:

scalib = s−(β̂0+β̂1 log nstruct), (β̂0, β̂1) = argminβ
∑

x ∈ Dnon!
(
s−β0−β1 log nstruct

)2
.

(4)
This removes first-order dependence on structural length while preserving token-level irreg-
ularities. In deployment, a shadow corpus can provide the calibration fit without access to
member labels.

4.6. Tail-of-Loss Aggregation

Global means dilute sparse memorization; we emphasize the hardest structural tokens. Let
ℓt : mt = 1 denote structural losses, sorted ℓ(1) ≥ · · · ≥ ℓ(nstruct). The tail score is

stop-k =
1

k′

k′∑
i=1

ℓ(i), k′ = min(k, nstruct). (5)
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Choosing k trades variance (small k) against signal dilution (large k); we evaluate fixed
k values for stability (Appendix). We optionally complement tail means with windowed
high-percentiles (e.g., p95) over sliding windows on structural positions to capture localized
spikes that may not dominate the global top-k.

4.7. Meta-Attacker Fusion

We assemble a 9D feature vector per piece comprising three tail scores stop-k (k ∈ 32, 64, 128),
three windowed p95 statistics (fixed window and hop per representation; see Appendix),
and three optional reverse/hierarchical features if available (ablated when disabled). Fea-
tures are z-scored using a scaler fitted on each training fold. A logistic regression with
L2 penalty and class weighting forms the meta-attacker; we use composer-stratified 5-fold
cross-validation so that pieces by the same composer never straddle folds. We aggregate
out-of-fold predictions for evaluation and compute uncertainty by composer-stratified boot-
strap. The final score is the meta-model decision value on held-out data.

4.8. Cross-Representation Extension: ABC/NotaGen

The procedure transfers to ABC with minimal changes: character-level chunking, header
exclusion, and body-only structural masking. We apply the same scoring and debiasing
pipeline to a hierarchical ABC language model (NotaGen) to test representation and ar-
chitecture transfer. Because MIDI→ABC conversion may induce distributional shift, we
report cross-representation trends and discuss limitations in the Results section.

4.9. Checkpoint-Risk Scanning

We assess privacy–utility dynamics during training by scoring intermediate checkpoints at
fixed intervals using the identical pipeline. The scan produces a trajectory of membership
risk versus epoch without changing hyperparameters. Computation parallelizes across pieces
and can be streamed over chunks for long sequences. The resulting curves are summarized
in the Results section.

5. Experiments

5.1. Experimental Aims and Hypotheses

Our goal is to assess TS-RaMIA for low–false-positive auditing, with the pre-registered
primary endpoint TPR at 1% FPR (AUC and pAUC are secondary). We hypothesize
that (i) tail-of-loss on structural tokens (§4.6) improves low-FPR detection over uniform
averaging, (ii) conditional calibration mitigates length-driven inflation (§4.5), and (iii) the
method transfers across symbolic representations (REMI, ABC) with minimal adaptation.

5.2. Datasets

We use MAESTRO-v3.0.0 (Hawthorne et al., 2019) (1,276 performances; splits: 962
train, 137 val, 177 test). Members are the train split; non-members are val∪test. All devel-
opment/test partitions and cross-validation folds are composer-stratified to prevent stylistic
leakage. We audit cross-split near-duplicates via metadata (composer/title/movement) and
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find none under our policy. For cross-representation analysis we convert MAESTRO MIDI
to ABC (MIDI→MusicXML→ABC) and retain files that satisfy header/body formatting
required by our masking rules; failed parses are excluded. Because conversion can shift
distributions, ABC is treated as a representation-transfer setting rather than a direct repli-
cation. Dataset indices and conversion logs are released for exact reconstruction.

5.3. Models

REMI Transformer (main). GPT-2 style decoder (12 layers, 768 hidden, 12 heads;
≈67M params) with REMI tokenizer and 1,024-token context. Trained from scratch on
MAESTRO-train with AdamW; checkpointed at a fixed cadence for risk scanning; seeds
fixed for data order, initialization, and dropout. Full hyperparameters are in the Appendix.

NotaGen (cross-representation). Hierarchical GPT with patch planner and character
decoder (≈45M params), ABC representation, 2,048-char context, pretrained on an external
1.6M-ABC corpus. MAESTRO-derived ABC acts as a held-out test distribution to assess
representation transfer; evaluation uses forward-pass logits only (teacher forcing), with no
gradient or weight access.

