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ABSTRACT

Recent advancements in large multimodal models (LMMs) have significantly en-
hanced performance across diverse tasks, with ongoing efforts to further integrate
additional modalities such as video and audio. However, most existing LMMs
remain vulnerable to hallucinations, the discrepancy between the factual multi-
modal input and the generated textual output, which has limited their applicability
in various real-world scenarios. This paper presents the first systematic investi-
gation of hallucinations in LMMs involving the three most common modalities:
language, visual, and audio. Our study reveals two key contributors to hallucina-
tions: overreliance on unimodal priors and spurious inter-modality correlations.
To address these challenges, we introduce the benchmark The Curse of Multi-
Modalities (CMM), which comprehensively evaluates hallucinations in LMMs,
providing a detailed analysis of their underlying issues. Our findings highlight
key vulnerabilities, including imbalances in modality integration and biases from
training data, underscoring the need for balanced cross-modal learning and en-
hanced hallucination mitigation strategies. Based on our observations and find-
ings, we suggest potential research directions that could enhance the reliability of
LMMs. We will make our code and data publicly available.

1 INTRODUCTION

Large Multi-modal Models (LMMs) have rapidly advanced, driving significant improvements across
a wide range of tasks by effectively integrating and processing diverse data modalities. These mod-
els (L1 et al.| [2024a; |[Zhang et al., 2024} [Hong et al.| 2024; |Yao et al.l 2024; Wang et al., |2024a;
Achiam et al.|2023]; |[Team et al., 2023} |Ormazabal et al.| 2024)), leveraging multimodal inputs such
as image and text, have achieved notable performance gains, particularly in generating contextually
accurate textual outputs. As the field evolves, there is a growing trend toward incorporating addi-
tional modalities, such as audio and video (Xu et al.| 2024} |Chen et al.,|2024a; [Wang et al.l |2024c]
Zhang et al., 2023} [Cheng et al., |[2024; [Li et al., 2024bj [Kong et al., 2024} [Tang et al., {2023} |Ghosh
et al.| 2024} |Chu et al., 2024), to enhance LMMs’ ability to understand and interact with complex
real-world environments. However, despite these advancements, LMMs are prone to a critical is-
sue known as hallucination, where the generated outputs do not accurately reflect the multimodal
inputs (Liu et al.; 2023} [Wang et al., 2023a; |2024d; |Nishimura et al., 2024). This issue can severely
undermine the reliability and applicability of LMMs in real-world scenarios, particularly in tasks
requiring precise and factual content generation.

Hallucination, particularly object hallucination, has been a key focus in LMMSs that handle image
and text inputs. Object hallucination occurs when LMMs generate semantically coherent but factu-
ally unaligned contents with the actual objects present in the input images. Various benchmarks (L1
et al., [2023; [Sun et al.|, |2023b; [Lovenia et al., [2023; [Wang et al.,|2023a) and mitigation techniques
have been proposed to address this issue by refining training processes (Liu et al., [2023), imple-
menting post-hoc correction (Leng et al., [2024; Zhou et al., 2023), etc. However, accommodating
additional modalities like audio and video exacerbates alignment and fusion difficulties (Lahat et al.,
2015; [Dimitri, 2022} [Tong et al., [2024} |Liang et al.| [2024)), which may lead to increased hallucina-
tions.
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This study systematically examines how LMMs produce hallucinations while integrating language,
visual, and audio inputs, revealing the prevalence and causes of hallucinations under such multi-
modal scenarios. Two key contributors are identified: (1) Overreliance on unimodal priors: Models
over-rely on data from a single modality, neglecting others. This results in outputs that do not accu-
rately reflect the full range of input data, as models default to familiar patterns within one modality
despite contradictory signals from others. (2) Spurious inter-modality correlations: Models learn
erroneous cross-modal associations based on patterns that appear statistically significant but lack
meaningful or causal connections, leading to plausible but counterfactual outputs. We introduce
The Curse of Multi-Modalities (CMM), a comprehensive benchmark for assessing hallucinations in
LMMs, covering a wide range of scenarios across visual, audio, and their joint contexts. CMM con-
verts hallucination evaluation into a binary classification task through object-level and event-level
probing. It comprises 1,200 video/audio/video-audio samples across various multimodal contexts,
ensuring balanced evaluation with 2,400 probing questions evenly split between queries for exis-
tent and non-existent objects/events. LMMs are prompted with straightforward yes-or-no questions
regarding the presence of specific objects or events in the input modalities.

CMM is the first benchmark to systematically investigate LMMs’ hallucinations in such comprehen-
sive multimodal settings. Unlike prior benchmarks that broadly assess hallucination performance,
CMM segments hallucinations into nuanced subcategories under two key contributors: spurious
inter-modality correlations (e.g., Visual-Language, Audio-Language, Visual-Audio-Language) and
unimodal overreliance (e.g., Language Domianance, Visual Dominance, Audio Dominance), en-
abling precise diagnosis of LMM vulnerabilities and shedding light on possible improvements.
By introducing diagnostic metrics including perception accuracy (PA) and hallucination resistance
(HR), CMM offers a comprehensive framework for gauging both perception capabilities and hallu-
cination severity in LMMs. In summary, the contributions of this work are threefold:

* We conduct the first systematic investigation of hallucinations in LMMs across language, visual,
and audio modalities, identifying their key contributors including unimodal prior overreliance
and spurious inter-modality correlations.

* We introduce a novel and comprehensive benchmark, The Curse of Multi-Modalities (CMM),
which evaluates hallucinations using object-level and event-level probing within a binary classi-
fication framework. CMM defines hallucinations with nuanced subcategories and granularities,
enabling comprehensive diagnosis of LMM vulnerabilities across various modalities.

* We evaluate a diverse set of state-of-the-art LMMs across visual, audio, and joint contexts, re-
vealing critical insights in model limitations and fundamental challenges in multimodal learn-
ing. Our thorough analysis and discussion pinpoint future directions for mitigating hallucina-
tions and enhancing LMM reliability, providing a viable roadmap for improvements.

2 ANALYZING HALLUCINATIONS ACROSS LANGUAGE, VISUAL, AND AUDIO

This section systematically investigates the underlying causes of hallucinations in Large Multi-
modal Models (LMMes). It includes qualitative demonstrations and comprehensive statistical analy-
sis from two key perspectives: Overreliance on Unimodal Priors and Spurious Inter-modality Cor-
relations. Our analysis provides empirical evidence and quantifies the extent to which these factors
influence LMMs’ reliability.

