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ABSTRACT

The growing use of 3D point cloud data in autonomous vehicles (AVs) has raised
serious privacy concerns, particularly due to the sensitive information that can be
extracted from 3D data. While model inversion attacks have been widely studied
in the context of 2D data, their application to 3D point clouds remains largely
unexplored. To fill this gap, we present the first in-depth study of model inversion
attacks aimed at restoring 3D point cloud scenes. Our analysis reveals the unique
challenges, the inherent sparsity of 3D point clouds and the ambiguity between
empty and non-empty voxels after voxelization, which are further exacerbated by
the dispersion of non-empty voxels across feature extractor layers. To address
these challenges, we introduce ConcreTizer , a simple yet effective model inversion
attack designed specifically for voxel-based 3D point cloud data. ConcreTizer
incorporates Voxel Occupancy Classification to distinguish between empty and
non-empty voxels and Dispersion-Controlled Supervision to mitigate non-empty
voxel dispersion. Extensive experiments on widely used 3D feature extractors and
benchmark datasets, such as KITTI and Waymo, demonstrate that ConcreTizer
concretely restores the original 3D point cloud scene from disrupted 3D feature
data. Our findings highlight both the vulnerability of 3D data to inversion attacks
and the urgent need for robust defense strategies.

1 INTRODUCTION

Recent advancements in Autonomous Vehicles (AVs) have underscored the importance of continuous
vision data collection and sharing. At the same time, AI and big data have amplified privacy concerns,
prompting increased research on this issue (Guo et al., 2017; Stahl & Wright, 2018). Consequently,
AV’s data collection faces strict regulations that requires data de-identification (Mulder & Vellinga,
2021). For example, the EU’s General Data Protection Regulation (GDPR) (EU, 2016) mandates
businesses to adopt stringent data protection protocols.

Beyond these regulations, the need for privacy preservation is rapidly increasing, particularly in
3D point cloud data. This is because various types of privacy-related information can be revealed
through rich 3D shape information. For instance, personal information can be identified through
facial recognition (Zhang et al., 2019) and person re-identification (Cheng & Liu, 2021). Furthermore,
behavioral patterns can be exposed through human pose estimation (Zhou et al., 2020) and activity
recognition (Singh et al., 2019b). Additionally, by using methods like Simultaneous Localization and
Mapping (SLAM) (Kim et al., 2018), location information can also be inferred. Moreover, the fact
that 2D images can be reconstructed from sparse 3D data (Pittaluga et al., 2019; Song et al., 2020)
emphasizes the importance of securing raw 3D point data from the outset.

However, research on privacy in 3D point cloud data remains significantly underexplored compared
to advancements in the 2D image domain. A prominent research area in 2D image privacy is
inversion attacks. While earlier studies (Gupta & Raskar, 2018; Vepakomma et al., 2018; Singh et al.,
2019a) suggested that 2D images could be anonymized by extracting features, inversion attacks have
demonstrated that these features can be used to restore the original 2D images. In contrast, while
there a few prior studies on privacy of 3D data (Wang et al., 2024), inversion attacks for 3D data
remain largely unexplored. This research gap allowed a recent study (Hwang et al., 2023) to operate
under the assumption that disseminating 3D features inherently prevents the restoration of the original
dataset. In the absence of existing inversion attack methods for 3D data, the authors developed a point
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Figure 1: Restoration result of a 3D Point Clouds. Feature data is extracted from original point
cloud through a 3D feature extractor (Yan et al., 2018). ConcreTizer (right) enables restoration with
simple modifications to conventional approach (left), and even achieves more concrete restoration
than generative model approach (middle) (Xiong et al., 2023).
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Figure 2: Restoration through conventional inversion attack method. Voxelization introduces
zero-padding to non-empty voxels. During downsampling in feature extraction, these voxels spread to
neighboring areas, expanding the VoI (green region). Within the VoI, voxel-wise channel regression
generates additional points in zero-padded regions, leading to clustering near the origin.

regression method to invert voxel-based backbones, aiming to demonstrate that restoring the original
3D scene from its extracted features is infeasible. As depicted in Figure 1, the conventional point
regression in (Hwang et al., 2023) fails to restore 3D point cloud data from intermediate features.

However, we argue that this failure is not due to an inherent safety of 3D features but rather a
lack of careful design that considers the characteristics of 3D backbones. To address this issue,
Figure 2 examines the phenomena arising when the point regression method inverts voxel-based
feature extractors, which are dominant architectures in autonomous driving applications. The point
regression approach attempts to directly restore point coordinates within each voxel by minimizing
mean squared error (MSE). However, the method relies on a naive determination of point existence
in each voxel, which introduces critical issues. Specifically, during the voxelization process, empty
voxels are zero-padded. If a voxel’s regression output is exactly (0, 0, 0), it indicates that the zero-
padded voxel remains unaffected throughout the forward and inversion processes. These voxels are
treated as empty regions and excluded from the MSE calculation. Conversely, if a voxel’s output
deviates from (0, 0, 0), it is included in the MSE calculation (referred to as a Voxel of Interest (VoI))
and is used to generate a valid point in the restored scene.

The problem is as follows: The sparsity of 3D point cloud data results in a large number of zero-
padded voxels. During the forward and inversion processes, particularly in deeper feature extractors,
non-empty voxels (VoIs) spread into these empty voxels. This dispersion leads to a proliferation
of false VoIs (originally empty voxels), causing point regression to erroneously generate points in
regions that were initially void. Moreover, these false VoIs disproportionately impact the MSE loss,
prompting the point regression model to bias the restoration by concentrating most points near the
origin (0, 0, 0) to minimize estimation errors for the false VoIs. This bias significantly degrades
localization performance for the relatively smaller number of true VoIs (originally non-empty voxels).

