
CryptoGCN: Fast and Scalable Homomorphically
Encrypted Graph Convolutional Network Inference

Ran Ran
Lehigh University

rar418@lehigh.edu

Nuo Xu
Lehigh University

nux219@lehigh.edu

Wei Wang
Microsoft

wewang3@microsoft.com

Gang Quan
Florida International University

gaquan@fiu.edu

Jieming Yin
Nanjing University of

Posts and Telecommunications
jieming.yin@njupt.edu.cn

Wujie Wen
Lehigh University

wuw219@lehigh.edu

Abstract

Recently cloud-based graph convolutional network (GCN) has demonstrated great
success and potential in many privacy-sensitive applications such as personal health-
care and financial systems. Despite its high inference accuracy and performance on
the cloud, maintaining data privacy in GCN inference, which is of paramount im-
portance to these practical applications, remains largely unexplored. In this paper,
we take an initial attempt towards this and develop CryptoGCN–a homomorphic
encryption (HE) based GCN inference framework. A key to the success of our
approach is to reduce the tremendous computational overhead for HE operations,
which can be orders of magnitude higher than its counterparts in the plaintext space.
To this end, we develop a solution that can effectively take advantage of the spar-
sity of matrix operations in GCN inference to significantly reduce the encrypted
computational overhead. Specifically, we propose a novel Adjacency Matrix-
Aware (AMA) data formatting method along with the AMA assisted patterned
sparse matrix partitioning, to exploit the complex graph structure and perform
efficient matrix-matrix multiplication in HE computation. In this way, the number
of HE operations can be significantly reduced. We also develop a co-optimization
framework that can explore the trade-offs among the accuracy, security level, and
computational overhead by judicious pruning and polynomial approximation of
activation modules in GCNs. Based on the NTU-XVIEW skeleton joint dataset, i.e.,
the largest dataset evaluated homomorphically by far as we are aware of, our exper-
imental results demonstrate that CryptoGCN outperforms state-of-the-art solutions
in terms of the latency and number of homomorphic operations, i.e., achieving as
much as a 3.10× speedup on latency and reduces the total Homomorphic Operation
Count (HOC) by 77.4% with a small accuracy loss of 1-1.5%. Our code is publicly
available at https://github.com/ranran0523/CryptoGCN.

1 Introduction

Graph Convolutional Neural Networks [23] (GCNs) have recently emerged in machine learning
and demonstrated superior performance in various privacy-sensitive applications such as human
action recognition [35, 38], financial recommendation system [37], and autonomous driving [25].
While it has been increasingly popular to deploy machine learning services on the cloud, the cloud
environment raises critical concerns for GCN-based privacy-sensitive services, since graph data
usually contain a considerable amount of sensitive information.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://github.com/ranran0523/CryptoGCN

Recently, Homomorphic Encryption (HE) based private-preserving machine learning (PPML) has
emerged to be an effective way to protect the privacy of clients. Using HE, a client can encrypt the
data and send it to the cloud. The cloud server directly operates on the encrypted data and sends the
encrypted results back to the client, which can then be decrypted and used. As the data are encrypted
throughout the entire process when it is out of the client’s control, data privacy is greatly enhanced.
The challenge, however, is to deal with the tremendously increased computational cost associated
with the HE operations (e.g., rotations, multiplications, additions), which is orders of magnitude
higher than that in the plaintext space [13, 31, 20].

There exists a flurry of work that aims to alleviate the computation overhead of HE-based PPML [3,
11, 13, 22, 27]. However, these solutions are all focused on the traditional Convolutional Neural
Network (CNN) models and are ineffective for GCNs because of a major difference of computation
pattern between GCN and CNN. That is, each graph convolution layer in the deep GCN model would
involve a unique adjacency matrix multiplication operation to incorporate the graphic information
during the convolution. This additional matrix multiplication in GCN can significantly increase the
required HE operations. As our profiling result in Fig. 1a demonstrates, for a typical 64-channel-GCN
layer with matrix size 25× 25, the matrix multiplication can lead to a nearly 49× increase in terms of
homomorphic operation count (HOC) in the worst case. How to deal with the significantly increased
HE operations in the GCN inferencing process presents a primary challenge. Furthermore, current HE
frameworks, such as the Cheon-Kim-Kim-Song (CKKS) scheme [7] used by this work, are normally
built on the so-called Leveled HE (LHE) [2] scheme, which has a limit on the maximum number of
concatenated homomorphic multiplication operations. The extra multiplication operations in GCNs
increase the multiplication depths of the total computation circuit, leading to the requirement of
larger encryption parameters (e.g. increased polynomial degree and primes) to maintain the same
security levels. As shown in Fig. 1c, the choice of parameters for HE schemes not only affects the
security level of the encryption but also has profound impacts on the latency of HE operations. How
to judiciously choose the HE parameter to optimize the security, computational cost, and latency is
also critical for effective and efficient GCN inferencing.

One intuitive approach to dealing with the adjacency matrix multiplication operation at each graph
convolution layer is to employ the state-of-the-art encrypted matrix multiplication methods (e.g. [8,
19]). However, these solutions can be problematic for deep GCN models because of increasing the
total multiplication depths, e.g. by 3 [8] and 6 [19], which leads to a higher polynomial degree
for encryption to maintain at least the same security level. From the comparison in Fig. 1b, with
no optimization, these results would be inferior to the method in [14], which we used in our paper
as the baseline results for comparison. Instead, we take advantage of the sparsity in the adjacency
matrix, which is very common, especially for applications based on a class of popular GCNs–Spatial-
Temporal GCN (ST-GCN), and can dramatically reduce the number of HE operations.

In this paper, we have made the following contributions. First, we develop an approach that can
effectively take advantage of the sparsity of matrix operations in GCN inferencing that can signif-
icantly reduce the computational overhead. As shown above, for GCN inferencing, the required
matrix-matrix multiplication can lead to significantly increased HE operations. In the meantime, the
matrix operation for GCN inferencing exhibits strong sparsity features, which can be exploited to
reduce the computational overhead. To this end, we develop a novel GCN data formatting method,
i.e., Adjacency Matrix Aware (AMA) data formatting method to support the associated multi-channel
multi-batch convolution and matrix-matrix multiplications, which can exploit the single instruction
multiple data (SIMD) structures in HE computation and thus greatly reduce the HE operations.
Second, we also study how to better manage the HE computation numbers and levels for GCN infer-
encing by judiciously pruning and approximation of the activation module in GCN and settings of HE
parameters. We develop a co-optimization framework that can help to explore the tradeoffs among
security level, inference accuracy, and inference latency. Third, we conduct extensive experiments
based on the NTU-XVIEW [34] skeleton joint [36, 15, 4], dataset. Our experimental results show
that the AMA data formatting achieves a latency speedup of up to 3.10×, and the Activation Pruning
achieves as much as 2.29× speedup for latency. To our best knowledge, this is the first work that
builds the HE-based PPML pipeline for GCN-based models with HOC decrease by as much as
77.44% compared to previous benchmarks.

