Under review as submission to TMLR

Geometric Random Walk Graph Neural Networks via Im-
plicit Layers

Anonymous authors
Paper under double-blind review

Abstract

Graph neural networks have recently attracted a lot of attention and have been applied
with great success to several important graph problems. The Random Walk Graph Neural
Network model was recently proposed as a more intuitive alternative to the well-studied
family of message passing neural networks. This model compares each input graph against
a set of latent “hidden graphs” using a kernel that counts common random walks up to
some length. In this paper, we propose a new architecture, called Geometric Random Walk
Graph Neural Network (GRWNN), that generalizes the above model such that it can count
common walks of infinite length in two graphs. The proposed model retains the transparency
of Random Walk Graph Neural Networks since its first layer also consists of a number of
trainable “hidden graphs” which are compared against the input graphs using the geometric
random walk kernel. To compute the kernel, we employ a fixed-point iteration approach
involving implicitly defined operations. Then, we capitalize on implicit differentiation to
derive an efficient training scheme which requires only constant memory, regardless of the
number of fixed-point iterations. The employed random walk kernel is differentiable, and
therefore, the proposed model is end-to-end trainable. Experiments on standard graph
classification datasets demonstrate the effectiveness of the proposed approach in comparison
with state-of-the-art methods.

1 Introduction

Recent years have witnessed an enormous growth in the amount of data represented as graphs. Indeed,
graphs emerge naturally in several domains, including social networks, bioinformatics, and neuroscience,
just to name a few. Besides the increase in the amount of graph-structured data, there is also a growing
interest in applying machine learning techniques to data modeled as graphs. Among others, the graph
classification and graph regression tasks have attracted a great deal of attention in the past years. These
tasks have served as the fundamental building block within applications that deal with problems ranging
from drug design (Kearnes et al., 2016) to session-based recommendation (Wu et al., 2019).

Graph Neural Networks (GNNs) provide a powerful tool for machine learning on graphs, So far, the field
of GNNs has been largely dominated by message passing architectures. Indeed, most of them share the
same basic idea, and can be reformulated into a single common framework, so-called message passing neural
networks (MPNNs) (Gilmer et al), [2017)). These models employ a message passing procedure to aggregate
local information of vertices. For graph-related tasks, MPNNs usually apply some permutation invariant
readout function to the vertex representations to produce a representation for the entire graph. The family
of MPNNs has been heavily studied in the past few years, and there are now available very expressive models
which have achieved state-of-the-art results in several tasks (Xu et al., [2019; [Morris et al., 2019). Although
the family of MPNNSs is perhaps the most successful story in the field of graph representation learning, there
exist models that follow different design paradigms and do not fall into this family. An example of such a
model is the recently proposed Random Walk Graph Neural Network (RWNN) (Nikolentzos & Vazirgiannis,
2020). This model contains a number of trainable “hidden graphs”, and it compares the input graphs against
these graphs using a random walk kernel which counts the number of common walks in two graphs. The
emerging kernel values are fed into a fully-connected neural network which acts as the classifier or regressor.

Under review as submission to TMLR

The employed random walk kernel is differentiable, and thus RWNN is end-to-end trainable. However, this
kernel considers only random walks of a small length. Such local patterns may fail to capture the overall
large-scale shape of the graphs, while several interesting properties of graphs depend on the graph’s global
structure. Furthermore, increasing the length of the walks has a direct impact on the model’s computational
complexity.

In this paper, we propose a novel approach to tackle these challenges. Specifically, we propose a new
architecture, called Geometric Random Walk Graph Neural Network (GRWNN), that generalizes the RWNN
model such that it can count common walks of infinite length in two graphs. The model contains a number
of trainable “hidden graphs”, and it compares the input graphs against these graphs using the geometric
random walk kernel. Thus, instead of walks of small length, the proposed model considers walks of infinite
length. To compute the kernel, GRWNN uses a fixed-point iteration approach. The kernel values are then
passed on to a fully-connected neural network which produces the output. The proposed neural network
is end-to-end trainable since we can directly differentiate through the fixed-point equations via implicit
differentation, which leads to a very efficient implementation in terms of memory requirements. Hence, we
can still update the “hidden graphs” during training with backpropagation. We compare the performance of
the proposed model to state-of-the-art graph kernels and recently-proposed neural architectures on several
graph classification datasets. Results show that in most cases, the GRWNN model matches or outperforms
competing methods. Our main contributions are summarized as follows:

e We propose a novel neural network model, Geometric Random Walk Graph Neural Network, which
employs the geometric random walk kernel to produce graph representations. The model counts
common walks of infinite length in the input graph and a set of randomly initialized “hidden graphs”.

e We employ an efficient scheme to compute the random walk graph kernel using fixed-point iter-
ations. We show that we can directly differentiate through the fixed-point equations via implicit
differentation, which leads to an efficient implementation.

o We evaluate the model’s performance on several standard graph classification datasets and show
that it achieves results similar and in some cases superior to those obtained by recent GNNs and
graph kernels.

The rest of this paper is organized as follows. Section [2| provides an overview of the related work. Section
introduces some preliminary concepts. Section [4] provides a detailed description of the proposed model.
Section [5] evaluates the proposed model in graph classification tasks. Finally, Section [6] concludes.

2 Related Work

Graph kernels have a long history in the field of graph representation learning (Kriege et al., [2020)). A graph
kernel is a kernel function between graphs, i.e., a symmetric positive semidefinite function defined on the
space of graphs. These methods generate implicitly (or explicitly) graph representations and enable the
application of kernel methods such as the SVM classifier to graphs. Most graph kernels are instances of the
R-convolution framework (Haussler, |1999), and they compare substructures extracted from the graphs to
each other. Such substructures include shortest paths (Borgwardt & Kriegel, 2005), random walks (Gartner,
et all [2003; Kashima et all [2003), small subgraphs (Shervashidze et al., |2009), and others. Our work is
related to random walk kernels, i.e., kernels that compare random walks to each other. The first such
kernels were proposed by |Gartner et al. (2003) and by Kashima et al.| (2003). The work of Kashima et al.
was later refined by [Mahé et al.| (2004)). |[Vishwanathan et al. (2010) and [Kang et al| (2012)) proposed new
algorithms for efficiently computing random walk kernels. These algorithms improve the time complexity
of kernel computation. |Sugiyama & Borgwardt| (2015|) studied the problem of halting (i.e., longer walks
are downweighted so much that the kernel value is completely dominated by the comparison of walks of
length 1) that occurs in random walk kernels, and showed that its extent depends on properties of the
graphs being compared. [Zhang et al.| (2018b) defined a different kernel which does not compare random
walks to each other, but instead, compares the return probabilities of random walks. Finally, [Kalofolias

|Under review as submission to TMLR

(2021)) proposed a variant of the random walk kernel where structurally dissimilar vertices are not just
down-weighed, but are not allowed to be visited during the simultaneous walk.

Although the first GNNs were proposed several years ago (Sperduti & Starital [1997; [Scarselli et al.| [2009;
, until recently, these models had attracted limited attention. In recent years, with the rise of
deep learning, a lot of models started to emerge (Bruna et al., 2014; [Li et al., 2015; Duvenaud et al., [2015}
|Atwood & Towsleyl, [2016; Defferrard et al., [2016} Lei et al [2017). Most models update the representation
of each vertex by aggregating the feature vectors of its neighbors. This update procedure can be viewed as
a form of message passing algorithm and thus, these models are known as message passing neural networks
(MPNNs) (Gilmer et al., 2017). To compute a feature vector for the entire graph, MPNNs apply some
permutation invariant readout function to all the vertices of the graph. The family of MPNNs has been
heavily studied in the past few years, and there are now available several sophisticated models which can
produce expressive graph representations (Xu et al.,|2019}; [Morris et al., [2019; Dehmamy et al., 2019; [Morris|
. Despite the general recent focus on MPNNs, some works have proposed architectures that are
not variants of this family of models (Niepert et al., 2016} Maron et al., 2019bfa} Nikolentzos & Vazirgiannis,
2020). The work closest to ours is the one reported in Nikolentzos & Vazirgiannis (2020) which presents
the Random Walk Graph Neural Network (RWNN) model. In fact, in this paper, we generalize the RWNN
model to compare random walks of infinite length in two graphs. Recently, another method that uses
random walks to extract features which are then processed by a standard convolutional neural network
was proposed (Toenshoff et al. [2021). However, the proposed approach decouples data representation from
learning since random walks are sampled in a preprocessing stage. Our work is also related to implicit
models which have been applied successfully to many problems (de Avila Belbute-Peres et al., 2018; |Chen|
let al., |2018; |Amos et al., [2018} [Bai et all [2019)). The outputs of these models are determined implicitly by
a solution of some underlying sub-problem. Implicit models have also been defined in the context of graph
representation learning. For instance, proposed IGNN, a model that seeks the fixed-point
of some equation which is equivalent to running an infinite number of message passing iterations. Thus, the
final representation potentially contains information from all neighbors in the graph capturing long-range
dependencies. |Gallicchio & Micheli (2020) proposed a similar model which generates graph representations
based on the fixed point of a recursive/dynamical system, but is actually only partially trained. In contrast to
these approaches whose objective is to apply a large (or infinite) number of message passing layers implicitly,
in our setting, we employ a fixed-point iteration approach to compute the random walk kernel and then we
directly differentiate through the fixed point equations via implicit differentation.