The analysis reveals that the key to a successful inversion attack is not restoring the representation
of the voxel (i.e., point coordinates) but accurately determining whether a voxel was originally
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empty or non-empty. Once this classification is achieved, localizing points within non-empty voxels
becomes more straightforward, as the error is constrained by the voxel size, which is typically
small. Based on this insight, we transform the conventional point regression problem into a more
explicit Voxel Occupancy Classification (VOC) problem. In addition, the spread of VoI should
be suppressed during restoration to minimize the negative impact of false VoIs. To address this,
our model incorporates Dispersion-Controlled Supervision (DCS), which segments the feature
extractor based on downsampling layers and trains each segment individually, proactively controlling
the dispersion of VoI. Thanks to its tailored design, our model, called ConcreTizer , outperforms
conditioned generation methods that use generative models (see Figure 1, the generative model
approach (Xiong et al., 2023)).

To demonstrate the general applicability of ConcreTizer , we deployed it on two representative 3D
feature extractors (Yan et al., 2018; Lu et al., 2022), which are essential components in various
applications including 3D object detection (Yan et al., 2018; Shi et al., 2020), 3D semantic seg-
mentation (Wu et al., 2019; Thomas et al., 2019), and tracking (Yin et al., 2021). Our experiments
conducted on prominent datasets, KITTI (Geiger et al., 2012) and Waymo (Sun et al., 2020), confirm
that ConcreTizer consistently outperforms across various datasets and 3D feature extractors. We
showcase the superior performance of ConcreTizer through a range of quantitative and qualitative
evaluations, employing point cloud similarity metrics, visual aids, specific-task (3D object detection)
performance using restored scenes, and the performance of potential defense mechanisms.

The contributions of this paper are as follows:

• This work is the first to conduct an in-depth study of model inversion attacks aimed at restoring
voxel-based 3D point cloud scenes. Our analysis identifies unique challenges for inversion attacks,
which arise from interaction between sparse point cloud data and voxel-based feature extractors.

• To address these unique challenges, we propose ConcreTizer , tailored for inverting 3D backbone
networks, incorporating Voxel Occupancy Classification and Dispersion-Controlled Supervision.

• Through extensive experiments with representative 3D feature extractors and well-established
open-source datasets, we demonstrate the quantitative and qualitative effectiveness of ConcreTizer .

2 RELATED WORK

3D Point Clouds Feature Extraction. Feature extractors for 3D point cloud data encompass set,
graph, and grid-based approaches, each distinguished by its representation format. The computational
complexity of set and graph-based methods (Qi et al., 2017; Kipf & Welling, 2016) scales significantly
with the number of points, limiting their use in real-time applications like autonomous driving.
Conversely, grid-based methods (Zhou & Tuzel, 2018; Yan et al., 2018; Shi et al., 2020; Lang et al.,
2019; Sun et al., 2022) organize the 3D space into a grid and apply sparse convolution (Liu et al.,
2015; Graham & Van der Maaten, 2017) for efficient feature extraction from sparse voxel data. These
methods are particularly advantageous for autonomous driving applications due to their efficiency
with sparse data. Considering these characteristics, we explore inversion attacks tailored to scenarios
using grid-based feature extractors.

Model Inversion. Model inversion was initially studied from the perspective of interpretability in
deep learning models. Traditional approaches generate saliency maps to understand how models
produce outputs (Du et al., 2018). Other methods (Mahendran & Vedaldi, 2015; Dosovitskiy & Brox,
2016b;a) reconstruct the input from intermediate features to analyze the information flow through
model layers. Recently, with growing concerns about data privacy, model inversion has gained
attention as a privacy attack. Early studies attempted to restore input face images from confidence
scores (Yang et al., 2019b). Subsequent studies (Zhang et al., 2020; Zhao et al., 2021) leverage
additional information for more sophisticated restoration. Based on these studies, corresponding
defense techniques (Liu et al., 2019; Xue et al., 2023; Dusmanu et al., 2021; Ng et al., 2022; Zhang
et al., 2022) have also been investigated, enriching the exploration of data privacy. However, previous
work has primarily focused on 2D image data. There is a clear need for an inversion attack technique
that accounts for the unique characteristics of 3D point cloud data in autonomous driving. To the best
of our knowledge, this research is the first to study inversion attacks for 3D data.

Point Cloud Generation. Generative models, with their ability to produce plausible raw data,
are widely used for various tasks. In the 3D point cloud domain, diverse generative models are
being researched. Unconditional generation tasks create plausible shapes from random inputs like
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Figure 3: (Left) The results of the conventional inversion attack: As the layer depth increases, the
number of restored points increases rapidly, and the concentration of points near the origin becomes
more noticeable. (Right) The VoI (Voxel of Interest) dispersion effect: The non-empty voxels
spread as they pass through the feature extractor and inversion attack model.

noise (Achlioptas et al., 2018; Valsesia et al., 2018; Shu et al., 2019; Yang et al., 2019a; Luo &
Hu, 2021). Conditional generation tasks involve generating the remaining part from a partial point
cloud (Yu et al., 2021; Huang et al., 2020; Wen et al., 2020) or generating a 3D point cloud from
a 2D image (Mandikal et al., 2018; Mandikal & Radhakrishnan, 2019; Melas-Kyriazi et al., 2023).
However, most existing research focuses only on dense point cloud data for single objects (e.g., Chang
et al. (2015)). In contrast, there is little research on handling scene-level sparse point clouds captured
from autonomous vehicles. Only a few studies (Caccia et al., 2019; Zyrianov et al., 2022) deal
with scene-level sparse point clouds. However, even these studies require specific representation
formats and do not support using 3D grid-shaped features, given in our inversion attack scenario, as
conditions. To our knowledge, the only scene-level sparse point cloud generation model based on
3D grid representations is Xiong et al. (2023). We also conducted performance comparisons with
conditional generation approach using this generative model.