2

(a) (b) (c)

Figure 1: Motivation examples: (a) the number of HE operations increased at log scale (by ∼ 49×
in total) due to involving an adjacent matrix-based matrix multiplication in a typical 64-channel
GCN layer (detailed setting in Sec. 4); (b) Comparison with the state-of-the-art HE matrix multi-
plication methods applied in the 64-STGCN-3 model (see Table 2), A [8], B [19], C [14], D-Ours;
(c) The latency of HE operations on a single ciphertext increased by up to 2.52× (32K v.s. 16K,
normalized to 16K) due to enlarging the polynomial degree. PMult, Add, CMult and Rot represent
ciphertext-plaintext multiplication, ciphertext addition, ciphertext-ciphertext multiplication and rota-
tion, respectively (see Sec. 2).

2 Background and Related Work

Spatial-Temporal Graph Convolution Network. In this work, we focus on a class of popular
GCNs–Spatial-Temporal Graph Convolution Network (ST-GCN) [38]. ST-GCN mainly consists of
two types of graph convolutions–Spatial convolution and Temporal convolution, which aim to extract
Spatial and Temporal information from the input graph data, respectively. The Spatial convolution
can be expressed by Equation 1:

H =
∑
j

D̃j
− 1

2 ÃjD̃j
− 1

2XWj (1)

Where j indicates different sets of graph connections separated by a graph node partition strategy
to better extract the Spatial information. X is the input graph data. Wj ∈ RCin×Cout represents
a set of filter parameters to transform the input tensor features from Cin input channels to Cout

output channels. D̃j is the degree matrix. Ãj is the adjacency matrix with self-loop. The XWj term
is implemented by a 2D-convolution with kernel size 1 × 1, then multiplied with the normalized

adjacency matrix D̃j
− 1

2 ÃjD̃j
− 1

2 , and finally the resulted data are summed up as output feature H .
The Temporal convolution is a convolution operation performed on the same graph node data from
different time slices.

CKKS Leveled Homomorphic Encryption Scheme. The Cheon-Kim-Kim-Song (CKKS)
scheme [7], which is based on the hardness of ring learning with errors (RLWE) problem, is a
leveled homomorphic encryption scheme that allows arithmetic operations on encrypted data over
fixed-point numbers. CKKS provides configurable precision by taking the encryption noise [24] as
natural error introduced in the approximation computations and through dropping the least signifi-
cant bits of computations via the rescaling of ciphertext. The supported homomorphic operations
include the ciphertext addition Add(ct1, ct2), ciphertext multiplication CMult(ct1, ct2), scalar mul-
tiplication PMult(ct , pt), rotation Rot(ct , k) and rescaling Rescale(ct). The scalar multiplication
is to multiply a ciphertext with plaintext. The rotation is to apply Galois automorphisms of the
cyclotomic extension to the plaintext polynomials in encrypted form resulting in a cyclic shift of the
slot vector. For instance, Rot(ct, k) transforms an encryption of (v0, ..., vN/2−1) into an encryption
of (vk, ..., vN/2−1, v0, ..., vk−1).

Compared with unencrypted computations, CKKS introduces significant runtime and memory over-
head. The use of packing, also referred to as batching, allows to pack of multiple data values into one
ciphertext so the encrypted computations can be done in a Single Instruction Multiple Data (SIMD)
manner. We use this property to improve the amortized overhead in this paper.

The security level [5] of the CKKS scheme is measured in bits. With λ = 128, it will take around
2128 operations to break the encryption. Throughout this paper, we assume that N is the cyclotomic

3

polynomial degree. CKKS is a leveled HE and the level of a ciphertext (l) is defined as the number of
successive multiplications that can be performed to the ciphertext without bootstrapping. The level is
decreased by one through the rescaling operation after each homomorphic multiplication. If the level
becomes zero, bootstrapping is needed to make this zero-level ciphertext a higher-level ciphertext to
enable further homomorphic operations. In our work, we optimize the GCN network to have lower
depth and select proper parameters to avoid the costly bootstrapping procedure.

Related Work. CryptoNets [13] is the first work that demonstrates the feasibility of building PPML
by HE. CryproNets evaluates a 5-layer neural network with MNIST dataset and achieves 59000
image inferences within one hour. However, the long inference latency makes it hard to be applied to
large-scale models and datasets. A recent work named SHE [9], translates the nonlinear ReLU and
Max Pooling operations as Boolean operations to realize the TFHE-based PPML, and achieves the
state-of-the-art inference accuracy. However, SHE also incurs a high inference latency, where making
a prediction on a CIFAR-10 image costs 2258 seconds. There also exist many MPC solutions which
combine the two-party computation protocols [39] with HE frameworks to achieve the low inference
latency [32, 21, 29, 16, 26, 30]. However, they suffer from high communication overhead incurred by
data transfer. For example, DeepSecure [32] needs to exchange 722GB of data between the client and
the server for only a 5-layer CNN inference on one MNIST image. Another approach [10] employs
the sparsity location vector to avoid unnecessary computations when performing the secure sparse
matrix multiplication. They exploit a PIR protocol [1] to extract the required non-zero elements from
the ciphertexts in their multi-party computation (MPC) setting, which is not applicable in our HE
environment since decryption at the inference stage is not possible. Other studies such as LoLa [3],
CHET [11], and HEAR [22] aim to use the ciphertext packing technique to place multiple values
from network nodes in the same ciphertext, so that HE operations can be conducted efficiently via
single instruction multiple data (SIMD). However, their data formats for ciphertext are not optimized
for GCN-based models, resulting in a large amount of HE operations (multiplication and addition).

3 Methodology

In this section, we first present the threat model assumption for this work. We then discuss technique
details of our proposed CryptoGCN–a CKKS-based homomorphic encryption framework tailored
for fast and scalable GCN inference on encrypted graph tensor. In particular, we focus on two key
components to significantly reduce the number of HE operations: 1) adjacency matrix-aware (AMA)
data formatting dedicated to simplifying GCN’s matrix-matrix multiplications without involving
ciphertext rotation; 2) non-linear Activation Pruning to reduce the multiplicative depth, resulting in
trade-offs between security level and inference latency with low accuracy loss.

