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Abstract

We present WineSensed, a large multimodal wine dataset for studying the relations1

between visual perception, language, and flavor. The dataset encompasses 897k im-2

ages of wine labels and 824k reviews of wines curated from the Vivino platform. It3

has over 350k unique bottlings, annotated with year, region, rating, alcohol percent-4

age, price, and grape composition. We obtained fine-grained flavor annotations on5

a subset by conducting a wine-tasting experiment with 256 participants who were6

asked to rank wines based on their similarity in flavor, resulting in more than 5k7

pairwise flavor distances. We propose a low-dimensional concept embedding algo-8

rithm that combines human experience with automatic machine similarity kernels.9

We demonstrate that this shared concept embedding space improves upon separate10

embedding spaces for coarse flavor classification (alcohol percentage, country,11

grape, price, rating) and aligns with the intricate human perception of flavor.12

1 Introduction13

Vision, language, audio, touch, smell, and taste are sensory inputs that ground humans in a shared14

representation, which enables us to interact, converse, and create. Recent advances in multimodal15

learning have shown that combining diverse modalities in a shared representation leads to useful and16

better-grounded models [Girdhar et al., 2023, Chen et al., 2023]. Inspired by recent progress, we17

propose to add flavor to the list of modalities used to learn shared representations.18

As a first step towards modeling flavor, we focus on wine since (1) wines have been studied for19

centuries, (2) their flavors have been carefully categorized, and (3) classification systems exist to20

ensure that flavor is near-consistent across bottles of the same unique bottling.21

We bridge the gap between the machine learning and food science communities by presenting22

WineSensed, a multimodal wine dataset that consists of images, user reviews, and flavor annotations.23

Our motivation is twofold. On one hand, internet photos and user reviews are a scalable source of24

data, offering abundant, diverse, and easily accessible insights into wine qualities. On the other hand,25

human flavor annotations, while not as scalable, provide a more direct and granular understanding of26

the wines’ flavor profile. By combining these resources, we aim to capture the best of both worlds,27

yielding a richer, more intricate dataset.28

We organized a large sensory study to obtain human-annotated flavor profiles of the wines. The study29

applies the “Napping” methodology [Pagès, 2005], which is commonly used to conduct consumer30

surveys [Kim et al., 2013, Ribeiro et al., 2020]. In this study, 256 participants annotated their31

perceived taste similarities of various wines. In Fig. 1, the “human kernel” illustrates how participants32
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Figure 1: Flavor as an additional data modality. The WineSensed dataset consists of a large
collection of images, user reviews, and metadata about unique bottlings (upper left). In a large
user study, we collected flavor annotations of over 100 wines using the “Napping” method [Pagès,
2005], where participants were asked to place wines on a sheet of paper based on their perceived
taste similarity (lower left). We propose an algorithm to combine these data modalities into a
shared representation (right) and find that using taste annotations as an additional modality improves
performance in downstream tasks.

were instructed to place wines on a sheet of paper based on how similar they perceived their flavor to33

be. The Napping method enabled us to annotate wine flavors with a high level of detail and harness34

the perception of a broad spectrum of individuals. It scales well, as asking a participant to annotate35

five wines yields 10 pairwise annotations. All participants combined annotated more than 5k flavor36

distances.37

To complement these annotations, we curate images of wine labels, user reviews, and wine attributes38

(country of origin, alcohol percentage, price, and grape composition) from the Vivino platform,39

a popular online social network for wine enthusiasts.1 WineSensed, therefore, represents a large,40

multimodal dataset that merges user-generated content with sensory assessments, bridging the gap41

between subjective consumer perception and objective flavor profiles.42

Along with the dataset, we propose Flavor Embeddings from Annotated Similarity & Text-Image43