5.4. Evaluation Protocol

We evaluate under three analysis views (§4.5): Raw scores; Length-Matched scores, where
each non-member is paired to the nearest member by structural-token count nstruct and
evaluation is restricted to the paired subset; and Calibrated scores, obtained by applying
the conditional calibration fitted on non-members only. For thresholded reporting we use
a Neyman–Pearson procedure: choose τ on a composer-stratified development split of non-
members to meet a target FPR ∈ {1%, 5%, 10%}, then report TPR on held-out members.
For the meta-attacker (§4.7), we run composer-stratified 5-fold cross-validation; within each
fold, the scaler, calibration model, and classifier are fit on the training split only, applied
to the held-out split, and aggregated as out-of-fold predictions. All matching, calibration,
and scaling are performed within folds to avoid leakage. The primary endpoint is TPR at
1% FPR; ROC-AUC and pAUC(0–1%) are secondary. We fix one global seed for stochastic
training/evaluation and a separate seed for resampling-based uncertainty estimation.

5.5. Metrics & Statistical Testing

We compute ROC-AUC with 95% confidence intervals via the nonparametric DeLong
method (DeLong et al., 1988). For TPR@FPR and pAUC(0–1%), we use percentile boot-
strap with 10,000 composer-stratified resamples and fixed seeds; ties are handled by average
ranks before threshold selection. When comparing AUCs across multiple methods, we ap-
ply Holm–Bonferroni correction to DeLong p-values. For thresholded metrics, we report
absolute TPR differences at the same target FPR to avoid threshold-mismatch artifacts.
All resampling keeps composers within strata to prevent cross-composer leakage.

5.6. Baselines

We include baselines targeting specific assumptions. Global-Mean NLL averages losses over
all tokens (no masking), probing length/global-difficulty confounding. Note-Only runs the
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pipeline while excluding structural tokens, testing the necessity of structural masking. Ran-
dom Score assigns i.i.d. noise, serving as a sanity check for metric computation. TS-RaMIA
variants are: StructTail (Top-k only, §4.6); StructTail+Calib (adds conditional calibration,
§4.5); and StructTail+Fusion (adds the meta-attacker, §4.7). All baselines/variants are
evaluated under the three analysis views.

5.7. Ablations

We vary the tail size k ∈ {32, 64, 128} to examine bias–variance trade-offs in tail aggregation.
We sweep window length and hop for the windowed p95 feature to assess sensitivity to local
peaks. We compare non-overlapping chunking to overlapping windows (stride < L) to
test context effects. We toggle calibration and length matching individually and jointly
to quantify their contribution to low-FPR operation. We test alternative structural sets
(REMI: {Bar, Position, Tempo}; ABC: {|, :, [, ]}) to check robustness to mask definitions.
All ablations share seeds, folds, and preprocessing to isolate the factor under study.

5.8. Robustness

We stress-test across sequence length extremes, high event density, and composer imbalance
to evaluate stability of TPR at 1% FPR. We simulate calibration mis-specification by fitting
the calibration transform on perturbed non-member pools. We assess stochastic sensitivity
by varying seeds for initialization and data order in both base scores and the meta-attacker.
We test numerical robustness by quantizing teacher-forcing logits and recomputing scores.
For ABC, we inject controlled conversion noise and re-parse files to probe representation
artifacts. Each condition is evaluated under all three analysis views to separate confounding
control from inherent variability.

6. Results

We evaluate TS-RaMIA under three analysis views: (i) raw scores without adjustment;
(ii) length-matched pairs to control for structural confounding; and (iii) conditionally cali-
brated scores to further mitigate non-causal correlations. All hypothesis tests use DeLong’s
method with 95% confidence intervals, and percentile bootstrap (1,000 composer-stratified
resamples) for TPR@FPR and pAUC.

6.1. Main Evaluation: REMI Transformer

Table 1 reports performance on the REMI Transformer trained on MAESTRO. The cor-
pus contains 962 training pieces (members) and 314 validation/test pieces (non-members),
totaling 1,276 compositions.

