MixSeq: Connecting Macroscopic Time Series
Forecasting with Microscopic Time Series Data

Zhibo Zhu* Ziqi Liu*
Ant Group Ant Group
gavin.zzb@antgroup.com ziqiliu@antgroup.com
Ge Jin Zhiqiang Zhang Lei Chen
Ant Group Ant Group Ant Group

elvis.jg@antgroup.com 1lingyao.zzq@antgroup.com qingli.cl@antgroup.com

Jun Zhou! Jianyong Zhou
Ant Group Ant Group
jun.zhoujun@antgroup.com neil.zjy@antgroup.com
Abstract

Time series forecasting is widely used in business intelligence, e.g., forecast stock
market price, sales, and help the analysis of data trend. Most time series of interest
are macroscopic time series that are aggregated from microscopic data. However,
instead of directly modeling the macroscopic time series, rare literature studied the
forecasting of macroscopic time series by leveraging data on the microscopic level.
In this paper, we assume that the microscopic time series follow some unknown
mixture probabilistic distributions. We theoretically show that as we identify the
ground truth latent mixture components, the estimation of time series from each
component could be improved because of lower variance, thus benefitting the
estimation of macroscopic time series as well. Inspired by the power of Seq2seq
and its variants on the modeling of time series data, we propose Mixture of Seq2seq
(MixSeq), an end2end mixture model to cluster microscopic time series, where all
the components come from a family of Seq2seq models parameterized by different
parameters. Extensive experiments on both synthetic and real-world data show the
superiority of our approach.

1 Introduction

Time series forecasting has proven to be important to help people manage resources and make
decisions [20]]. For example, probabilistic forecasting of product demand and supply in retails [9],
or the forecasting of loans [1] in a financial institution can help people do inventory or financing
planning to maximize the profit. Most time series of interest are macroscopic time series, e.g., the
sales of an online retail platform, the loans of a financial institution, or the number of infections
caused by some pandemic diseases in a state, that are comprised of microscopic time series, e.g., the
sales of a merchant in the online retail, the loans from a customer given the financial institution, or
the number of infections in a certain region. That is, the observed macroscopic time series are just
the aggregation or sum of microscopic time series.

*Equal contribution.
"Corresponding author.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

Although various time series forecasting models, e.g., State Space Models (SSMs) [13]], Autoregres-
sive (AR) models [2], or deep neural networks [5], have been widely studied for decades, all of them
study the modeling of time series without considering the connections between macroscopic time
series of interest and the underlying time series on the microscopic level.

In this paper, we study the question whether the forecasting of macroscopic time series can be
improved by leveraging the underlying microscopic time series, and the answer is yes. Basically,
though accurately modeling each microscopic time series could be challenging due to large variations,
we show that by carefully clustering microscopic time series into clusters, i.e., clustered time series,
and using canonical approaches to model each of clusters, finally we can achieve promising results
by simply summing over the forecasting results of each cluster.

To be more specific, first, we assume that the microscopic time series are generated from a proba-
bilistic mixture model [24] where there exist K components. The generation of each microscopic
time series is by first selecting a component z from {1, ..., K'} with a prior p(z) (a Discrete distri-
bution), then generating the microscopic observation from a probabilistic distribution p(xz; ®,, 2)
parameterized by the corresponding component ®,. We show that as we can identify the ground truth
components of the mixture, and the ground truth assignment of each microscopic observation, inde-
pendent modeling of time series data from each component could be improved due to lower variance,
and further benefitting the estimation of macroscopic time series that are of interest. Second, inspired
by recent successes of Seq2seq models [36} [10} [12]] based on deep neural networks, e.g., variants
of recurrent neural networks (RNNs) [[16| 41} 22], convolutional neural networks (CNNs) [4!, [15]],
and Transformers [[19} 38]], we propose Mixture of Seq2seq (MixSeq), a mixture model for time
series, where the components come from a family of Seq2seq models parameterized by different
parameters. Third, we conduct synthetic experiments to demonstrate the superiority of our approach,
and extensive experiments on real-world data to show the power of our approach compared with
canonical approaches.

Our contributions. We summarize our contributions in two-fold. (1) We show that by transforming
the original macroscopic time series via clustering, the expected variance of each clustered time series
could be optimized, thus improving the accuracy and robustness for the estimation of macroscopic
time series. (2) We propose MixSeq which is an end2end mixture model with each component coming
from a family of Seq2seq models. Our empirical results based on MixSeq show the superiority
compared with canonical approaches.

2 Background

In this section, we first give a formal problem definition. We then review the bases related to this
work, and have a discussion of related works.

Problem definition. Let us assume a macroscopic time series z1.t, = [21, ..., Tt], and 2 € R
denotes the value of time series at time . We aim to predict the next 7 time steps, 1.€., T¢,+1:t547-
We are interested in the following conditional distribution

to+T1

P(Ttot1:to+7]T1:40) = H p(ze|r<i;0), (D
t=to+1

where x; represents x1.;—1 in interval [1,¢). To study the above problem, we assume that the
macroscopic time series is comprised of m microscopic time series, i.e., x; = Y .-, x;; where
z;; € R denotes the value of the i-th microscopic time series at time ¢{. We aim to cluster the m

K
microscopic time series into K clustered time series {xft)o} , where g;§2> = D fi|smnvi) Tit
) 2=1 =5 ’
given the label assignment of the i-th microscopic time series z; € {1,..., K'}. This is based
on our results in Section [3] that the macroscopic time series forecasting can be improved with
optimal clustering. Hence, instead of directly modeling p(,+1:t,++), We study the clustering of m

microscopic time series in Section] and model the conditional distribution of clustered time series

K
{p(wgﬂlztwﬁ) }z:l with canonical approaches.