(FEAST) that leverages recent developments in large multimodal models to embed user reviews44

and images of wine labels into a low-dimensional, latent representation that contains semantic and45

structural information that correlates with taste. Our model aligns this representation with the flavor46

annotations from our user study. We find that this combined representation yields a “flavor space”47

that models coarse flavor concepts like alcohol percentage, country, grape, and the year of production,48

while also being aligned with more intricate human perception of flavor.49

Experimentally, we find (1) that using the pairwise distances (rather than ordering) of the annotated50

wines improves the flavor representation, which confirms the established methodology in food science,51

and validates our annotation process. (2) We discover that using multiple data modalities (images,52

text, and flavor annotations) boosts the flavor representations, highlighting the usefulness of our53

multimodal dataset. (3) Finally, we show that the proposed multimodal model produces a flavor space54

with a high alignment with humans’ perception of flavor.55

1https://vivino.com
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2 Background and related work56

Multimodal representations. Learning a shared representation between modalities can reveal useful57

representations that generalize well and appear grounded in reality. Pioneering work [de Sa, 1994]58

proposes to learn the correlation between vision and audio. A number of deep learning methods59

propose to use large collections of weakly annotated data to learn shared vision-language representa-60

tions [Joulin et al., 2016, Desai and Johnson, 2021, Radford et al., 2021b, Mahajan et al., 2018], shared61

audio-text representations [Agostinelli et al., 2023], shared vision-audio representations [Ngiam62

et al., 2011, Owens et al., 2016, Arandjelovic and Zisserman, 2017, Narasimhan et al., 2022, Hu63

et al., 2022], shared vision-touch [Yang et al., 2022] representations, or shared sound and Inertial64

Measurement Unit (IMU) representations [Chen et al., 2023]. Recently, ImageBind [Girdhar et al.,65

2023] showed that images can bind multiple modalities (images, text, audio, depth, thermal, IMU)66

into a shared representation. While recent advances in other areas of multimodal learning have been67

fueled by large datasets, the difficulty of quantifying and collecting high-quality flavor data has made68

it challenging for the machine learning community to develop similar representations for flavor.69

Quantifying flavor. Understanding and engineering flavor is a central part of food science and70

essential in the quest towards healthy and sustainable food production [Savage, 2012], but the use of71

machine learning methods to this end is still in its infancy. Fuentes et al. [2019] found a correlation72

between seasonal weather characteristics, and wine quality and aroma profiles, thereby verifying73

what wine producers have long held to be true. Similarly, Gupta [2018] found that sulfur dioxide, pH,74

and alcohol levels are useful for predicting wine quality. Due to the difficulty of gathering quality75

perception data, much work focuses on how ‘low-level’ chemical aspects related to ‘high-level’ taste76

properties, e.g. in assessing the quality of chocolate and beer [Gunaratne et al., 2019, Gonzalez Viejo77

et al., 2018].78

Analyzing a person’s perception of wine is challenging due to the complex nature of flavor, which79

remains ill-understood, and the difficulty in obtaining consistent verbal descriptions of taste across80

individuals. Napping [Pagès, 2005] is the de facto method to analyze perceived taste in consumer81

surveys. Participants receive taste samples and are instructed to place them on a sheet of paper based82

on how similar they perceive their taste to be, with closer meaning more similar. Such experiments83

are usually conducted with 10-25 participants and less than 20 variants of a product [Giacalone et al.,84

2013, Pagès et al., 2010, Mayhew et al., 2016]. In this study, we scale this data collection process to85

256 participants and 108 unique bottlings of red wine, resulting in over 400 napping papers collected86

and more than 5k annotated flavor distances. In contrast to previous works [Giacalone et al., 2013,87

Pagès et al., 2010, Mayhew et al., 2016] our objective is to incorporate taste as one of the modalities88

that contribute to the shared representations for improved grounding of machine learning models.89

Human kernel learning. Annotating flavor with Napping [Pagès, 2005] does not provide image-90

flavor or text-flavor correspondences but rather relative flavor similarities between sampled products.91