3 Preliminaries

In this section, we begin by introducing our notation, and we then review the definition of the geometric
random walk kernel.

3.1 Notation

Let [n] = {1,...,n} C Nfor n > 1. Let G = (V, E) be an undirected graph, where V is the vertex set
and F is the edge set. We will denote by n the number of vertices and by m the number of edges. The
neighbourhood N (v) of a vertex v is the set of all vertices adjacent to v. Hence, N'(v) = {u]|(v,u) € E}
where (v,u) is an edge between vertices v and u of V. The adjacency matrix A € R™*" of a graph G is a
symmetric (typically sparse) matrix used to encode edge information in the graph. The element of the *"
row and ;% column is equal to the weight of the edge between vertices v; and v; if such an edge exists, and
0 otherwise. The degree d(v) of a vertex v is equal to the sum of the weights of the edges that are adjacent
to the vertex. For vertex-attributed graphs, every vertex in the graph is associated with a feature vector.
We use X € R"*? to denote the vertex features where d is the feature dimensionality. The feature of a given
vertex v; corresponds to the it" row of X.

The direct (tensor) product G = (Vi, Ex) of two graphs G = (V, E) and G’ = (V’, E’) is defined as follows:

Vi = {(v,0") eV xV'"}
Ex = {((v,v"), (u,u)) € Vi x Vi | (v,u) € E, and (v',u') € E'}

Under review as submission to TMLR

We denote by A, the adjacency matrix of Gy, and denote by A, and dy the maximum and average of the
vertex degrees of G, respectively. Thus, dx = /n > vev, d(v). A walk in a graph is a sequence of vertices
such that consecutive vertices are linked by an edge. Performing a random walk on the direct product G«
of two graphs G and G’ is equivalent to performing a simultaneous random walk on the two graphs G and
G'.

We use ® to represent the Kronecker product, and use ® to represent elementwise multiplication between
two matrices or vectors of the same dimension. For a p x ¢ matrix V, vec(V) € RP? represents the vectorized
form of V, obtained by stacking its columns. Let also vec™! denote the inverse vectorization operator which
transforms a vector into a matrix, i.e., for a pq vector v, V.= vec~!(v) where V € RPXY (see the appendix
for the exact definition of the vec and vec™! operators).

3.2 Random Walk Kernel

Given two graphs G and G’, the random walk kernel counts all pairs of matching walks on G and G’ (Gértner
et al., 2003)). There are different variants of the kernel. For instance, the p-step random walk kernel (where
p € N) counts all pairs of matching walks up to length p on two graphs. The number of matching walks can
be obtained through the adjacency matrix A of the product graph G« (Vishwanathan et all 2010) since
a random walk on G is equivalent to a simultaneous random walk on the two graphs. Assuming a uniform
distribution for the starting and stopping probabilities over the vertices of two graphs, the p-step random

walk kernel is defined as:
\V>< ‘ |V>< p
33 [
i

=1 i=j

where A, A1, Ag, ..., A, are positive, real-valued weights, and A, is the identity matrix, i.e., A} = I. For
p — 00, we obtain (G, G’) which is known as the random walk kernel.

It turns out that if the sequence of weights Ag, A1, Ao, ... coresponds to the geometric sequence defined as
A = AL, then the limit (G, G’) can be computed analytically as follows:

Vil IV [oo Vi |1V |
E=(G, G = ZZ[ZAN} =Y > [@-2a07, =1TT-2A0™" (1)

1=1 i1=j =1 i=j

It is well-known that the geometric series of matrices I+ A +(AA)2 +. .. converges only if the the largest-
magnitude eigenvalue of A, (which is also the maximum eigenvalue if G« is a graph with non-negative edge
weights), denoted by p2%*, is strictly smaller than 1/X. Therefore, the geometric random walk kernel £
is well-defined only if A < 1/p7%*. Interestingly, the maximum eigenvalue of A, is sandwiched between
the average and the maximum of the vertex degrees of G« (Brouwer & Haemers, |2011)). We thus have that
dy < uP® < Ay, and by setting A < 1/A, the geometric series of matrices is guaranteed to converge.

By defining initial and stopping probability distributions over the vertices of G and G’, we can obtain a
probabilistic variant of the geometric random walk kernel. Let p and p’ be two vectors that represent
the initial probability distributions over the vertices of G and G’. Likewise, let q and q’ denote stopping
probability distributions over the vertices of G and G’. For uniform distributions for the initial and stopping
probabilities over the Vertices of the two graphs, we have p; = q; = 1/|v| and p} = q; = 1/|jv’|. Then,
Px = pp'" and qx = qq’", and the variant of the geometric random walk kernel can be computed as
k= (G,G") = vec(qyx) T (I — MA)" tvec(px).

4 Geometric Random Walk Graph Neural Networks

The proposed GRWNN model maps input graphs to vectors by comparing them against a number of “hidden
graphs”, i.e., graphs whose adjacency and attribute matrices are trainable. The function that we employ to
compare the input graphs against the “hidden graphs” is the geometric random walk graph kernel, one of
the most well-studied kernels between graphs (Géartner et al., 2003; Mahé et al., 2004; [Vishwanathan et al.
2010). The proposed GRWNN model contains N “hidden graphs” in total. The graphs may differ from each

Under review as submission to TMLR

other in terms of size (i. e., number of vertices). Furthermore, the vertices and/or edges of those graphs can
be annotated with continuous multi-dimensional features. As mentioned above, both the structure and the
vertex attributes (if any) of these “hidden graphs” are trainable. Thus, the adjacency matrix of a “hidden
graph” G; of size n is described by a trainable matrix W, € R™*"™ while the vertex attributes are contained
in the rows of another trainable matrix Q; € R™*%. Note that the “hidden graphs” correspond to weighted
graphs, which can be directed or undirected graphs with or without self-loops. In our implementation, we
constraint them to be undirected graphs without self-loops (7(n—1)/2 trainable parameters in total).

To compare an input graph G against a “hidden graph” G;, the model uses the geometric random walk
kernel that was introduced in the previous section:

Vil IV [oo |V |1V |
k=(G, Gy) ZZ[Z)\ZAll =Y > [@-2a07, =1TT-2A0™" (2)

=1 i=j =1 i=j

where A = A®A,; and A; is the adjacency matrix of “hidden graph” G; obtained as A; = f(W). Here, f(-)
is a function whose output is non-negative and potentially bounded, i.e., f(W;) = ReLU(W,) or f(W;) =
(W) where o(-) denotes the sigmoid activation function. Then, given the set G, = {G1,Ga, ..., Gy} where
G1,Ga,...,Gy denote the N “hidden graphs”, we can compute N kernel values in total. These kernel values
can be thought of as features of the input graph, and can be concatenated to form a vector representation of
the input graph. This vector can then be fed into a fully-connected neural network to produce the output.