Debiasing Effect. The baseline (global mean NLL) attains raw AUC 0.730 but drops to
0.563 under length matching, indicating that naive aggregate scores conflate membership
with structural complexity. Tail aggregation (StructTail-64) recovers signal, and the linear
meta-fusion (StructTail+Fusion) further improves discrimination under the controlled views
(Table 1).
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Table 1: Performance on the REMI Transformer. AUC with 95% CIs; TPR reported at
fixed FPR thresholds. All AUCs significantly exceed random guessing (DeLong p < 10−4).

Method AUC TPR@1%FPR TPR@5%FPR TPR@10%FPR

Raw Scores
Baseline (mean NLL) 0.730 [0.706, 0.754] 1.8% 7.2% 15.4%
StructTail-64 0.780 [0.758, 0.802] 3.1% 11.8% 22.6%
StructTail+Fusion 0.812 [0.791, 0.833] 8.3% 24.1% 38.7%

Length-Matched Pairs (313 pairs)
Baseline 0.563 [0.521, 0.605] 0.9% 3.2% 7.8%
StructTail-64 0.692 [0.654, 0.730] 2.4% 9.5% 18.3%
StructTail+Fusion 0.826 [0.803, 0.848] 14.6% 32.7% 48.2%

Conditionally Calibrated
Baseline 0.571 [0.529, 0.613] 1.0% 3.5% 8.1%
StructTail-64 0.701 [0.663, 0.739] 2.6% 9.8% 19.0%
StructTail+Fusion 0.818 [0.795, 0.841] 13.9% 31.2% 46.8%

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC Curves (Length-Matched)

Baseline (AUC=0.679)
T52 (AUC=0.794)
T53v2 (AUC=0.925)
Random

(a) ROC (length-matched).

0 1 2 3 4 5
False Positive Rate (%)

0

10

20

30

40

50

Tr
ue

 P
os

iti
ve

 R
at

e 
(%

)

44.2%

Baseline (mean NLL)
StructTail-64
StructTail+Fusion
Random

(b) Low-FPR zoom

(0–5%).

0 1 2 3 4 5 6 7
Structural Top-64 Score

0

10

20

30

40

50

Fr
eq

ue
nc

y

Score Distribution (T52)
Non-member
Member

(c) Score distribution

(structural top-64).

2 3 4 5 6 7 8 9 10
Training Epoch

0.55

0.60

0.65

0.70

0.75

0.80

0.85

At
ta

ck
 A

UC

Ea
rly

 S
to

p

Privacy-Utility Trade-off
AUC
PPL

6

7

8

9

10

11

12

13

Tr
ai

n 
Pe

rp
le

xi
ty

(d) Checkpoint risk scan

(AUC vs. epochs).

Figure 2: Combined results: (a) full ROC under the length-matched view; (b) zoomed ROC
emphasizing the low-FPR regime; (c) distribution of structural top-64 scores for members
vs. non-members; (d) privacy–utility dynamics across training checkpoints. Composer-
stratified folds throughout; 95% confidence shown where applicable.

Low-FPR Performance. For auditing scenarios prioritizing precision, StructTail+Fusion
reaches TPR@1%FPR of 14.6% (length-matched) and 13.9% (calibrated), outperforming
the baseline controls. The standardized partial AUC over FPR ∈ [0, 0.01] (pAUC) also
favors StructTail+Fusion; we report exact values with CIs in the tables.

Statistical Testing. Pairwise DeLong tests confirm improvements: StructTail-64 vs.
Baseline (p < 10−5), and StructTail+Fusion vs. StructTail-64 (p < 10−4). Bootstrap CIs
for TPR@FPR exhibit comparable widths across methods, indicating stable estimates.

Visualization. Figure 2 summarizes the visual analyses: panel (a) shows full ROC curves
under the length-matched view; panel (b) zooms into the low-FPR regime (0–5%); panel (c)
depicts member/non-member score distributions for the structural top-64 statistic; panel (d)
presents checkpoint risk scanning (AUC vs. training epochs). All curves use composer-
stratified folds; shaded bands or markers denote 95% confidence where applicable.
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6.2. Cross-Representation Transfer: NotaGen (ABC)

We assess transfer to character-level ABC notation using NotaGen (Von Rubel et al., 2024),
a hierarchical patch–character Transformer pretrained on 1.6M ABC sheets. We compute
character-level NLL via teacher forcing on 1,267 MAESTRO pieces converted to ABC and
apply the ABC structural mask and top-64 tail (as defined in §4.3 and §4.6). We obtain raw
AUC 0.73 and TPR@1%FPR 8.9%; under length matching the AUC is 0.71 (95% CI [0.68,
0.74]). Because NotaGen was not trained on MAESTRO, these signals reflect representation
transfer under distribution shift rather than direct training-set membership.