Threat Model. We assume the cloud-based machine learning service, of which a well-trained graph
convolutional network model with plaintext weights, is hosted in a cloud server. A client can upload
private and sensitive data to the cloud for obtaining the online inference service. The cloud server is
semi-honest (e.g. honest but curious). To ensure the confidentiality of clients’ data against such a
cloud server, a client will encrypt the data by HE and send it to the cloud for performing encrypted
inference without decrypting the data or accessing the client’s private key. The client then can decrypt
the returned encrypted inference outcome from the cloud using the private key. In this work, we focus
on encrypting graph node features, and the normalized adjacency matrix (often sparse and the same
for different graph inputs) is assumed as plaintext.

3.1 AMA Data Formatting and Matrix-Matrix Multiplication

Since HE operations can be performed on encrypted vectors by taking advantage of the SIMD
architecture for parallel computing, the input tensor should be well placed into a “big vector container"
by a certain format which we call “data formatting". The state-of-the-art row-major format [11, 22]
concatenates a ciphertext row by row and facilitates the dot-product computation that is essential to
convolution or matrix-based operations. However, as we shall show later, it cannot efficiently support
GCNs’ matrix-matrix multiplication that would occur multiple times in a multi-channel GCN layer,
because of the extensive ciphertext rotation, addition, and multiplication. The mini-batch inference
over multiple GCN layers would further escalate HE overhead and latency for the row-major format.

4

Adjacency Matrix-Aware (AMA) Data Formatting. We use the skeleton-based action recognition
graph tensor data as an example to better illustrate our proposed AMA data formatting: assuming the
size of an input graph tensor is B × C × T × J , where B is the batch size of mini-batch inference
(e.g. B = 1 for a single input inference), C, T and J are the number of input channels, video frames,
and joints, respectively. The first step is to permute the tensor as J columns, with each column of
size C × B × T . Then each column is flattened to C 1D vectors, with each vector of size B × T .
For each of such 1D vectors, zeros are padded to make its length equal to the smallest power-of-two
integer greater than B × T . The C zero-padded 1D vectors are concatenated and then further stacked
to a plaintext vector via a channel-interleaving manner until the space of a plaintext vector can be
fully exploited, e.g. the length reaches half of the polynomial degree N . Finally, we encrypt such a
plaintext as a fully-packed ciphertext ctk, k ∈ J . The detailed process is presented in Algorithm 1
and Fig. 2(a).

AMA Data Format-Aided Matrix-Matrix Multiplication. Once the AMA data formatted ci-
phertext is created, the next step would be to apply it to simplify and speed up the matrix-matrix
multiplication introduced by adjacency matrix and convolution operations. Recall Equation 1 in
Section 2, a typical ST-GCN layer’s computation involves three consecutive PMult(ct , pt): Spatial
convolution (1× 1 plaintext kernel), matrix-matrix multiplication with normalized adjacency matrix
J × J in plaintext, and the Temporal convolution along the dimension T (K × 1 plaintext kernel).
Considering the property of 1 × 1 Spatial convolutional kernel, we can easily merge this into the
adjacency matrix and formulate a new plaintext matrix to reduce one multiplicative depth of PMult.
Then we can perform the matrix-matrix multiplication based on the new J × J plaintext matrix A.
Note that each graph tensor input channel could contain one such matrix.

For row-major formatted ciphertext, as Fig. 2(c) shows (bottom), even with state-of-the-art diagonal
encoding method [14], such matrix-matrix multiplication would still involve 2J − 1 ciphertext
rotations (Rot). Since the final outcome is the sum of each rotated ciphertext (Rot(ct,k)) multiplied by
the corresponding diagonal encoded vector (Ptk) from the plaintext matrix A, it also brings extra
PMult and Add. In contrast to the row-major data format, our AMA data format can significantly
reduce the amount of these HE operations. As Fig. 2(c) (top) demonstrates, first, we decompose
the J × J plaintext matrix A into a series of patterned sparse matrices Ai–each Ai contains at most
one valid element in each column, and A =

∑m
i=1 Ai,m ≤ J . Second, we simply multiply the

column-wise fully-packed ciphertext (due to the AMA data formatting) with the valid element of the
corresponding column in Ai, and then sum the m intermediate column-wise ciphertext to obtain a
final ciphertext:

ct′k =

m∑
i=1

ctkAi =

m∑
i=1

J∑
k=1

PMult(ctik , aikk) (2)

Where aikk represents the single valid element in column k of Ai. Since the process does not require
any Rot, except the simple column-wise PMult with a single plaintext value and final summation, the
HE operations can be greatly decreased compared with the row-major format. To be specific, as the
example in Fig. 2(c) shows, the sparse adjacency 4× 4 matrix A in a GCN consists of 8 non-zero
elements (a11, a13, a14, a23, a32, a41, a42, a44) and 8 zeros, while the dense encrypted feature matrix
that needs to be multiplied with A has numbers from 1 to 16. For AMA format, as shown in the top
part of Fig. 2(c), due to the sparsity of A, A can be easily decomposed into two submatrices A1 +A2

whose column only contains a single non-zero value (e.g. a11 in column 1 of A1, a41 in column 1 of
A2). Then the output ciphertext can be quickly calculated by simply multiplying a constant value in a
column of Ai(i = 1, 2) with the corresponding column-wise packed ciphertext in the dense feature
matrix, and then sum such column-wise multiplied results from A1 and A2. In this way, the rotation
is eliminated. The sparsity of A determines how many submatrices need to be decomposed, and
how many PMults are needed. The sparser (e.g. a11, a13 become zero) A is, then the less number
of PMult(ctik , aikk) is. Thus our AMA format takes advantage of A′s sparsity in practical GCN
applications to reduce HOCs. In contrast, the row-major format presented in the bottom part of Fig.
2(c), cannot utilize this sparsity for computation overhead reduction due to using a diagonal encoding
method to form multiple plaintexts to be multiplied with a corresponding rotated ciphertext.

Theoretical Analysis of HE Operation Reduction. We analytically compare the number of HE
operations needed for matrix-matrix multiplication between our AMA and row-major data formats.
To ensure the evaluation generality, our analysis is conducted by assuming a mini-batch inference

5

1 2 3 4

5 6 7 8
9 10 11

12
13 14 15

16

1 2 3 4

5
6 7 8

9
10 11 12

13
14 15 16

1 2 3 4

5
6 7 8

9
10 11 12

13
14 15 16

...

T
J

B×C

(a)

Input data

1 2 3 4

5 6 7 8
9 10 11 12

13 14 15 16

(b)

...