According to [Miller, 2019] humans are better at describing abstract concepts such as taste with92

contrastive questions, such as “does wine X taste more similar to wine Y or Z?” For this reason, the93

machine learning community has used contrastive questions in multiple settings, e.g., for understand-94

ing how humans perceive light reflection from surfaces by presenting annotators with image triplets95

depicting the Stanford Bunny with varying material properties [Agarwal et al., 2007], to produce a96

genre embedding of musical artists [Van Der Maaten and Weinberger, 2012], and for discovering97

underlying narratives in online discussions [Christensen et al., 2022]. Most relevant to our work98

is SNaCK [Wilber et al., 2015], which presents annotators with image triplets depicting foods and99

asked which two of them taste more similar, to obtain flavor triplets. They proposed to combine this100

high-level human flavor understanding with low-level image statistics to learn food concepts, e.g., that101

even though guacamole and wasabi look similar, their taste is not. Having humans annotate image102

triplets of foods works well for coarse concepts, but does not encompass nuanced differences in taste.103

In this work, we focus on the much finer-grained taste difference found in wines. These nuances and104

the complex nature of wine tasting, which involves taste and smell, are not easily conveyed through105

text or images.106
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Figure 2: Examples from WineSensed. The dataset consists of images of wine labels, user-generated
reviews, per-wine attributes (country, grape, region, alcohol percentage, rating, price), and flavor
annotations. Here are examples of the images, reviews, and attributes.

Flavor datasets. The machine learning community has produced numerous food datasets for107

classifying which meal is in an image [Bossard et al., 2014, Min et al., 2020], retrieving a recipe108

given an image [Salvador et al., 2017, Li et al., 2022], or predicting the origin of wines [Dua and109

Graff, 2017]. While it is possible to extract coarse information about taste from such datasets [Wilber110

et al., 2015], they do not encompass higher resolution details of taste, such as the differences between111

a Cabernet Sauvignon and Pinot Noir.112

Similarly, the food science community has developed many datasets for understanding and predicting113

food flavors, nutrient content, and chemistry. Flavornet [Arn and Acree, 1998], a dataset on human-114

perceived aroma compounds, explores partly how smells relate to perceived bitterness or fruitiness in115

a wine. However, its limitation is its lack of context linking these odors to specific wine varieties116

and its limited focus on flavor aspects. FoodDB [Harrington et al., 2019] offers comprehensive117

information on a wide variety of food, its nutrient contents, potential health effects, and macro and118

micro constituents. However, it lacks user-generated reviews and sensory data, which are crucial119

for understanding the subjective human perception of food and wine. The Wine Data Set [Dua and120

Graff, 2017] focuses on wines, but only contains wines originating from one region in Italy, limiting121

the dataset’s ability to capture the broader diversity of flavor profiles of wines from various regions122

worldwide. Furthermore, Dua and Graff [2017] solely incorporate the chemical compounds present123

in each wine, without annotations of flavors and information associating specific wines with each124

chemical compound. In contrast to previous work, we present a multimodal dataset that contains a125

large corpus of images and reviews, as well as human-annotated flavor similarities.126

3 The WineSensed dataset127

We present WineSensed, a large, multimodal wine dataset that combines human flavor annotations,128

images, and reviews. In this section, we provide an overview of the curation process for each of these129

modalities.130
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Figure 3: Examples of images. The viewpoint, lighting, and composition vary across images.

