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Summary
We revisit the problem of controlling linear systems with quadratic cost under unknown

dynamics within model-based reinforcement learning. Traditional methods like Optimism in
the Face of Uncertainty and Thompson Sampling, rooted in multi-armed bandits (MABs), face
practical limitations. In contrast, we propose an alternative based on the Confusing Instance
(CI) principle, which underpins regret lower bounds in MABs and discrete Markov Decision
Processes (MDPs) and is central to the Minimum Empirical Divergence (MED) family of algo-
rithms, known for their asymptotic optimality in various settings. By leveraging the structure
of LQR policies along with sensitivity and stability analysis, we develop MED-LQ. This novel
control strategy extends CI and MED principles beyond small-scale settings.

Our work addresses a crucial research gap by exploring whether the CI principle can im-
prove exploration strategies in continuous MDPs. While the exploration-exploitation dilemma
is well understood in discrete settings, the curse of dimensionality makes this challenge sig-
nificantly harder in continuous spaces. MED-LQ overcomes these challenges by efficiently
searching for confusing instances through rank-one and entry-wise perturbations while avoid-
ing intractable confidence bounds. Benchmarks on a comprehensive control suite demonstrate
that MED-LQ achieves competitive performance across various scenarios, establishing founda-
tions for a fresh perspective on exploration in continuous MDPs and opening new avenues for
structured exploration in complex control problems.

Contribution(s)
1. We formulate the Confusing Instance (CI) principle as an optimization problem in the LQR

setting, extending this concept beyond MABs and discrete MDPs for the first time.
Context: The CI principle has previously been applied only in discrete settings, primarily
in multi-armed bandits and tabular MDPs (Honda & Takemura, 2010; 2015; Pesquerel &
Maillard, 2022; Balagopalan & Jun, 2024).

2. We develop MED-LQ, a novel control strategy that implements the Minimum Empirical Di-
vergence (MED) framework for online LQR, and show his numerical competitiveness.
Context: Prior work established MED algorithms in discrete MDPs settings, with
IMED-RL for ergodic case (Pesquerel & Maillard, 2022) and IMED-KD for the commu-
nicating case (Saber et al., 2024).

3. We develop a novel computational approach for building confusing instances in continuous
systems through sensitivity analysis of rank-one perturbations.
Context: Prior work limited confusing instances to discrete settings and linear bandits.
Our sensitivity analysis for continuous control systems represents the first extension of this
principle to linear dynamical systems.

4. We introduce linquax, a library for efficient research in online LQR problems, built with
JAX to leverage automatic differentiation and provide GPU/TPU compatibility.
Context: Prior to our work, no modern open-source library existed specifically for online
LQR, creating a significant barrier to reproducible research in this domain.
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Abstract

We revisit the problem of controlling linear systems with quadratic cost under unknown1
dynamics with model-based reinforcement learning. Traditional methods like Opti-2
mism in the Face of Uncertainty and Thompson Sampling, rooted in multi-armed ban-3
dits (MABs), face practical limitations. In contrast, we propose an alternative based on4
the Confusing Instance (CI) principle, which underpins regret lower bounds in MABs5
and discrete Markov Decision Processes (MDPs) and is central to the Minimum Empir-6
ical Divergence (MED) family of algorithms, known for their asymptotic optimality in7
various settings. By leveraging the structure of LQR policies along with sensitivity and8
stability analysis, we develop MED-LQ. This novel control strategy extends the princi-9
ples of CI and MED beyond small-scale settings. Our benchmarks on a comprehensive10
control suite demonstrate that MED-LQ achieves competitive performance in various11
scenarios while highlighting its potential for broader applications in large-scale MDPs.12

1 Introduction13

In Reinforcement Learning (RL), the exploration-exploitation dilemma is well understood in small-14
scale settings like multi-armed bandits (MABs) and discrete Markov Decision Processes (MDPs),15
for which strong theoretical guarantees exist. The curse of dimensionality impacts this dilemma in16
continuous or high-dimensional spaces, where analyzing this trade-off becomes significantly harder,17
and traditional exploration strategies struggle to scale. This is evident in deep RL, which, despite18
its empirical success, e.g. Osband et al. (2016); Bellemare et al. (2016); Burda et al. (2018); Sekar19
et al. (2020); Ladosz et al. (2022), often lacks theoretical foundations. In this work, we study the20
exploration-exploitation dilemma in the online Linear Quadratic Regulator (LQR) problem where21
dynamics are unknown, in the same setting of Abbasi-Yadkori & Szepesvári (2011). Widely used22
in control applications such as robotics and autonomous systems, LQR enables explicit analysis in23
continuous, structured MDPs (Cohen et al., 2018; Tu & Recht, 2018; 2019; Maran et al., 2025).24

Research gap. Traditional exploration strategies, such as Optimism in the Face of Uncertainty25
(OFU), have been widely applied to LQR and beyond, providing upper regret bounds that evaluate26
the worst-case performance of a learner, typically scaling as Õ(

√
T ), but suffer from inherent limita-27

tions (Lattimore & Szepesvari, 2017). On the other hand, lower regret bounds establish fundamental28
performance limits for any learner on a given problem instance. A key tool in deriving these bounds29
is the Confusing Instance (CI) principle, which constructs hard-to-distinguish problem instances that30
directly appear in regret lower bound analysis. The Minimum Empirical Divergence (MED) family31
of algorithms is explicitly designed to match these regret lower bounds, leveraging the CI principle32
to guide exploration efficiently. MED-based methods achieve asymptotic and instance-dependent33
optimality, often outperforming numerically OFU-based approaches in various settings. Although34
characterizing regret lower bounds beyond discrete MDPs remains an open research problem and35
not in the scope of this work, we provide empirical evidence to address the following question,36
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Can the Confusing Instance principle improve exploration strategies in continuous MDPs?37