3 PRELIMINARY: LIMITATIONS OF CONVENTIONAL INVERSION ATTACK

The only known attempt at an inversion attack on 3D point cloud data is by Hwang et al. (2023).
Even this research does not directly focus on inversion attacks but rather seeks to assess the privacy
protection effectiveness of 3D features by developing a sample inversion attack based on point
regression. Before designing our method, we explore why the conventional approach can not
effectively restore 3d point cloud scenes (Figure 3, left).

Firstly, we identified an issue in voxel-based models related to the voxelization process. During
voxelization, regions without points are zero-padded. However, the conventional regression method
does not consider point existence but focus solely on point localization, mistakenly interpreting
zero-padded representations as valid points located at (0, 0, 0). As a result, points are created even
for empty voxels, leading to an overgeneration of points compared to the original data. Secondly, the
inherently sparse nature of point clouds results in a large number of zero-padded voxels, far exceeding
those containing valid points. Point regression-based inversion attacks naturally prioritize minimizing
estimation errors across all voxels, including these zero-padded regions. Consequently, this bias
towards zero-padded voxels causes an over-concentration of points near the origin in the restored
scene. Moreover, it significantly increases localization errors for the relatively smaller number of
valid points, as these errors are considered negligible within the overall regression error.

Lastly, we observed that as the feature extractor layers deepen, existing attack methods are increasingly
hindered by the negative impact of zero-padded voxels: (1) an excessive number of restored points
and (2) an intensified concentration of points near the origin. Specifically, if voxels with a value of
(0, 0, 0) persist in the final restored state, they are excluded from the regression targets and do not
directly affect the regression loss. However, due to the nature of convolution operations, the values
of non-empty voxels—defined as Voxels of Interest (VoI)—gradually disperse into the surrounding
empty voxels. As the layers deepen, more originally zero-padded voxels become non-empty during
the feature extraction and inversion processes. Consequently, an increasing number of these zero-
padded voxels are included in the regression targets. Our experiments revealed that the density of
VoI spikes significantly at downsampling layers (Figure 3, right), further amplifying the influence of
zero-padded voxels on the final restoration results.
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Figure 4: ConcreTizer framework. Original point cloud and feature data are represented by p and fi,
while their restored counterparts are denoted by p′ and f ′

i , respectively. The value i means that it is
obtained from the i-th downsampling layer. ConcreTizer restores data by classifying the occupancy
of f0 and then placing points at the center of each restored voxel. For deeper layers, it employs
partitioning at the downsampling layer and restores fi−1 from fi for each block.

4 PROPOSED METHOD

4.1 AV SCENARIO

We focus on autonomous vehicle (AV) scenarios because they carry a high risk of exposure to inversion
attacks. In AV contexts, there is a need to share feature data for purposes such as computation
offloading (Xiao et al., 2022; Hanyao et al., 2021), model enhancement (Hwang et al., 2023), and
cooperative perception (Wang et al., 2020; Xu et al., 2022; Yu et al., 2022). Specifically, we selected
voxel-based feature extractors as the target for inversion attacks. Voxel-based feature extractors are
commonly used in autonomous vehicles due to their suitability for real-time applications like 3D
object detection (Yan et al., 2018; Lang et al., 2019; Shi et al., 2019; 2020; Shi & Rajkumar, 2020),
semantic segmentation (Wu et al., 2019; Thomas et al., 2019), and tracking (Yin et al., 2021). In
this scenario, an attacker with access to the same feature extractor would need to prepare 3D point
cloud data for training the inversion attack model. Since the restoration task doesn’t require separate
labeling, training can be conducted using open-source datasets or self-collected data.

4.2 PROBLEM DEFINITION

The goal of an inversion attack is to discover the inverse process of a given feature extractor. For
voxel-based feature extractors, the initial step involves a voxelization process that transforms point
cloud data into a grid format.

Voxelization converts a 3D point cloud p ∈ Rk×3, where k is the number of points, into a voxel grid
f0 ∈ R3×H×W×D, where H,W,D represent the spatial dimensions of the grid. Here x, y, and z
coordinate information is channelized and voxels without points are zero-padded, resulting in channel
values of (0, 0, 0). In particular, during the downsampling process, the spatial dimensions shrink
while the channel size increases, producing features fN ∈ RCN×hN×wN×dN , where N is the number
of downsampling layers, CN > 3, and hN , wN , dN are smaller than H,W,D. Consequently, our
inversion attack aims to restore the original voxel grid f0 from the downsampled features fN .

4.3 CONCRETIZER FRAMEWORK

Figure 4 depicts the overall ConcreTizer framework incorporating the scenario and attacker-side
training operations. In designing the structure of the inversion attack model, we chose a symmetrical
design with the feature extractor, following previous studies (Yang et al., 2019b; Zhang et al.,
2020; Zhao et al., 2021). In other words, original shape can be restored by performing upsampling
at the positions where downsampling occurs (detailed structure in the supplementary material).
Building upon symmetric structure, ConcreTizer applies Voxel Occupancy Classification (VOC) and
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Dispersion-Controlled Supervision (DCS) to overcome the limitations of traditional inversion attack.
VOC transforms the regression problem into a classification problem to address the issue of point
clustering near the origin. DCS prevents the dispersion of VoI by splitting the feature extractor,
mitigating the degradation of restoration performance as the network deepens.

4.3.1 VOXEL OCCUPANCY CLASSIFICATION

In traditional inversion attack methods, the original data is directly restored through regression on
channel values. In our scenario, since the x, y, and z coordinates are channelized during the voxeliza-
tion process, performing regression would restore coordinate values. However, since voxelization
of sparse point clouds produces a large number of zero-padded voxels with (0, 0, 0) channel value,
many unnecessary points cluster near the origin in the inversion attack results (Figure 3, left). To
address this issue, we transform the regression problem into a classification problem to resolve the
semantic ambiguity of zero-padded voxels—whether they represent empty voxels or valid points
at coordinates (0, 0, 0). This can be achieved through simple binary encoding, where each voxel is
labeled as 0 (negative occupancy) or 1 (positive occupancy), making the meaning of zero-padding
clear. Using the VOC method, the inversion attack model outputs binary classification scores in the
form of R1×H×W×D, rather than continuous coordinate values in the form of R3×H×W×D. If a
voxel is determined to contain a point, the corresponding coordinate can be restored easily. This is
because the range of coordinate values is bounded by the spatial location of the voxel, and the voxel
size is typically small enough. As a result, by using the center coordinates of the voxel, we achieve
effective restoration within an error range constrained by the voxel size.