2.1 Seq2seq: encoder-decoder architectures for time series

An encoder-decoder based neural network models the conditional distribution Eq. (T) as a distribution
from the exponential families, e.g., Gaussian, Gamma or Binomial distributions, with sufficient
statistics generated from a neural network. The encoder feeds x; into a neural architecture, e.g.,
RNNs, CNNs or self-attentions, to generate the representation of historical time series, denoted as hy,
then we use a decoder to yield the result ;. After 7 iterations in an autoregressive style, it finally
generates the whole time series to be predicted.

To instantiate above Seq2seq architecture, we denote 01.¢, where o; € R4, as covariates that are known
apriori, e.g., dates. We denote Y; = [x1.4_1 || 02.¢] € RUTD*(4+1) where we use || for concatenation.
The encoder generates the representation h; of ., via Transformer [36| [19] as follows. We first
transform Y; by some functions p(-), e.g., causal convolution [19] to H(®) = p(V;) € RE-1)xdx,
Transformer then iterates the following self-attention layer L times:

l T
QUEYT N\ Lo
\/dq

QW = H(lfl)Wq(l)’K(l) — H(lfl)W’gl)’ v = gt-Hwyh,

gO — 1\/[Lp(l)(H(th))7 Htmp) — SOFTMAX <
)

That is, we first transform into query, key, and value matrices, i.e., Q = YW,, K = YW,
and V = YW, respectively, where W, € R%>da 1, € RE&*da Ty, € R%*dv in each layer are
learnable parameters. Then we do scaled inner product attention to yield H(®) € Rt=1*dx where M
is a mask matrix to filter out rightward attention by setting all upper triangular elements to —oo. We
denote MLP(+) as a multi-layer perceptron function. Afterwards, we can generate the representation
hy € R% for x4 via hy = v(H")) where we denote v(-) as a deep set function [42] that operates

on rows of H(I) ie., V({H{L), - Ht(f%}) We denote the feedforward function to generate H (") as
H®E) ~ g(H©),ie., Eq @).

Given hy, the decoder generates the sufficient statistics and finally yields x; ~ p(z; MLP(h;)) from
a distribution in the exponential family.

2.2 Related works

Time series forecasting has been studied for decades. We summarize works related to time series
forecasting into two categories. First, many models come from the family of autoregressive integrated
moving average (ARIMA) [7, 2], where AR indicates that the evolving variable of interest is regressed
on its own lagged values, the MA indicates that the regression error is actually a linear combination of
error terms, and the “T” indicates that the data values have been replaced with the difference between
their values and the previous values to handle non-stationary [27]]. The State Space Models (SSM) [13]]
aim to use state transition function to model the transfer of states and generate observations via a
observation function. These statistical approaches typically model time series independently, and
most of them only utilize values from history but ignore covariates that are important signals for
forecasting. Second, as rapid development of deep neural networks, people started studying many
neural networks for the modeling of time series [5,20]. Most successful neural networks are based
on the encoder-decoder architectures [36} [10, 112} |33} 13} [11} [20} 21]], namely Seq2seq. Basically,
various Seq2seq models based on RNNs [16} 132,37, 18}, 141, 22]], CNNs [4}, [15], and Transformers
(self-attentions) [[19}38]] are proposed to model the non-linearity for time series.

No matter models studied in statistics or deep neural networks, these works mainly focus on the
forecasting of single or multivariate time series, but ignore the auxiliary information that the time
series could be made up of microscopic data.

Time series clustering is another topic for exploratory analysis of time series. We summarize
the literature into three categories, i.e., study of distance functions, generative models, and feature
extraction for time series. First, Dynamic time wrapping [28]], similarity metric that measures
temporal dynamics [40]], and specific measures for the shape [26] of time series are proposed to adapt
to various time series characteristics, e.g., scaling and distortion. Typically these distance functions
are mostly manually defined and cannot generalize to more general settings. Second, generative

3We ignore the subscript for simplicity in condition that the context is of clarity.

model based approaches assume that the observed time series is generated by an underlying model,
such as hidden markov model [25] or mixture of ARMA [39]. Third, early studies on feature
extraction of time series are based on component analysis [14], and kernels, e.g., u-shapelet [43]].
As the development of deep neural networks, several encoder-decoder architectures [23, [21] are
proposed to learn better representations of time series for clustering.

However, the main purpose of works in this line is to conduct exploratory analysis of time series,
while their usage for time series forecasting has never been studied. That is, these works define
various metrics to evaluate the goodness of the clustering results, but how to learn the optimal
clustering for time series forecasting remains an open question.

3 Microscopic time series under mixture model

We analyze the variance of mixture models, and further verify our results with simple toy examples.

3.1 Analyses on the variance of mixture model

In this part, we analyze the variance of probabilistic mixture models. A mixture model [24] is a
probabilistic model for representing the presence of subpopulations within an overall population.
Mixture model typically consists of a prior that represents the probability over subpopulations, and
components, each of which defines the probability distribution of the corresponding subpopulation.
Formally, we can write

flz) = Zp fil®), 3)

where f(-) denotes the mixture distribution, p; denotes the prior over subpopulations, and f;(-)
represents the distribution corresponding to the i-th component.