Notations. Consider an LMM parametrized by 6 that processes inputs from three modalities: lan-
guage x, visual v, and audio a. The model generates textual output y autoregressively, where each
token y; is conditioned on all three modalities and the previously generated tokens y:

Yt Np9<yt | U7a7337y<t)7

where y; represents the token at time step ¢, and y; denotes the sequence of tokens generated up to
time step t — 1.

2.1 OVERRELIANCE ON UNIMODAL PRIORS

Overreliance on unimodal priors is a key factor contributing to hallucinations in LMMs. This issue
arises when the model over-relies on the knowledge learned from one modality during training,
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Figure 1: Demonstrations of overreliance on unimodal priors.

rather than integrating knowledge of all available modalities. In such cases, the model defaults to
strong unimodal priors learned during training, leading to outputs that follow familiar unimodal
patterns even when those patterns are not supported by the multimodal input. Following the general
issue of overreliance on unimodal priors, we categorize this into three distinct types: Language
Dominance, Visual Dominance, and Audio Dominance. Each form of dominance presents unique
challenges for LMM performance and contributes to hallucinations in different ways.

Language Dominance, also know as language biases (Rohrbach et all, 2018}, [Leng et al., 2024}
[Guan et al ., 2024;[Wang et al.,[2024b), arises when a model excessively depends on pre-trained large
language models (LLMs), generating responses that adhere to linguistic patterns or prior knowl-
edge from large language corpora, even when visual or audio inputs provide contradictory infor-
mation. This issue is particularly prevalent in LMMs that integrate LLMs as their decoder base.
These LLMs [Chiang et al.| (2023); [Jiang et al.| (2023); |Yang et al.| (2024), due to their proficiency
in capturing linguistic structures and semantic relationships, often dominate the decision-making
process, overshadowing contributions from visual or audio modalities. As illustrated in Fig. [Ta]
a video depicts finger skateboarding with shoes on fingers. When asked by the language-biased
question “Did you see shoes worn on feet?”’—reflecting commonsense event that follows linguis-
tic priors—LMMs respond “yes,” contradicting the actual content and inducing hallucination. This
demonstrates LMMs’ tendency to rely on language priors over factual multimodal inputs.

Visual Dominance occurs when a model over-relies on visual information, underutilizing or dis-
regarding linguistic and auditory cues. In such cases, the model-generated outputs are heavily in-
fluenced by visual context, often neglecting important information from the other modalities. As
illustrated in Fig. [Ib} a video depicts a person planning a woodworking project with a hammer
in sight, while the audio track contains only the person speaking and bird chirping. Despite this,
advanced LMMs may over-rely on the visual presence of the “hammer” and incorrectly infer a
“hammer hitting” sound, ignoring the actual audio content where no such sound is present.

Audio Dominance arises when a model excessively relies on auditory input, disregarding visual or
linguistic information. As illustrated in Fig. a video captures a person recording a village view
through a window, showing dark clouds. The audio track contains evident thunderstorm sounds,
but no lightning is visible. Despite this, LMMs may over-rely on the audio cues, hallucinating that
lightning is visible in the scene, thereby disregarding the actual visual content.

To validate our observations on unimodal overreliance, we conduct case studies on each example in
Fig.[2] hypothesizing that altering information from a dominant modality would significantly affect
the model’s responses if hallucinations are primarily due to overreliance on that modality.

In the visual dominance scenario, we progressively blur the video to reduce visual content and
tracked the probabilities of the LMM responding with a hallucinatory “yes” (pg(“yes” | v', a,x))
or a correct “no” (pg(“no” | v’,a,x)) across different blur levels. As shown in Fig. increas-
ing the blur led to a significant decline in hallucinatory “yes” responses and a rise in correct “no”
responses. This indicates that reducing visual information compels the model to rely more on audi-
tory cues, thereby decreasing visual-induced hallucinations. In the audio dominance case (Fig. [2d),
we add noise to the audio track to degrade its quality. As noise levels increased, the probability
of hallucinatory “yes” responses decreased, while correct “no” responses became more frequent
(po(“yes”/“no” | v,a’,x)). This demonstrates that diminishing auditory information shifts the
model’s reliance to visual cues, mitigating hallucinations caused by overreliance on auditory in-
puts. For the language dominance scenario, we blur the video containing critical visual information
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Figure 2: Validation experiments on overreliance on unimodal priors.

needed to accurately answer an adversarial question. As the visual content was increasingly ob-
scured, the model’s reliance on language priors intensifies, leading to more hallucinatory “yes”
responses and fewer correct “no” responses (Fig. 2a). This suggests that in the absence of visual
details, the model defaults to language-based patterns, exacerbating hallucinations.

In summary, these case studies confirm that unimodal overreliance significantly contributes to hallu-
cinations in LMMs. Reducing information from the dominant modality forces the model to integrate
cues from other modalities more effectively, thereby decreasing the likelihood of hallucinations.
This validates the challenges posed by uni-modality overreliance in multimodal integration.

2.2  SPURIOUS INTER-MODALITY CORRELATIONS

Spurious inter-modality correlations are a major contributor to hallucinations in LMMs, especially
when integrating multiple modalities. Learned during pretraining on large-scale multimodal datasets
(e.g., image-caption, video-caption, and audio-caption data (Lin et al., 2014} [Kim et al., 2019} [Bain|
let all, 2021} [Schuhmann et al., 2022} [Wang et al.}[2023b; [Sun et al., 2024)), these correlations involve
misleading associations between modalities that appear statistically significant but lack meaningful
or causal connections. Two common sources of spurious correlations are: (1) Global occurrence
frequency: The high overall occurrence of specific objects or events in the dataset leads LMMs to
hallucinate these elements even when they are absent in the input. (2) Co-occurrence frequency:
Frequent co-occurrence of objects or events during training causes the model to incorrectly predict
the presence of one of them when only the other is present. While spurious object-level correlations
between language and visual inputs have been extensively studied (Rohrbach et all, 2018} [Li et al.]
2023}, [Zhou et al [2023)), integrating additional modalities like audio introduces new complexities,
resulting in increasingly intricate spurious correlations. We categorize them into three subtypes:

* Visual-Language (VL): The model hallucinates visual objects or events based on pre-training
patterns. For instance, if “phone” frequently co-occurs with “human” in captions, the model may
hallucinate a phone upon recognizing a human, even when no phone is present.