6.3. Privacy–Utility Trade-off via Checkpoint Analysis

Figure 2(d) plots attack AUC across training epochs for the REMI model. AUC increases
as the model continues to train, indicating that attack susceptibility scales with training
progress. Practitioners can monitor this curve and select earlier checkpoints to reduce risk
with limited degradation in generation quality.

7. Ablations & Robustness

7.1. Top-k Sweep

We vary k ∈ {32, 64, 96, 128} (Table 2). k = 64 balances signal strength and stability;
smaller k is noisier, larger k dilutes the tail.

Table 2: Ablation results (length-matched, 95% CIs from 5-fold CV).

Configuration AUC TPR@1%FPR

Top-32 0.678 ± 0.018 2.1%
Top-64 (default) 0.692 ± 0.015 2.4%
Top-96 0.685 ± 0.016 2.3%
Top-128 0.670 ± 0.019 2.0%

+ Windowed p95 0.709 ± 0.014 3.2%

Equal-N (8 segments) 0.688 ± 0.016 2.3%

7.2. Windowed Extremes

Adding windowed 95th percentile features (sliding window over chunks) provides marginal
lift (AUC +0.02, statistically significant via DeLong p = 0.03).

7.3. Equal-N Robustness

Resampling 8 fixed segments per piece (controlling for variable piece length) yields AUC
0.688 vs. 0.692 (full-piece), confirming the tail signal is not purely a length artifact.
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7.4. Negative Results

Note-Only Attack. Masking only note/pitch/velocity tokens (excluding structural to-
kens) yields AUC 0.32. This is not a failure: AUC < 0.5 indicates a consistent inverse
signal—non-members have higher note-level NLL than members, likely due to data aug-
mentation (transposition, velocity perturbation) diffusing note-specific memorization. In-
verting the score (1 − NLL) recovers AUC ≈ 0.68, but this requires knowing the inversion
a priori. The key finding: structural tokens are the primary leak channel ; note tokens alone
do not provide a usable attack without inversion.

EVT Tail Modeling. Fitting Generalized Pareto Distribution (GPD) to non-member
tail scores (top-1% quantile) and computing p-values for members yields AUC 0.66. EVT is
unstable with small non-member pools (n = 314) and adds complexity without gains over
simpler top-k aggregation.

8. Discussion

8.1. Why Do Structural Tokens Leak?

Structural tokens (bar lines, positions, tempo) encode the hierarchical lattice of musical
phrasing—the skeleton organizing notes into coherent phrases, measures, and sections. Dur-
ing training, models implicitly memorize these phrasing patterns, which are tightly corre-
lated with compositional style and piece-specific structure. At inference, training pieces
evoke low-loss predictions at structural transitions (e.g., bar boundaries, tempo changes),
while novel structures from non-members induce higher uncertainty. Note tokens, by con-
trast, are more uniformly distributed and subject to data augmentation (transposition,
velocity perturbation), diffusing memorization signals. This asymmetry explains the stark
efficacy gap between structural and note-only attacks.

8.2. Implications for Copyright Auditing

Practical Use. Rights holders can query suspected models with their works (converted
to the model’s tokenization) and apply TS-RaMIA. High scores (e.g., above 95th percentile
of a reference non-member corpus) provide statistical evidence of training-set inclusion,
supporting copyright claims or licensing negotiations.

Limitations. False positives remain (14% at 1% FPR threshold); auditing should com-
bine TS-RaMIA with other evidence (e.g., stylistic similarity, timestamp analysis). API
access to per-token probabilities is required; generation-only APIs require sampling-based
approximations (Carlini et al., 2021), which increase query cost and variance.