Following |Vishwanathan et al|(2010), to compute the geometric random walk graph kernel shown in Equa-
tion equation [2| above, we employ a two-step approach . We first need to solve the following linear system
for z:

I-AA)z=1

Then, given z, we can compute the kernel value as k> (G, G;) = 17z. To solve the above linear system, we
capitalize on fixed point methods. We first rewrite the above system as:

z=14+)Ayz (3)

Now, solving for z is equivalent to finding a fixed point of Equation equation [3| (Nocedal & Wrightl, |2006)).
Such a fixed point can be obtained by simply iterating the first part of the forward pass. Letting z*) denote
the value of z at iteration ¢, we set z(°) = 1, and then compute the following:

2D =14 \A, 2

repeatedly until ||zt1) —z(®)|| < ¢, where || -|| denotes the Euclidean norm and e some predefined tolerance
or until a specific number of iterations has been reached. As mentioned in the previous section, the above
problem is guaranteed to converge if the maximum eigenvalue of Ay is strictly smaller than 1/, thus if all
the eigenvalues of AA « lie inside the unit disk. If the values of the elements of A; are bounded, we can
compute an upper bound on the maximum degree of G and set the parameter A\ to some value smaller than
the inverse of the upper bound.

Efficient implementation. If the input graph G consists of n vertices and a “hidden graph” G; consists
of ¢ vertices, then A, is an nc X nc matrix. Thus, multiplying A« by some vector inside the fixed-point
algorithm requires O(n%c?) operations in total. Fortunately, to compute the kernel, it is not necessary
to explicitly compute matrix A . Specifically, the Kronecker product and vec operator are linked by the
well-known property (Bernstein, [2009):

vec(ABC) = (CT @ A)vec(B) (4)

Then, let Z € R™™¢ be a matrix such that Z = vec™!(z). Recall also that Ay = A ® A;. Based on the
above and on Equation equation [4 we can write:

Ay z=(A®A;)vec(Z) = vec(A; ZAT) = vec(A;vec 1 (z)AT) (5)

Under review as submission to TMLR

The above matrix-vector product can be computed in O(n%c) time in case n > c. If A is sparse, then
it can be computed yet more efficiently. Furthermore, we do not need to compute and store matrix A
which might not be feasible due to high memory requirements. Then, instead of solving the system of
Equation equation [3] we solve the following equivalent system:

z =1+ Avec(A;vec ! (z)A") (6)

Node attributes. In many real-world problems, vertices of the input graphs are annotated with real-
valued multi-dimensional vertex attributes. We next generalize the proposed model to graphs that contain
such vertex attributes. Let X € R™*¢ denote the matrix that contains the vertex attributes of the input
graph G. As already mentioned, we also associate a trainable matrix Q; € R°*? to each “hidden graph” Gj,
where c is the number of vertices of G;. Then, let S = ¢(X Q,) € R®*™ where o(-) denotes the sigmoid
function. The (j, k)" element of matrix S is equal to the inner product (followed by a sigmoid) between
the attributes of the j** vertex of the input graph G and the k** vertex of the “hidden graph” G;. Roughly
speaking, this matrix encodes the similarity between the attributes of the vertices of the two graphs. Note
that instead of directly using matrix X, we can first transform it into matrix X using a single- or a multi-layer
perceptron. Let s = vec(S) where s € R™. Each element of s corresponds to a vertex of Gy and quantifies
the similarity between the attributes of the pair of vertices (i.e., one from G and one from G;) it represents.
Then, we can compute the geometric random walk kernel as follows:

Ve Vx| T oo
E2(GG) =YY [ZAI((SST) ® AX)Z]

i=1 i=j Li=0
Vx| Vx|

=23 [aeshoa)] =17 Ass oA T

i=1 i=j *
Note that since the elements of s take values between 0 and 1, the same applies to the elements of the output
of the outer product ss'. Therefore, the maximum degree of the vertices of the graph derived from the
matrix ss' ® A is not greater than that of the graph derived from matrix A, and we do not thus need
to set A to a new value. Then, to compute the kernel, we first need to solve the following system:

z=1+\ss' ©Ay)z (8)

Again, naively computing the right part of the above Equation is expensive and requires O(n?c?) operations
in total. The following result shows that in fact we can compute the above in a more time and memory
efficient manner.

Proposition 1. Let Ay € R"™ "™ and As € R™*™ be two real matrices. Let also s,y € R™ be two real
vectors. Then, we have that:

(s sTOAL® As))y =s® vec(Azvec H(y © s)AI)
Based on the above result (the proof is left to the appendix), the system that needs to be solved is:
z=1+)\(s ® vec(A;vec ' (z® s)AT))

Since we store matrix A as a sparse matrix, if there are O(m) non-zero entries in A, then computing one
iteration of the above equation for all N “hidden graphs” takes O(Nc(n(d + c) + m)) computational time
where d is the size of the vertex attributes.

Implicit differentiation. Clearly, iteratively computing Equation equation [3| or Equation equation
to find the fixed point corresponds to a differentiable module. However, to train the model, we need to
backpropagate the error through the fixed point solver in the backward pass. That would require storing
all the intermediate terms, which could be prohibitive in practice. Fortunately, thanks to recent advances

Under review as submission to TMLR

in implicit layers and equilibrium models (Bai et al.| [2019)), this can be performed in a simple and efficient
manner which requires constant memory, and assumes no knowledge of the fixed point solver. Specifically,
based on ideas from [Bai et al.| (2019)), we derive the form of implicit backpropagation specific to the employed
fixed point iteration layer.

Theorem 1. Let fy be the system of Equation equation [3 or Equation equation [§, and z* € R" be a
solution to that linear system. Let also go(z*; A, X) = fo(z*; A, X) — z*. Since z* is a fized point, we have
that go(z*; A, X) — 0 and z* is thus the root of gg. Let y € R denote the ground-truth target of the input
sample, h : R — R be any differentiable function and let L : R x R — R be a loss function that computes:

¢=L(h(172%),y) = L(h(1TFindRoot(gs; A, X)), y) (9)
Then, the gradient of the loss w.r.t. () (e.g., 0, A or X) is:

ot o0,

2T Ofe(z*; A, X) ot oh ,
8()_ Oz* \" 96

)Ofolz: A X) 0L Oh 9fo(z"; A, X)
)90 ohoz Vo

780

(10)

where Jg;1 is the inverse Jacobian of gy evaluated at z*.

-
The above formula gives a form for the necessary Jacobian without needing to backpropagate through the
method used to obtain the fixed point. Thus, as mentioned above, we only need to find the fixed point,
and we can compute the necessary Jacobians at this specific point using the above analytical form. No
intermediate terms of the iterative method used to compute the fixed point need to be stored in memory,
while there is also no need to unroll the forward computations within an automatic differentiation layer.
Still, to compute the analytical backward gradient at the solution of the fixed point equation, it is necessary
to first compute the exact inverse Jacobian Jgj which has a cubic cost. As shown in Bai et al.|(2019), we

can instead compute the — 8‘9;* (J 9_61

z*) term by solving the following linear system:

dfe(z*; A, X) i n DA
X=|——""""] x
0z* 0z*
which in fact is also a fixed point equation and can be solved via some iterative procedure. Note that the
first term of the above Equation is a vector-Jacobian product which can be efficiently computed via autograd
packages (e. g., PyTorch (Paszke et al.;[2017)) for any x, without explicitly writing out the Jacobian matrix.

Finally, we can compute % as follows:

ol (6fg(z*;A,X))T

- (ZE)
a(-) a(-)

where again this product is itself a vector-Jacobian product, computable via normal automatic differentiation

packages.

5 Experimental Evaluation
We next evaluate the proposed GRWNN model on standard graph classification datasets.

5.1 Real-World Datasets

Datasets. We evaluate the proposed model on 10 publicly available graph classification datasets including
5 bio/chemo-informatics datasets: MUTAG, D&D, NCI1, PROTEINS, ENZYMES, and 5 social interaction
datasets: IMDB-BINARY, IMDB-MULTI, REDDIT-BINARY, REDDIT-MULTI-5K, COLLAB (Kersting
et al.l |2016)). To show that the proposed model also scales to larger datasets, we additionally use two Open
Graph Benchmark (OGB) datasets (Hu et all) [2020). Specifically, we use a molecular property prediction
dataset: ogbg-molhiv, and a code summarization dataset: ogbg-code2. More details about the datasets
are given in the appendix.