* Audio-Language (AL): The model links absent sound events to textual descriptions due to over-
represented patterns in pre-training data. For example, if “dog barking” frequently appears dur-
ing pre-training, the model may hallucinate this audio event even when the dog in the current
input simply whimpers

¢ Visual-Audio-Language (VAL): Spurious correlations arise from frequent co-occurrence of vi-
sual objects and audio events in video-audio joint training. For example, if “bird chirping” in
audio descriptions is often paired with “tree” in visual annotations, the model may hallucinate to
see trees when only hearing birds, or vice versa.

To validate spurious inter-modality correlations, we curate 200 samples for each subtype, paired with
probing questions that target non-existent objects or events based on learned co-occurrence patterns.
For VL, video-only samples are paired with questions about non-existent objects that frequently

"It is worth noting that, due to the sparsity of video-caption and audio-caption data—where typically only
a single event is described per caption—event-level spurious correlations driven by co-occurrences for Visual-
Language and Audio-Language often form between specific objects and their associated action-subject pairs.
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Figure 3: Validation experiments on spurious inter-modality correlations caused by co-occurrences.

co-occur. In AL, all queries are event-level, targeting absent audio events while a co-occurring
action-object pair is present (e.g., querying “dog barking” when the dog only whimpers). For VAL,
video-audio pairs are probed for non-existent visual objects or audio events based on frequently
co-occurring pairs. We adopt the Co-occurrence Score (CoScore) from previous work (Biten et al.,
2022; Zhou et al., [2023)) to quantify co-occurrence frequency:

‘S 0s.i mS(Ob,j”
CoScoreg = Z 1S(0s,4)] + 1S (0s,5)]

where S(os ;) denotes the set of captions mentioning the i-th object or event within a sample s. Three
open-source LMMs (FAVOR (Sun et al.} 2023a)), GroundingGPT (Li et al.,2024c)), VideoLLaMA?2-
7B (Cheng et al.l [2024)) are evaluated, with aggregated results shown in Fig. [3| plotting CoScore
against the frequency of hallucinatory and non-hallucinatory answers. A consistent trend emerges:
hallucinatory responses are associated with higher CoScores, indicating that higher co-occurrence
frequencies increase the likelihood of hallucinations. This confirms the impact of spurious inter-
modality correlations learned during pretralmn‘

3 CMM BENCHMARK: THE CURSE OF MULTI-MODALITIES

Overreliance on Unimodal Priors \ Spurious Inter-modality Correlations

Visual Dominance \ Audio Dominance \ Language Dominance \ Visual-Language \ Audio-Language \ Visual-Audio-Language
Table 1: Overall composition of CMM.

Inspired by the findings in previous section, we introduce The Curse of Multi-modality (CMM)
benchmark, designed to systematically evaluate hallucinations in LMMs from two key contributors:
Overreliance on Unimodal Priors and Spurious Inter-modality Correlations. As shown in Tab. 1,
each type is further divided into specific sub-categories, enabling fine-grained assessment of how
these factors influence LMMs’ performance.

3.1 DATA COMPOSITION AND EVALUATION SETUP

For each subcategory, we manually collect 200 samples (video-only, audio-only, or video-audio
pairs) to evaluate LMMs’ handling of multimodal inputs. Each sample includes two modality-
specific probing questions: one targeting a non-existent object or event (ground-truth answer “no”)
and one targeting an existent object or event (ground-truth answer “yes”):

“Did you see [object/event] in the video?”, for visual queries
“Did you hear [event] in the audio?”, for audio queries

This results in a total of 1, 200 samples and 2, 400 probing questions. We benchmark LMMs using
two core metrics, namely, Perception Accuracy (PA) and Hallucination Resistance (HR):

#correctly predicted “yes” HR — #correctly predicted “no

PA =
#ground-truth “yes” #ground-truth “no”

PA measures the model’s ability to accurately perceive present objects or events, while HR assesses
its resistance to hallucinations by correctly identifying the absence of non-existent objects or events.
Higher scores in both metrics indicate better perception and robustness against hallucinations.

*Further experimental details for analysis are provided in the Appendix
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3.2 DATA CONSTRUCTION

3.2.1 CONSTRUCTING QUERIES FOR OVERRELIANCE ON UNIMODAL PRIORS

To assess overreliance on a single modality (visual, audio, or language), we construct targeted prob-
ing queries that test the model’s dependence on one modality while ignoring complementary signals.

Visual Dominance This subcategory tests whether LMMs hallucinate audio events based on visual
input, where we construct queries asking about the existence of specific audio event. While queries
with a “yes” answer are manually annotated, non-existent events are sourced from video-audio pairs
in the AudioCaps dataset (Kim et al.,2019), where visual objects that do not correspond to any audio
content are identified. These samples are manually verified to ensure accurate annotation, setting
the ground truth answer as “no.”

Audio Dominance We probe LMMs’ tendency to infer incorrect visual content from audio cues.
Queries ask about the presence of visual objects, with “yes” queries annotated manually. For “no”
queries, we filter video-audio pairs from AudioCaps where audio-indicated objects have no visual
representation, confirmed through manual review.

Language Dominance To explore how language priors contribute to hallucinations, we define sets
of common-sense events (e.g., “fish swim in water””) and object attributes (e.g., “yellow banana”) to
reflect typical linguistic biases. Videos are manually sourced from YouTube to depict anti-common-
sense scenarios (e.g., “fish fly in the air,” “black banana”). For existence-probing queries, we ask
about the video’s anti-common-sense object/event, annotating the ground truth as “yes.” Conversely,
for non-existence probing queries, we test for the common-sense version of the object/event, setting
the ground truth as “no.”

3.2.2 CONSTRUCTING QUERIES FOR SPURIOUS INTER-MODALITY CORRELATIONS

We evaluate hallucinations arising from Spurious Inter-modality Correlations, constructing object-
level and event-level queries across visual, audio, and textual association

Visual-Language Hallucinations are assessed based on associations between visual content and
textual descriptions. Object-level queries are derived from (i) global appearance frequencies and (ii)
co-occurrence frequencies within the WebVid10M (Bain et al., [2021]) video-caption dataset. Event-
level queries, however, are constructed based on (i) global appearance patterns and (ii) [subject]-
[action object] co-occurrence patterns. All probing samples are curated from WebVid10M.