Additionally, due to the sparsity of original point cloud data, the binary-encoded labels have a higher
ratio of 0s compared to 1s. This phenomenon is particularly exacerbated as the depth of the layers
increases. Let f0 be the original voxelized point cloud and f ′

0 be the restored one by the inversion
attack. The number of positive labels is fixed as |VoI of f0|, while the number of negative labels, |VoI
of f ′

0| − |VoI of f0|, increases exponentially as the depth of the layer increases. To account for this
imbalance, we apply the Sigmoid Focal (SF) loss (Lin et al., 2017), a variant of the conventional
cross-entropy loss. The mathematical representation of the SF loss is given by:

FL(pt) = −αt(1− pt)
γ log(pt), (1)

where pt denotes the model’s predicted probability for the target class. The factor αt is employed to
adjust the importance given to the positive and negative classes.

4.3.2 DISPERSION-CONTROLLED SUPERVISION

While applying SF loss in VOC can partially address the label imbalance issue, it cannot prevent the
problem of VoI dispersion. The original data is sparse with many empty voxels. However, as we
observed earlier, the VoI density exponentially increases during the downsampling process (Figure 3,
right). Therefore, after VoI spreads too much at the deep layer, it becomes difficult to restore the data
back to the original sparse state.

Our proposed DCS is a more fundamental solution to address VoI dispersion. It divides the feature
extractor into multiple blocks and performs restoration progressively. First, feature extractor can
be partitioned based on the downsampling layer where the VoI spread occurs. Through this, the
VoI dispersion in each block can be effectively controlled. Then, in the inversion attack model, an
inversion block corresponding to each block can be created to train the restoration in block units.
Note that at the original voxel level, the channel values represent point coordinates, eliminating
the need for regression (if classification result is positive, channel value is estimated as the center
coordinate of the voxel). However, at the intermediate feature level, normalization is applied, so both
classification and regression on the channel values are required.

For example, if the input of the (i + 1)-th block is fi ∈ RCi×hi×wi×di and the output is fi+1 ∈
RCi+1×hi+1×wi+1×di+1 , then the (i + 1)-th inversion block in the inversion attack model takes
fi+1 as input and produces f ′

i ∈ RCi×hi×wi×di , which is the result of restoring fi. Specifically,
m′

i ∈ R1×hi×wi×di (spatial occupancy scores found by applying SF loss) and c′i ∈ RCi×hi×wi×di

(channel values found by applying L2 loss) are derived from fi+1. Then, c′i is masked by using m′
i to

generate f ′
i . In the masking process, unnecessary VoI values are erased, so the dispersion of VoI can

be suppressed. Note that in the first inversion block, which is the final stage of the inversion attack
model, only classification is performed, with no additional regression. The loss function for each
inversion block is:
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Table 1: Inversion attack result with KITTI and Waymo dataset. Average CD and HD values in
centimeters, and F1 scores with 15 cm and 30 cm thresholds for KITTI and Waymo datasets. Metrics
evaluate over two scene sets with 3769 and 3999 scenes, respectively.

#Downsampling 1 (3rd) 2 (6th) 3 (9th) 4 (12th)
(LayerDepth) CD (↓) HD (↓) F1score (↑) CD (↓) HD (↓) F1score (↑) CD (↓) HD (↓) F1score (↑) CD (↓) HD (↓) F1score (↑)

K
IT

T
I Point Regression 1.3868 23.5855 0.3543 1.2879 34.2395 0.3904 3.1229 54.0173 0.2110 4.1439 56.9811 0.1298

UltraLiDAR 0.0744 8.2269 0.9122 0.0818 8.0974 0.8905 0.0836 7.9561 0.8869 0.1012 7.9185 0.8152
ConcreTizer 0.0321 7.5603 0.9918 0.0373 7.5249 0.9914 0.0507 7.8453 0.9793 0.0776 8.1193 0.9160

W
ay

m
o Point Regression 1.4979 55.6589 0.7644 2.7733 66.7899 0.6489 4.1053 70.6608 0.5524 4.9340 71.9608 0.4355

UltraLiDAR 0.0810 10.9582 0.9742 0.0898 11.3360 0.9623 0.1017 11.4987 0.9503 0.1378 12.0259 0.8849
ConcreTizer 0.0374 10.2544 0.9984 0.0466 10.2326 0.9979 0.0712 10.5724 0.9781 0.1087 11.3399 0.9251

Loss(inversion block i+ 1) =

{
Lcls if i = 0,

Lcls + β · Lreg if i ≥ 1.

Lcls =
∑

SF loss(mi,m
′
i) and Lreg =

∑
L2 loss(ci, c′i)

where the summation is taken over VoI of the output.
mi : Ground Truth spatial occupancy mask

m′
i : Predicted spatial occupancy scores
ci : Ground Truth channel values

c′i : Predicted channel values


The final result of passing through all inversion blocks is a binary classification scores in the form
of R1×H×W×D, and the restoration is completed by generating a point at the center of the voxel
corresponding to the positive occupancy.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

3D Feature Extractor. We employ a voxelization-based 3D feature extractor as the target of our
inversion attack. Based on the OpenPCDet (Team, 2020) project, we utilize pre-trained Voxel-
Backbone (Yan et al., 2018) and VoxelResBackbone (Lu et al., 2022), extensively used in a crucial
application area for 3D point cloud data. The VoxelBackBone structure contains four downsampling
layers (i.e., N = 4), each preceded by two convolutional layers, while the VoxelResBackbone
incorporates additional convolutional layers and skip connections.