Proposition 1. Assuming the mixture model with probability density function f(x), and corrspond-

ing components {fl(os)}szl with constants {pz}fi1 ({pi}iK:1 lie in a simplex), we have f(x) =

. p; fi(x). In condition that f(-) and { f;(: K: have first and second moments, i.e., n") and p(?
7 =1

K K
for f(z), and {“%('1)}1:1 and {,ul@)}i:lfor components {fl(a:)}fil we have:

> pi- Var(fi) < Var(f). “)

2

We use the fact that p*) = Zipiugk). By using Jensen’s Inequality on), p; (ugl)) >
2

(Z . Di ,ul(.l)> , we immediately yield the result. See detailed proofs in supplementary.

This proposition states that, if we have limited data samples (always the truth in reality) and in case
we know the ground truth data generative process a priori, i.e., the exact generative process of each
sample from its corresponding component, the variance on expectation conditioned on the ground
truth data assignment should be no larger than the variance of the mixture. Based on the assumption
that microscopic data are independent, the variance of the aggregation of clustered data should be
at least no larger than the aggregation of all microscopic data, i.e., the macroscopic data. So the
modeling of clustered data from separate components could possibly be more accurate and robust
compared with the modeling of macroscopic data. This result motivates us to forecast macroscopic
time series by clustering the underlying microscopic time series. Essentially, we transform the
original macroscopic time series data to clusters with lower variances using a clustering approach,
then followed by any time series models to forecast each clustered time series. After that, we sum
over all the results from those clusters so as to yield the forecasting of macroscopic time series. We
demonstrate this result with toy examples next.

3.2 Demonstration with toy examples

We demonstrate the effectiveness of forecasting macroscopic time series by aggregating the forecast-
ing results from clustered time series.

Table 1: We run the experiments 5 times, and show the average results (SMAPE) of macro results
and clustered results with ground truth clusters. Lower is better.

GP time series data ARMA time series data

3 clusters 5Sclusters 3 clusters 5 clusters

macro results 0.0263 0.0242 0.5870 0.5940
clustered results 0.0210 0.0198 0.3590 0.3840

Simulation setting. We generate microscopic time series from a mixture model, such as Gaussian
process (GP) [31] or ARMA [8] with 3 or 5 components. We generate 5 time series for each
component, and yield 15 or 25 microscopic time series in total. We sum all the time series as the
macroscopic time series. We get clustered time series by simply summing microscopic time series
from the same component. Our purpose is to compare the performance between forecasting results
directly on macroscopic time series (macro results) and sum of forecasting results of clustered time
series (clustered results). We set the length of time series as 360, and use rolling window approach
for training and validating our results in the last 120 time steps (i.e., at each time step, we train the
model using the time series before current time point, and validate using the following 30 values).
We fit the data with either GP or ARMA depending on the generative model. We describe the detailed
simulation parameters of mixture models in supplementary.

Simulation results. Table [T| shows the results measured by symmetric mean absolute percentage
error (SMAPEﬂ It is obvious that no matter time series generated by mixture of GP or mixure of
ARMA, the clustered results are superior to macro results. In other words, if we knew the ground
truth component of each microscopic time series, modeling on clustered data aggregated by time
series from the same component would have better results compared with directly modeling the
macroscopic time series.

4 MixSeq: a mixture model for time series

Based on the analysis in Section 3| we assume microscopic time series follow a mixture distribution,
and propose a mixture model, MixSeq, to cluster microscopic time series.

4.1 Our model

Our model assumes that each of m microscopic time series follows a mixture probabilistic distribution.
To forecast =1, 41:¢,++ given x1.¢,, our approach is to first partition {a:l 1. to} -1 into K clusters via
MixSeq. Since the distribution is applicable to all microscopic time series, we ignore the subscript ¢
and time interval 1 : to for simplicity. We study the following generative probability of z € Rfo:

=> plx,2) =Y p(z)p(x|z Zp H (@<, 2 ®2), 5)

where z € {1,2,..., K} is the discrete latent variable, K is the number of components in the
mixture model, p(z) is the prior of cluster indexed by z, and p(x|z) is the probability of time series
x generated by the corresponding component governed by parameter ®,. Note that we have K
parameters © = {®, Po, ..., P} in the mixture model.

We use ConvTrans introduced in [[19] as our backbone to model the conditional p(x¢|x<¢, z; ®,). To
instantiate, we model the conditional p(z¢ |z, z; ®.) by first generating H(®) ~ p(Y;) via causal
convolution [19]. We then generate HX) ~ g(H()) € R(*=1*d given x_;. Finally we generate
the representation for x; as hy = v(H)) = o(W, Zt Y H! L)) € R, where W € R4 >4k and
o as ReLU activation function. Afterwards, we decode ht to form the specific distribution from an
exponential family. In particular, we use Gaussian distribution p(z¢|r <, 2; ®.) = N (24; pg, 02),
where the mean and variance can be generated by following transformations,

He = wfht + by, o7 =log(1+exp(w)hy +b,)), (6)

“Details are in supplementary

where wy,, w, € R% are parameters, and b,,, b, € R are biases.