Audio-Language Hallucinations derived from associations between audio and text are probed
through event-level queries, given the temporal nature of audio. Queries are formed from (i) global
appearance frequencies and (ii) subject-oriented co-occurrence patterns, based on data from the
Auto-acd (Sun et al., 2024)).

Visual-Audio-Language This subcategory explores hallucinations across visual and audio modali-
ties. Queries probe non-existent audio events based on existent co-occurred visual objects and vice
versa, with data sourced from AudioCaps (Kim et al.,|2019)), focusing on co-occurrence frequencies
between visual objects and audio events.

4 EXPERIMENTS AND DISCUSSIONS

4.1 IMPLEMENTATION DETAILS

Baselines We evaluate a diverse set of LMMs on our benchmark, categorized into three groups
based on their modality capabilities: models capable of processing both visual and audio inputs,
visual-only models, and audio-only models.

- Visual-Audio LMMs: For models that process both visual and audio inputs, we include three pro-
prietary models: Reka-core (Ormazabal et al) [2024), Gemini-1.5-flash (Team et al., [2023)), and
Gemini-1.5-pro (Team et al., 2023). In addition, we evaluate three open-source models: FAVOR-

3For more details on the construction process and data statistics, please refer to Appendixto
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Spurious Inter-modality Correlation Uni-modality Overreliance Overall
Model VL AL VAL Visual Dom | Audio Dom | Lang Dom
pat hrt|pat hrt|pat het|pat hrt [pat et |pat hep|P*T T
Proprietary Models

Gemini-1.5-pro | 91.0 90.5|94.0 14.5|86.0 67.0 825 34.0 |{90.5 820 |78.5 61.5|87.1 583
Gemini-1.5-flash [ 93.5 90.0 | 88.5 39.5[88.5 70.5|79.0 36.5 |90.5 86.5 |[90.5 62.0|884 64.2
Reka-core 87.0 94.5|25.0 76.0|76.7 85.1(35.6 69.4 [80.8 82.7 |75.0 76.0 |63.7 80.9
Open-source Models
GroundingGPT [95.5 36.5| 100 0.0 [97.5 18.0|99.5 1.0 |98.5 235|885 7.0 |96.6 143
FAVOR 91.0 55.0[94.5 450|945 69.0[89.0 21.5 |92.0 435 [92.0 185922 42.1
VideoLLaMA2 |75.0 86.0|77.5 94.0|78.0 98.0(62.0 755 |80.0 90.0 |57.5 43.0|71.7 81.1

(a) Visual-Audio-Language LMMs results.

Model VL Correlations | Lang Dominance AL Correlations
pat hr 1 pat hr 1 Model _—
CogVLM2-Video 99.50 44.00 [98.00  5.00 pat hrt
VideoChat2 97.00 66.00 |88.00  34.50 Owen2-Audio | 98.50  34.50
InternLM-XComposer 2.5 | 99.00 73.00 |94.50  46.50
PLLaVA 80.50 93.00 |75.00  52.00 Audio-Flamingo | 89.50  39.00
ShareGPT4Video 87.50 8550 [79.50  58.00 GAMA-IT 9450  52.00
LLaVA-OneVision 94.00 88.00 |87.50  69.50
GPT4o 87.50 9550 [83.00  84.00 SALMONN 93.00  59.00
(b) Visual-Language LMMs results. (c) Audio-Language LMMs results.

Table 2: Benchmarking results for LMMs across language, visual, and audio modalities.

13B (iun et al.| [2023a), GroundingGPT-7B (Li et al.,[2024c), and VideoLLaMA2-7B (Cheng et al.|
2024

- Visual-Only LMMs: For visual-only LMMs, we evaluate proprietary model GPT4o (Ope-
nAl, 2024ﬂ We select several state-of-the-art open-source models for benchmarking, including
VideoChat2-7B (Li et al., 2024b), ShareGPT4Video-8B (Chen et al.l 2024a)), PLLaVA-7B (Xu
et al.,|2024), CogVLM2-Video-19B (Hong et al.,[2024), InternLM-XComposer2.5-7B (Zhang et al.,
2024), and LLaVA-OneVision-7B (L1 et al., [2024a).

- Audio-Only LMMs: For audio-only LMMs, since no such proprietary models are available, we
focus on open-source models: Audio-Flamingo-1.3B (Kong et al.| [2024), SALMONN-13B (Tang
et al.} 2023), GAMA-IT-7B (Ghosh et al., [2024), and Qwen2-Audio-7B (Chu et al., [2024).

Evaluation Protocol All models are evaluated using a sampling decoding strategy with a fixed
temperature of 0.2 for consistency. We assess models based on Perception Accuracy (PA) and Hal-
lucination Resistance (HR) metrics (see Sec. [3.I). Each model is prompted to “Answer with yes or
no,” and PA and HR are computed based on whether the response begins with “yes” or “no.”

4.2 MAIN RESULTS

4.2.1 ANALYZING VISUAL-AUDIO LMMs

The results of LMMs that can process both visual and audio inputs are presented in Tab.

Hallucination Vulnerability from Spurious Inter-Modality Correlations Visual-Audio LMMs
generally achieve PA scores over 80, demonstrating effective multimodal perception. Extensive
efforts to mitigate Visual-Language (VL) spurious correlations have significantly reduced hallucina-
tions, as proprietary models like Reka-core and Gemini-1.5 reach HR scores around 90. In contrast,
open-source models like FAVOR and GroundingGPT continue to struggle with VL correlations.