Under review as submission to TMLR

Experimental Setup. In the case of the 10 standard benchmark datasets, we compare the proposed model
against the following three graph kernels: (1) graphlet kernel (GR) (Shervashidze et all 2009)), (2) shortest
path kernel (SP) (Borgwardt & Kriegel, 2005, and (3) Weisfeiler-Lehman subtree kernel (WL) (Shervashidze
et al., [2011)), and against the following six neural network models: (1) DGCNN (Zhang et al 2018a), (2)
DiffPool (Ying et all 2018]), (3) ECC (Simonovsky & Komodakis, 2017), (4) GIN (Xu et al. [2019), (5)
GraphSAGE (Hamilton et al., 2017)), and (6) RWNN (Nikolentzos & Vazirgiannis, 2020). We also compare
the proposed model against GRWNN-fixed, a variant of the model whose “hidden graphs” are randomly
initialized and kept fixed during training. To evaluate the proposed model, we employ the experimental
protocol proposed in (Errica et al. [2020). Therefore, we perform 10-fold cross-validation to obtain an
estimate of the generalization performance of each method, while within each fold a model is selected based
on a 90%/10% split of the training set. We use exactly the same splits as in (Errica et al., [2020) and
in (Nikolentzos & Vazirgiannis, |2020), hence, for the different datasets, we use the results reported in these
two papers.

For all datasets, we set the batch size to 64 and the number of epochs to 300. We use the Adam optimizer
with initial learning rate 0.001 and applied an adaptive learning rate decay based on validation results. We
use a 1-layer perceptron to transform the vertex attributes. We apply layer normalization (Ba et al.| [2016)
on the generated graph representations (i.e., vector consisting of kernel values). The hyper-parameters
we tune for each dataset are: (1) the number of “hidden graphs” € {32,64}, (2) the number of vertices
of the “hidden graphs” € {5,10}, (3) the hidden-dimension size of the vertex features € {32,64} for the
bio/chemo-informatics datasets and € {8,16} for the social interaction datasets, and (4) the dropout ratio
€ {0,0.1}.

For both OGB datasets, we used the available predefined splits. We compare the proposed model against the
following neural network models: GCN (Kipf & Welling, 2017)), GIN (Xu et al.l 2019), GCN-FLAG (Kong
et al.l 2020), GIN-FLAG (Kong et al., [2020), PNA (Corso et al. 2020), GSN (Bouritsas et al., 2020),
HIMP (Fey et al.;, |2020), and DGN (Beaini et al., |2020)). For all models, we use the results that are reported
in the respective papers. For ogbg-code2, we did not add the inverse edges to the graphs. All reported
results are averaged over 10 runs.

For both OGB datasets, we set the batch size to 128. For the ogb-molhiv dataset, we set the number of
epochs to 300, the number of “hidden graphs” to 200, the number of vertices of the “hidden graphs” to 5, the
hidden-dimension size of the vertex features to 128 and the dropout ratio to 0.1. Furthermore, we employ
the probabilistic variant of the geometric random walk kernel and use uniform distributions for the initial
and stopping probabilities over the vertices of the two compared graphs. For the ogb-code2 dataset, we set
the number of epochs to 100, the number of “hidden graphs” to 200, the number of vertices of the “hidden
graphs” to 5, the hidden-dimension size of the vertex features to 128 and the dropout ratio to 0.2. For both
datasets, we apply layer normalization (Ba et al.,2016) on the generated graph representations.

Implementation Details. To set the value of parameter A, we assume a transductive setting, where we
are given a collection of graphs beforehand. Therefore, we can find the vertex of highest degree across all
graphs and set the value of A\ accordingly. In the inductive learning setting, since we do not know a priori
target graphs that the model may receive in the future, A should be small enough so that A < 1/p7%* for
any pair of an unseen graph and a “hidden graph”. This is a limitation of the proposed model since in case
the model receives at test time a graph whose largest eigenvalue is higher than expected, we need to set A
to a smaller value and retrain the model.

To compute the fixed point of Equation equation [3| or equation [§] we followed the naive approach where
we simply performed multiple times the forward iteration. In practice, there are more efficient fixed point
iteration methods, such as Anderson Acceleration (Walker & Ni, [2011)), that converge faster than the naive
forward iteration at the cost of some additional memory complexity. However, as shown next, we found that
in our setting, the naive forward iteration converges in a small number of steps, while the additional cost
introduced by more efficient methods associated with the generation and manipulation of new tensors made
them overall slower than the naive forward iteration even though they required fewer iterations to converge.

The model was implemented with PyTorch (Paszke et all [2019), and all experiments were run on a single
machine equipped with an NVidia Titan Xp GPU card.

Under review as submission to TMLR

Table 1: Classification accuracy (% standard deviation) of the proposed model and the baselines on the 5
chemo/bio-informatics and on the 5 social interaction benchmark datasets. OOR means Out of Resources,
either time (> 72 hours for a single training) or GPU memory. Best performance per dataset in bold, among
the neural network architectures underlined.

MUTAG D&D NCI1 PROTEINS ENZYMES
SP 80.2 (£ 6.5) 78.1 (£ 4.1) 727 (£1.4) 75.3 (£3.8) 383 (£ 8.0)
GR 80.8 (£ 6.4) 754 (£34) 618 (£1.7) 716 (£3.1) 251 (+4.4)
WL 84.6 (£ 8.3) 78.1 (+24) 84.8 (+25) 738 (£4.4) 50.3 (£ 5.7)
DGCNN 840 (£ 6.7) 766 (£ 4.3) 764 (£ 1.7) 729 (£35) 389 (£ 5.7)
DiffPool 798 (£ 7.1) 75.0 (£3.5) 76.9 (£ 1.9) 73.7 (£3.5) 59.5 (+ 5.6)
ECC 754 (£ 6.2) 726 (£4.1) 762 (£ 14) 723 (£3.4) 295 (+ 8.2)
GIN 84.7 (£ 6.7) 753 (£2.9) 80.0 (£ 1.4) 733 (£4.0) 59.6 (£ 4.5)
CGraphSAGE 836 (£ 9.6) 729 (£20) 76.0 (+1.8) 73.0 (£45) 582 (& 6.0)
I-step RWNN 89.2 (+4.3) 77.6 (£ 4.7) 714 (£ 1.8) 747 (£3.3) 56.7 (£ 5.2)
2-step RWNN 88.1 (+4.8) 769 (£ 4.6) 73.0 (£2.0) 741 (£2.8) 57.4 (+ 4.9)
GRWNN-fixed 819 (+ 6.4) 732 (£ 3.5) 669 (£ 2.4) 74.6 (£ 4.0) 56.8 (& 3.7)
GRWNN 834 (£ 5.6) 756 (£ 4.6) 67.7 (£22) 749 (£35) 62.7 (£ 5.2)
IMDB IMDB REDDIT REDDIT

BINARY MULTI BINARY MULTL5K COLLAB
SP 57.7 (£ 4.1) 398 (£3.7) 89.0 (£ 1.0) 511 (£22) 79.9 (x2.7)
GR 63.3 (£ 2.7) 39.6 (£ 3.0) 76.6 (£3.3) 381 (£23) TLI1 (& 1.4)
WL 72.8 (+ 4.5) 51.2 (£6.5) 749 (£ 1.8) 49.6 (£ 2.0) 78.0 (& 2.0)
DGCNN 69.2 (£ 3.0) 45.6 (£ 3.4) 87.8 (£25) 492 (£ 1.2) 712 (% 1.9)
DiffPool 68.4 (£ 3.3) 456 (£3.4) 891 (£1.6) 538 (£ 1.4) 689 (& 2.0)
ECC 67.7 (£ 2.8) 435 (& 3.1) OOR OOR OOR
GIN 71.2 (£ 3.9) 485 (£3.3) 89.9 (£1.9) 56.1 (£ 1.7) 75.6 (£ 2.3)
GraphSAGE ~ 68.8 (£ 4.5) 47.6 (£ 3.5) 843 (£ 1.9) 500 (£ 1.3) 73.9 (+ 1.7)
I-step RWNN 70.8 (+4.8) 47.8 (+3.8) 90.4 (+ 1.9) 517 (£ 1.5) 717 (+ 2.1)
2-step RWNN 70.6 (+ 4.4) 488 (£2.9) 90.3 (£ 1.8) 517 (£1.4) 713 (+2.1)
GRWNN-fixed 72.1 (£ 4.1) 48.1 (£ 3.6) 822 (£ 24) 53.1 (£1.8) 713 (+ 1.9)
GRWNN 72.8 (£ 42) 490 (£ 2.9) 900 (£ 1.8) 544 (£ L.7) 721 (£ 1.9)