Inversion Model Training. We train the inversion attack model on the real-world KITTI (Geiger
et al., 2012) and Waymo (Sun et al., 2020) datasets. When using the SF loss function in VOC, only
the alpha value in the hyperparameters is adjusted, and in DCS, the weight on regression loss, β, is
set to 1.

Metrics. In our analysis of 3D scene restoration performance, we utilize various metrics. First,
for qualitative analysis, we visualize the 3D point cloud using KITTI viewer web tool. Next, for
quantitative analysis, we use point cloud similarity metrics such as Chamfer Distance (CD) (Borgefors,
1984), Hausdorff Distance (HsD) (Huttenlocher et al., 1993), and F1 Score (Goutte & Gaussier, 2005).
Furthermore, to verify the utility of the restored data, we also check the 3D object detection accuracy
with pre-trained detection models.

5.2 RESTORATION PERFORMANCE

Comparison Schemes. We conducted comparisons in various ways to confirm the superiority of
ConcreTizer . We start with Point Regression (Mahendran & Vedaldi, 2015; Dosovitskiy & Brox,
2016a;b), a traditional inversion attack method. In Point Regression, post-processing is applied to
eliminate points that fell outside the defined point cloud range or were excessively concentrated
near the origin. Next we compare ConcreTizer with a generative model approach. To perform an
inversion attack using a generative model, a conditional generation with feature data as a condition
must be employed. Among the existing LiDAR point cloud generation models, UltraLiDAR (Xiong
et al., 2023) is the only model based on voxel representation, similar to our feature extractor. We
modified the encoder part of UltraLiDAR to accept voxel features as an input and then trained it with
the KITTI and Waymo datasets.
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Figure 5: Qualitative results for KITTI (scene 73) and Waymo (scene 79). Top shows the original
point cloud, 2D image, and highlighted region. Below, restoration performance of three techniques is
displayed, progressing left to right by layer depth.
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#Downsampling 4 (12th)
(LayerDepth) CD (↓) HD (↓) F1score (↑) AP3D (↑)

Point Regression 3.7381 55.6439 0.1483 0
UltraLiDAR 0.0967 9.8154 0.8388 57.73
ConcreTizer 0.0714 9.5625 0.9350 63.67

Figure 6: Restoration result on VoxelResBackbone with KITTI dataset. At the left, the last layer’s
restoration performance for three techniques is shown. At the right, average performance across the
KITTI dataset is presented. A bar graph depicts relative performance, and a table details raw values.

Result Analysis. Table 1 presents the point scene restoration performance at different depths of Vox-
elBackBone (Yan et al., 2018), utilizing point cloud similarity metrics, while Figure 5 illustrates the
corresponding restored point cloud scenes. It is evident that ConcreTizer consistently demonstrates
exceptional performance across all cases within both the KITTI and Waymo datasets.

It can be observed that traditional Point Regression methods are not feasible for performing inversion
attacks on 3D features. In particular, the results show that numerous points cluster near the origin,
and this phenomenon intensifies as the depth of the layers increases. This can be understood as a
failure to take into account the characteristics inherent to 3D sparse features.

By employing a conditional generation approach, UltraLiDAR can restore the overall scene in a
coarse-grained manner with less significant performance degradation in terms of the HD metric
relative to layer depth. This rough recovery can be attributed to the conversion of 3D sparse features
into 2D dense features, aligning with the 2D VQ-VAE design. In the context of 2D dense features,
problems like VoI dispersion are no longer present, which contributes to better robustness. However,
this transition results in the loss of 3D sparse characteristics, leading to less accurate restoration of
finer details.

In contrast, our ConcreTizer effectively suppresses VoI dispersion through DCS while preserving
the sparse characteristics of 3D features. As a result, despite its simple design, ConcreTizer achieves
a more concrete restoration than the generative model approach. At the deepest layer, ConcreTizer
outperforms the generative approach by 23.4% and 12.4% on KITTI, while on Waymo, it shows
improvements of 21.1% and 4.5% in CD and F1 score, respectively.

In Figure 6, we also tested ConcreTizer to the VoxelResBackbone (Lu et al., 2022). In this case,
when analyzing the representative results from the deepest layer, ConcreTizer exhibits the highest
of performance. A persistent issue with UltraLiDAR is the lack of detailed shape in the restored
scenes. Detailed experimental results, including those conducted with the VoxelResBackbone and the
Waymo dataset, are provided in the supplementary materials.
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Table 2: 3D object detection results with KITTI and Waymo datasets. The reported metric for the
KITTI dataset is Average Precision (AP) at hard difficulty, while for the Waymo dataset, Average
Precision weighted by Heading (APH) is reported at LEVEL2 difficulty.

Detection Model PointPillar PVRCNN VoxelRCNN PointRCNN

K
IT

T
I Original Data 76.11 78.82 78.78 78.25

Point Regression 0 0 0 0
UltraLiDAR 58.32 56.08 59.00 54.19
ConcreTizer 65.97 59.42 64.46 63.62

Detection Model PointPillar PVRCNN VoxelRCNN CenterPoint

W
ay

m
o Original Data 0.5604 0.6534 0.6554 0.6239

Point Regression 0 0 0 0
UltraLiDAR 0.2328 0.1602 0.2179 0.1944
ConcreTizer 0.4245 0.4369 0.4100 0.4107
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Figure 7: Ablation study on VoxelBackbone with KITTI dataset. At the left, the restoration
performance for three cases is shown. At the right, average performance across the KITTI dataset is
presented wih boxplot.