Annotated flavors. The flavor data consists of over 5k human-annotated pairwise similarities between131

108 unique bottlings. Each annotated pair is annotated at least five times to reduce noise.132

These annotations are collected through a series of wine-tasting events attended by a total of 256133

non-expert wine drinkers. Most participants were between 21-25 years old, and more than half134

of them were from Denmark. Each participant volunteered their time, dedicating a maximum of135

two hours to complete the annotations. The experiment was conducted in accordance with the ”De136

Videnskabsetiske Komiteer” (e. the Danish ethics committee for science) (see Appendix I).137

We randomly selected 5 wines for the participants to taste. The participants did not have access138

to any information regarding the individual wines. The wine was poured into non-transparent shot139

glasses and the labels of the wines were covered during the entire experiment. The participants were140

instructed to put colored stickers (representing each of the five wines) on a sheet of paper based141

on their taste similarity, closer meaning more similar. The participants could repeat the process up142

to three times, ensuring they did not consume more than 225 ml of wine. The average participant143

repeated the experiment two times.144

We automatically digitized the participants’ annotations by taking a photo of each filled-out sheet. We145

used the Harris corner detector [Harris et al., 1988] to find the corners of the paper and a homographic146

projection to obtain an aligned top-down view of the paper. The images were mapped into HSV147

color space and a threshold filter applied to find the different colored stickers that the participant148

used to represent the wines. Having identified the location, we computed the Euclidean pixel-wise149

distance between all pairs of points, resulting in a distance matrix of wine similarities. A more150

detailed description of the collection and digitization of the napping papers can be found in D.151

User-reviews. We curated 824k text reviews from the Vivino platform. The reviews were filtered to152

contain at least 10 characters to avoid non-informative reviews such as ‘good’ and ‘bad.’ Fig. 2 shows153

examples of user-reviews. The reviews are free text and can contain special tokens such as emojis.154

The reviews tend to describe price, pairing, and general terms of wine. Some also describe which155

flavors the reviewer tastes. These reviews are subjective and can vary based on personal factors and156

context, leading to inconsistent flavor profiles. Moreover, they only contain coarse flavor descriptions157

and focus more on aspects like preference, price, occasion, and so forth. Fig. 4 shows the distribution158

of word count per review, number of reviews per unique bottling, and the most common keywords.159

Images. The dataset has 897k images of wine labels. Wine labels are known to play a major role in160

a consumer’s decision to purchase a particular wine, so it is reasonable to believe that label design161
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(a) Images per unique bottling (b) Words per review (c) Most common keywords

Figure 4: Summary statistics of user reviews and images. Most unique bottlings have less than 10
images. The average review length is 16 words. Common keywords in the reviews include ‘fruit’,
‘dry’, and ‘smooth’ revealing coarse semantic information about the flavor of the wines while other
keywords such as ‘good’ and ‘great’ do not reveal flavor information.

(a) Country (b) Grape (c) Region

(d) Price (e) Alcohol content (f) Rating (g) Year

Figure 5: Wine attributes. WineSensed contains attributes about the geolocation of production
(country, region) and the grape composition of each wine. Furthermore, the dataset includes informa-
tion on the average price of the wine, alcohol percentage, average rating on the Vivino platform, and
the year of production. The histograms show the distribution of these attributes.

carries information regarding the taste of the wine [Talbot, 2019]. Fig. 3 shows examples of images162

from the dataset. The images vary in their viewing angle, illumination, and image composition.163

Attributes. Each wine is associated with the geographical location of the vineyard (both country and164

region), grape varietal composition, vintage, alcohol content, pricing, and average user rating. Fig. 5165

shows the distribution of these attributes. Most wines originate from Italy, with Sangiovese being the166

most commonly used grape. The wines occupy the lower range of the price spectrum, with the most167

expensive ones priced at around 40 USD. The attributes are available for 5% of the dataset entries.168

4 Flavor Embeddings from Annotated Similarity & Text-Image (FEAST)169

The embeddings of recent large image and text networks contain structural and semantic information,170

however, they do not model the intricacies of human flavor. We propose FEAST, a method to align171

these embeddings to the human perception of flavor using a small set of human-annotated flavor172

similarities. FEAST takes text and/or images as input, as well as human-annotated flavor similarities.173

It outputs a unified embedding that aligns with human sensory perception. Fig. 6 provides an overview174

of the proposed method.175

We first embed the text and/or images into a latent space with CLIP [Radford et al., 2021a]. We use176