4.2 Posterior inference and learning algorithms

We aim to learn the parameter © and efficiently infer the posterior distribution of p(z|z) in Eq. (3).
However, it is intractable to maximize the marginal likelihood p(z) after taking logarithm, i.e.,
log p(x), since of the involvement of logarithm of sum. To tackle this non-convex problem, we
resort to stochastic auto-encoding variational Bayesian algorithm (AEVB) [17]. Regarding single
microscopic time series, the variational lower bound (LB) [[17] on the marginal likelihood is as below.

log p(x 1og2px z) >Z (z]x) log |Z))
zlx
where ¢(z|x) is the approximated posterior of the latent Variable z given time series x. The benefit of

using AEVB is that we can treat ¢(z|z) as an encoder modeled by a neural network. Hence, we reuse
the ConvTrans [19] as our backbone, and model ¢(z|z) as:

q(z|z) = SOFTMAX(W, - v(HD)Y)), H™) = g(p(Yy,)), (8)

(7

where we denote Y;, = [21.1,|01.4,] € RI0* @D p(HE)) = o(W, - Zto H(L)) with parameter

W, € R4k jg the deep set function, and W, € R¥*dr a5 parameters to project the encoding to K

dimension. After the softmax operator, we derive the posterior distribution that lies in a simplex of K

dimension. Note that we use distinct p(-)’s, g(+)’s and v(-)’s with different parameters to model ¢(z|x)

and {p(x¢|r <y, 2) X | respectively. We assign each microscopic x; to cluster z; = arg max q(z|z;)
z

in our experiments.

Mode collapsing. We find that directly optimizing the lower bound in Eq. (7)) suffers from the mode
collapsing problem. That is, the encoder ¢(z|x) tends to assign all microscopic time series to one
cluster, and does not effectively distinguish the data as expected, thus implying I(x; z) = 0 (I(-) for
mutual information). In order to address the above mode collapsing problem, we add I(x; z) to the
lower bound in Eq. (/) which expects that the latent variable z can extract discriminative information
from different time series [44]]. Then, we have

Er(Eq(z|2) log p(]2)) — Eo(KL(q(2|2)Ip(2))) + (25 2)
= Ex(Eq(z1a) log p(2(2)) — KL(q(2)[p(2)),

where ¢(z) = = >, q(z|x;) is an average of approximated posteriors over all microscopic data.

We approximate this term by using a mini-batch of m’ samples, i.c., ¢(2) = -5 >, c 5 q(z|zi).

©))

Annealing tricks. Regarding long-length time series, the reconstruction loss and KL divergence in
Eq. () are out of proportion. In this situation, the KL divergence has few effects on the optimization
objective. So we finally derive the following objective to maximize:

By (Eq(z 1) log p(z]2)) — o - KL(q(2)[Ip(2)) — A - [[©] (10)

where « is the trade-off hyperparameter. We use the following annealing strategy v = max(a, b X

e(_ﬁn)) to dynamically adjust « in the training process, where 3 is the parameter controlling the rate
of descent. Meanwhile, we also involve the /5-norm regularizers on Seq2seq’s parameters © with
hyperparameter A > 0.

5 Experimental results

We conduct extensive experiments to show the advantage of MixSeq. We evaluate the clustering
performance of MixSeq on synthetic data, present the results of macroscopic time series forecasting
on real-world data, and analyze the sensitivity of the cluster number of MixSeq.

5.1 Synthetic datasets

To demonstrate MixSeq’s capability of clustering microscopic time series that follow various proba-
bilistic mixture distributions, we conduct clustering experiments on synthetic data with ground truth.

Table 2: Mean and standard deviation (SD, in bracket) of Rand Index (RI, the higher the better) by
clustering on synthetic data generated by ARMA and DeepAR. MixSeg-infer represents that we infer
the cluster of new data generated by different models after training MixSeq. On ARMA data, MixSeq
and MixARMA have comparable performance; on DeepAR data, MixARMA degrades significantly
which shows the effectiveness of MixSeq.

ARMA synthetic data DeepAR synthetic data

2 clusters 3 clusters 2 clusters 3 clusters
MixARMA 0.9982(0.0001) 0.9509(0.1080) 0.7995(0.2734) 0.7687(0.0226)
MixSeq 0.9915(0.0024) 0.9540(0.0974) 0.9986(0.0003) 0.8460(0.0774)

MixSeg-infer 0.9929(0.0027) 0.9544(0.0975) 0.9982(0.0006) 0.8460(0.0775)

We generate two kinds of synthetic time series by ARMA [[8] and DeepAR [32]] respectively. For
each model, we experiment with different number of clusters (2 and 3) generated with components
governed by different parameters.

Experiment setting. To generate data from ARMA, we use ARMA(2, 0) and z; = ¢124-1 +
Pox—o+ € with e, ~ N(0,0.27). We set parameters [¢1, ¢=| for three components as [—0.25, 0.52],
[0.34,0.27], and [1.5, —0.75] respectively. The synthetic time series from a mixture of 2 components
are generated using the first two components. The synthetic time series from a mixture of 3 compo-
nents are generated using all 3 components. To generate data from DeepAR, we use the DeepAR
model with one LSTM layer, and the hidden number of units is 16. Since it is difficult to randomly
initialize the parameters of DeepAR, we train a base model on the real-world Wiki dataset [35]
(discussed in section[5.2)). To build the other two DeepAR components, we respectively add random
disturbance A (0,0.01) to the parameters of the base model. For each cluster, we generate 10, 000
time series with random initialized sequences, and set the length of time series as 100.

We use 1-layer causal convolution Transformer (ConvTrans [19]) as our backbone model in MixSeq.
We use the following parameters unless otherwise stated. We set the number of multi-heads as 2,
kernel size as 3, the number of kernel for causal convolution dj = 16, dropout rate as 0.1, the penalty
weight on the ¢5-norm regularizer as le-5, and d, = d,, = 16. Meanwhile, we set the prior p(z) as
1/K, Vz. For the training parameters, we set the learning rate as le-4, batch size as 256 and epochs
as 100. Furthermore, the o in MixSeq is annealed using the schedule o = max(5, 20e(~0-937)),
where n denotes the current epoch, and « is updated in the [10, 30, 50]-th epochs. For comparison,
we employ MixARMA [39], a mixture of ARMA(2, 0) model optimized by EM algorithm [6], as our
baseline. Both methods are evaluated using Rand Index (RI) [29] (more details in supplementary).