However, the introduction of audio intensifies hallucinations across all models. Even Gemini-1.5-
pro only attains a 14.5 HR score for Audio-Language (AL) correlations, highlighting the difficulty

4 After extensive survey and reproduction efforts, we found these models to be accessible and reproducible.
>10 frames are uniformly sampled from each video and provided as input to GPT4o.
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VL Correlations Language Dominance
Model object-level event-level object-level event-level
(pa‘hr) (pa/hr) (pa/hr) (pa‘hr)

Visual-Audio LMMs
Reka-core 93.0 92.0 81.0 97.0 73.0 91.0 77.0 61.0
Gemini-1.5-flash 98.0 85.0 89.0 95.0 93.0 74.0 88.0 50.0
Gemini-1.5-pro 97.0 88.0 85.0 93.0 88.0 63.0 69.0 60.0
FAVOR 99.0 35.0 83.0 75.0 100 3.0 84.0 34.0
GroundingGPT 98.0 31.0 93.0 42.0 91.0 6.0 86.0 8.0
VideoLLaMA2 76.0 85.0 74.0 87.0 69.0 37.0 46.0 49.0

Visual-Only LMMs
VideoChat2 98.0 60.0 96.0 72.0 92.0 30.0 84.0 39.0
ShareGPT4Video 88.0 90.0 87.0 81.0 81.0 67.0 78.0 49.0
PLLaVA 91.0 92.0 88.0 94.0 76.0 70.0 74.0 34.0
CogVLM2-Video 99.0 48.0 100 40.0 99.0 5.0 97.0 5.0
InternLM-XComposer 2.5 | 99.0 89.0 99.0 57.0 97.0 62.0 99.0 57.0
LLaVA-OneVision 98.0 89.0 90.0 87.0 92.0 82.0 83.0 57.0
GPT4o 97.0 94.0 78.0 97.0 90.0 91.0 76.0 71.0

Table 3: Visual-only benchmark subset results grouped by probing granularity.

in handling these correlations. Moreover, AL correlations cause more severe hallucinations than
Visual-Audio-Language (VAL) correlations, likely due to the limited availability of visual-audio-
language datasets compared to audio-language data. This imbalance may lead LMMs to form
stronger spurious correlations between audio and language, leading to more frequent hallucinations
when processing audio-only content.

Hallucination Vulnerability from Uni-modality Overreliance Models show solid perception ca-
pabilities across Uni-modality Overreliance subcategories, with high PA scores. However, a notable
gap emerges when comparing PA and HR scores, highlighting hallucination challenges due to uni-
modal dependence. Visual Dominance, in particular, proves to be more problematic than Audio
Dominance for most models. For instance, Gemini-1.5-flash achieves an HR of 86.5 in Audio Dom-
inance but only 36.5 in Visual Dominance, suggesting that overreliance on visual input presents a
more significant challenge. This can be attributed to the larger volume of visual training data and a
visual-centric bias in video-audio joint datasets. Moreover, Language Dominance reveals the impact
of LLM decoders, with steep declines in HR from PA scores, as seen in FAVOR dropping from 92.0
to 18.5. This indicates a strong reliance on language priors, suggesting a need to better balance
multimodal integration.

Response Tendencies of LMMs Certain models display atypical response patterns. GroundingGPT
tends to answer “yes” indiscriminately, leading to high PA but very low HR scores (e.g., 0 in AL cor-
relations). This behavior suggests overconfidence or excessive human alignment during training, as
also previously noted by other research (Li et al., 2023). In contrast, Reka-core and VideoLLaMA2
exhibit cautious tendencies, showing higher HR than PA in many cases and occasionally very low PA
scores (e.g., Reka-core’s 25.0 PA in AL correlations). This likely reflects safety alignment strategies
to reject uncertain inputs with “no” responses. These contrasting response tendencies underscore
the varied behavioral patterns in LMMs and highlight the need for more balanced training strategies
that ensure accurate, context-dependent responses without overconfidence or excessive caution.

4.2.2 ANALYZING VISUAL-ONLY AND AUDIO-ONLY LMMSs

Visual-only and audio-only LMMs show superior perception accuracy in their respective domains
compared to Visual-Audio LMMs, as evidenced by higher PA scores in Tab[2bjand Tab2c] However,
this advantage does not extend to mitigating hallucinations. Similar to Visual-Audio LMMs, single-
modality models remain vulnerable to hallucinations caused by spurious inter-modality correlations.
Despite previous efforts to address VL correlations, some models still exhibit poor HR scores, such
as CogVLM2-Video, which scores 44. Furthermore, AL correlations pose even greater challenges,
with audio-only LMMs scoring between 30 and 60 in HR, underscoring the insufficient mitigation
of hallucinations in audio-text interactions, likely due to the limited attention this issue has received



Under review as a conference paper at ICLR 2025

,VAL Correlations Model Specs VL Cor | Lang Dom
Model object-level | event-level

(pa/hr) (pa/hr) Name LLM Size (pa/hr) (pa/hr)
Reka-core 96.6 86.7 [57.1 83.5 PLLaVA Vicuna7B | 89.5 93.0|75.0 52.0
Gemini-1.5-flash | 94.0 92.0 [83.0 49.0 PLLaVA Vicuna 13B | 86.5 96.5|75.5 65.0
Gemini-1.5-pro | 92.0 90.0 |80.0 44.0 PLLaVA Yi 34B 91.0 945|755 74.0
FAVOR 94.0 85.0 |95.0 53.0 LLaVA-OneVision | Qwen2 0.5B | 96.5 91.5|81.0 55.0
GroundingGPT |96.0 35.0 [99.0 1.0 LLaVA-OneVision | Qwen2 7B | 94.0 88.0 | 87.5 69.5
VideoLLaMA2 |84.0 99.0 | 72.0 97.0 LLaVA-OneVision | Qwen2 72B | 84.5 93.5|89.5 75.5

Table 4: Effects of probing modali- Table 5: Effects of LLM decoder sizes in LMMs.
ties.

in prior research (Nishimura et al., 2024). Additionally, most Visual-only LMMs exhibit low HR
scores for Language Dominance, hovering around 50. This indicates a strong reliance on language
priors, leading to hallucinations when visual input conflicts with linguistic expectations. However,
GPT40 demonstrates balanced performance, likely due to post-training safety alignment, which
balances perception and cautious response, reducing hallucinations.

Overall, these findings not only emphasize the ongoing hallucination challenges in current LMMs
but also reinforce our claim that Spurious Inter-modality Correlations and Unimodal Overreliance
are two key factors driving hallucinations.