To the best of our knowledge, this paper is the first to explore the potential of the CI principle in con-38
tinuous MDPs, through the online LQR setting as an entry point which presents both simplifications39
and challenges. This work paves the way for novel exploration strategies in large spaces.40

From MABs to large MDPs. RL exploration strategies generally follow a similar evolution. Ini-41
tially, an idea emerges in discrete MABs. This idea is then extended to linear bandits in parallel with42
discrete MDPs. The concepts are then applied to continuous MDPs, typically in the LQR setting.43
Finally, heuristics are developed to tackle high-dimensional problems in deep RL. The evolution of44
the OFU principle begins with the Upper Confidence Bounds (UCB) algorithm in MABs (Auer et al.,45
2002), followed by OFUL in the linear case (Abbasi-Yadkori et al., 2011). It then extends to UCRL46
in discrete MDPs (Auer & Ortner, 2006; Auer et al., 2008; Bourel et al., 2020), OFULQ in LQR47
(Abbasi-Yadkori & Szepesvári, 2011; Abeille & Lazaric, 2020; Lale et al., 2022; Mete et al., 2022),48
and finally, in deep RL (Bellemare et al., 2016; Curi et al., 2020). Thompson Sampling (TS) emerged49
as a more efficient alternative to the OFU principle, relying implicitly on confidence bounds, allow-50
ing for analysis similar to OFU. It started with MABs (Thompson, 1933; Kaufmann et al., 2012),51
then extended to linear MABs with LinTS (Agrawal & Goyal, 2013; Abeille & Lazaric, 2017a),52
discrete MDPs with PSRL (Osband et al., 2013; Osband & Van Roy, 2017), in LQR (Abeille &53
Lazaric, 2017b; 2018; Kargin et al., 2022), and finally to deep RL through Bayesian or ensemble54
neural networks (Osband et al., 2016; Azizzadenesheli et al., 2018). The MED principle1 has seen55
more recent developments, with its foundation rooted in the regret lower bounds introduced by Lai56
& Robbins (1985) and Burnetas & Katehakis (1996; 1997). First proposed by Honda & Takemura57
(2010; 2011), the MED principle has been applied to various MABs settings (Honda & Takemura,58
2015; Saber et al., 2021; Pesquerel et al., 2021; Bian & Jun, 2022; Saber & Maillard, 2024), and59
to linear MABs (Bian & Tan, 2024; Balagopalan & Jun, 2024). In discrete MDPs, IMED-RL (Pes-60
querel & Maillard, 2022) emerges as a state-of-the-art algorithm under ergodic assumptions. In61
communicating MDPs, novel promising strategies explore the MED principle but face the NP-hard62
challenge of finding CIs (Saber et al., 2024; Boone & Maillard, 2025). In our paper, we propose to63
continue the evolution of MED by extending it beyond MABs and discrete MDPs.64

Outline and contributions. Our paper makes several key contributions to RL for unknown LQ65
systems. After formalizing the problem setup in Section 2, we present a novel formulation of CIs66
as an optimization problem in Section 3, developing an efficient solution method specifically engi-67
neered for LQR. Section 4 introduces our main algorithmic contribution, MED-LQ, which leverages68
these CIs to enable principled exploration while maintaining computational tractability through care-69
ful sensitivity and stability analysis. In Section 5, we present comprehensive empirical evaluations70
across both classical control benchmarks and industrial applications, demonstrating that MED-LQ71
matches state-of-the-art performance while overcoming the practical limitations of OFU approaches.72
Our work bridges an important gap between theoretical optimality and practical implementation in73
continuous control settings, with broader implications for exploration in large-scale MDPs.74

2 Setup and Background material75

The optimal control problem. Consider a linear time-invariant system written in state-space76
form, where the state xt ∈ Rd evolves according to the discrete-time dynamics (Bertsekas, 2012)77

xt+1 = Axt +But + wt, (1)

upon receiving control ut ∈ Rk, where the system matrices A ∈ Rd×d and B ∈ Rd×k govern the78
dynamics of the system, and wt ∼ N (0,Ω) represents an i.i.d. centered Gaussian noise with known79
covariance Ω. We further assume that Ω = σ2

wId. The quadratic cost associated to this control is80
c(xt, ut) = x⊺

tQxt + u⊺
tRut, where Q ∈ Rd×d and R ∈ Rk×k are positive definite matrices. For81

1Baudry et al. (2023b) shows that MED and TS can be analyzed following a common methodology.
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the rest of the paper, we summarize the system’s unknown parameters in Θ = (A,B)⊺. The infinite82
horizon average cost function for a policy π specifying the control u in each state x is83

Jπ(Θ) = lim
T→∞

1

T
E

[
T−1∑
t=0

c(xt, ut)

]
. (2)

Further, a policy π is classically parameterized by a gain matrix K ∈ Rk×d as π(xt) = −Kxt,84
making it a linear function of the state, with associated cost (2) denoted JK(Θ). Optimal planning85
can be achieved by solving the Discrete Algebraic Ricatti Equation (DARE), P = A⊺PA + Q −86
A⊺PB (B⊺PB +R)

−1
B⊺PA. We denote the solution of the DARE, P ⋆(Θ), and the optimal gain87

that minimizes Eq. (2) is given as K⋆(Θ) = − (B⊺P ⋆(Θ)B +R)
−1

B⊺P ⋆(Θ)A, which achieves88
the minimal cost J⋆(Θ) = JK⋆(Θ)(Θ). When Θ is clear from context, we simply write P ⋆, K⋆, J⋆.89