Results. Table[T]illustrates average prediction accuracies and standard deviations for the 10 standard graph
classification datasets. We observe that the proposed GRWNN model is the best-performing method on 2 out
of the 10 datasets, while it provides the second best and third best accuracy on 3 and 1 out of the remaining
8 datasets, respectively. The most successful method is the WL kernel which performs best on 4 of the 10
datasets, while it outperforms the other approaches with quite wide margins in most cases. Among the neural
network models, the proposed GRWNN model outperforms the baseline models on 4 out of the 10 datasets.
On the remaining 6 datasets, GIN is the best-performing model on half of them, and RWNN on the other
half. On the ENZYMES and IMDB-BINARY datasets, our model offers respective absolute improvements
of 3.1%, and 1.6% in accuracy over GIN. Overall, the model exhibits highly competitive performance on
the graph classification datasets, while the achieved accuracies follow different patterns from all the baseline
methods. Furthermore, the proposed model outperforms GRWNN-fixed on all datasets, demonstrating that
the set of trainable “hidden graphs” is an indispensable component of the model.

The Table shown in Figure [Ta]illustrates the performance on the two OGB datasets. Note that the proposed
model does not utilize the edge features that are provided for the different datasets. Still, we can see that
it managed to outperform several of the baselines on the ogbg-molhiv dataset, where it achieved the fourth
best ROC-AUC. On the ogbg-code2 dataset, GRWNN outperformed GIN, while it achieved an F1-score
similar to that of GCN. However, all these three models achieved a much smaller F1-score than the one
achieved by PNA which is the best-performing model.

As already discussed, the running time of the model depends on the number of fixed point iterations that
need to be performed until convergence. Figure (top) illustrates the average number of iterations (across
all batches) for the forward and backward pass for different values of A and for each epoch. The model was
trained on a single split of the ENZYMES dataset. The maximum eigenvalue of all graphs of the dataset is

Under review as submission to TMLR

Forward Pass Backward Pass
(a) Performance of the proposed model 10? 102w —
and the baselines on the OGB datasets. 2
Reported values correspond to ROC- 2
AUC scores for ogbg-molhiv and F1- g o 10!
scores for ogbg-code2. 2N L
A
-
Dataset 0 100 200 300
Method Train Accuracy
ogbg-molhiv ogbg-code2 1.00
GCN 76.06 £ 0.97 15.07 & 0.18 07
>
GIN 75.58 + 1.40 14.95 £+ 0.23]
GCN+ 3 0.50
FLAG 76.83 + 1.02 - 8
0.25
gfzz 76.54 £ 1.14 ’
0 100 200 300 2
GSN 77.99 + 1.00 — Epoch Epoch
HIND 7380 L 0.82 - — A=1/5 A=1/10 —— A=1/20 —— A=1/30 —— A\=1/40 —— A=1/50
PNA 79.05 £ 1.32 15.70 £ 0.32 (b) Number of fixed point iterations during the forward and backward
DGN 79.70 + 0.97 — pass (top), and training and validation accuracy (bottom) on the EN-

GRWNN 78.38 4+ 0.99 15.03 £+ 0.21
ZYMES dataset for different values of \.

Figure 1: Performance on the OGB datasets and impact of the value of parameter A on running time and
performance of the model.

Table 2: Average running time per epoch (in seconds) of the proposed model and 3 baselines on the 10 graph
classification datasets.

IMDB IMDB REDDIT REDDIT

MUTAG D&D NCI1 PROTEINS ENZYMES BINARY MULTI BINARY MULTL5K COLLAB
GIN 0.03 0.34 0.50 0.14 0.07 0.13 0.19 0.81 2.43 0.98
2-RWNN 0.03 0.19 0.57 0.16 0.08 0.14 0.20 0.43 1.13 0.89
3-RWNN 0.04 0.23 0.76 0.21 0.11 0.18 0.28 0.55 1.42 1.04
GRWNN 0.07 077 0.94 0.32 0.17 0.24 0.34 2.93 6.19 2.69

equal to 5.47, while the highest degree is equal to 9. The number of nodes of the “hidden graphs” was set to
5. If the elements of the adjacency matrices of the “hidden graphs” take values no greater than one, then no
vertex of G« can have a degree greater than 9 x4 = 36. Thus, setting A < 1/36 guarantees convergence. In
practice, as shown in the Figure, we found that even if A takes larger values, we only need a small number of
iterations. For A = 1/5, we can see that the fixed point equation fails to converge since the average number
of iterations is close to 100 (which is the upper limit we have set). For A = 1/10 and for smaller values of
A, the system converges in a small number of iterations. In terms of performance, as shown in Figure [Ib]
(bottom), the model achieves the highest levels of validation accuracy for A = 1/20 and A = 1/30, while for
A = 1/5, the model yields much worse performance compared to the other values of A. Similar behavior was
observed on the other datasets.

5.2 Runtime Analysis

The proposed model is indeed computationally more expensive than the RWNN model due to the fixed
point iteration which is not parallelizable. However, as already discussed, we empirically observed that the
forward iteration converges in a small number of steps, thus incurring a relatively small overhead in the
model’s running time. We have computed the average running time per epoch of the proposed model, and
3 of the baselines (2-RWNN, 3-RWNN and GIN) on the 10 graph classification datasets. We use the same
values for the common hyperparameters (e. g., number and size of hidden graphs for GRWNN and RWNN,
and hidden dimension size, batch size, etc for all 3 models). The results are shown in Table [2] (in seconds).
As we can see, the proposed model is not much more expensive than the baselines. In fact, in most cases,

10

Under review as submission to TMLR

accuracy
accuracy

20 40 60 80 100 50 7.5 10.0 125 15.0 17.5 20.0 225 25.0
hidden graphs # nodes of hidden graphs

Figure 2: Performance on the ENZYMES dataset as a function of the number of “hidden graphs” (left) and
the number of vertices of the “hidden graphs” (right).

its average running time per epoch is 1 — 3 times higher than that of the baselines, which is by no means
prohibitive for real-world scenarios.

5.3 Sensitivity Analysis

The proposed GRWNN model involves two main parameters: (1) the number of “hidden graphs”, and (2)
the number of vertices of “hidden graphs”. We next investigate how these two parameters influence the
performance of the GRWNN model. Specifically, in Figure 2] we examine how the different values of these
parameters affect the performance of GRWNN on the ENZYMES dataset. We observe that the accuracy on
the test set increases as the number of “hidden graphs” increases. The number of “hidden graphs” seems
to have a significant impact on the performance of the model. When the number of graphs is set equal to
5, the model achieves an accuracy smaller than 50%, while when the number of graphs is set equal to 100,
it yields an accuracy greater than 65%. On the other hand, the number of vertices of the “hidden graphs”
does not affect that much the performance of the model.

6 Conclusion

In this paper, we introduced the GRWNN model, a new architecture which generates graph representations
by comparing the input graphs against “hidden graphs” using the geometric random walk kernel. To compute
the kernel, the proposed model uses a fixed point iteration algorithm, and to update the “hidden graphs”
during backpropagation, the model capitalizes on implicit differentation and employs an efficient training
scheme which requires only constant memory, regardless of the number of fixed-point iterations. The model
was evaluated on several graph classification datasets where it achieved competitive performance.

The main cotribution of this work is methodological and therefore, there are no negative societal impacts
directly related to it. Although we are not aware of any malicious uses of GNNs so far, these models could
potentially serve as the key component behind harmful applications. For instance, in a social network where
vertices represent humans, one could use GNNSs to discriminate people in terms of some desired characteristic
which can potentially affect people and their rights. Still, we believe that the benefits that arise from the use
of these models (e. g., drug discovery) outweigh the potential negative societal impacts. To mitigate the risks
associated with the use of GNNs, the community could develop tools that can identify potential harms. For
instance, the negative impact of the aforementioned harmful application could be mitigated by developing
tools that can detect whether individuals or groups of people are subject to discrimination.