4.3 DISCUSSIONS

Effects of Probing Granularities Our benchmark includes both object-level and event-level prob-
ing questions across subcategoriesﬂ As shown in Tab. [3) most models show lower PA scores for
event-level queries than object-level ones, highlighting the challenge posed by temporal complex-
ity and the limited availability of event-oriented training data. For Visual-Language (VL) spurious
correlations, event-level probing yields higher HR scores than object-level probing. This may be
due to the scarcity of event-level annotations in visual-text pretraining data, while object-level an-
notations are more prevalent, fostering stronger spurious correlations. Conversely, within Language
Dominance under Unimodal Overreliance, HR scores are lower for event-level queries. This pat-
tern is likely due to the autoregressive nature of large language models, which increases reliance on
language priors as the length of processed sequences grows, heightening the risk of hallucinations,
especially when longer event-related common-sense knowledge is involved.

Effects of Probing Modalities The Visual-Audio-Language (VAL) subcategory examines spurious
correlations arising from the co-occurrence of visual objects and audio events. It includes two prob-
ing types: (1) object-level queries about non-existent visual objects when frequently co-occurring
audio events are present, and (2) event-level queries about non-existent audio events when frequently
co-occurring visual objects are present. Despite both probing types originating from similar co-
occurrence patterns, HR scores for event-level (audio) probing are significantly lower than those for
object-level (visual) probing across all models (Tab.[3). This finding aligns with Sec.[4.2.1]s analysis
of Visual and Audio Dominance under Unimodal Overreliance, suggesting a bias towards visual data
due to its abundance in training and the visual-centric nature of joint visual-audio pretraining. As
a result, models tend to over-rely on visual cues, leading to more pronounced hallucinations when
predicting non-existent audio events.

Effects of LLM Sizes We analyzed the impact of LLM decoder sizes on two LMMs, PLLaVA
and LLaVA—OneVisio As shown in Tab. |5} increasing the LLM size has minimal influence on
HR scores for Visual-Language spurious correlations, supporting our claim that these correlations
primarily arise from global appearance and co-occurrence patterns in training data. In contrast,
larger LLM sizes consistently improve HR scores for Language Dominance. For example, LLaVA-
OneVision’s HR score increases from 55.0 (0.58 LLM) to 75.5 (348 LLM), suggesting that larger
LLMs are more adept at managing complex or contradictory multimodal inputs. Smaller LLMs,
however, are more susceptible to overfitting to linguistic priors, leading to higher hallucination rates
when faced with content that deviates from expected patterns.

8 Audio-related subcategories exclusively contain event-level queries due to their temporal nature.
"To the best of our knowledge, these are the only models available in multiple sizes.
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Future Directions Our analysis identifies key vulnerabilities in current LMMs, representing only
a subset of broader challenges. These include but are not limited to unbalanced cross-modal in-
tegration, often with visual dominance overshadowing audio or text cues; spurious inter-modality
correlations arising from training biases; overreliance on linguistic priors from large-scale LLM
pretraining; and divergent response tendencies—either overconfident approval or overly cautious
rejection. To address these challenges, we propose several potential directions for reference:

* Balanced Multi-modal Training Data: Creating datasets with balanced modality representation
and diverse temporal annotations to reduce visual biases and improve event-level understanding.

* Advanced Cross-modal Fusion: Implementing dynamic fusion strategies to adjust modality im-
portance based on context can improve multimodal integration and reduce hallucination.

» Mitigating Linguistic Priors: Fine-tuning LMMs with contextually diverse prompts and incor-
porating visual/audio fact-checking mechanisms can decrease overreliance on language priors.

* Refined Safety Alignment: Establishing balanced response strategies to avoid overconfidence or
excessive caution ensures accurate interpretation, even for ambiguous inputs.

5 RELATED WORKS

Large Multimodal Models Recent advances in large multimodal models (LMM:s) have focused
on leveraging large language models (LLMs) as decoder bases to process complex image-text inter-
actions. Models like LLaVA (Liu et al.,|2024)) and Flamingo (Alayrac et al.,|2022) utilize transformer
architectures to enhance cross-modal understanding, enabling nuanced visual-text comprehension
for tasks such as visual question answering and image-based dialogue. Beyond static image-text
tasks, recent approaches have aimed to extend multimodal capabilities by incorporating additional
modalities like video and audio (Cheng et al., 2024} [Wang et al., |2024c}; |Chu et al., 2024} Tang
et al.| 2023)), fostering richer context and enhancing the model’s ability to handle a diverse range of
multimodal scenarios.

Hallucinations in LMMs Hallucination, particularly object hallucination, has been extensively
studied in LMMs that process image and text. This phenomenon arises when a model generates
content inconsistent with the actual objects present in the input image. Various benchmarks have
been developed to assess hallucination in vision-language tasks (Li et al.} 2023} [Wang et al.| [2023a;
Guan et al.|[2024; |Nie et al.,[2024; |Chen et al., 2024bj |Ye-Bin et al., 2024} Y Wang et al.,|2024), and
several mitigation techniques have been proposed (An et al., [2024} [Leng et al., 2024} [Huang et al.,
2024; |Yu et al.l [2024; Sun et al 2023b). However, research on hallucinations in LMMs beyond
image-text tasks is scarce, with limited investigation into hallucinations involving additional modal-
ities like audio and video (Wang et al., |2024d; Nishimura et al., 2024). Motivated by this gap, our
work introduces the Curse of Multi-modality (CMM) benchmark, the first to systematically evaluate
hallucinations across language, visual, and audio inputs. CMM provides a comprehensive evalua-
tion framework to explore how LMMs handle complex multimodal integration, offering insights
into model vulnerabilities and guiding the development of more reliable multimodal systems.

6 CONCLUSIONS

To the best of our knowledge, this paper is the first to systematically investigate and verify the two
key contributors to hallucinations in large multimodal models (LMMs) across language, visual, and
audio modalities: overreliance on unimodal priors and spurious inter-modality correlations. We
introduce the Curse of Multi-modality (CMM) benchmark, which features nuanced subcategories
and granularities along with diagnostic metrics, enabling precise diagnosis of model limitations and
guiding targeted improvements. By benchmarking various LMMs across diverse multimodal con-
texts, we identified key vulnerabilities in current models, such as unbalanced multimodal integration
and biases arising from pretraining datasets. Our analyses provide fundamental insights into multi-
modal learning, highlighting the need for improved alignment across multimodal inputs and offering
foundational guidance for developing more robust and reliable LMMs. We conclude by outlining
potential future directions, hoping to inspire subsequent research in this area.
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Category I Overreliance on Unimodal Priors

Sub-category || Visual Dominance | Audio Dominance | Language Dominance
Modality || Visual+Audio | Visual+Audio | Visual

Granularities || event-level | object-level | object-, event-level

Table 6: Overview of CMM subcategories under Overreliance on Unimodal Priors, presenting their
involved modalities, and probing granularities.