CLIP because of its large training corpus and its image-text aligned latent space, however, highlights177

that other pretrained networks can be used. We use t-SNE [Van der Maaten and Hinton, 2008] to178
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Figure 6: Model overview. FEAST takes text and/or images as input as well as human-annotated
flavor similarities. The text and/or images are embedded into a latent representation with CLIP. We
use NMDS to embed the flavor similarities. The two representations are aligned with CCA to produce
a latent space that uses the structural information in CLIP embeddings and the intricacies of human
annotations. The bolded methods in the orange, blue, and green boxes indicate choices for our best
model, and their remaining combinations serve as an overview of the evaluated baselines.

reduce the dimensionality of the latent space to 2, which simplifies and constrain the later alignment179

with the pairwise flavor annotations.180

The pairwise distances are embedded into a 2D representation using Non-metric multidimensional181

scaling (NMDS) with the SMACOF strategy [de Leeuw and Mair, 2009]. NMDS allows us to182

preserve the original flavor distances provided by humans in a shared space, where each unique183

bottling is represented with point location, rather than pairwise distances. MDS is commonly used in184

food science to analyze sensory annotations from Napping studies [Pineau et al., 2022, Varela and185

Ares, 2012, Nestrud and Lawless, 2010].186

We then align these two 2D representations to get a joint representation that benefits from the187

structural and semantic information of the image and/or text representations, scales to unobserved188

unique bottlings, and is aligned with the human perception of flavor. We use Canonical Correlation189

Analysis (CCA) [Harold, 1936] to align the two representations. CCA identifies and connects common190

patterns between these representation spaces, ensuring that the final representation is consistent across191

all input modalities.192

5 Experiments193

We conduct two experiments on the WineSensed dataset. First, we explore how well recent large194

pretrained language and image models explain wine attributes that correlate with the flavor of a wine.195

Second, we explore multimodal models’ capabilities to represent more intricate flavors.196

Experimental setup. We explore several configurations of human kernels, machine kernels, and197

“combiners” that align the two representations. Fig. 6 provides an overview of our baselines. The198

human kernel is formed with t-STE [Van Der Maaten and Weinberger, 2012], a low dimensional199

graph representation reduced with t-SNE or NMDS, where the notable difference is that t-STE200

discards the flavor distances, and solely optimizes for triplet orderings. The machine kernel consists201

of two steps: (1) we use a pretrained model to embed text and/or images into a low dimensional202

space, (2) which is then compressed into a two-dimensional space. For (1), we explore DistilBert203
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Table 1: Ablation of machine ker-
nels. Accuracy of machine kernels
across image and text modalities. Im-
age models perform worse than text
models. ALBERT, BART and CLIP
perform the best, all models perform
better than random using at least one
classification method.

Acc ↑
Machine kernel Modality SVM NN

Random 0.11 0.11
ViT Image 0.09 0.13
DeiT Image 0.14 0.15
ResNET Image 0.15 0.16
CLIP Image 0.11 0.15
T5 Text 0.15 0.16
ALBERT Text 0.15 0.18
BART Text 0.16 0.15
DistilBERT Text 0.15 0.17
CLIP Text 0.16 0.18
FLAN-T5 Text 0.15 0.17
PEGASUS Text 0.13 0.13
BART Text 0.11 0.15

Table 2: Ablation of Modal-
ities. Accuracy of single and
combined modalities. Using
multiple modalities improves
performance. We find that
combining image, text, and
flavor yields much better ac-
curacy than modeling each
modality separately.

Acc ↑
Modality SVM NN

Flavor 0.16 0.11
Image 0.11 0.15
Text 0.16 0.18
Text+Flavor 0.23 0.18
Image+Text 0.22 0.25
Image+Flavor 0.23 0.18
Image+Text+Flavor 0.28 0.26

Table 3: Ablation of hu-
man kernels, reducers,
and combiners.