5.3 ATTACK PERFORMANCE IN THE CONTEXT OF 3D OBJECT DETECTION

To assess the effectiveness of the restored scenes in compromising privacy, we measured the 3D
object detection accuracy using restored point cloud scenes with separately trained object detection
models. Table 2 displays the benchmark results for the KITTI and Waymo datasets. Point Regression
failed to restore meaningful data, producing entirely unusable results. In addition, UltraLiDAR
performed relatively well on KITTI but showed very poor performance on Waymo, which involves a
broader range and higher scene complexity. This indicates that while generative models can restore
overall shapes, they struggle to restore detailed features. Only ConcreTizer demonstrates a consistent
performance across both datasets, achieving 75.4 to 86.7% and 62.6 to 75.7% of the detection
performance based on original scenes in KITTI and Waymo, respectively.

5.4 ABLATION STUDY: COMPONENT-WISE ANALYSIS

To understand the performance of ConcreTizer , we examine the impact of each component. Figure 7
illustrates the comparative performance of VOC (BCE loss), VOC, and ConcreTizer (VOC+DCS).
Firstly, VOC (BCE loss) reveals that shifting from regression to classification, thus clarifying the
meaning of zero-padded voxels, made restoration possible (6th layer result). However, the BCE loss
struggles to handle the significant label imbalance as the layer depth increases. By comparing VOC
(BCE loss) with VOC, it becomes evident that using SF loss helps mitigate the label imbalance issue
to some extent. Nonetheless, in the results of VOC, the restored points tend to cluster in specific areas,
resulting in biased restoration (12th layer result). Only ConcreTizer successfully restores points with
a distribution closely matching the original point cloud. This effectiveness stems from DCS’s ability
to efficiently mitigate the dispersion of VoI that arises with deeper layer.

5.5 PARTITIONING POLICY IN DISPERSION-CONTROLLED SUPERVISION

We conduct experiments to determine the effective strategy for applying DCS in ConcreTizer , given
a specific 3D feature extractor. Restoration performance is evaluated on the KITTI dataset by varying
the number of DCS instances (i.e., the number of inversion blocks). In each case, partitioning is
applied at positions that aim to achieve an even division of the total number of layers. As shown
in Figure 8, applying 10 DCS instances leads to significantly worse performance than not using
DCS at all (i.e., DCS 1). This is because the restoration error of each block accumulates as it goes
through multiple blocks. The best performance is achieved with 2, 3, or 4 DCS instances, where
each partitioned block contains at least one downsampling layer. This is attributed to the additional
supervision effectively suppressing VoI dispersion that occurs during the downsampling process.
Therefore, to maximize the benefits of supervision, partitioning should align with the downsampling
layers, where VoI dispersion manifests. Qualitative results for different DCS instances and further
discussion on the optimal DCS split position are provided in the supplementary materials.
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Figure 8: Effect of the number of DCS instances. DCS 1 is the end-to-end approach without
partitioning. DCS 2, 3, and 4 use downsampling-based partitioning with 2 or 1 downsampling layers
per block. DCS 10 partitions at every layer.

Table 3: Effect of point cloud augmen-
tation. Measured: AP3D (detection ac-
curacy) of the SECOND model and CD
(restoration error) of ConcreTizer .

Rotation (◦) 0 1 2 3 4 5
AP 81.77 38.38 17.08 12.10 6.10 2.78
CD 0.0776 0.1142 0.1728 0.2310 0.2848 0.3344

Scaling (%) 0 2 4 6 8 10
AP 81.77 54.12 24.09 11.47 8.88 5.26
CD 0.0776 0.1468 0.2253 0.2780 0.3179 0.3516

Sampling (%) 100 25 20 15 10 5
AP 81.77 63.35 58.32 52.71 40.31 24.59
CD 0.0776 0.1368 0.1516 0.1717 0.2034 0.2789

Noise level 
(std)

3. Noise (KITTI, Scene)

2

Original Points ConcreTizer Restoration from Features with Each Noise Attached 

(a) Distributed Noise (b) Feature‐centric Noise (c) Empty‐centric Noise

Figure 9: Effect of Gaussian noise. Measured: AP3D

(detection accuracy) of the SECOND model and CD
(restoration error) of ConcreTizer .

5.6 TRADEOFF BETWEEN PRIVACY AND UTILITY

To understand the trade-off between utility (3D object detection accuracy) and privacy protection
(restoration error), we explored various data perturbation techniques as potential defense mechanisms
against our ConcreTizer inversion attack. We investigated two types of perturbations: point cloud
augmentations and Gaussian noise addition. For point cloud augmentations, we applied random
rotations within a range of −a to +a degrees (a=1, 2, 3, 4, 5), random scaling within −s% to +s%
(s=2, 4, 6, 8, 10), and random sampling where r% of points were randomly selected (r=25, 20,
15, 10, 5). For Gaussian noise addition, we introduced noise at the feature data level with three
region-specific configurations: distributed noise, which is uniformly applied across all feature data
regions; feature-centric noise, applied only to VoI containing information; and empty-centric noise,
exclusively targeting empty region.

The results, as shown in Table 3 and Figure 9, indicate that while these data perturbation techniques
can reduce the restoration capability (defense), they also lead to a degradation in object detection per-
formance (target task). This trade-off highlights the significant challenge of mitigating ConcreTizer
attacks without severely compromising the system’s utility. Notably, in Figure 9 we observed that
the sparse nature of 3D feature data causes noise to impact different regions unevenly. This finding
underscores the importance of considering such spatial characteristics when designing future defense
mechanisms. More visualization results are provided in the supplementary materials. We also discuss
more about potential defense mechanisms in the supplementary materials.