The learning problem. We follow the model-based RL setting of Abbasi-Yadkori & Szepesvári90
(2011), where parameter Θ⋆ is unknown and Q and R are assumed known. We assume that the91
system is part of the stabilizable set S0, meaning there exists a gain matrix K such that A − BK92
is stable, that is with all eigenvalues confined to the interval (−1, 1). It is convenient to intro-93
duce the constraint set S ⊆ S0 = {Θ ∈ R(k+d)×d : J⋆(Θ) ≤ D,Tr(ΘΘ⊺) ≤ S2}. At94
each time t the learner chooses a policy πt, observes the current state xt, executes a control95
ut = πt(xt) and incurs the associated cost ct = x⊺

tQxt + u⊺
tRut; the system then transitions96

to the next state xt+1. The learning performance is measured by the cumulative regret over T97
steps defined as R(T ) =

∑T
t=0(ct − J⋆(Θ⋆)). The unknown parameter Θ⋆ can be directly esti-98

mated from sequences {xt, ut, xt+1} using regularized least-squares (RLS). Let zt = (xt, ut)
⊺, for99

any regularization paramameter λ ∈ R+, the design matrix and the RLS estimate are defined as100

Vt = λI +

t−1∑
s=0

zsz
⊺
s , (3) Θ̂t = Vt

t−1∑
s=0

zsx
⊺
s+1. (4)101

Using Theorem 1 from Abbasi-Yadkori & Szepesvári (2011), for any θ ∈ (0, 1), for all 0 ≤ t ≤ T ,102
the underlying parameter Θ lives in the ellipsoid Et(δ) with probability at least 1 − δ where103

Et(δ) =
{
Θ⋆ ∈ S : ∥Θ⋆ − Θ̂t∥Vt ≤ βt(δ)

}
, with βt(δ) = nσw

√
2 log

(
det(Vt)

1/2

det(λI)1/2δ

)
+ λ1/2S.104

Policy evaluation. From the form of the policies, it is convenient to introduce AK = A − BK,105
known as the closed-loop system of K. Indeed using this notation, transitions under policy K rewrite106
xt+1 = AKxt+wt, and the discrete-time Bellman equation writes PK(Θ) = QK+A⊺

KPK(Θ)AK ,107
where QK = Q + K⊺RK and PK(Θ) is the solution to a discrete-time Lyapunov equation. We108
denote the spectral radius of a matrix M as ρ(M). If K stabilizes the system, then ρ(AK) < 1, the109
cost of K is finite, and xt → 0 at a geometric rate. Under the objective (2), for a gain K, a better110
gain K ′ ensures JK′(Θ) ≤ JK(Θ), with JK(Θ) = σ2

w Tr(PK(Θ)), the average cost of K in Θ.111

Optimal MABs strategies. The Minimum Empirical Divergence (MED) algorithm, introduced112
by Honda & Takemura (2010), achieves asymptotic optimality for MABs. MED derives directly113
from the fundamental regret lower bound established by Burnetas & Katehakis (1996), which states114
that for any suboptimal arm a ∈ A (where µa < µ⋆, with µ⋆ being the optimal mean), the115
expected number of pulls Na(T ) must satisfy: lim inf

T→∞
E[Na(T )]

/
log T ≥ 1

/
Ka(ba, µ⋆). Here,116

ba ∈ Da represents the reward distribution of arm a, and Ka(ba, µ⋆) captures the minimum infor-117
mation cost needed to confuse the algorithm between arm a and a better arm. This is formalized as118
Ka(ba, µ⋆) = inf {KL(ba∥b) : b ∈ Da, EX∼b[X] > µ⋆} , where KL denotes the Kullback-Leibler119
divergence. At each time step t, MED elegantly transforms this information-theoretic principle into120
an exploration strategy by sampling arm a with probability proportional to exp(−Na(t)Ka(b̂a, µ̂⋆)),121
where notation with ˆ denotes empirical estimates. The cornerstone of the MED framework is identi-122
fying the confusing instance, the alternative model that minimizes the KL divergence while appear-123
ing more rewarding than the currently best arm. In the following section, we extend this powerful124
concept to the substantially more complex setting of LQR.125
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3 Efficient Confusing Instance Search for LQR126

In this section, we now discuss the main insight of our contribution, borrowing the notion of con-127
fusing instances originating from MAB theory to the LQR framework.128

Intuition. The central element revealing the structure of a sequential decision problem appears129
when deriving lower bounds on the regret performance of any consistent learner, namely a learner130
able to achieve optimality on a class of decision problems M rather than a single instance M ∈ M.131
The high-level idea is easy to get, and consists of considering, for a given M ∈ M a policy π that132
isn’t optimal in M, hence does not achieve minimal cost J⋆(M), where here ⋆ is optimal in M. We133
then want to build another MDP M̃ in which π achieves better gain, that is Jπ(M̃) ≤ J⋆(M). Given134
the multitude of possible MDPs satisfying these conditions, we naturally seek those informationally135
closest to our initial estimate M. More precisely, the rationale is that if M and M̃ are hard to136
distinguish from playing optimally in M, say, from a hypothesis-testing perspective, then any learner137
that must be optimal in both environments should deviate from playing ⋆.138

Formally, let Π⋆(M) = {π ∈ Π : Jπ(M) ≤ Jπ′(M)∀π′ ∈ Π} denote optimal policies for M, and139
alternative models as Alt(M) = {M̃ ∈ M : Π⋆(M) ∩ Π⋆(M̃) = ∅}. Introducing d(M, M̃) to be140
e.g. the expected log-likelihood ratio of a trajectory generated from Π⋆(M) in both models, we then141
look for M̃ ∈ Alt(M) minimizing d(M, M̃). Such an instance is called confusing or model M.142