Experiment results. We show the clustering performance of MixSeq and MixARMA on the synthetic
data in Table[2] The results are given by the average of 5 trials. Regarding the synthetic data from
ARMA, both MixSeq and MixARMA perform very well. However, for the synthetic data from
DeepAR, MixARMA degrades significantly while MixSeq achieves much better performance. This
suggests that MixSeq can capture the complex nonlinear characteristics of time series generated by
DeepAR when MixARMA fails to do so. Furthermore, we also generate new time series by the
corresponding ARMA and DeepAR models, and infer their clusters with the trained MixSeq model.
The performance is comparable with the training performance, which demonstrates that MixSeq
actually captures the generation mode of time series.

5.2 Real-world datasets

We further evaluate the effectiveness of our model on the macroscopic time series forecasting task.
We compare MixSeq with existing clustering methods and state-of-the-art time series forecasting
approaches on several real-world datasets. Specifically, for each dataset, the goal is to forecast the
macroscopic time series aggregated by all microscopic data. We cluster microscopic time series into
groups, and aggregate the time series in each group to form the clustered time series. Then, we train
the forecasting models on the clustered time series separately, and give predictions of each clustered
time series. Finally, the estimation of macroscopic time series is obtained by aggregating all the
predictions of clustered time series.

Table 3: Real-world dataset summary.

dataset # TICTOSCOpIC lf:ngth O.f train interval test internal

time series time series
Rossmann 1115 942 20130101-20141231 20150101-20150731
M5 30490 1941 20110129-20160101 20160101-20160619
Wiki 309765 1827 20150701-20191231 20200101-20200630

Table 4: Comparisons on the microscopic time series clustering methods for macroscopic time series
forecasting combined with three network-based forecasting methods: testing Ry 5/Rg.9-10ss on three

real-world datasets. Lower is better.

Macro DTCR MixARMA MixSeq
DeepAR 0.1904/0.0869 0.2292/0.1432 0.1981/0.1300 0.1857/0.0987
Rossmann TCN 0.1866/0.1005 0.2023/0.1633 0.1861/0.1160 0.1728/0.0997
ConvTrans 0.1861/0.0822 0.2077/0.0930 0.1866/0.0854 0.1847/0.0813
DeepAR 0.0548/0.0289 0.0787/0.0627 0.0624/0.0582 0.0582/0.0445
M5 TCN 0.0790/0.0635 0.0847/0.0805 0.0762/0.0789 0.0694/0.0508
ConvTrans 0.0553/0.0260 0.0514/0.0260 0.0497/0.0257 0.0460/0.0238
DeepAR 0.0958/0.0962 0.1073/0.1336 0.0974/0.1070 0.0939/0.0901
Wiki TCN 0.0966/0.1064 0.1237/0.1480 0.0963/0.1218 0.0886/0.0980
ConvTrans 0.0968/0.0589 0.1029/0.0531 0.0961/0.0594 0.0901/0.0516

We report results on three real-world datasets, including Rossmamﬂ Mf] and Wiki [35]. The
Rossmann dataset consists of historical sales data of 1,115 Rossmann stores recorded every day.
Similarly, the M5 dataset consists of 30,490 microscopic time series as the daily sales of different
products in ten Walmart stores in USA. The Wiki dataset contains 309, 765 microscopic time series
representing the number of daily views of different Wikipedia articles. The dataset summary is shown
in Table [3] together with the setting of data splits.

Experiment setting. We summarize the clustering strategies for macroscopic time series forecasting
as follows. (1) “DTCR” [21] is the deep temporal clustering representation method which integrates
the temporal reconstruction, K-means objective and auxiliary classification task into a single Seq2seq
model. (2) “MixARMA” [39] is the mixture of ARMA model that uses ARMA to capture the
characteristics of microscopic time series. (3) “MixSeq” is our model with 1-layer causal convolution
Transformer [19]. (4) We also report the results that we directly build forecasting model on the
macroscopic time series without leveraging the microscopic data, named as “Macro”.

For time series forecasting, we implement five methods combined with each clustering strategy,
including ARMA [8], Prophet [34], DeepAR [32]], TCN [4], and ConvTrans [19]. ARMA and
Prophet give the prediction of point-wise value for time series, while DeepAR, TCN and ConvTrans
are methods based on neural network for probabilistic forecasting with Gaussian distribution. We
use the rolling window strategy on the test interval, and compare different methods in terms of the
long-term forecasting performance for 30 days. The data of last two months in train interval are used
as validation data to find the optimal model.

We do grid search for the following hyperparameters in clustering and forecasting algorithms, i.e.,
the number of clusters {3, 5, 7}, the learning rate {0.001, 0.0001}, the penalty weight on the £5-
norm regularizers {1e — 5, 5e — 5}, and the dropout rate {0, 0.1}. The model with best validation
performance is applied for obtaining the results on test interval. Meanwhile, we set batch size as 128,
and the number of training epochs as 300 for Rossmann, 50 for M5 and 20 for Wiki. For DTCR, we
use the same setting as [21]].