Reducer Acc ↑
Human Kernel SVM NN

Random 0.11 0.11
t-STE 0.13 0.10
t-SNE 0.15 0.13
NMDS 0.16 0.13

Reducer Acc ↑
Machine Kernel SVM NN

UMAP 0.15 0.18
PCA 0.20 0.21
t-SNE 0.22 0.25

Acc ↑
Combiner SVM NN

ICP 0.21 0.24
Procrustes 0.19 0.23
SNaCK 0.23 0.24
CCA 0.28 0.26

[Sanh et al., 2019], T5 [Raffel et al., 2020], ALBERT [Lan et al., 2019], BART [Lewis et al., 2019],204

PEGASUS [Zhang et al., 2020], FLAN-T5 [Chung et al., 2022] and CLIP for embedding text and205

ViT [Dosovitskiy et al., 2020], ResNet [He et al., 2016], DeiT [Touvron et al., 2021], and CLIP for206

embedding images. For (2), we explore t-SNE, UMAP [McInnes et al., 2018], and PCA [Pearson,207

1901]. For the combiners, we experiment with CCA, Iterative Closest Point (ICP) [Chen and Medioni,208

1992], Procrustes [Gower, 1975] and SNaCK. For a more detailed description of the implementation209

and software packages used, please refer to E the Appendix.210

5.1 Coarse flavor predictions211

We first explore how well pretrained language and vision models explain wine attributes that correlate212

with flavor. We then investigate if using FEAST to align the machine and human kernels improves213

the representation.214

Implementation details. We use a balanced SVM classifier with an RBF kernel as well as a Multi-215

layer Perceptron [] neural network to predict wine attributes of the flavor embeddings. We predict216

price, alcohol percentage, rating, region, country, and grape variety as these attributes are known217

to correlate with the perceived wine flavor. We mitigate imbalanced class distributions with class218

weight balancing and oversampling of the minority classes. We report the accuracy averaged over the219

seven attributes computed through 5-fold cross-validation. The accuracy measures how coherent the220

embeddings are with the flavor attributes. A more detailed description of the implementation can be221

found in J.2.222

Results. Tables 1 to 3 ablates our proposed method and summarizes our main conclusions. Please223

see Appendix J.2 for per attribute classification accuracy for all combinations of machine kernels,224

human kernels, modalities, reduces, and combiners.225

Table 1 shows that most pretrained image and text models yield slightly higher performance than the226

random baseline. The text encoders are slightly better than the image encoders. BART and CLIP227

perform the best. All encoders in the table use t-SNE to reduce the embedding to 2D. Table 3 (middle)228

shows t-SNE yields better accuracy than UMAP and PCA when using a CLIP encoder.229

Table 3 (top) shows that NMDS performs better than t-STE. NMDS uses the relative distances230

between annotations, whereas t-STE discretizes the annotations and considers only the ordering231

within each triplet. The results suggest that the pairwise distances are useful to model the flavor space.232
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Table 4: Fine-grained flavor predictions. Triplet Agreement Ratio (TAR) between text, image,
and multi-modal encoders and human annotated flavor similarities. A higher TAR indicates that the
model’s representation space is more aligned with humans’ perception of flavor.

Machine Kernel Human Kernel Combiner Modality TAR ↑
Random 0.5
CLIP + t-SNE Text 0.82
CLIP + t-SNE Image 0.82
CLIP + t-SNE Image + Text 0.81
CLIP + t-SNE Image + Flavor 0.89
CLIP + t-SNE Text + Flavor 0.88
CLIP + t-SNE NMDS CCA Image + Text + Flavor 0.91

Table 3 (bottom) shows that using CCA to align the two representations yields higher accuracy than233