Category | Spurious Inter-modality Correlations

Sub-category || Visual-Language | Audio-Language | Visual-Audio-Language
Modality | Visual \ Audio \ Visual+Audio

Granularities || object-, event-level |  event-level | object-, event-level

Table 7: Overview of CMM subcategories under Spurious Inter-modality Correlations, presenting
their involved modalities, and probing granularities.

A APPENDIX

A.1 EXPERIMENTAL DETAILS FOR ANALYZING HALLUCINATIONS

A.1.1 QUALITATIVE DEMONSTRATIONS

For the demonstrations in Fig. |I} we use three advanced LMMs capable of processing both vi-
sual and audio inputs: Gemini-1.5-pro (Team et al., [2023), FAVOR-13B (Sun et al., [2023a)), and
VideoLLaMA2-7B (Cheng et al.| 2024). The case studies presented in Fig. [2] analyze halluci-
nation tendencies by computing py(“yes”/“no” | v,a’,x) and py(“yes”/“no” | v',a,x), using
VideoLLaMAZ2-7B as a representative model.

A.1.2 QUANTITATIVE VALIDATION

For the quantitative validation shown in Fig. [3| we curate 200 samples for each subcategory of
hallucination.

Visual-Language Experiments: Each sample is a video-only raw file associated with a probing
question targeting the existence of a non-existent object, while a frequently co-occurring object is
present. The co-occurrence scores are computed from the WebVid-10M dataset (Bain et al.| 2021},
from which the video samples are also sourced. For instance, a video containing a bird is queried
with “Did you see trees in the video?” since "’bird” and “tree” frequently co-occur in the pretraining
data, although no tree is visually present in the sample.

Audio-Language Experiments: Given the temporal nature of audio, all queries are event-level.
Each audio-only raw file is associated with a question about a non-existent audio event, while the
subject of a related event can be recognized. For example, a dog whimpering is queried with “Did
you hear dog barking?”” Co-occurrence scores are computed from the audio-text pretraining dataset
Auto-acd (Sun et al., 2024), which also provides the audio samples.

Visual-Audio Experiments: The co-occurrence scores are derived from the video-audio dataset
AudioCaps (Kim et al.| 2019), containing video samples with corresponding audio tracks. Each
sample is queried about a non-existent visual object with a frequently co-occurring audio event, or
vice versa.

The above experiments are conducted on three open-source LMMs that support both visual
and audio inputs: FAVOR-13B (Sun et al. [2023a), GroundingGPT-7B (L1 et al.| [2024c), and
VideoLLaMA2-7B (Cheng et al., [2024). The frequencies displayed in Fig. [3| represent the aggre-
gated results across all three models.

15



Under review as a conference paper at ICLR 2025

A.2 FREQUENT PATTERNS IN PRETRAINING DATASETS

The following outlines the frequent global appearances and co-occurrence patterns derived from
major pretraining datasets, which is used to construct our benchmark.

Patterns in Pretraining Datasets

Visual-Language Correlations from WebVid-10M
* Object-level

— Top appeared objects: [beach, boat, car, city, flower, mountain, person, phone,
tree, water]

— Top co-occurrences: [beach-person, car-person, city-person, dog-person, food-
person, laptop-person, mountain-person, phone-person, tree-person, water-
person]

e Event-level

— Top appeared events: [person drinks coffee, person drives car, person eats food,
person holds glass, person reads book, person rides bike, person uses camera,
person uses laptop, person uses phone, person uses tablet]

— Top co-occurred (subject)-(action object) pairs: [person-drinks coffee,
person-drives car, person-eats food, person-holds glass, person-reads book,
person-rides bike, person-uses camera, person-uses laptop, person-uses phone,
person-uses tablet]

Audio-Language Correlations from Auto-acd
e Event-level (since audio is inherently temporal)

— Top appeared events: [bird chirps, car passes, car revs, crowd cheers, dog
barks, guitar strums, person laughs, person sings, person speaks, water splashes]

— Top co-occurred (subject)-(action object) pairs: [car-honks, car-passes,
car-revs, dog-barks, dog-howls, dog-whimpers, person-cheers, person-laughs,
person-sings, person-speaks]

Visual-Audio-Language from AudioCaps
* Cross-modality (visual object)-(audio event) co-occurrences

— Top co-occurrences: [person-bird chirping, tree-bird chirping, tree-car passing,
person-dog barking, car-person speaking, table-person speaking, tree-person
walking, person-water splashing, dog-person speaking, person-car revving,
water-person speaking]

These patterns reflect common associations across modalities, contributing to spurious correlations
within LMMs during pretraining.

A.3 BENCHMARK DATA STATISTICS

Tab. [f] and Tab. [7] provides an overview of the subcategories within our benchmark framework, di-
vided into two primary contributors to hallucinations: overreliance on unimodal priors and spurious
inter-modality correlations.

In Tab. [6] “Overreliance on Unimodal Priors” explores how LMM:s tend to over-focus on a single
modality, leading to hallucinations. It assesses Visual Dominance and Audio Dominance based
on their combined visual and audio inputs at different granularities (event- and object-level), and
Language Dominance with visual-only input across both object- and event-levels.

The Tab. [7} “Spurious Inter-modality Correlations,” examines the erroneous associations between
modalities that lead to hallucinations. The Visual-Language and Audio-Language correlations are
assessed at object- and event-level granularities, and event-level only, respectively. The Visual-
Audio-Language subcategory captures the more complex interplay between visual and audio content
at both object- and event-level granularities.
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Figure [4] presents the statistics of object and event frequencies in the probing questions within the
benchmark, categorized across different scenarios. Subfigures highlight the top 10 most fre-
quently queried existent and non-existent objects, respectively, demonstrating the distribution of
visual objects targeted in object-level probing. Subfiguresfic[4d|display the top 10 existent and non-
existent visual events, offering insight into the event-level queries specific to visual content. Finally,
subfigures @eJf] show the top 10 most common audio events, both existent and non-existent, which
are critical for understanding how models handle audio-centric scenarios. These statistics ensure a
balanced and comprehensive distribution of queries across different modalities and types of events
or objects, facilitating robust evaluation of multimodal models.