Regarding time series forecasting models, we apply the default setting to ARMA and Prophet
provided by the Python packages. The architectures of DeepAR, TCN and ConvTrans are as follows.

Shttps://www.kaggle.com/c/rossmann-store-sales
Shttps://www.kaggle.com/c/m5-forecasting-accuracy

Table 5: Comparisons on the microscopic time series clustering methods for macroscopic time series
forecasting combined with five forecasting methods: testing SMAPE on three real-world datasets.

Macro DTCR MixARMA MixSeq
ARMA 0.2739(0.0002) 0.2735(0.0106) 0.2736(0.0013) 0.2733(0.0012)
Prophet 0.1904(0.0007) 0.1738(0.0137) 0.1743(0.0037) 0.1743(0.0026)
Rossmann DeepAR 0.1026(0.0081) 0.1626(0.0117) 0.1143(0.0088) 0.0975(0.0013)
TCN 0.1085(0.0155) 0.1353(0.0254) 0.1427(0.0180) 0.1027(0.0075)
ConvTrans 0.1028(0.0091) 0.1731(0.0225) 0.1022(0.0041) 0.0961(0.0019)
ARMA 0.0540(0.0001) 0.0544(0.0018) 0.0541(0.0003) 0.0543(0.0001)
Prophet 0.0271(0.0003) 0.0271(0.0003) 0.0269(0.0002) 0.0267(0.0002)
M5 DeepAR 0.0278(0.0034) 0.0410(0.0046) 0.0319(0.0063) 0.0298(0.0029)
TCN 0.0412(0.0075) 0.0447(0.0044) 0.0395(0.0094) 0.0358(0.0014)
ConvTrans 0.0274(0.0048) 0.0253(0.0020) 0.0245(0.0024) 0.0227(0.0006)
ARMA 0.0362(0.0001) 0.0363(0.0006) 0.0364(0.0005) 0.0362(0.0002)
Prophet 0.0413(0.0001) 0.0423(0.0008) 0.0434(0.0003) 0.0420(0.0005)
Wiki DeepAR 0.0481(0.0008) 0.0552(0.0015) 0.0489(0.0006) 0.0470(0.0002)
TCN 0.0494(0.0076) 0.0654(0.0022) 0.0491(0.0015) 0.0446(0.0023)
ConvTrans 0.0471(0.0029) 0.0497(0.0012) 0.0466(0.0001) 0.0440(0.0010)

The number of layers and hidden units are 1 and 16 for DeepAR. The number of multi-heads and
kernel size are 2 and 3 for ConvTrans. The kernel size is 3 for TCN with dilations in [1, 2,4, 8]. We
also set batch size as 128 and the number of epochs as 500 for all forecasting methods.

Experiment results. Following [19][30} [35]], we evaluate the experimental methods using SMAPE
and p-quantile loss R,ﬂ with p € (0,1). The SMAPE results of all combination of clustering and
forecasting methods are given in Table Table E] shows the Ry 5/ R 9-loss for DeepAR, TCN and
ConvTrans which give probabilistic forecasts. All results are run in 5 trials. The best performance is
highlighted by bold character. We observe that MixSeq is superior to other three methods, suggesting
that clustering microscopic time series by our model is able to improve the estimation of macroscopic
time series. Meanwhile, Macro and MixARMA have comparable performance and are better than
DTCR, which further demonstrates the effectiveness of our method, i.e., only proper clustering
methods are conductive to macroscopic time series forecasting.

5.3 Sensitivity analysis of cluster number

The cluster number K is a critical hyperparameter of MixSeq. To analyze its effect on the forecasting
of macroscopic time series, we conduct experiments on both synthetic data and real-world data. The
results state the importance of setting a proper number of clusters. We suggest do binary search on
this critical hyperparameter. Details are as follows.

Synthetic data. Following the experimental setting in section 5.1} we generate 10,000 microscopic
time series from 3 different parameterized ARMA respectively. That is, the ground truth number
of clusters is 3 and there are 30, 000 microscopic samples in total. The aggregation of all samples
is the macroscopic time series which is the forecasting target of interest. Then, we compare the
forecasting performance between the method that directly forecasts macroscopic time series (denoted
as Macro) and our method with different cluster numbers (including 2, 3, 5, denoted as MixSeq_2,
MixSeq_3 and MixSeq_5 respectively). We fix the forecasting method as ARMA, and apply the
rolling window approach for T+10 forecasting in the last 40 time steps. The average SMAPE of 5
trials are 0.807, 0.774, 0.731 and 0.756 for Macro, MixSeq_2, MixSeq_3 and MixSeq_5 respectively.
MixSeq_3 being set with ground truth cluster number shows the best performance, while MixSeq_2
and MixSeq_5 would degenerate though still better than Macro. This result shows the importance of
setting a proper number of clusters.

Real-world data. We do the evaluation on three real-world datasets by varying the cluster number K
of MixSeq while maintaining the other parameters fixed. For Rossmann and M5 datasets, we set the

"Detailed definition is in supplementary.

p =0.5| Rossmann p=0.5|M5 p=0.5|Wiki

0.210 A
0.056 +
0.205 0.096
o 0.054
173
< 0.200 -
o 0.052 + 0.094
€
g 0.195 A 0.050
& 0.092
0.190 0.048 +
0.185 0.046 + 0.090
T T T T T T
2 4 6 5 10 15
p =0.9 | Rossmann p=0.9]| Wiki

0.0260 - 0.060
1)
2 0.0255 0.058
2
"g 0.0250 - 0.056 -
z
¢ 0.0245 0.054 -
0.0240 0.052 -
T T T T T T
2 4 6 5 10 15
K K

Figure 1: The macroscopic time series forecasting performance based on MixSeq with different
cluster number K on three real-world datasets. The time series forecasting method is fixed as causal
convolution Transformer. Top three figures show the R 5-loss and bottom three figures show the
R g-loss.

cluster number K € {3, 5, 7}, while we explore the cluster number K € {5, 10,15} on Wiki dataset.
The architecture and training parameters of MixSeq are same to section[5.2] except that we set the
dropout rate as 0.1, the penalty weight on the {5-norm regularizer as Se-5, and the learning rate as
le-4. Meanwhile, we also fix the time series forecasting method as causal convolution Transformer
(ConvTrans).