Batch B
Ch1

Batch 1
ChC

Row 2
Ch1

Row 1 Row 3Row 4

...

Row 2
ChC

Row 1 Row 3Row 4

15 16 1 2 3 4 5 6 7 8 9 10 11 12 13 14

14 15 16 1 2 3 4 5 6 7 8 9 10 11 12 13

3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2

4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3

= += +

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

...

Multiply in
 AMA format

Multiply in
Row-major

format

... ...

Input Data (ct)
(c)

Figure 2: The comparison of data formatting: (a) AMA data format; (b) Row-major format; (c)
Matrix-matrix multiplication comparison using AMA and row-major formatted ciphertext.

of multi-channel graph tensor input (B × C × T × J) on a typical ST-GCN layer which consists
of C input channels and C output channels with 1× 1 convolution kernels. The J × J matrix A in
Eq. 2 can be decomposed into J sub-matrices if A is dense in the worst case. For a fair comparison,
we assume the space of a ciphertext–T × J is fully exploited in both methods. As shown in Fig. 2
(a) and (b), a ciphertext in row-major and AMA format contains one channel data of size T × J ,
and multiple-channel multiple-batch data of size B × T × c (c = J/B, c ∈ N+), respectively. This
results in the same total amount of ciphertext–B × C in both methods. The implementations of an
example matrix-matrix multiplication using the two methods are presented in Fig. 2 (c). Since AMA
formatting increases processing parallelism in SIMD by packing multiple-channel and multi-batch
data into one ciphertext, it involves the rotation of the outcomes of matrix-matrix multiplications
from different channels and then summing up them to obtain the result for an output channel (Fig. 2
(b)). A ciphertext including data from more channels (a larger C) requires more rotations. To further
reduce the rotation overhead, we leverage the multi-channel convolutional technique and baby-step
strategy from HEAR [22]1. We also apply them to row-major formatting in evaluation 5. However,
the improvement is limited as a row-major formatted ciphertext can only contain single-channel data.

Table 1: Analytical comparison of HE Operation # (AMA v.s. Row-major)
HE Operation Description Total Complexity

Rot Row-major B × C × (2J − 2) O(B · C · 2J)
Rot AMA B × C × (J/B − 1) O(C · (J −B))
PMult Row-major B × C × (2J − 1)× C O(B · C2 · 2J)
PMult AMA J × J × (BC/J)× C O(B · C2 · J)
Add Row-major B × C × (2J − 1)× C −BC O(B · C2 · 2J)
Add AMA J × J × (BC/J)× C −BC O(B · C2 · J)

Table 1 reports the detailed breakdown of HE operation numbers for each method (see Appendix A.2
for detailed proof). Overall, AMA data format requires almost half of PMult and Add operations of
that of row-major format, since row-major format needs to compute 2J − 1 versions of a ciphertext
due to rotations in the matrix-matrix multiplication. The number of rotations increases proportionally
as the number of channels C that can be included in a ciphertext increase for both methods. However,
it is much less than that of row-major. The rotation number difference between AMA and row-major
format can be further enlarged when only the batch size B increases. This is because the AMA
formatted ciphertext contains data from more batches, resulting in the reduction of rotation times
(JC −BC). In contrast, the rotation amount of the row-major format grows as B increases. This
means that our AMA data formatting performs better when the batch size increases. Moreover, since
A is often a sparse matrix in practical ST-GCNs, the number of decomposed matrices m can be much
smaller than J for matrix-matrix multiplication, indicating better efficiency than Table 1 which is
obtained from a dense matrix. We further validate these observations in Section 5.

3.2 Activation Pruning

Applying the Leveled Homomorphic Encryption scheme like CKKS for private inference of a deep
network is challenging because of the limited modulus bits for the encrypted ciphertext. This

1We optimize the K × 1 Temporal convolution following the matrix-matrix multiplication in a similar
manner.

6

means that one LHE encrypted ciphertext has a limited rescale level. For computation like batch
normalization, it could be easily absorbed in the adjacent linear computation like convolution
and matrix multiplication [13] since batch normalization [17] is a fixed-parameter based linear
transformation in inference. However, the nonlinear ReLU activation computation must be replaced
by polynomial approximate activation (PAA). However, even a simple degree-2 PAA would consume
2 rescale levels. Given that each GCN layer can contain one or more ReLU activation for accuracy
purposes, more rescale levels would be needed for deep GCNs. This increases the polynomial degree
to achieve a certain security level, leading to higher computation overhead and inference latency.

Algorithm 1 AMA Formatting for Encryption

1: Input: Xk = (x1, x2, . . . , xC) ∈ RC×B×T

2: Output: ctk, a fully packed ciphertext

3: For i from 1 to C
4: vi = Flatten xi

5: Pad(vi) = Padding vi to nearest power
of 2

6: end for
7: Vk = (Pad(v1), Pad(v2), . . . , Pad(vC))
8: Vkfull

= stack copies of Vk to size N/2
9: return ctk = Encrypt(Vkfull

)

Algorithm 2 Activation Pruning

1: Input: NN Model with M activation layers
2: Output: Optimized Architecture
3: For i from 1 to M
4: acci=Train the Model with ith activa-

tion layer pruned
5: rankact = [acci]
6: SORT rankact from high to low
7: For i from 1 to M
8: Fine-tune the network Archi without

top i activations in rankact
9: AP-performance = (Acci, Leveli)

10: return Archi with best AP-performance

To achieve the trade-off between inference latency, security level, and accuracy, we investigated
the state-of-the-art solution–fine-grained channel-wise PAA for ReLU in SAFENet [28], which is
to replace the ReLU activation in the same layer with different polynomial degrees. However, the
method has a major limitation when applied to LHE-based private inference. Given a ciphertext
could contain data from multiple channels in our AMA data formatting, a mask vector that chooses
different PAAs must be utilized to process a ciphertext. As a result, this would consume an extra
rescale level and offset the benefit of reduction from the multiplicative level in ReLU. Therefore, we
propose to identify and prune ReLU activations based on the fact that removing ReLU activation of
some layers in deep networks leads to marginal accuracy loss [18]. For our Leveled HE schemes
CKKS, computation overhead from activation is not linearly changed with activation counts different
from some existing approaches like CryptoNAS [12] and Delphi [29]. Thus, our target is not to
prune as many activations as possible. Instead, we need to take the total multiplication depth, model
accuracy, latency, and security level all into consideration in our optimization process.