Specializing this approach to LQ systems introduces both simplifications and challenges. Interest-143
ingly, given M(Θ), Π⋆(M) reduces to πK⋆ , hence we can consider the expected log-likelihood ratio144
along the trajectory from K⋆ in both systems. Note that K⋆ must stabilize both systems.145

Proposition 1 (Asymptotic per-step expected log-likelihood ratio for LQR). Given a gain K that146
is stabilizing for the two systems Θ and Θ̃, and assuming both systems share the same covariance147
matrix Ω, the asymptotic per-step expected log-likelihood under the two systems is148

dK(Θ∥Θ̃)
def
= lim

T→∞

1

T
EΘ

[
log

p(τT )

p̃(τT )

]
=

1

2
Tr

(
(AK − ÃK)⊺Ω−1(AK − ÃK)ΣK(Θ)

)
. (5)

where τT denotes a trajectory of length T from πK and the stationary distribution ΣK(Θ) induced149
by K satisfies a discrete-time Lyapunov equation ΣK(Θ) = EΘ [x⊺

t xt|K] = Ω +AKΣK(Θ)A⊺
K .150

The proof of this proposition is given in Appendix A.1. We now have the necessary elements to151
tackle the challenge of identifying the most confusing instances in LQR.152

3.1 The Challenge of Approaching the Most Confusing Instance153

Finding the most confusing instance and its associated sub-optimality cost is generally NP-hard.154
This section introduces key simplifications that yield a computationally efficient approximation.155

At a high level, rather than optimizing dK(Θ∥Θ̃) over all possible confusing Θ̃, we will proceed in156
Section 4 by sampling a finite set of perturbations Θ′

1, . . . ,Θ
′
n around a base configuration Θ and157

then optimize within the convex hull of these anchor points. To justify our approach, we analyze158
an optimization concerning a single perturbation parameter Θ′ of the system. Thanks to the explicit159
form of optimal policies in LQR, the optimization problem can be formulated as160

K(Θ∥Θ′) = inf
Θ̃
{dK(Θ, Θ̃) subject to JK′(Θ̃) < JK(Θ̃)}, (6)

where we consider two close stabilizable instances Θ and Θ′, with their respective optimal gains161
K = K⋆(Θ) and K ′ = K⋆(Θ′). This objective function is strictly convex in Θ̃ for fixed Θ.162
However, the constraint is non-convex, as the set of stable matrices is generally non-convex. To163
search for solutions that are both stable with controlled cost, we first observe that as each stabilizing164
LQ system is guaranteed to have a unique optimal gain that minimizes the associated cost, the cost of165
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K ′ cannot exceed that of K in Θ′, ensuring that JK′(Θ′) ≤ JK(Θ′). (In particular, Θ′ is a feasible166
solution of the optimization problem defined in Equation (6) and, we get the crude upper bound167
K(Θ∥Θ′) ≤ dK(Θ,Θ′).) From the preceding initial remark, we thus observed that JK′(Θ′) −168
JK(Θ′) < 0, while JK′(Θ) − JK(Θ) > 0. This justifies performing a line search interpolating169
between Θ and Θ′, effectively reducing the optimization to a one-dimensional search problem, and170
yielding a reduced upper bound on the sub-optimality cost. More formally, we introduce the analytic171
curve connecting these instances, parametrized by α ∈ [0, 1] and expressed as Θ(α) = (A +172
α∆A, B + α∆B) with ∆A = A′ −A and ∆B = B′ −B. We then form the following key result.173

Proposition 2 (Sub-optimality cost refinement). Using the linear interpolation parametrization, a174
valid upper-bound on K(Θ∥Θ′) can be obtained by finding the root of175

L(α) = JK′(Θ(α))− JK(Θ(α)) = 0. (7)

Proof. Assuming Θ and Θ′ yield different dynamics, L(α) is a continuous function in [0, 1]. Now,176
by definition L(0) · L(1) = (JK′(Θ)− JK(Θ)) · (JK′(Θ′)− JK(Θ′)) < 0, because JK′(Θ) −177
JK(Θ) > 0 and JK′(Θ′) − JK(Θ′) < 0. This implies that a root exists according to Bolzano’s178
theorem. We can show that L(α) is not convex, but has no local optima, which allows global179
convergence, as demonstrated in Section 3 of Fazel et al. (2018). The objective function increases180
monotonically as Θ̃ diverges from Θ since its derivative equals t times the trace of positive definite181
matrices’ product, ensuring positivity for all t > 0. Thus, finding the unique root that satisfies the182
cost constraint is the solution of Eq. (6), on the linear curve.183
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)) Figure 1: Optimization landscape of the objective L(α) on two In-

verted Pendulum system (Barto et al., 1983) parametrized by the
mass and the length of the pendulum. Θ is parametrized by (.1, .4)
and Θ′ by (.3, 1.). Red arrows indicate the Newton steps taken dur-
ing the optimization process.

This objective is non-convex due to the potential non-stability of the interpolated closed-loop system184
(Lin & Antsaklis, 2009), at the boundary between stable and unstable policies, the objective function185
quickly becomes infinity. However, L(α) is almost smooth (see Lemma 6 in Fazel et al. (2018))186
when the closed-loop systems are not close to the boundary of stability, that allows in practice, to187
deploy the Newton method, that can solve the objective in few steps, as shown in the Figure 1.188

3.2 Fast Approximate Solution for Small Perturbed Systems189

To find the root of (7), we introduce a Taylor approximation2 of the objective function. For suf-190
ficiently small perturbations Θ′ around Θ, the interpolation between closed-loop systems A(α) −191
B(α)K and A(α)−B(α)K ′ remains stable, thanks to the existence of a stability radius (Hinrichsen192
& Pritchard, 1986). This stability property, supported by perturbation theory, allows us to employ a193
first-order Taylor expansion to derive a closed-form approximation of Eq. (7).194