References

Brandon Amos, Ivan Dario Jimenez Rodriguez, Jacob Sacks, Byron Boots, and J Zico Kolter. Differentiable
MPC for End-to-end Planning and Control. In Advances in Neural Information Processing Systems,
volume 31, pp. 8299-8310, 2018.

11

Under review as submission to TMLR

James Atwood and Don Towsley. Diffusion-Convolutional Neural Networks . In Advances in Neural Infor-
mation Processing Systems, volume 29, pp. 1993-2001, 2016.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. Deep Equilibrium Models. In Advances in Neural Information
Processing Systems, volume 32, pp. 690-701, 2019.

Dominique Beaini, Saro Passaro, Vincent Létourneau, William L. Hamilton, Gabriele Corso, and Pietro Lio.
Directional Graph Networks. arXiv preprint arXiv:2010.02863, 2020.

Dennis S Bernstein. Matriz mathematics: theory, facts, and formulas. Princeton University Press, 2009.

K. Borgwardt, C. Ong, S. Schénauer, S. Vishwanathan, A. Smola, and H. Kriegel. Protein function prediction
via graph kernels. Bioinformatics, 21(Suppl. 1):i47-i56, 2005.

K. M. Borgwardt and H. Kriegel. Shortest-path kernels on graphs. In Proceedings of the 5th International
Conference on Data Mining, pp. 74-81, 2005.

Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, and Michael M Bronstein. Improving graph neural
network expressivity via subgraph isomorphism counting. arXiv preprint arXiv:2006.09252, 2020.

Andries E Brouwer and Willem H Haemers. Spectra of graphs. Springer Science & Business Media, 2011.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral Networks and Locally connected
networks on Graphs. In 2nd International Conference on Learning Representations, 2014.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural Ordinary Differential
Equations. In Advances in Neural Information Processing Systems, volume 31, pp. 6572-6583, 2018.

Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Lio, and Petar Velickovié¢. Principal Neighbourhood
Aggregation for Graph Nets. In Advances in Neural Information Processing Systems, volume 33, 2020.

Filipe de Avila Belbute-Peres, Kevin Smith, Kelsey Allen, Josh Tenenbaum, and J Zico Kolter. End-to-End
Differentiable Physics for Learning and Control. Advances in neural information processing systems, 31:
7178-7189, 2018.

A. Debnath, R. Lopez de Compadre, G. Debnath, A. Shusterman, and C. Hansch. Structure-Activity
Relationship of Mutagenic Aromatic and Heteroaromatic Nitro Compounds. Correlation with Molecular
Orbital Energies and Hydrophobicity. Journal of Medicinal Chemistry, 34(2):786-797, 1991.

Michaél Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional Neural Networks on Graphs
with Fast Localized Spectral Filtering. In Advances in Neural Information Processing Systems, volume 29,
pp. 3837-3845, 2016.

Nima Dehmamy, Albert-Laszlo Barabasi, and Rose Yu. Understanding the Representation Power of Graph
Neural Networks in Learning Graph Topology. In Advances in Neural Information Processing Systems,
volume 32, 2019.

P. Dobson and A. Doig. Distinguishing Enzyme Structures from Non-enzymes Without Alignments. Journal
of Molecular Biology, 330(4):771-783, 2003.

David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel, Alan Aspuru-
Guzik, and Ryan P Adams. Convolutional Networks on Graphs for Learning Molecular Fingerprints. In
Advances in Neural Information Processing Systems, volume 28, 2015.

Federico Errica, Marco Podda, Davide Bacciu, and Alessio Micheli. A Fair Comparison of Graph Neural
Networks for Graph Classification. In Proceedings of the International Conference on Learning Represen-
tations, 2020.

12

Under review as submission to TMLR

Matthias Fey, Jan-Gin Yuen, and Frank Weichert. Hierarchical Inter-Message Passing for Learning on
Molecular Graphs. arXiv preprint arXiw:2006.12179, 2020.

Claudio Gallicchio and Alessio Micheli. Fast and Deep Graph Neural Networks. In Proceedings of the 34th
AAAI Conference on Artificial Intelligence, pp. 3898-3905, 2020.

Thomas Gértner, Peter Flach, and Stefan Wrobel. On Graph Kernels: Hardness Results and Efficient
Alternatives. In Learning Theory and Kernel Machines, pp. 129-143. 2003.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural Message
Passing for Quantum Chemistry. In Proceedings of the 34th International Conference on Machine Learning,
pp. 1263-1272, 2017.

Fangda Gu, Heng Chang, Wenwu Zhu, Somayeh Sojoudi, and Laurent El Ghaoui. Implicit Graph Neural
Networks. In Advances in Neural Information Processing Systems, volume 33, pp. 11984-11995, 2020.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive Representation Learning on Large Graphs. In
Advances in Neural Information Processing Systems, pp. 1024-1034, 2017.

David Haussler. Convolution kernels on discrete structures. Technical report, Technical report, Department
of Computer Science, University of California at Santa Cruz, 1999.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta, and
Jure Leskovec. Open Graph Benchmark: Datasets for Machine Learning on Graphs. arXiv preprint
arXiv:2005.00687, 2020.

Janis Kalofolias, Pascal Welke, and Jilles Vreeken. SUSAN: The Structural Similarity Random Walk Kernel.
In Proceedings of the 2021 SIAM International Conference on Data Mining, 2021.

U Kang, Hanghang Tong, and Jimeng Sun. Fast Random Walk Graph Kernel. In Proceedings of the 2012
SIAM International Conference on Data Mining, pp. 828-838, 2012.

Hisashi Kashima, Koji Tsuda, and Akihiro Inokuchi. Marginalized Kernels Between Labeled Graphs. In
Proceedings of the 20th International Conference on Machine Learning, pp. 321-328, 2003.

Steven Kearnes, Kevin McCloskey, Marc Berndl, Vijay Pande, and Patrick Riley. Molecular graph convolu-
tions: moving beyond fingerprints. Journal of Computer-Aided Molecular Design, 30(8):595-608, 2016.

Kristian Kersting, Nils M. Kriege, Christopher Morris, Petra Mutzel, and Marion Neumann. Benchmark
data sets for graph kernels, 2016. http://graphkernels.cs.tu-dortmund.de.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In In
5th International Conference on Learning Representations, 2017.

Kezhi Kong, Guohao Li, Mucong Ding, Zuxuan Wu, Chen Zhu, Bernard Ghanem, Gavin Taylor, and
Tom Goldstein. Flag: Adversarial Data Augmentation for Graph Neural Networks. arXiv preprint
arXiv:2010.09891, 2020.

Nils M Kriege, Fredrik D Johansson, and Christopher Morris. A survey on graph kernels. Applied Network
Science, 5(1):1-42, 2020.

Tao Lei, Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Deriving Neural Architectures from Sequence
and Graph Kernels. In Proceedings of the 34th International Conference on Machine Learning, pp. 2024—
2033, 2017.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated Graph Sequence Neural Networks.
In 3rd International Conference on Learning Representations, 2015.

Pierre Mahé, Nobuhisa Ueda, Tatsuya Akutsu, Jean-Luc Perret, and Jean-Philippe Vert. Extensions of
Marginalized Graph Kernels. In Proceedings of the 21st International Conference on Machine Learning,
2004.

13

http://graphkernels.cs.tu-dortmund.de

Under review as submission to TMLR

Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably Powerful Graph Networks.
In Advances in Neural Information Processing Systems, 2019a.

Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and Equivariant Graph Net-
works. In 7th International Conference on Learning Representations, 2019b.

Alessio Micheli. Neural Network for Graphs: A Contextual Constructive Approachs. IEEE Transactions on
Neural Networks, 20(3):498-511, 2009.

Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav Rattan,
and Martin Grohe. Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks. In Proceedings
of the 38rd AAAI Conference on Artificial Intelligence, pp. 4602—-4609, 2019.

Christopher Morris, Gaurav Rattan, and Petra Mutzel. Weisfeiler and Leman go sparse: Towards scalable
higher-order graph embeddings. In Advances in Neural Information Processing Systems, volume 33, pp.
21824-21840, 2020.

Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. Learning Convolutional Neural Networks for
Graphs. In Proceedings of the 33rd International Conference on Machine Learning, pp. 2014-2023, 2016.