We name such a technique Activation Pruning (AP). As Algorithm 2 shows, we first replace all the
ReLU activations with a 2-degree polynomial activation ax2 + bx+ c, in which (a, b, c) is updated
during the training process, and train this model’s accuracy to a desired level as the baseline. Second,
we rank the activation layers according to the accuracy, search the architecture by increasing the
number of pruned activation layers and fine-tune the new model to recover the accuracy. A model can
be selected based on the accuracy and number of needed rescale levels to trade off between security
level and latency.

4 Experiment Methodology

HE parameter setting. We have two sets of encryption parameters for the experiments without
Activation Pruning and with Activation Pruning. For both settings, we choose the scaling factor
∆ = 233 to maintain the inference accuracy. For each level, it will consume 33 bits of ciphertext
modulus Q. For experiments without AP setting, it requires 21 levels for the whole network
architecture. Thus, we set Q = 740, and the polynomial degree N should be set to 215 to make the
security level ≥ 80 bits. For experiments with the AP setting, the total level is 19 or 17. Therefore,
we set Q = 680 or 600 and the polynomial degree N = 214 to achieve at least 80-bit security level.

Dataset. NTU-RGB+D [34] is the current largest dataset with 3D joint annotations for human action
recognition task. It contains 56,880 action clips in 60 action classes. The annotations contain the
3D information (X,Y, Z) of 25 joints for each subject in the skeleton sequences. We choose one
benchmark NTU-cross-View (NTU-XView) as the dataset for our evaluation because this benchmark

7

Table 2: Model Architecture
Model Layer ST-GCN 1 ST-GCN 2 ST-GCN 3

64-STGCN-3 Output featuremap size (256,25) (128,25) (128,25)
Channels 64 128 128

128-STGCN-3 Output featuremap size (256,25) (128,25) (128,25)
Channels 128 256 256

is a representative human skeleton joints dataset. It contains 37,920 and 18,960 clips for training and
evaluation, respectively. For better evaluation, we use 256 frames from the video clip as our input
data. Thus, the input tensor with a size of 2× 3× 256× 25 contains the 25 skeleton-joint information
(X,Y, Z) of 2 persons in a video has 256 frames.

Network Architecture. ST-GCN [38] is the state-of-the-art GCN architecture for human action
recognition. It combines the GCN and CNN to better extract the Spatial and Temporal information
than the previous models. In our experiment, we use a stack of 3 ST-GCN layers with a global average
pooling layer and a fully-connected layer and study one small net and one large net: 64-STGCN-3
and 128-STGCN-3, where the first number stands for the channel number of the first ST-GCN layer.
Table 2 summarizes the network architecture. One ST-GCN layer is composed of one Spatial Conv
layer and one Temporal Conv layer. Following the stacked 3 ST-GCN layers are a global average
pooling layer and a fully-connected layer. We use Stochastic Gradient Descent (SGD) optimizer with
a mini-batch size of 64, a momentum of 0.9, and a weight decay of e−4 to train the model for 200
epochs. The initial learning rate is set to 0.01 with a decay factor 0.1.

Evaluation Setup. Our experiments are conducted on a machine with AMD Ryzen Threadripper
PRO 3975WX with a single thread setting. We use Microsoft SEAL version 3.7.2 [33] to implement a
RNS-variant of CKKS [6] scheme. To perform the Temporal convolution, we leverage the baby-step
strategy [22] to optimize the multi-channel convolution. The Global Avg Pooling layer and Fully-
Connected layer have a small impact on the total latency so we just apply a same implementation
with HEAR [22] to compute these two layers.

5 Results and Analysis

5.1 Activation Pruning Ablation Study

We first analyze the effect of our Activation Pruning (AP) technique in our framework through an
ablation study. To evaluate the performance, we optimize our neural network architecture by pruning
the activation layers. After the algorithm optimization, we have two types of variants, i.e., 1 AP and
2 AP, where the numbers denote how many activation layers have been pruned. Then, we compare
the performance of these optimized architectures on the model inference accuracy and HE inference
latency. The results are shown in Table 3.

Despite the architectures having different widths (channel numbers), the original unoptimized archi-
tectures (w/o AP) have the best accuracy but also the highest latency. To deal with the multiplicative
depth of the unoptimized architectures, we have to set the polynomial degree in the encryption pa-
rameter to 215, resulting in a tremendous latency increase. By applying AP, the 1 AP (one activation
layer pruned) architecture only has a small accuracy loss (1.1-1.5%), while the latency is improved
by about 2.3× through saving two levels. This is because reducing two levels allows us to trade off
the polynomial degree with a security level decrease and achieve a sweet point. More specifically,
we can use 214 as our polynomial degree for the optimized depths with an 80-bit (instead of the
original 128-bit) security level. If we try to prune one more activation layer (2 AP), the accuracy loss
(3.95-4.04%) is larger than the 1 AP variant. Besides, the latency speedup is limited because we can
not reduce the polynomial degree further to have at least an 80-bit security level.

5.2 AMA Format Effectiveness

To evaluate the effectiveness of the AMA format method, we compare its performance against the
row-major formatting with the same encryption parameter setting. As the AP improves the latency for
every HE operation, we evaluate the performance of two data formatting methods on AP-optimized

8

Table 3: Ablation study for AP (Model Architec-
ture Tradeoff) (AMA format)

Model 64-STGCN-3 128-STGCN-3

w/o AP ACC 74.25% 75.31%
Latency 4273.89s 10580.41s

w/ AP
(1 AP)

ACC 73.12% 73.78%
Latency 1863.95s 4850.93s

w/ AP
(2 AP)

ACC 70.21% 71.36%
Latency 1856.36s 4831.93s

Table 4: Ablation study of AMA format with
batch size=1

Model 64-STGCN-3 128-STGCN-3

Row-major
format

Latency 2962.46s 9589.59s
of Ct 128 256

AMA Latency 1863.96s 4850.93s
of Ct 100 200

Speedup 1.59× 1.97×

architecture. Then, we compare our AMA format with the row-major format in different batch size
settings.

5.2.1 Compare with row-major format

As reported in Table 4, our AMA format improves the inference latency by 1.59× for 64-STGCN-3
architectures and 1.97× for 128-STGCN-3 architecture, respectively. Table 5 is a breakdown of
HE operations for 64-STGCN-3. From the table, we observe that the AMA format consumes only
31.3% of PMult and Add, comparing with the row-major format. The theoretical analysis of HOC is
presented in Table 8 of Appendix A.1.