Proposition 3 (Sub-optimality cost refinement under small perturbations). Assume the closed-loop195
system undergoes perturbations ∆A and ∆B that are sufficiently small (e.g., ∥∆A∥, ∥∆B∥ ≤ ϵ for196
a small ϵ > 0) so that higher-order terms can be neglected, we denote ∆K = ∆A + ∆BK the197
perturbation on the closed loop system, and the objective L(α) can be approximated with198

L(α) ≈ (pK − pK′)− α(pK − pK′) + α2(pK − pK′), (8)

with pK = Tr(PK(Θ)), pK = Tr(PK(Θ)), pK = Tr(PK(Θ)), and PK(Θ) = A⊺
KPK(Θ)AK +199

A⊺
KPK(Θ)∆K +∆⊺

KPK(Θ)AK , PK(Θ) = A⊺
KPK(Θ)AK +∆⊺

KPK(Θ)∆K . This is a second-200
degree polynomial whose coefficients correspond to the trace of the solution of discrete-time Lya-201
punov equations. The solution can be obtained by identifying the positive root.202

The proof of this proposition is in A.2. We now have all the elements to design an efficient algorithm.203
2Taylor approximation for finding confusing instance has already been explored by Baudry et al. (2023a) in MABs.
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4 Towards Minimum Empirical Divergence Strategies for Online LQR204

In this section, we introduce MED-LQ, our novel algorithm that extends the asymptotically optimal205
MED strategy of Honda & Takemura (2011) from MABs to LQ systems. Our approach incorporates206
several adaptations specifically crafted to address the unique challenges of continuous dynamics.207

4.1 The MED-LQ Algorithm208

Algorithm 1: MED-LQ: Minimum Empirical Divergence for Linear Quadratic Systems

Input: Q, R, Θ̂0, V0 = λI , δ > 0, T , n, ση , σv , ϵ.
1 for t = 0, . . . , T do
2 if det(Vt) > 2 det(V0) then
3 Compute Θ̂t via RLS (4) and set K̂t = K(Θ̂t);
4 Generate n perturbations

{
Wi = ηi eje

⊤
k | j, k ∼ U({1, . . . , n}), ηi ∼ U(−ση, ση)

}
;

5 Form the candidate sets {Θi = Θ̂t +Wi} and {Ki = K(Θi)};
6 Define the mask mi = m(Θi, Θ̂t; ϵ) ∈ {0, 1} (9);
7 For each candidate with mi = 1, compute the hi = H(Θ̂t ∥ Θi;Vt) (10);

8 Set Θ̃t = Θ̂t +
∑n

i=1 ωi Wi with ωi = exp(hi)mi

/∑n
j=1 exp(hj)mj and V0 = Vt;

9 else
10 Set Θ̃t = Θ̃t−1;
11 end
12 Compute the optimal empirical gain K̃t = K(Θ̃t);
13 Apply ut = K̃txt if (K̃t stabilize Θ̃t) else K̃txt + νt, with νt ∼ N (0, σ2

ν);
14 Obtain xt+1 and record (zt, xt+1) and update Vt+1 = Vt + ztz

⊤
t ;

15 end

209

MED-LQ is an online learning algorithm that carefully balances exploration and exploitation in linear210
dynamical systems. Inspired by the standard learning framework of Abbasi-Yadkori & Szepesvári211
(2011), the algorithm proceeds in rounds over a finite horizon. At each time step t, it first checks212
whether the accumulated information, quantified by the determinant of the design matrix det(Vt)213
has doubled (line 2). When it does, a new optimal empirical parameter Θ̂t is computed using RLS,214
and the corresponding control gain is derived K̂t = K(Θ̂t). To enhance exploration, MED-LQ215
generates a collection of n candidate parameters ∀i ∈ {0, · · · , n}, Θi = Θ̂t + Wi by applying216
random rank-one perturbations Wi to the RLS estimate (line 4,5). Rank-one perturbations simplify217
the stability analysis, making it tractable (Laffey et al., 2002), and are inspired by the local-policy218
search from (Pesquerel et al., 2021). Each candidate is then filtered through a set of constraints (line219
6), to ensure that the most confusing instance search (6) is well-defined. The search for the most220
confusing instance is well-defined when the following constraints defined by m(Θ, Θ̂; ϵ) hold221

I
{
ρ(ÂK̂) < 1 ∧ ρ(AK) < 1︸ ︷︷ ︸

Closed-loop stability.

∧ ÂK̂ÂK ⪰ 0 ∧AK̂AK ⪰ 0︸ ︷︷ ︸
Linear interpolation stability.

∧ JK̂(Θ̂)− JK(Θ̂) > ϵ︸ ︷︷ ︸
Alternative set membership.

}
, (9)

where X ⪰ 0 denotes positive semi-definiteness, and ϵ is a small threshold value. The first two con-222
ditions ensure closed-loop stability. The next two follow from Theorem 1 of Laffey et al. (2002), and223
check that the linear curve between the two closed-loop systems is stable. The last condition checks224
if Θ belongs to the alternative set of Θ̂. The linear interpolation stability condition, enabled by our225
rank-one perturbations, represents a conservative approach. While ensuring stability across the en-226
tire interpolation interval exceeds technical requirements, removing this constraint would necessitate227
computing confusing costs for more instances and implementing careful post-filtering mechanisms.228
We recommend this filtering criterion for computational efficiency, especially in systems with small229
to moderate dimensions. For those candidates that pass the stability check, the algorithm evaluates230

6



Confusing Instance Principle for Linear Quadratic Control

their Minimum Empirical Divergence (line 8), which captures the cost of making a perturbed system231
optimal. This quantity is inspired by MED and LinMED strategies.232