A.4 BENCHMARK DATA CONSTRUCTION DETAILS

The benchmark is designed to evaluate hallucination scenarios across multiple modalities, targeting
specific LMM tendencies such as overreliance on individual modalities and spurious inter-modality
correlations. It comprises video, audio, and textual inputs with probing questions aimed at assessing
the presence or absence of objects or events in these modalities. Precise annotation is employed to
ensure a thorough evaluation of LMM performance in multimodal contexts.

A.4.1 CONSTRUCTING QUERIES FOR OVERRELIANCE ON UNIMODAL PRIORS

To assess how LMMs may excessively depend on a single modality (visual, audio, or language), we
construct targeted probing queries that test this overreliance while potentially neglecting comple-
mentary information.

Visual Dominance The Visual Dominance subcategory examines the extent to which LMMs over-
rely on visual content, potentially leading to hallucinated sound events that are often associated with
visual objects. All probing questions focus on audio events. For queries about existent sound events,
the ground truth “yes” is derived from direct human annotation. To identify non-existent sound
events, we use the AudioCaps dataset (Kim et al., 2019)), which provides short captions describing
the audio track. Objects associated with these audio events are extracted using LLaMA3 (Dubey
et al., 2024) from the audio caption, while visual objects are identified from video frames using
InternVL2 (Chen et al., 2023)). Samples where visual objects do not correspond to any audio content
are filtered and manually verified, with the ground truth set to “no.” All raw video-audio pairs are
sourced from AudioCaps.

Audio Dominance The Audio Dominance subcategory explores how LMMs may over-rely on
audio cues, leading to hallucinations of visual content. Here, questions probe the presence of visual
objects. For existent objects, the ground truth “yes” is annotated manually. To find non-existent
objects, we filter samples where the objects indicated by audio cues are not visually present in the
video. These samples undergo manual review to ensure accurate annotation, with the ground truth
as “no.” All raw video-audio pairs are also sourced from AudioCaps.

Language Dominance The Language Dominance subcategory targets hallucinations caused by
the LMMs’ dependence on language priors from pretraining corpora. This category focuses on
common-sense events and object attributes. We manually define sets of typical events (e.g., “fish
swim in water”’) and object characteristics (e.g., “yellow banana”). Videos depicting anti-common-
sense scenarios (e.g., “fish fly in the air,” “black banana”) are then collected from YouTube. For
queries probing existent content, the ground truth “yes” corresponds to the anti-common-sense ob-
ject/event depicted in the video. Conversely, non-existent content queries, which are the common-
sense versions that do not match the video, have the ground truth “no.”

Each subcategory includes 200 video-audio or video-only samples, each accompanied by two prob-
ing questions: one querying an existent object/event (“yes”), and another probing a non-existent one
(“no”). For subcategories containing both object- and event-level probing, the dataset is balanced
with equal numbers of object- and event-level queries.
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A.4.2 CONSTRUCTING QUERIES FOR SPURIOUS INTER-MODALITY CORRELATIONS

This section outlines the construction of queries targeting Spurious Inter-modality Correlations,
where hallucinations arise from misleading associations between different modalities learned during
pretraining. These correlations are probed at both object- and event-level granularities.

Visual-Language Spurious Correlations Visual-Language spurious correlations occur when
LMMs hallucinate visual objects due to associations learned from patterns in video-caption pre-
training data. Queries in this subcategory are developed based on two factors: global appearance
frequencies and co-occurrence patterns within the data.

- Object-level queries are derived from two sources: (i) global appearance frequencies, where the
model is asked about frequent objects that are absent in the video (e.g., “Did you see a tree in the
video?” when no tree is present), and (ii) co-occurrence patterns, where queries target non-existent
objects that are often seen alongside other objects in the pretraining data (e.g., ’Did you see a phone
in the video?” when a human is present but no phone).

- Event-level queries similarly explore global appearance frequencies by probing events that fre-
quently occur in pretraining data but are not present in the video. For co-occurrence patterns, event-
level queries are designed around subject-fixed action-object pairs, such as “Did you see a person
using a phone in the video?”” when the person is engaged in a different action like walking.

Both global frequencies and co-occurrence data are extracted from the large-scale video-caption
pretraining dataset WebVid10M. Probing samples are curated accordingly from the same source.

Audio-Language Spurious Correlations This subcategory assesses correlations learned from
audio-caption pretraining, leading to potential hallucinations of audio events based on their ap-
pearance or co-occurrence in the training data. Due to the temporal nature of audio, all queries are
event-level.

- Event-level queries focus on global appearance frequencies, probing for hallucinated audio events
that are common in the pretraining data but absent from the audio track (e.g., “Did you hear a dog
barking?” when no such sound exists). Co-occurrence queries involve subject-fixed action-object
pairs, targeting frequently co-occurring events (e.g., "Did you hear a dog barking?” when only dog
whimpering is present).

The dataset Auto-acd is used for constructing these queries, ensuring a balanced representation of
global appearance and co-occurrence-based patterns.

Visual-Audio-Language Spurious Correlations The Visual-Audio-Language subcategory cap-
tures cross-modal hallucinations, where visual objects are hallucinated based on audio cues, and
vice versa.

- Event-level queries test for non-existent audio events that are frequently co-occurred with visual
objects in training data (e.g., “Did you hear car revving?” when a human is visible without any car
sound).

- Object-level queries target visual objects that are hallucinated based on associated sound events
(e.g., “Did you see a tree in the video?” when bird chirping is present without any tree visible).

The co-occurrence frequencies between visual objects and audio events are computed using the
Auto-acd dataset, with the visual and audio content reviewed and annotated by human reviewers.
Queries are evenly split between probing audio events and visual objects.

For all subcategories, there is a balance between object-level and event-level queries. Additionally,
the samples constructed from global appearance frequencies and co-occurrence patterns are evenly
distributed.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Number of data

Number of data

Number of data

Top1l0 existent probing objects in object-level data

w
u

W
o

N
u

N
o

Jury
u

[y
o

Q
&
<

NS
C O
N

e & & O
¢ &

S & 2
SRS
A GRS

(a) Top 10 existent object frequencies.
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(e) Top 10 existent audio event frequencies.
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(b) Top 10 non-existent object frequencies.
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(f) Top 10 non-existent audio event frequencies.

Figure 4: Statistics of object and event frequencies in our probing questions.
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