Figure [T]reports the macroscopic time series forecasting performance (testing on Ry 5 and Ry g loss)
based on MixSeq with different cluster number K on three real-world datasets. The horizontal dashed
lines are the results with K = 1 that directly building ConvTrans model on the macroscopic time
series without leveraging the microscopic data (named as “Macro” in section [5.2)). It is obvious
that each dataset has its own suitable number of clusters, and our method is relatively sensitive to
K, especially on the dataset with less microscopic time series, such as Rossmann. Similar to the
accurately modeling of each microscopic time series, the larger cluster number K of MixSeq also
brings large variance to macroscopic time series forecasting, which degrades the performance of our
method.

6 Conclusion

In this paper, we study the problem that whether macroscopic time series forecasting can be improved
by leveraging microscopic time series. Under mild assumption of mixture models, we show that
appropriately clustering microscopic time series into groups is conductive to the forecasting of
macroscopic time series. We propose MixSeq to cluster microscopic time series, where all the
components come from a family of Seq2seq models parameterized with different parameters. We
also propose an efficient stochastic auto-encoding variational Bayesian algorithm for the posterior
inference and learning for MixSeq. Our experiments on both synthetic and real-world data suggest that
MixSeq can capture the characteristics of time series in different groups and improve the forecasting
performance of macroscopic time series.

10

Acknowledgments and Disclosure of Funding

This work is supported by Ant Group.

References

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

[9

—

(10]

(11]

[12]

[13]

[14]

[15]

(16]

(17]

(18]

(19]

[20]

Y. S. Abu-Mostafa and A. F. Atiya. Introduction to financial forecasting. Applied intelligence, 6(3):
205-213, 1996.

D. Asteriou and S. G. Hall. Arima models and the box—jenkins methodology. Applied Econometrics, 2(2):
265-286, 2011.

D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to align and translate.
International Conference on Learning Representations (ICLR), 2015.

S. Bai, J. Z. Kolter, and V. Koltun. An empirical evaluation of generic convolutional and recurrent networks
for sequence modeling. arXiv preprint arXiv:1803.01271, 2018.

K. Benidis, S. S. Rangapuram, V. Flunkert, B. Wang, D. Maddix, C. Turkmen, J. Gasthaus, M. Bohlke-
Schneider, D. Salinas, L. Stella, et al. Neural forecasting: Introduction and literature overview. arXiv
preprint arXiv:2004.10240, 2020.

D. M. Blei, A. Kucukelbir, and J. D. McAuliffe. Variational inference: A review for statisticians. Journal
of the American statistical Association, 112(518):859-877, 2017.

G. E. Box and G. M. Jenkins. Some recent advances in forecasting and control. Journal of the Royal
Statistical Society: Series C (Applied Statistics), 17(2):91-109, 1968.

G. E. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung. Time series analysis: forecasting and control.
John Wiley & Sons, 2015.

C. Chen, Z. Liu, J. Zhou, X. Li, Y. Qi, Y. Jiao, and X. Zhong. How much can a retailer sell? sales forecasting
on tmall. In Pacific-Asia Conference on Knowledge Discovery and Data Mining, pages 204-216. Springer,
2019.

K. Cho, B. Van Merriénboer, D. Bahdanau, and Y. Bengio. On the properties of neural machine translation:
Encoder-decoder approaches. arXiv preprint arXiv:1409.1259, 2014.

F. Dama and C. Sinoquet. Analysis and modeling to forecast in time series: a systematic review. arXiv
preprint arXiv:2104.00164, 2021.

S.Du, T. Li, and S.-J. Horng. Time series forecasting using sequence-to-sequence deep learning framework.
In 2018 9th International Symposium on Parallel Architectures, Algorithms and Programming (PAAP),
pages 171-176. IEEE, 2018.

J. Durbin and S. J. Koopman. Time series analysis by state space methods. Oxford university press, 2012.

C. Guo, H. Jia, and N. Zhang. Time series clustering based on ica for stock data analysis. In 2008 4th
International Conference on Wireless Communications, Networking and Mobile Computing, pages 1-4.
IEEE, 2008.

H. Hao, Y. Wang, Y. Xia, J. Zhao, and F. Shen. Temporal convolutional attention-based network for
sequence modeling. arXiv preprint arXiv:2002.12530, 2020.

H. Hewamalage, C. Bergmeir, and K. Bandara. Recurrent neural networks for time series forecasting:
Current status and future directions. International Journal of Forecasting, 37(1):388-427, 2021.

D. P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.

G. Lai, W.-C. Chang, Y. Yang, and H. Liu. Modeling long-and short-term temporal patterns with deep
neural networks. In The 41st International ACM SIGIR Conference on Research & Development in
Information Retrieval, pages 95-104, 2018.