6 CONCLUSION

This paper presents the first comprehensive study on model inversion for 3D point cloud restoration.
In the context of autonomous driving, we focus on the most dominant voxel-based feature extractors
and examine the challenges arising from their interaction with 3D point cloud characteristics. Based
on this, we introduced ConcreTizer , a simple yet effective inversion technique tailored for restoring
3D point data from features, which incorporates Voxel Occupancy Classification and Dispersion-
Controlled Supervision. Through rigorous evaluations using prominent open-source datasets such as
KITTI and Waymo, along with representative 3D feature extractors, we not only demonstrated the
superiority of ConcreTizer but also analyzed each of its components in detail for valuable insights.
Our research reveals the vulnerability of 3D point cloud data to inversion attacks, emphasizing
the urgent need to devise extensive defense strategies. While this work focuses on voxel-based
representations, we see inversions attacks for more diverse representations of 3D data, such as point
set, graph, and projection, as valuable future work.
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Appendix
This is a supplementary material which provides additional details for the paper.

A VOXELIZATION EFFECT

To address the challenging issue of restoring 3D features to a 3D point scene, we utilize the Voxel Single-Point
(VSP) hypothesis. This hypothesis asserts that a single point within a voxel is sufficient for restoring a 3D point
scene. We analyze 3D scenes in the KITTI dataset using representative voxelization-based extractors (Zhou &
Tuzel, 2018; Yan et al., 2018) used in AV applications to prove the validity of the VSP hypothesis.

As shown in Figure 10 (left), the proportion of voxels with no points at all or containing only a single point
consists of 99.988% of the total voxels. Figure 10 (right) indicates that voxels with multiple points, which are
extremely rare, are mostly near LiDAR sensors, contrasting with the broader distribution of single-point voxels.
This is due to the inherent characteristic of LiDAR sensors, where the density of points decreases as the distance
from the sensor increases. Figure 11 visualizes regions of the KITTI dataset’s where multi-point voxels exist, by
using the original point cloud and its voxelized result (one point per voxel) using a 3D feature extractor. This
comparison highlights that even close area from the LiDAR sensor shows negligible differences between the
original and voxelized point clouds. This demonstrates that a single point per voxel sufficiently preserves the
scene’s information integrity.

B DISPERSION OF VOI

The Voxels-of-Interest (VoI) experiences dispersion during feature extraction and restoration, as described in
Section 3. In Figure 2 of main paper, ‘Data stattistics’ shows the grid density statistics at each layer throughout
the feature extraction and restoration process. It is evident that the density increases as the data passes through
the downsampling (3rd, 6th, 9th, and 12th) and upsampling (13th, 16th, 19th, and 22th) layers. This phenomenon
is attributed to the inherent nature of convolution and transposed convolution layer, which inherently spread
values to the surrounding regions. Conversely, the density does not change in other layers owing to the
characteristics of submanifold convolution (Graham & Van der Maaten, 2017). Submanifold convolution
effectively tackles memory consumption and computational overhead by preserving the spatial shape of the data
during feature extraction, thereby maintaining unchanged density Given the inherent characteristics of operations,
ConcreTizer maximizes benefits of additional supervision by partitioning based on the downsampling layer
where VoI dispersion manifests.

C METRICS

The mathematical expressions of the metrics used in evaluation part are as follows. In the following equations,
Let P and Q denote the two point cloud sets and ||x||2 denote the Euclidean norm of vector x. (Implementations
are based on Density-aware Chamfer distance code (?).)

• Chamfer distance (CD): The CD metric is computed by performing minimum-distance matching
between two point cloud sets and then averaging the distances.

CD(P,Q)

=
1

2

(
1

|P |
∑
p∈P

min
q∈Q

||p− q||2 +
1

|Q|
∑
q∈Q

min
p∈P

||p− q||2

)
.

• Hausdorff distance (HD): The HD metric is calculated by performing minimum-distance matching
between two point cloud sets and then taking the maximum distance among the matched pairs.

HD(P,Q)

= max

(
max
p∈P

min
q∈Q

||p− q||2,max
q∈Q

min
p∈P

||p− q||2
)
.

• F1 score: The F1 score can be obtained as a harmonic mean of precision and recall. The correctness of
restored point is judged by whether it falls within a specified threshold radius from a GT point. During
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the evaluation on the KITTI and Waymo datasets, we set the threshold of F1 score as 15 cm and 30
cm, respectively.

F1score = 2× recall × precision

recall + precision
.

Each aforementioned metric has its own advantages and disadvantages in fully assessing the accuracy from a
restoration points perspective. Therefore, in the main paper, we have introduced various metrics and used visual
aids to facilitate a more insightful understanding of the restoration performance.

D IMPLEMENTATION DETAILS

Training. The training process employs an RTX 3090 GPU with 24GB of memory. Initially, feature extractors
are pre-trained separately on the KITTI (Geiger et al., 2012) and Waymo (Sun et al., 2020) datasets, and then
frozen during the training of inversion attack models. The KITTI dataset consists of 3,712 training and 3,769
evaluation data, while the Waymo dataset comprises 15,809 training and 3,999 evaluation data (1/10 sampling
ratio).

The point cloud range and voxel size for the 3D feature extractor are configured according to each dataset’s
3D object detection benchmark. For KITTI, under x: [0, 70.4] m, y: [-40, 40] m, and z: [-3, 1] m of range,
the voxel size is set to (5 cm, 5 cm, 10 cm) resulting in (1408, 1600, 40) grid. For Waymo, under x: [-75.2,
75.2] m, y: [-75.2, 75.2] m, and z: [-2, 4] m of range, the voxel size is set to (10 cm, 10 cm, 15 cm) resulting
in (1504, 1504, 40) grid. Notably, during the training of our inversion attack models, we crop these regions to
approximately 1/16 of the total range to accommodate GPU memory constraints. (For KITTI, x: [0, 17.6] m,
y: [-10, 10] m, and z: [-3, 1] m, resulting in (352, 400, 40) grid. For Waymo, x: [0, 40] m, y: [-20, 20] m, and
z: [-2, 4] m, resulting in (400, 400, 40) grid.) The region near the origin of the LiDAR sensor is selected because
severe distortion is more likely to occur there due to the feature extractor. During the evaluation process, aside
from visualization, the range was extended back to the object detection range. (For visualization, captured
images from the close range are used.)