Definition 4 (Minimum Empirical Divergence coefficients for LQR). During the learning process,233
where Vt represent the design matrix at time t, Θ̂t the empirical optimal RLS estimate and Θ an234
alternative parameter, the minimum empirical divergence is given by235

Ht(Θ) = −K(Θ̂t∥Θ)

∥Θ∥2
V −1
t

. (10)

MED-LQ generates exponential weights (line 8) to create a weighted combination of perturbations,236
biasing parameter estimates toward candidates with lower divergence values. Finally, the corre-237
sponding control gain is applied to the system. We introduce additional isotropic exploration noise238
νt, similarly to Tu & Recht (2019); Lale et al. (2022); Kargin et al. (2022), when the empirical gain239
fails to stabilize the empirical estimate, which intuitively happens mainly in the early rounds. This240
noise provides excitation, ensuring the identifiability of the system dynamics by exploring the state-241
space in all directions. Finally, new state data is collected to update the design matrix, thus refining242
the parameter estimates over time. The full algorithm is summarized in Algorithm 1.243

4.2 Intuition and design elements244

Let us now provide insights and sketch the main ideas supporting the soundness of this strategy.245

MED-LQ extends the asymptotically optimal IMED-RL algorithm (Pesquerel & Maillard, 2022)246
for ergodic discrete MDPs to the LQR setting while incorporating continuous aspects developed in247
LinMED (Balagopalan & Jun, 2024) for linear sub-Gaussian MABs. Both methods leverage regret248
lower bounds to achieve superior efficiency compared to OFU-based approaches, with IMED being249
the deterministic counterpart of MED.250

Ergodicity and information gain. In IMED-RL, ergodicity ensures that every policy eventually251
visits all states, enabling efficient information gathering across the state space. For linear dynamical252
systems, the situation is comparable: observing a single state can provide global insights about253
system dynamics, similar to the information transfer in linear bandits. However, since quantifying254
the per-step information gain is challenging, we execute each chosen policy for multiple steps until255
a significant change in information volume occurs (line 2).256

Policy improvement. A cornerstone of IMED-RL is exploiting the policy improvement property257
from Puterman (2014), which guarantees that in discrete ergodic MDPs, any sub-optimal policy258
can be improved through a local (single-state) modification, a convenient property not universally259
applicable. This approach efficiently identifies confusing instances by searching only over local260
policy modifications, with central analysis demonstrating a high probability of policy improvement.261
For linear-quadratic systems, we identify single entry-wise perturbations of the system matrix as the262
natural equivalent to single-state modifications. This approach yields substantial computational ben-263
efits, as candidate perturbations become straightforward to generate. However, rather than directly264
applying single-entry perturbations, which alone may be insufficient to guarantee policy improve-265
ment, we form convex combinations of candidates weighted by MED coefficients. This strate-266
gic convex combination substantially expands the search space volume, significantly increasing the267
probability of discovering effective policy improvements.268

Policy gradient. While IMED-RL estimates an empirical MDP, applies value iteration, and se-269
lects actions minimizing the IMED index, MED-LQ follows a parallel approach. We estimate sys-270
tem parameters via RLS, solve the DARE to capture the value function, and define our minimum271
empirical divergence analogously to IMED-RL. Inspired by LinMED, the term 1

/
∥Θ∥2

V −1
t

effec-272

tively functions as a visitation count analog. Conceptually, where IMED-RL implements policy273
iteration, MED-LQ adopts an approximate policy gradient approach. The fundamental intuition is274
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that a policy’s selection likelihood should at least match its posterior probability of optimality, with275
perturbations directing exploration toward promising regions of the policy space.276

Continuum policy and ϵ-optimality. The policy improvement lemma from Puterman (2014) ap-277
plies to discrete, ergodic MDPs, where finitely many policies ensure that a finite number of im-278
provement steps reach optimality. This property doesn’t extend to continuous MDPs with infinite279
policy sets. By introducing the parameter ϵ in our filtering condition, we effectively consider ϵ-near-280
optimal policies rather than strictly optimal ones, implicitly covering the policy space with finitely281
many level sets. This approach ensures that finitely many ϵ-policy-improvement steps yield a near-282
optimal policy. In practice, ϵ requires careful calibration: not too small (to ensure non-empty filtered283
sets) and not too large (to avoid requiring excessive policy-improvement steps). We recommend ϵ284
that scales between O(1/T ) and O(1/ log2(T )).285

Excitation. A well-known challenge in LQR is the initial information scarcity that impedes the286
invertibility of matrices defining stable policies. This challenge dissipates after sufficient observa-287
tions span the entire state space, after adequate system excitation. In line (13), we introduce noise νt288
to enforce excitation whenever the control fails to stabilize the confusing instance. This mechanism289
primarily induces additional exploration during early rounds, while in the asymptotic regime, all290
selected policies naturally stabilize the system, eliminating the need for artificial excitation. In our291
Section 5, we study the effect of excitation under the name of "auto-stabilization".292

Following our insights, a rigorous regret analysis of MED-LQ presents unique theoretical chal-293
lenges distinct from MED, IMED-RL, or LinMED. Two critical questions emerge: (1) establish-294
ing that MED-LQ guarantees high-probability policy improvements with sufficient margin at each295
iteration, and (2) determining the precise magnitude of entry-wise perturbations needed to ensure296
policy improvements exist within local neighborhoods. These challenges require adapting policy-297
improvement arguments to continuous settings, a non-trivial extension demanding specialized anal-298
ysis beyond this paper’s scope. While MED-LQ deliberately addresses these challenges through299
techniques such as combining multiple single-entry perturbations, we reserve a comprehensive the-300
oretical analysis for future work.301