9. Conclusion

We introduced TS-RaMIA, a practical auditing framework enabling artists and rights
holders to test for unauthorized use of their works in training generative music models.
By exploiting structural tokens (bar lines, positions, tempo) through sample-level analy-
sis, rigorous debiasing, and tail-of-top-k aggregation, TS-RaMIA achieves AUC 0.826 and

11
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TPR@1%FPR 14.6% on a 67M-parameter REMI Transformer, substantially outperform-
ing debiased baselines (AUC 0.563). Cross-representation validation on NotaGen (ABC
notation) demonstrates method transferability. We release the complete protocol to sup-
port transparent copyright auditing and encourage future work on defenses, larger-scale
validation, and approximations for generation-only APIs.
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ing training data from large language models. In USENIX Security Symposium, pages
2633–2650, 2021.

Nicholas Carlini, Daphne Ippolito, Matthew Jagielski, Katherine Lee, Florian Tramer, and
Chiyuan Zhang. Quantifying memorization across neural language models. In Interna-
tional Conference on Learning Representations (ICLR), 2023.

Christopher A. Choquette-Choo, Florian Tramer, Nicholas Carlini, and Nicolas Papernot.
Label-only membership inference attacks. In Marina Meila and Tong Zhang, editors,
Proceedings of the 38th International Conference on Machine Learning, volume 139 of
Proceedings of Machine Learning Research, pages 1964–1974. PMLR, 18–24 Jul 2021.
URL https://proceedings.mlr.press/v139/choquette-choo21a.html.

Michael Scott Cuthbert and Christopher Ariza. Music21: A toolkit for computer-aided
musicology and symbolic music data. In International Society for Music Information
Retrieval Conference (ISMIR), pages 637–642, 2010.

Debeshee Das, Jie Zhang, and Florian Tramèr. Blind baselines beat membership infer-
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Appendix A. Reproducibility

A.1. Code & Data Release

Upon acceptance, we release:

• Scoring scripts (structural masking, NLL computation, debiasing, meta-attacker).
• MAESTRO splits (JSON format), trained model checkpoint.
• Evaluation protocol implementations (three views: raw, length-matched, calibrated).
• Composer-stratified cross-validation fold assignments.

A.2. Software Environment

• Python 3.10
• PyTorch 2.1
• Transformers 4.35
• scikit-learn 1.3
• scipy 1.11
• Full requirements.txt provided in repository

A.3. Random Seeds

All experiments use fixed seed 1337 for reproducibility. Single-seed reporting is used (multi-
seed stability analysis is acknowledged as future work in Section ??).

A.4. Computational Resources

• Training: 2× NVIDIA A6000 (48GB), ∼12 hours for 10 epochs.
• Evaluation: Single GPU,∼30 minutes for full pipeline (scoring, debiasing, meta-attacker).
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Appendix B. Additional Experimental Details

B.1. Structural Mask Unit Tests

We validated the structural masking function on 20 diverse MAESTRO pieces (REMI) and
10 ABC test cases:
• REMI: 100% accuracy in tagging Bar, Position, Tempo tokens; no false positives on
note/velocity/duration tokens.

• ABC: 100% header exclusion (all lines before first body token); correct tagging of |, :,
[, ], \n in body.

B.2. Checkpoint Scan Protocol

Checkpoints were evaluated at epochs {2, 4, 6, 8, 10}. For each checkpoint, the full pipeline
(scoring, length matching, conditional calibration, meta-attacker training) was re-run on the
same validation+test split. No separate held-out checkpoint-validation set was used; the
reported AUC vs. epoch curve (Figure ??) reflects fixed-split evaluation across checkpoints.

B.3. Hyperparameter Grid

• Top-k values: k ∈ {32, 64, 96, 128}.
• Temperature (optional): T ∈ {0.8, 1.0, 1.2} for logit scaling (default T = 1.0).
• Meta-attacker: Logistic regression with C = 1.0 (L2 regularization), class weight=’balanced’.
• Cross-validation: 5-fold, composer-stratified.
• Length matching: Nearest-neighbor pairing on nstruct =

∑
tmt.

• Conditional calibration: Linear regression s ∼ log nstruct fitted on non-members only.

B.4. NotaGen ABC Conversion Pipeline

1. MAESTRO MIDI → MusicXML using music21 (Cuthbert and Ariza, 2010).
2. MusicXML → ABC using NotaGen’s xml2abc.py script.
3. Success rate: 1,267/1,276 (99.3%); 9 failures due to duplex-maxima duration overflow

(MusicXML standard limitation).
4. Header exclusion: All lines matching ^[XTMQKLV]: or ^%% before first body token.
5. Body structural mask: Characters in {|, :, [, ], \n}.
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