Table 5: Breakdown for HE operations in different layer of 64-STGCN-3

Layer Row-major format AMA
Rot PMult CMult Add Rot PMult CMult Add

Spatial Conv 6.9K 623K - 622K 6K 56K - 55K
Temporal Conv 4K 295K - 294K 7.7K 230K - 230K
GlobalAvgPooling 832 - - 896 28 - - 96
FC 60 3.8K - 3.8K 240 240 - 240
Activation - 1.3K 640 640 - 1K 500 1K

Here are two reasons for the HOC reduction. First, the AMA format uses fewer ciphertexts than the
row-major format. The row-major format does not fully utilize the ciphertext space as the feature
map has a size of 256× 25. In row-major format, the feature map is first converted into a 1D vector
with a size of 6400; then zero padding is applied to the right end of this vector to make the size equal
to 8192. Therefore, in the resulting encrypted ciphertext, 1792 slots have been wasted. Our AMA
format, on the other hand, fully utilizes the ciphertext space, because 256 is a power-of-two number.
None of the slots in the ciphertext is wasted. Second, compared to row-major formatting, our AMA
format could perform matrix-matrix multiplication with fewer HE operations. For the matrix used in
our proposed network, one row-major format ciphertext should perform 19 multiplications for one
output channel. However, one AMA format ciphertext only needs to perform 3 multiplications for
one output channel. A similar reason holds for the Add operation.

5.2.2 Different batch size settings

We analyze our data formatting method in different batch size settings. As described in Table 6, with
the batch size increasing, the latency of the row-major format increases linearly as they do not have
any parallelism for a mini-batch setting. However, our AMA format allows processing a mini-batch
of data in the same ciphertext, which improves the parallelism for a mini-batch setting. Besides, the
number of rotations for multi-channel convolution decreases when the batch size increases and the
number of other HE operations increases linearly, resulting in a speedup as much as 3.1× for average
latency with the batch size growing.

5.3 Computation Complexity Evaluation

Table 7 compares CryptoGCN against the state-of-the-art privacy-preserving neural network frame-
works (i.e., CHET [11] and Fast-HEAR [22]). Since the previous frameworks and ours are imple-
mented in different environments (different CPUs and number of threads). For a fair comparison, we
evaluate the number of the required homomorphic operations for 64-STGCN-3 on the same dataset.
In this way, we eliminate the impact of different hardware and software configurations.

9

Table 6: AMA performance with batch size increase
Model Batch size Row-major AMA Average Latency Speedup

64-STGCN-3 1 2965.46 sec 1863.95 sec 1863.95 sec 1.59 ×
64-STGCN-3 2 5931.92 sec 2704.41 sec 1352.21 sec 2.19 ×
64-STGCN-3 4 11852.84 sec 4390.66 sec 1097.66 sec 2.70 ×
64-STGCN-3 8 23703.68 sec 7770.91 sec 971.36 sec 3.05 ×
64-STGCN-3 16 45179.33 sec 14535.23 sec 908.45 sec 3.10 ×

Table 7: Compare with the previous benchmarks on 64-STGCN-3

Method Batch size HOC
Rot CMult PMult Add Total

CHET
1

16K 1.28K 1.3M 1.29M 2.61M
Fast-HEAR 12K 1K 923K 922K 1.86M
CryptoGCN 14K 500 287K 287K 589K

CHET
2

32K 2.56K 2.6M 2.59M 5.23M
Fast-HEAR 24K 2K 1.84M 1.84M 3.7M
CryptoGCN 16K 1K 575K 574K 1.17M

Similar to our work, CHET and Fast-HEAR utilize the ciphertext packing technique to reduce
HE computation complexity. They utilize the row-major format as the data representation for the
encrypted feature maps. The main difference between Fast-HEAR and CHET is that Fast-HEAR
leverages the non-valid space in ciphertext after down-sampling (avg pooling layer) in the CNN
model such that Fast-HEAR could have less Homomorphic operation count (HOC).

Neither CHET nor Fast-HEAR is optimized for GCN-based models and the unique matrix multi-
plication mechanism could significantly increase the HOC. When batch size equals 1, compared to
CHET and Fast-HEAR, our AMA formatted ciphertext better utilizes the sparsity of the matrix and
significantly reduces the multiplication and addition operations. Specifically, when performing matrix
multiplication combined with a multi-channel convolution, the AMA format avoids performing an
inner loop for matrix multiplication and hence reduces the amount of PMult and Add operations
by 52.5%-66.2%. Furthermore, we pack the graph data into ciphertexts to maximize the use of the
slots and prune one activation layer from the original architecture, which reduces the number of
CMult by 40%-50%. With the batch size increasing, CryptoGCN reduces 77.4% of the total HOC
compared to prior work. A more detailed theoretical comparison of HOC between CrytoGCN, CHET
and Fast-HEAR can be found in Table 9 of Appendix A.1.

6 Conclusion

Homomorphic encryption (HE) has become an effective way to build privacy-preserving machine
learning thanks to the great advancement of HE schemes. In this paper, we build a fast and scalable
Leveled HE-based privacy-preserving inference framework optimized for GCN models by leveraging
our proposed novel AMA data formatting and model architecture optimization strategy. To the
best of our knowledge, this is the first framework supporting private inference for a large skeleton
joint data with a 40× size of previous work–Fast-HEAR using deeper networks. Our solution
demonstrates encouraging results for enhancing privacy-preserving inference on GCN models in
a cost-effective manner. In the future, we could leverage the multi-threading technique to further
improve the encrypted inference latency. We would like to extend the encrypted data to both graph
node features and adjacency matrices, as the matrices may also contain a part of sensitive information.
By encrypting both graph node features and the associated adjacency matrices, the client’s data
privacy can be fully guaranteed.

7 Acknowledgement

We would like to thank the anonymous reviewers for their constructive comments and suggestions on
this work. This work is partially supported by the National Science Foundation (NSF) under Award
CCF-2011236, and Award CCF-2006748.

10

References
[1] Sebastian Angel, Hao Chen, Kim Laine, and Srinath Setty. Pir with compressed queries and

amortized query processing. In 2018 IEEE symposium on security and privacy (SP), pages
962–979. IEEE, 2018.

[2] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homomorphic
encryption without bootstrapping. ACM Transactions on Computation Theory (TOCT), 6(3):1–
36, 2014.

[3] Alon Brutzkus, Ran Gilad-Bachrach, and Oren Elisha. Low latency privacy preserving inference.
In International Conference on Machine Learning, pages 812–821. PMLR, 2019.

[4] Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh. Realtime multi-person 2d pose
estimation using part affinity fields. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 7291–7299, 2017.