Giannis Nikolentzos and Michalis Vazirgiannis. Random Walk Graph Neural Networks. Advances in Neural
Information Processing Systems, 33:16211-16222, 2020.

Jorge Nocedal and Stephen Wright. Numerical Optimization. Springer Science & Business Media, 2006.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming Lin,
Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in PyTorch. 2017.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. PyTorch: An Imperative Style, High-Performance
Deep Learning Library. In Advances in Neural Information Processing Systems, volume 32, pp. 8026-8037,
2019.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The Graph
Neural Network Model. IEEE Transactions on Neural Networks, 20(1):61-80, 2009.

N. Shervashidze, P. Schweitzer, E. J. Van Leeuwen, K. Mehlhorn, and K. M. Borgwardt. Weisfeiler-Lehman
Graph Kernels. The Journal of Machine Learning Research, 12:2539-2561, 2011.

Nino Shervashidze, SVN Vishwanathan, Tobias Petri, Kurt Mehlhorn, and Karsten M Borgwardt. Efficient
graphlet kernels for large graph comparison. In The 12th International Conference on Artificial Intelligence
and Statistics, pp. 488—495, 2009.

Martin Simonovsky and Nikos Komodakis. Dynamic Edge-Conditioned Filters in Convolutional Neural
Networks on Graphs. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 3693-3702, 2017.

Alessandro Sperduti and Antonina Starita. Supervised Neural Networks for the Classification of Structures.
IEEE Transactions on Neural Networks, 8(3):714-735, 1997.

Mahito Sugiyama and Karsten Borgwardt. Halting in Random Walk Kernels. Advances in Neural Information
Processing Systems, 28:1639-1647, 2015.

Jan Toenshoff, Martin Ritzert, Hinrikus Wolf, and Martin Grohe. Graph learning with 1d convolutions on
random walks. arXiv preprint arXiv:2102.08786, 2021.

Petar Velickovié, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio.
Graph Attention Networks. In 6th International Conference on Learning Representations, 2018.

S Vichy N Vishwanathan, Nicol N Schraudolph, Risi Kondor, and Karsten M Borgwardt. Graph Kernels.
Journal of Machine Learning Research, 11:1201-1242, 2010.

14

Under review as submission to TMLR

N. Wale, I. Watson, and G. Karypis. Comparison of descriptor spaces for chemical compound retrieval and
classification. Knowledge and Information Systems, 14(3):347-375, 2008.

Homer F Walker and Peng Ni. Anderson acceleration for fixed-point iterations. STAM Journal on Numerical
Analysis, 49(4):1715-1735, 2011.

Shu Wu, Yuyuan Tang, Yanqiao Zhu, Liang Wang, Xing Xie, and Tieniu Tan. Session-Based Recommenda-
tion with Graph Neural Networks. In Proceedings of the 33rd AAAI Conference on Artificial Intelligence,
pp. 346-353, 2019.

Zhengin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S Pappu, Karl
Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine learning. Chemical Science,
9(2):513-530, 2018.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How Powerful are Graph Neural Networks?
In 7th International Conference on Learning Representations, 2019.

P. Yanardag and S. Vishwanathan. Deep Graph Kernels. In Proceedings of the 21th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, pp. 1365-1374, 2015.

Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure Leskovec. Hierarchical
Graph Representation Learning with Differentiable Pooling. In Advances in Neural Information Processing
Systems, pp. 4801-4811, 2018.

Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An End-to-End Deep Learning Architecture
for Graph Classification. In Proceedings of the 32nd AAAI Conference on Artificial Intelligence, pp. 4438—
4445, 2018a.

Zhen Zhang, Mianzhi Wang, Yijian Xiang, Yan Huang, and Arye Nehorai. RetGK: Graph Kernels based
on Return Probabilities of Random Walks. Advances in Neural Information Processing Systems, 31:3964—
3974, 2018b.

A Appendix

The appendix is organized as follows. In section [B] we define some basic concepts from linear algebra. In
section [C] we prove the Proposition 1. In section we give more details about the direct differentiation
through the fixed point, while section [E] provides a detailed description of the graph classification datasets.
Finally, section || gives details about the parameter A.

B Linear Algebra Concepts

In this Section, we provide definitions for concepts of linear algebra, namely the vectorization operator, the
inverse vectorization operator and the Kronecker product, which we use heavily in the main paper.

Definition 1. Given a real matriz A € R™*™ the vectorization operator vec : R™*™ — R™™ s defined as:

A:l
A:2

where A.; is the i*" column of A.

15

Under review as submission to TMLR

Definition 2. Given a real vector b € R™", the inverse vectorization operator vec™' : R — R"X™ s
defined as:

by byt o0 bum-n41

by bpi2 ... bymm_1)42
vec ! (b) =

b, by, ... b.m

Definition 3. Given real matrices A € R™™ and B € RP*9 the Kronecker product A @ B € R"P*™4
defined as:

A11B A12B A1mB

AuB AnB ... A,,B
A®B=

A.B A.B ... A,.B

C Proof of Proposition 1

For convenience, we restate the Proposition below.

Proposition 2. Let A; € R"™" and Ag € R™*™ be two real matrices. Let also s,y € R™ be two real
vectors. Then, we have that:

(ss" © (A1 ®As))y =s®vec(Asvec (s O y)A[)

Proof. Let Dg denote a diagonal matrix with the vector s as its main diagonal. Then, we have:
(S s © (A1 ® Az))y = (Ds (A1 ® Az) Ds)y

The Hadamard product of two vectors s and y is the same as matrix multiplication of vector y by the
corresponding diagonal matrix Dy of vector s, i.e., Dgy =s ®y. Thus, it follows that:

(Ds (A1 ® A2)Dy)y =Dg (A1 ® Ay) (s O y)

Note that the Kronecker product and vec operator are linked by the well-known property (Bernstein)
2009) (Proposition 7.1.9):

vec(ABC) = (CT @ A)vec(B)

Therefore, we have that:
(Ds (A1 ® Ag) (s®y) =Dgvec(Azvec (s O y) AlT) =s®Ovec(Agvec (s Oy)Ag)

which concludes the proof. O

D Implicit Differentiation

Clearly, iteratively computing Equation (3) or Equation (8) (main paper) to find the fixed point corresponds
to a differentiable module. However, to train the model, we need to backpropagate the error through the fixed
point solver in the backward pass. That would require storing all the intermediate terms, which could be
prohibitive in practice. Fortunately, thanks to recent advances in implicit layers and equilibrium models (Bai
et all [2019), this can be performed in a simple and efficient manner which requires constant memory, and
assumes no knowledge of the fixed point solver. Specifically, based on ideas from (Bai et al.l|2019), we derive
the form of implicit backpropagation specific to the employed fixed point iteration layer.

16

Under review as submission to TMLR

Theorem 2. Let fy be the system of Equation (3) or Equation (8) (main paper), and z* € R™ be a solution
to that linear system. Let also go(z*; A, X) = fo(z*; A,X) — z*. Since z* is a fived point, we have that
90(2*; A, X) — 0 and z* is thus the root of gg. Let y € R denote the ground-truth target of the input sample,
h:R — R be any differentiable function and let L : R x R — R be a loss function that computes:

¢=L(h1"2%),y) = L(h(1TFindRoot(gs; A, X)), y) (11)
Then, the gradient of the loss w.r.t. (-) (e.g., 0, A or X) is:

at at Ofs(z*; A, X) O Oh

D0y ORETAX) L OLOh) Of(e AX)
o(+) Oz* \ 9 'z* a(+) Oh Oz \ 90

780

(12)

where J;gl is the inverse Jacobian of gy evaluated at z*.

z*

The above Theorem gives a form for the necessary Jacobian without needing to backpropagate through the
method used to obtain the fixed point. We can thus treat the fixed point algorithm as a black box, and we do
not need to store intermediate terms associated with the fixed point algorithm into memory. We only need
to apply some algorithm that will produce a solution to the system (i.e., it will compute the fixed point).