S. Li, X. Jin, Y. Xuan, X. Zhou, W. Chen, Y.-X. Wang, and X. Yan. Enhancing the locality and breaking
the memory bottleneck of transformer on time series forecasting. arXiv preprint arXiv:1907.00235, 2019.

B. Lim and S. Zohren. Time series forecasting with deep learning: A survey. arXiv preprint
arXiv:2004.13408, 2020.

11

[21]

[22]

(23]

[24]

[25]

(26]

[27]
(28]

(29]

(30]

(31]

(32]

(33]

(34]
(35]

(36]

(371

(38]

(39]

[40]

[41]
[42]

[43]

[44]

Q. Ma, J. Zheng, S. Li, and G. W. Cottrell. Learning representations for time series clustering. Advances
in neural information processing systems, 32:3781-3791, 2019.

D. C. Maddix, Y. Wang, and A. Smola. Deep factors with gaussian processes for forecasting. arXiv
preprint arXiv:1812.00098, 2018.

N. S. Madiraju, S. M. Sadat, D. Fisher, and H. Karimabadi. Deep temporal clustering: Fully unsupervised
learning of time-domain features. arXiv preprint arXiv:1802.01059, 2018.

G. J. McLachlan and K. E. Basford. Mixture models: Inference and applications to clustering, volume 38.
M. Dekker New York, 1988.

T. Oates, L. Firoiu, and P. R. Cohen. Clustering time series with hidden markov models and dynamic
time warping. In Proceedings of the IJCAI-99 workshop on neural, symbolic and reinforcement learning
methods for sequence learning, pages 17-21. Citeseer, 1999.

J. Paparrizos and L. Gravano. k-shape: Efficient and accurate clustering of time series. In Proceedings of
the 2015 ACM SIGMOD International Conference on Management of Data, pages 1855-1870, 2015.

J. Pemberton. Non-linear and non-stationary time series analysis., 1990.

F. Petitjean, A. Ketterlin, and P. Gangarski. A global averaging method for dynamic time warping, with
applications to clustering. Pattern recognition, 44(3):678—693, 2011.

W. M. Rand. Objective criteria for the evaluation of clustering methods. Journal of the American Statistical
association, 66(336):846-850, 1971.

S. S. Rangapuram, M. W. Seeger, J. Gasthaus, L. Stella, Y. Wang, and T. Januschowski. Deep state space
models for time series forecasting. Advances in neural information processing systems, 31:7785-7794,
2018.

S. Roberts, M. Osborne, M. Ebden, S. Reece, N. Gibson, and S. Aigrain. Gaussian processes for time-series
modelling. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering
Sciences, 371(1984):20110550, 2013.

D. Salinas, V. Flunkert, J. Gasthaus, and T. Januschowski. Deepar: Probabilistic forecasting with autore-
gressive recurrent networks. International Journal of Forecasting, 36(3):1181-1191, 2020.

I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural networks. Advances in
neural information processing systems, 2014.

S. J. Taylor and B. Letham. Forecasting at scale. The American Statistician, 72(1):37-45, 2018.

A. Tran, A. Mathews, C. S. Ong, and L. Xie. Radflow: A recurrent, aggregated, and decomposable model
for networks of time series. arXiv preprint arXiv:2102.07289, 2021.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin.
Attention is all you need. arXiv preprint arXiv:1706.03762, 2017.

R. Wen, K. Torkkola, B. Narayanaswamy, and D. Madeka. A multi-horizon quantile recurrent forecaster.
arXiv preprint arXiv:1711.11053, 2017.

N. Wu, B. Green, X. Ben, and S. O’Banion. Deep transformer models for time series forecasting: The
influenza prevalence case. arXiv preprint arXiv:2001.08317, 2020.

Y. Xiong and D.-Y. Yeung. Time series clustering with arma mixtures. Pattern Recognition, 37(8):
1675-1689, 2004.

J. Yang and J. Leskovec. Patterns of temporal variation in online media. In Proceedings of the fourth ACM
international conference on Web search and data mining, pages 177-186, 2011.

R. Yu, S. Zheng, A. Anandkumar, and Y. Yue. Long-term forecasting using tensor-train rnns. Arxiv, 2017.

M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. Salakhutdinov, and A. Smola. Deep sets. arXiv
preprint arXiv:1703.06114,2017.

J. Zakaria, A. Mueen, and E. Keogh. Clustering time series using unsupervised-shapelets. In 2012 IEEE
12th International Conference on Data Mining, pages 785-794. IEEE, 2012.

T. Zhao, K. Lee, and M. Eskenazi. Unsupervised discrete sentence representation learning for interpretable
neural dialog generation. arXiv preprint arXiv:1804.08069, 2018.

12

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Section 3}

(c) Did you discuss any potential negative societal impacts of your work? [Yes] See
supplementary.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Section
(b) Did you include complete proofs of all theoretical results? [Yes] See supplementary.

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] See Section [3]
and supplementary.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section[5|and supplementary.

(c) Did you report error bars (e.g., with respect to the random seed after running ex-
periments multiple times)? [Yes] See all the tables. We report mean error and its
std.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See supplementary.
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [IN/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

13

	Introduction
	Background
	Seq2seq: encoder-decoder architectures for time series
	Related works

	Microscopic time series under mixture model
	Analyses on the variance of mixture model
	Demonstration with toy examples

	MixSeq: a mixture model for time series
	Our model
	Posterior inference and learning algorithms

	Experimental results
	Synthetic datasets
	Real-world datasets
	Sensitivity analysis of cluster number

	Conclusion