[5] Melissa Chase, Hao Chen, Jintai Ding, Shafi Goldwasser, Sergey Gorbunov, Jeffrey Hoffstein,
Kristin Lauter, Satya Lokam, Dustin Moody, Travis Morrison, et al. Security of homomorphic
encryption. HomomorphicEncryption. org, Redmond WA, Tech. Rep, 2017.

[6] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yongsoo Song. A full rns
variant of approximate homomorphic encryption. In International Conference on Selected Areas
in Cryptography, pages 347–368. Springer, 2018.

[7] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Homomorphic encryption for
arithmetic of approximate numbers. In International Conference on the Theory and Application
of Cryptology and Information Security, pages 409–437. Springer, 2017.

[8] John Chiang. A novel matrix-encoding method for privacy-preserving neural networks (infer-
ence). arXiv preprint arXiv:2201.12577, 2022.

[9] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. Tfhe: fast fully
homomorphic encryption over the torus. Journal of Cryptology, 33(1):34–91, 2020.

[10] Jinming Cui, Chaochao Chen, Lingjuan Lyu, Carl Yang, and Wang Li. Exploiting data sparsity
in secure cross-platform social recommendation. Advances in Neural Information Processing
Systems, 34:10524–10534, 2021.

[11] Roshan Dathathri, Olli Saarikivi, Hao Chen, Kim Laine, Kristin Lauter, Saeed Maleki, Madanlal
Musuvathi, and Todd Mytkowicz. Chet: an optimizing compiler for fully-homomorphic neural-
network inferencing. In Proceedings of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 142–156, 2019.

[12] Zahra Ghodsi, Akshaj Kumar Veldanda, Brandon Reagen, and Siddharth Garg. Cryptonas:
Private inference on a relu budget. Advances in Neural Information Processing Systems,
33:16961–16971, 2020.

[13] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig, and John
Wernsing. Cryptonets: Applying neural networks to encrypted data with high throughput and
accuracy. In International conference on machine learning, pages 201–210. PMLR, 2016.

[14] Shai Halevi and Victor Shoup. Algorithms in helib. In Annual Cryptology Conference, pages
554–571. Springer, 2014.

[15] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In Proceedings of
the IEEE international conference on computer vision, pages 2961–2969, 2017.

[16] Zhicong Huang, Wen-jie Lu, Cheng Hong, and Jiansheng Ding. Cheetah: Lean and fast secure
two-party deep neural network inference. IACR Cryptol. ePrint Arch., 2022:207, 2022.

[17] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In International conference on machine learning, pages
448–456. PMLR, 2015.

[18] Nandan Kumar Jha, Zahra Ghodsi, Siddharth Garg, and Brandon Reagen. Deepreduce: Relu
reduction for fast private inference. In International Conference on Machine Learning, pages
4839–4849. PMLR, 2021.

[19] Xiaoqian Jiang, Miran Kim, Kristin Lauter, and Yongsoo Song. Secure outsourced matrix
computation and application to neural networks. In Proceedings of the 2018 ACM SIGSAC
conference on computer and communications security, pages 1209–1222, 2018.

11

[20] Wonkyung Jung, Eojin Lee, Sangpyo Kim, Jongmin Kim, Namhoon Kim, Keewoo Lee,
Chohong Min, Jung Hee Cheon, and Jung Ho Ahn. Accelerating fully homomorphic en-
cryption through architecture-centric analysis and optimization. IEEE Access, 9:98772–98789,
2021.

[21] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. {GAZELLE}: A low
latency framework for secure neural network inference. In 27th USENIX Security Symposium
(USENIX Security 18), pages 1651–1669, 2018.

[22] Miran Kim, Xiaoqian Jiang, Kristin Lauter, Elkhan Ismayilzada, and Shayan Shams. Hear:
Human action recognition via neural networks on homomorphically encrypted data. arXiv
preprint arXiv:2104.09164, 2021.

[23] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016.

[24] Kim Laine. Simple encrypted arithmetic library (seal) manual, 2017.

[25] Donsuk Lee, Yiming Gu, Jerrick Hoang, and Micol Marchetti-Bowick. Joint interaction and
trajectory prediction for autonomous driving using graph neural networks. arXiv preprint
arXiv:1912.07882, 2019.

[26] Jian Liu, Mika Juuti, Yao Lu, and Nadarajah Asokan. Oblivious neural network predictions via
minionn transformations. In Proceedings of the 2017 ACM SIGSAC conference on computer
and communications security, pages 619–631, 2017.

[27] Qian Lou and Lei Jiang. She: A fast and accurate deep neural network for encrypted data.
Advances in Neural Information Processing Systems, 32, 2019.

[28] Qian Lou, Yilin Shen, Hongxia Jin, and Lei Jiang. Safenet: A secure, accurate and fast neural
network inference. In International Conference on Learning Representations, 2020.

[29] Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srinivasan, Wenting Zheng, and Raluca Ada
Popa. Delphi: A cryptographic inference service for neural networks. In 29th USENIX Security
Symposium (USENIX Security 20), pages 2505–2522, 2020.

[30] Payman Mohassel and Yupeng Zhang. Secureml: A system for scalable privacy-preserving
machine learning. In 2017 IEEE symposium on security and privacy (SP), pages 19–38. IEEE,
2017.

[31] Ronald L Rivest, Len Adleman, Michael L Dertouzos, et al. On data banks and privacy
homomorphisms. Foundations of secure computation, 4(11):169–180, 1978.

[32] Bita Darvish Rouhani, M Sadegh Riazi, and Farinaz Koushanfar. Deepsecure: Scalable provably-
secure deep learning. In Proceedings of the 55th annual design automation conference, pages
1–6, 2018.

[33] Microsoft SEAL (release 3.7). https://github.com/Microsoft/SEAL, September 2021.
Microsoft Research, Redmond, WA.

[34] Amir Shahroudy, Jun Liu, Tian-Tsong Ng, and Gang Wang. Ntu rgb+d: A large scale dataset
for 3d human activity analysis. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 1010–1019, 2016.

[35] Chenyang Si, Ya Jing, Wei Wang, Liang Wang, and Tieniu Tan. Skeleton-based action recog-
nition with spatial reasoning and temporal stack learning. In Proceedings of the European
conference on computer vision (ECCV), pages 103–118, 2018.

[36] Ke Sun, Bin Xiao, Dong Liu, and Jingdong Wang. Deep high-resolution representation learning
for human pose estimation. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 5693–5703, 2019.

[37] Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, and Bin Cui. Graph neural networks in recom-
mender systems: a survey. ACM Computing Surveys (CSUR), 2020.