Following (Bai et al., 2019), we differentiate the two sides of the fixed point equation z* = fp(z*; A, X) wih
respect to ():
dz* dfg(z* A, X) 0fg(z*; A, X) N dfe(z*; A, X) dz*
d(-) d(-) a() 0z* d(-)
8f9 (z%; A, X)) dz* Jfe(z*; A, X)
= (I- —_—=
(d(-) a()

Since go(z*) = fo(z*; A, X) — z*, we have:

_ _(I_ Bfg(z*;A,X)>

To0 oz*

which implies the following;:

o o dzr ol

8fo(z*; A, X
%7%@:78Z*(9;1 f9()

780

Unfortunately, computing the exact inverse Jacobian Jg_s1 has a cubic cost. As shown in (Bai et al., [2019)),

we can instead compute the —-2 (J o) term of the gradient (which contains the Jacobian) by solving

0z* \“go |z*
the following linear system:

ol , _ ol Ofo(z*; A, X))\
T_ _ 1 _ _9Jlz3 A A)
T o (a0’ 1) O0z* (I O0z*

(- 5)) (@)

dfo(z*; A, X) T (ot T
:><I_ Oz* *=\ oz

T T
Ofo(z*; A, X) oL
—x=——] x
(0z* * 0z*
which in fact is also a fixed point equation and can be solved via some iterative procedure. Note that the
first term of the above Equation is a vector-Jacobian product which can be efficiently computed via autograd
packages (e. g., PyTorch (Paszke et al.;[2017)) for any x, without explicitly writing out the Jacobian matrix.

Finally, we can compute d(‘“') as follows:

ar (8f9(z*;A,X))TX

a) a()

17

Under review as submission to TMLR

Table 3: Summary of the 10 datasets that were used in our experiments.

IMDB IMDB REDDIT REDDIT

Dataset MUTAG D&D NCII PROTEINS ENZYMES BINARY MULTI BINARY MULTLSK COLLAB
Max # vertices 28 5,748 111 620 126 136 89 3,782 3,648 492
Min # vertices 10 30 3 4 2 12 7 6 22 32
Average # vertices 17.93 284.32 29.87 39.05 32.63 19.77 13.00 429.61 508.50 74.49
Max # edges 33 14,267 119 1,049 149 1,249 1,467 4,071 4,783 40,119
Min # edges 10 63 2 5 1 26 12 4 21 60
Average # edges 19.79 715.66 32.30 72.81 62.14 96.53 65.93 497.75 594.87 2,457.34
labels 7 82 37 3

attributes 18

graphs 188 1,178 4,110 1,113 600 1,000 1,500 2,000 4,999 5,000
classes 2 2 2 2 6 2 3 2 5 3

where again this product is itself a vector-Jacobian product, computable via normal automatic differentiation
packages.

E Datasets

We evaluated the proposed model on 10 publicly available graph classification datasets including 5 bio/chemo-
informatics datasets: MUTAG, D&D, NCI1, PROTEINS and ENZYMES, as well as 5 social interaction
datasets: IMDB-BINARY, IMDB-MULTI, REDDIT-BINARY, REDDIT-MULTI-5K and COLLAB (Kerst-
ing et al.| [2016). A summary of the 10 datasets is given in Table MUTAG consists of 188 mutagenic aro-
matic and heteroaromatic nitro compounds. The task is to predict whether or not each chemical compound
has mutagenic effect on the Gram-negative bacterium Salmonella typhimurium (Debnath et al.,|1991). EN-
ZYMES contains 600 protein tertiary structures represented as graphs obtained from the BRENDA enzyme
database. Each enzyme is a member of one of the Enzyme Commission top level enzyme classes (EC classes)
and the task is to correctly assign the enzymes to their classes (Borgwardt et al.| [2005). NCI1 contains more
than four thousand chemical compounds screened for activity against non-small cell lung cancer and ovarian
cancer cell lines (Wale et al., 2008). PROTEINS contains proteins represented as graphs where vertices are
secondary structure elements and there is an edge between two vertices if they are neighbors in the amino-
acid sequence or in 3D space. The task is to classify proteins into enzymes and non-enzymes (Borgwardt
et al) 2005). D&D contains over a thousand protein structures. Each protein is a graph whose nodes corre-
spond to amino acids and a pair of amino acids are connected by an edge if they are less than 6 Angstroms
apart. The task is to predict if a protein is an enzyme or not (Dobson & Doig}, 2003)). IMDB-BINARY and
IMDB-MULTTI were created from IMDb, an online database of information related to movies and television
programs. The graphs contained in the two datasets correspond to movie collaborations. The vertices of
each graph represent actors/actresses and two vertices are connected by an edge if the corresponding ac-
tors/actresses appear in the same movie. Each graph is the ego-network of an actor/actress, and the task
is to predict which genre an ego-network belongs to (Yanardag & Vishwanathan, 2015). REDDIT-BINARY
and REDDIT-MULTI-5K contain graphs that model the social interactions between users of Reddit. Each
graph represents an online discussion thread. Specifically, each vertex corresponds to a user, and two users
are connected by an edge if one of them responded to at least one of the other’s comments. The task is
to classify graphs into either communities or subreddits (Yanardag & Vishwanathan| 2015). COLLAB is a
scientific collaboration dataset that consists of the ego-networks of several researchers from three subfields of
Physics (High Energy Physics, Condensed Matter Physics and Astro Physics). The task is to determine the
subfield of Physics to which the ego-network of each researcher belongs (Yanardag & Vishwanathan| 2015]).

We also evaluated the proposed model on two datasets from the Open Graph Benchmark (OGB) (Hu et al.
2020)), a collection of large-scale and diverse benchmark datasets for machine learning on graphs. A summary
of the two datasets is given in Table[d The ogbg-molhiv dataset is a molecular property prediction dataset
that is adopted from the MoleculeNet (Wu et all 2018). The dataset consists of 41,127 molecules and
corresponds to a binary classification dataset where the task is to predict whether a molecule inhibits HIV
virus replication or not. The molecules in the training, validation and test sets are divided using a scaffold

18

Under review as submission to TMLR

Table 4: Statistics of the 2 OGB datasets that we used in our experiments.

Dataset ogbg-molhiv ogbg-code2
Average # vertices 25.5 125.2
Average # edges 27.5 124.2
Node features v v
Edge features v v
Directed - v

graphs 41,127 452,741
tasks 1 1
Split scheme Scaffold Project
Split ratio 80/10/10 90/5/5
Task type Binary class. Sub-token prediction
Metric ROC-AUC F1-score

Table 5: Values of A that we used in our experiments.

IMDB IMDB REDDIT REDDIT
MUTAG D&D NCI1 PROTEINS ENZYMES BINARY MULTI BINARY MULTL5K COLLAB

A /5 1/20 1/20 1/30 1/20 1/200 1/300 1/500 1/400 1/2000

splitting procedure that splits the molecules based on their two-dimensional structural frameworks. The
scaffold splitting attempts to separate structurally different molecules into different subsets. The ogbg-code2
dataset contains a large number of Abstract Syntax Trees (ASTS) that are extracted from approximately
450,000 Python method definitions. For each method, the AST edges, the AST nodes, and the tokenized
method name are retrieved. Given the body of a method represented by the AST and its node features, the
task (which is known as code summarization) is to predict the sub-tokens forming the name of the method.
The ASTs for the training set are obtained from GitHub projects that do not appear in the validation and
test sets. We refer the reader to (Hu et al., [2020) for more details about the OGB datasets.

F Parameter)\

Given an input graph G and a “hidden graph” Gj, since the “hidden graph” is trainable, the maximum
vertex degree of the product graph G is not known beforehand. However, in case the weights of the edges
of the “hidden graph” are bounded, we can compute an upper bound to that. Let A denote the maximum
vertex degree of GG, ¢ denote the number of vertices of the “hidden graph” G;, and b the maximum edge
weight of the “hidden graph”. Then, we have that A, < Acb, and therefore, to guarantee convergence, we
need to set A < 1/Acb. In practice, we empirically found that even if A takes higher values, the geometric
series converges within a small number of iterations. Table [5| shows the value of A that we used for each
dataset.

19

	Introduction
	Related Work
	Preliminaries
	Notation
	Random Walk Kernel

	Geometric Random Walk Graph Neural Networks
	Experimental Evaluation
	Real-World Datasets
	Runtime Analysis
	Sensitivity Analysis

	Conclusion
	Appendix
	Linear Algebra Concepts
	Proof of Proposition 1
	Implicit Differentiation
	Datasets
	Parameter