SNaCK or ICP.234

Table 2 shows that including flavor as a modality increases the accuracy, e.g. using flavor to align the235

image or text embeddings lead to higher accuracy. Using CLIP followed by t-SNE, NMDS, and CCA236

to combine language, vision, and flavor into a single representation leads to the best configurations,237

illustrating that the human annotations are useful for learning a flavor representation. Maybe most238

surprisingly, we show that each modality by itself is on par with the random baseline, but their239

combination produces a latent space that much better describes the flavor attributes.240

5.2 Fine-grained flavor predictions241

We now proceed to evaluate more intricate flavor predictions by using human-annotated flavor242

similarities as ground truth.243

Implementation details. To evaluate our representation, we measure the Triplet Agreement Ratio244

(TAR) [van der Maaten and Weinberger, 2012] between our predicted flavor embeddings and the245

human-annotated flavors. TAR measures the agreement between a triplet derived from the latent246

space and the ground truth triplets from the flavor annotations. Higher TAR means that the ordering247

of distances in the latent space corresponds to the human perception of flavor. This measure indicates248

how aligned the two representations are, and provides a higher granularity of flavor prediction than249

flavor attributes. A more detailed description of the implementation can be found in F.250

Results. Table 4 ablates FEAST and shows that for the higher granularity predictions both the251

pretrained text and image encoders improve upon the random baseline. We show that including252

the human kernel with NMDS further improves the TAR scores. This highlights the usefulness of253

the flavor distances recorded by the human annotators. In Appendix F, we show results from all254

configurations of human kernels, machine kernels, reducers, and combiners. We find that NMDS255

consistently yields better performance than t-STE, and that combining human and machine kernels256

improves the TAR scores across multiple model configurations.257

6 Discussion & Conclusion258

In this paper, we introduce WineSensed, an extensive multimodal dataset curated for flavor modeling.259

The dataset comprises over 897k images and 824k reviews, and has over 5k human-annotated pairwise260

flavor similarities, obtained via a sensory study involving 256 participants. We propose a simple261

algorithm, FEAST, to align semantic information from machine kernels with flavor similarities from262

human annotators in a shared flavor representation. We find that combining these modalities improves263

both coarse and fine-grained flavor predictions.264

WineSensed further strengthens the collaboration between the food science and machine learning265

communities, introduces flavor as a modality in multimodal models, and serves as an entry point266

for the development of machine learning models for flavor analysis and potentially deepening our267
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comprehension of wine flavors. The dataset and the proposed procedures open many interesting268

possibilities, such as using flavor to ground foundation models or extending the dataset with other269

modalities, such as chemical composition, or other food categories.270

Constraints and considerations. The dataset serves as a novel first step to including human-271

annotated flavor in the array of modalities in multimodal models. Its current scope is constrained272

to a selected group of red wines, predominantly Italian ones. While this enables a more nuanced273

understanding of flavors within Italian wines, it may not represent the broader spectrum of red wines274

globally. Furthermore, the dataset’s emphasis on wines prevalent in Western cultures highlights a geo-275

cultural bias. Expanding the dataset to encompass more diverse drink types from different cultures276

could provide a more comprehensive understanding of global flavor perception. Lastly, the Napping277

methodology is not immune to the influences of participants’ backgrounds and experiences. Individual278

perceptions, shaped by personal histories, can introduce nuances in the data. Though leveraging279

non-expert wine drinkers for flavor annotations introduces subjectivity, this approach, inspired by280

common sensory study practices, broadens taste perspectives, enhances study accessibility, and offers281

commercial value, with multiple annotations per entry mitigating individual biases. Exploring a282

broader range of foods and beverages remains a valuable direction for future work.283

Acknowlegements. This work was supported by the Pioneer Centre for AI, DNRF grant number284

P1, and by research grant (42062) from VILLUM FONDEN. This project received funding from285

the European Research Council (ERC) under the European Union’s Horizon 2020 research and286

innovation programme (grant agreement 757360), as well as the Danish Data Science Academy287

(DDSA).288

10