5 Numerical Experiments302

To study the numerical potential of MED-LQ, we evaluate it on a control suite that includes classic303
environments from the online LQR literature, such as the Boeing 747 and Unmanned Aerial Vehicle,304
as well as additional industrial control problems from controlgym (Zhang et al., 2023), inspired305
by real-world applications. All environments are subject to a normal noise N (0, 1) and have a306
moderate size (from 2 to 10 dims). We assess the performance of MED-LQ in two distinct scenarios.307

Scenario 1: Stable Initialization. In this setting, we initialize the algorithm with a stable controller308
and seed the dataset with a trajectory of 50 time steps. We compare MED-LQ against OFULQ309
(Abbasi-Yadkori & Szepesvári, 2011) and TS-LQ (Abeille & Lazaric, 2017b). The stable initializa-310
tion allows us to assess the exploration efficiency and convergence properties when the system starts311
in a well-controlled regime. The results are shown in Figure 2a.312

Scenario 2: Auto-Stabilization Here, MED-LQ is deployed with an initial parameter estimate313
Θ̂0 = 0. To facilitate auto-stabilization, the policy is executed with isotropic noise w ∼ N (0, 1) for314
the first 35 time steps, as in Lale et al. (2022). We compare MED-LQ against StabL (Lale et al.,315
2022) and TSAC (Kargin et al., 2022), the auto-stabilizing counterparts of OFULQ and TS-LQ,316
respectively. The results are shown in Figure 2b.317

Implementation details. We implement all baselines within the JAX framework (Bradbury et al.,318
2018) using a new library, linquax3, which delivers highly performant online LQR algorithms319
with GPU/TPU support and automatic differentiation. In our implementation, OFULQ and StabL320

3A WIP version of the library is available in https://anonymous.4open.science/r/linquax-4FCF/.
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Figure 2: Performance comparison of MED-LQ under two distinct initialization scenarios.
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are optimized via projected gradient descent, while TS-LQ and TSAC employ a rejection sampling321
operator. In addition to the doubling trick, we enforce a minimum patience period of 10 steps to322
prevent excessive early updates that can lead to increased regret. All algorithms share common hy-323
perparameters, chosen after previous work, with λ = 1×10−4 and δ = 1×10−4. For MED-LQ, we324
define without hyperparameter search the number of candidates n = 128 and ση = 1. Experiments325
were conducted in less than 1 hour, on a CPU-only cluster equipped with four 64-core AMD Zen3326
processors. For classic environments, we used 64 random seeds, and for controlgym environ-327
ments, 48 seeds. Performance metrics are reported as the interquartile mean along with the 25th328
percentile and 75th percentile for each experiment.329

Discussion of results. We compare MED-LQ against OFULQ, TS-LQ, StabL, and TSAC. Our ex-330
perimental evaluation reveals that MED-LQ demonstrates strong performance across environments.331
With stable initialization, MED-LQ shows rapid convergence to low cumulative regret, validating332
that CI-guided exploration effectively balances exploration and exploitation. All algorithms benefit333
from stable initialization, allowing them to focus on policy refinement rather than basic stabiliza-334
tion. In zero-knowledge settings requiring auto-stabilization, MED-LQ quickly discovers stabilizing335
policies. It consistently outperforms Thompson Sampling methods, which occasionally fail to find336
stabilizing controllers even after 10,000 rejection sampling attempts. Compared to state-of-the-337
art methods OFULQ and StabL, MED-LQ demonstrates superior efficiency in most environments,338
matching StabL’s performance in others, with the sole exception being the controlgym/he1339
environment under auto-stabilization. These results establish MED-LQ as a competitive and reliable340
alternative to OFU-based and Thompson Sampling approaches for online LQR tasks.341

Sample size study. We now examine how the sample size used in MED-LQ affects both regret and342
execution time in the Inverted Pendulum environment. Experiments were run on a NVIDIA A100343
GPU. Figure 3 presents the results. The plot on the left shows that runtime remains relatively con-344
stant across different sample sizes (0.3-0.5 seconds), highlighting the parallelization capabilities of345
our GPU implementation. The right plot shows that increasing the sample size leads to slightly lower346
regret until approximately 64 samples, after which the performance plateaus. This suggests that in347
Inverted Pendulum 64 samples are sufficient to adequately span the space of candidate policies.348
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Figure 3: Study of the sample size on the Inverted Pendulum environment.

6 Conclusion349

In this work, we introduced the Confusing Instance (CI) principle as a novel approach to explo-350
ration in online Linear Quadratic Control (LQR). By extending the Minimum Empirical Diver-351
gence (MED) framework beyond discrete settings, we developed MED-LQ, the first method to ap-352
ply the confusing instance principle beyond tabular MDPs. Our approach employs strategically353
designed rank-one and entry-wise perturbations that enable efficient identification of confusing in-354
stances while maintaining computational feasibility. Notably, MED-LQ avoids confidence bounds355
(intractable in large spaces) and instead relies on the policy iteration framework. Our methodology356
is generalizable to other settings: compute empirical optimal policy, generate candidates, approx-357
imate confusing instances, compute the minimum empirical divergence, and update policy toward358
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areas minimizing this divergence. Benchmarks demonstrate that MED-LQ matches state-of-the-art359
performance, overcoming limitations of existing methods such as OFU and TS.360

We believe that the CI principle deserves greater attention as it introduces a fresh perspective on361
exploration in continuous MDPs. Our work establishes the foundations for this promising362

approach, opening new avenues for exploration strategies in complex problems.363

Future Work. Future research should refine MED-LQ’s theoretical foundations by establishing364
formal regret bounds and analyzing the minimal perturbation magnitudes needed for guaranteed365
policy improvements. A particularly promising direction is to extend the CI principle to high-366
dimensional problems in deep RL, where efficient exploration remains challenging. The principles367
established here provide a foundation for novel exploration strategies in both continuous control and368
complex decision-making tasks.369