[38] Sijie Yan, Yuanjun Xiong, and Dahua Lin. Spatial temporal graph convolutional networks for
skeleton-based action recognition. In Thirty-second AAAI conference on artificial intelligence,
2018.

[39] Andrew Chi-Chih Yao. How to generate and exchange secrets. In 27th Annual Symposium on
Foundations of Computer Science (sfcs 1986), pages 162–167. IEEE, 1986.

12

https://github.com/Microsoft/SEAL

Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] See Section 4
• Did you include the license to the code and datasets? [No] The code and the data are

proprietary.
• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] We clearly present the theoretical analysis and compare
our contribution by ablation study in the result part

(b) Did you describe the limitations of your work? [Yes] See section 6
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See section 3.1
(b) Did you include complete proofs of all theoretical results? [Yes] See section A.2

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] See in section
4

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See in section 4

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [No] We report the average latency with same random seed
setting

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See in section 4

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] Yes, we cite all the

creators in the papar
(b) Did you mention the license of the assets? [Yes] SEAL has MIT license. ST-GCN repo

has BSD-2-Clause license.
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

13

A Appendix
A.1 HOC breakdown across layers and other methods
We use the following notations: Number of samples N , Data size N · C · T · J , Batch size B,
Channels on one ciphertext in AMA U = R/2·N ·T ·B , Number of ciphertexts in AMA Na = J·C/U,
Number of ciphertexts in row-major format Nr = C ·N ·B , Output channel O , polynomial degree
R, Spatial-conv layers Sp, Temporal-conv layers Te, Activation layers A, Kernel size K, Valid matrix
elements number V , Diagonal decomposition number D, Number of output classes Cs. The HOC
comparison across layers between AMA format and row-major format is presented in Table 8. The
model-level HOC comparison with other SOTA methods is listed in Table 9.

Table 8: HOC layer breakdown for AMA format
Layer Type Rot PMult CMult Add

S-Conv

AMA

J · (Sp + 1) · (O/U) · (U − 1) Na · (V/J) ·O · Sp 0 (Na · (V/J) ·O −Na) · Sp

T-Conv (Na · (K − 1) · (Te + 1) + J · (U − 1) · (O/U) · Sp Na ·O ·K · (Te + 1) 0 (Na ·O ·K −Na) · (Te + 1)
GAP C/U · log(T/2) 0 0 C/U · (J − 1)
FC C/U · Cs C/U · Cs 0 (C/U) · Cs

Activation 0 2 ·Na ·A Na ·A 2 ·Na ·A
S-Conv

Row-major

Nr · (D − 1) · Sp Nr ·D · C · (Sp + 1) 0 (Nr ·O ·K −Nr) · (Sp + 1)
T-Conv Nr · (K − 1) · (Te + 1) Nr ·K ·O · (Te + 1) 0 (Nr ·K ·O −Nr) · (Te + 1)
GAP Nr/N · log(R/2) 0 0 Nr/N +Nr/N · log(R/2)
FC Cs Nr/N · Cs 0 Nr/N · Cs

Activation 0 Nr · 2 ·A Nr ·A Nr ·A

Table 9: HOC Comparsion with other methods
Methods Rot

CHET Nr · (D − 1) · (Sp + 1) +Nr · (K − 1) · (Te + 2) +Nr · log(R/2) + Cs

F-HEAR Nr · (D − 1) · Sp +Nr · (K − 1) · (Te + 1) +Nr/N · log(R/2) + Cs

CryptoGCN J · (Sp + 1 + Te) · (O/U) · (U − 1) + (Na · (K − 1) · (Te + 1) + C/U · log(T/2) + C/U · Cs

Methods PMult

CHET Nr ·D ·O · (Sp + 2) +Nr ·K ·O · (Te + 4) +Nr · 2 ·A · 2 +Nr/N · Cs

F-HEAR Nr ·D ·O · (Sp + 1) +Nr ·K ·O · (Te + 1) +Nr · 2 · (A+ 3) +Nr/N · Cs

CryptoGCN Na · (V/J) ·O · Sp +Na ·O ·K · (Te + 1) + C/U · Cs + 2 ·Na ·A
Method Add

CHET (Nr ·D ·O −Nr) · (Sp + 2) + (Nr ·K ·O −Nr) · (Te + 4) +Nr ·A · 2 +Nr/N +Nr/2 · log(R/2) +Nr/N · Cs

F-HEAR (Nr ·O ·K −Nr) · (Sp + 1) + (Nr ·K ·O −Nr) · (Te + 1) +Nr · (A+ 3) +Nr/N +Nr/N · log(R/2) + Cs ·Nr/N
CryptoGCN (Na · (V/J) ·O −Na) · Sp + (Na ·O ·K −Na) · (Te + 1) + C/U · (J − 1) + (C/U) · Cs + 2 ·Na ·A
Method CMult

CHET Nr ·A · 2
F-HEAR Nr · (A+ 3)
CryptoGCN Na ·A

A.2 Theoretical Comparison of HOC for Matrix-Matrix Multiplication
We explain the theoretical results in Table 1 by following the same assumption in Section 3.1.

Row-major format:

For one ciphertext, it represents the data from one channel. In order to multiply with a J × J dense
matrix, we need to rotate each ciphertext by 2J − 2 times. To obtain C output channel data, all
existing BC ciphertexts need to perform 2J − 2 times multiplications, then we get BC resulted
ciphertexts by summing up all the ciphertexts. The computation overhead for the three HE operations
can be expressed in Equation 3:

Rotation = B · C · (2J − 2)

PMult = C ·B · C · (2J − 2)

Add = C ·B · C · (2J − 2)−B · C
(3)

AMA format:

The rotation operation is only used to sum up all the input channel data, because the ciphertext with
AMA format contains J/B channel data. For each ciphertext, it needs to rotate (J/B − 1) times.
To get C output channel data, each ciphertext needs to perform J times PMult. Then we get BC
resulted ciphertexts by summing up all the ciphertexts. The computation overhead for three HE
operations can be found in Equation 4:

Rotation = B · C · (J/B − 1)

PMult = B · C · J · C
Add = B · C · J · C −B · C

(4)

14

	Introduction
	Background and Related Work
	Methodology
	AMA Data Formatting and Matrix-Matrix Multiplication
	Activation Pruning

	Experiment Methodology
	Results and Analysis
	Activation Pruning Ablation Study
	AMA Format Effectiveness
	Compare with row-major format
	Different batch size settings

	Computation Complexity Evaluation

	Conclusion
	Acknowledgement
	Appendix
	HOC breakdown across layers and other methods
	Theoretical Comparison of HOC for Matrix-Matrix Multiplication