Broader Impact Statement370

Our work on efficient exploration in LQR systems has potential applications in robotics, autonomous371
vehicles, and industrial control systems. While our algorithm enables more efficient learning in these372
domains, it could also accelerate the deployment of autonomous systems with inherent safety consid-373
erations. We advocate for robust safety validation before deploying such learning-based controllers374
in critical applications.375

A Proofs of the main propositions376

In this section, we detail the proof of Proposition 1 that provides the form of the asymptotic per-step377
expected log-likelihood ratio when following a given policy with control K. We then detail the378
proof of Proposition 2 which provides an approximation of the cost function to be optimized in the379
regime of small perturbations, which yields a closed-form approximate solution.380

A.1 Asymptotic per-step expected log-likelihood ratio for LQR381

Proof of Proposition 1. The one-step likelihood of observing xt+1 given xt under Θ (ignoring con-382
stants) is p(xt+1|xt) ∝ exp

(
− 1

2 (xt+1 −AKxt)
⊺Ω−1(xt+1 −AKxt)

)
. We denote by p̃ the tran-383

sition probability under Θ̃. Thus the one-step likelihood ratio is384

ℓt = log
p(xt+1|xt)

p̃(xt+1|xt)

=
1

2

(
(xt+1 − ÃKxt)

⊺Ω−1(xt+1 − ÃKxt)− (xt+1 −AKxt)
⊺Ω−1(xt+1 −AKxt)

)
=

1

2

((
(AK − ÃK)xt + wt

)⊺
Ω−1

(
(AK − ÃK)xt + wt

)
− w⊺

t Ω
−1wt

)
=

1

2

(
x⊺
t (AK − ÃK)⊺Ω−1(AK − ÃK)xt + 2w⊺

t Ω
−1(AK − ÃK)xt

)
,

(11)

taking the expectation, the second term vanishes, and we have385

EΘ[ℓt] =
1

2
EΘ

[
x⊺
t (AK − ÃK)⊺Ω−1(AK − ÃK)xt

]
=

1

2
Tr

(
(AK − ÃK)⊺Ω−1(AK − ÃK)ΣK(Θ)

)
,

(12)

where the stationary distribution ΣK(Θ) = EΘ [xtx
⊺
t |K] = Ω+AKΣK(Θ)A⊺

K , satisfies a discrete-386
time Lyapunov equation. For a trajectory τ of T steps, the total expected log-likelihood ratio is387

EΘ

[
log

p(τ)

p̃(τ)

]
=

T∑
t=1

EΘ[ℓt] =
T

2
Tr

(
(AK − ÃK)⊺Ω−1(AK − ÃK)ΣK(Θ)

)
. (13)
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Taking the limit as T → ∞, we see that the total expected log-likelihood ratio diverges linearly,388
while the per-step average converges to389

dK(Θ∥Θ̃) = lim
T→∞

1

T
EΘ

[
log

p(τ)

p̃(τ)

]
=

1

2
Tr

(
(AK − ÃK)⊺Ω−1(AK − ÃK)ΣK(Θ)

)
. (14)

390

A.2 Sub-optimality cost refinement under small perturbations391

Proof of Proposition 2. We begin by expressing the cost for the perturbed system JK(Θ(α)), as392

σ2
w Tr

(
PK(Θ(α))

)
= σ2

w i⊤ vec
(
PK(Θ(α))

)
= σ2

w i⊤
(
Id2 −A⊤

K(α)⊗A⊤
K(α)

)−1

qK , (15)

with i = vec(Id) and qK = vec(QK). The closed-loop dynamics for the interpolated system is393

AK(α) = A−BK + α
(
∆A +∆BK

)
= AK + α∆K . (16)

Its Kronecker square naturally expands as a quadratic function of α,394

A⊤
K(α)⊗A⊤

K(α) = XK + αXK + α2 XK , (17)

where XK = A⊤
K ⊗ A⊤

K , XK = (AK ⊗∆K +∆K ⊗ AK)⊺ and XK = (∆K ⊗∆K)⊺. Thus, the395
inverse appearing in the cost can be written in terms of perturbation, as396 (

Id2 −A⊤
K(α)⊗A⊤

K(α)
)−1

=
(
Id2 −XK − X̃K(α)

)−1

, (18)

with X̃K(α) = αXK + α2 XK . Assuming that the perturbations are small, we apply a first-order397
expansion of the infinite series, as described in Section 2.2.4 of Stewart & Sun (1990), to obtain398 (

Id2 −XK − X̃K(α)
)−1

≈ YK − YK X̃K(α)YK , (19)

where YK = (Id2 − XK)−1. For clarity, we introduce the scalar coefficients pK = i⊤YK qK ,399

pK = i⊤YK XK YK qK , and pK = i⊤YK XK YK qK . Hence, the cost function is simplified to400

i⊤
(
Id2 −A⊤

K(α)⊗A⊤
K(α)

)−1

qK ≈ pK − αpK + α2 pK . (20)

Repeating the derivation for another gain K ′ and equating the two expressions for L(α) leads to401

(pK − pK′)− α (pK − pK′) + α2 (pK − pK′) = 0,

α =
(pK − pK′)±

√
(pK − pK′)2 − 4(pK − pK′)(pK − pK′)

2(pK − pK′)
.

(21)

Choosing the positive solution completes the derivation. Finally, using the identities vec(AXB) =402
(B⊺ ⊗ A) vec(X), and vec(Id)

⊺ vec(X) = Tr(X), and the Neumann series expansion, Kronecker403
products and vectorizations simplify and complete the proof.404
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