The training utilizes the Adam optimizer with a learning rate of 0.0001. For the KITTI dataset, models are
trained for 150 epochs with a batch size of 4, while 30 epochs with a batch size of 2 for the Waymo dataset.
When employing SF loss (VOC and ConcreTizer ), the gamma value is set to 2. Tables 4, 5 present the alpha
values used in the experiments. For ConcreTizer , the number of blocks increases alongside the number of
downsampling layers; consequently, the alpha value for each block is denoted as an ordered pair.

License. The licenses of the datasets we used in the experiment are the custom (non-commercial) for KITTI
dataset and the CC BY-NC-SA 3.0 for Waymo dataset, respectively. In the case of the 3D feature extractor, it
was created based on the OpenPCDet (Team, 2020) project corresponding to the license of the Apache License
2.0.

E MODEL ARCHITECTURE

3D feature extractor. Our training process employs two feature extractors: VoxelBackBone and VoxelResBack-
Bone. Their structures are provided in Tables 6, 7, respectively. Both extractors consist of four downsampling
layers, each preceded by submanifold convolution layers. VoxelResBackBone incorporates two submanifold con-
volutional layers and a skip connection forming a residual block, rather than a single submanifold convolutional
layer. Our inversion attack model employs an identical structure for both feature extractors (i.e., symmetric with
VoxelBackBone), considering the absence of spatial dispersion in submanifold convolutions.

Inversion attack model. Table 8 shows the structure of the point regression (PR) model. Basically, it is
symmetrical to the VoxelBackBone feature extractor but output with three-dimensional channel because it
predicts the x, y, and z coordinates excluding the intensity value. Conversely, the voxel occupancy classification
(VOC), as shown in Table 9, exhibits a one-dimensional channel because the occupancy of the voxel unit is
classified in the final layer. Regarding ConcreTizer in Table 10, since it undergoes block-wise training through
dispersion-controlled supervision (DCS), a classification layer is appended to each block. In this case, both
classification and regression are performed together except for last block, as the intermediate layer’s feature
necessitates not only occupancy but also channel values.
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F SUPPLEMENTARY EVALUATION

In this Section, while the main paper already sufficiently conveys our message through its results, we aim to
share more granular experimental outcomes and settings details. This additional information provides deeper
insights and a fuller understanding of our research methodology and findings.

F.1 FURTHER DETAILS OF RESTORATION PERFORMANCE

To understand where the performance of ConcreTizer manifests, we delve into a detailed examination of the
impact of VOC and DCS, the key components of ConcreTizer . Figures 12 and 13 illustrates the comparative
performance of Point Regression, VOC, and ConcreTizer (VOC+DCS) across different depths of the feature
extractor’s layers. These results indicate that using only VOC initially significantly improves performance in all
cases compared to conventional Point Regression. Incorporating DCS ensures sustained performance even with
increased layer depth, particularly evident in metrics like CD and F1 score, where variance is reduced. This
effectiveness stems from DCS’s ability to efficiently mitigate the dispersion of VoI that arises with deeper layer
configurations.

In an extension to the main paper, Table 11 shows a quantitative evaluation result for VoxelResBackBone.
Figures 14, 15, 16, and 17 serve as visual aids to demonstrate the performance for VoxelBackBone and
VoxelResBackBone on a wider array of example scenes from the KITTI and Waymo datasets, respectively. Each
figure shows the restoration results from the final (12th) layer. ConcreTizer demonstrates better performance in
restoring the overall shape when compared to VOC’s restoration, which is more excessively clustered.

F.2 FURTHER DETAILS OF DCS INSTANCES

Section 5.4 covers an ablation study about the number of DCS instances. Figure 18 shows the results restored
for different DCS instances. An increasing number of DCS instances leads to a gradual accumulation of errors
in partitions, resulting in a significant deterioration in restoration quality for ten instances. On the other hand,
the downsampling-based partitioning of ConcreTizer performs better by preventing VoI dispersion, which is
greater than the cumulative effect of error.

F.3 DCS OPTIMAL SPLIT POSITION

When employing DCS, a trade-off between two effects occurs at the split point: while DCS can mitigate
dispersion effects with additional supervision, it also risks accumulating reconstruction errors into the next block.
Section 5.5 analyzes performance about the number of DCS blocks, revealing high performance with either 2 or
4 blocks. Here, we investigate performance with different split positions for 2 and 4 blocks configurations.

The Figure 19 shows the performance when there are two DCS blocks. Notably, split option 0 exhibited a
significant performance drop compared to options 1 or 2. In less dispersed blocks (f12 ~f’9), splitting effect
is minimal, while in highly dispersed blocks (f’9 ~f’2), restoration without splitting is challenging. The best
performance was observed at split option 2 because supervision was effectively placed where dispersion effects
were similar in blocks (f12 ~f’5) and (f’5 ~f’2). Our ConcreTizer (option 1) achieved balanced performance
by evenly splitting based on downsampling layers. Further, in Figure 20 with four DCS blocks, options 0 and 1
displayed inferior performance due to uneven dispersion splitting. Conversely, our ConcreTizer (option 2) and
options 3 and 4 achieved better results by appropriately distributing dispersion effects.

This suggests potential research avenues for finding optimal split positions. The randomization effects in 3D
voxel data can be divided into two types: value randomization due to convolution filters and spatial randomization
caused by downsampling layers. These effects may change depending on the dimension and sparsity of the input
data. Consequently, if we can model the randomization effects for each layer, we can investigate optimal split
positions in future research.

F.4 FURTHER DETAILS OF NOISE EFFECT

Section 5.5 demonstrates the impact of various noise types on feature restoration from the SECOND object
detection model (Yan et al., 2018) and assesses object detection performance with these noise-added features.
Additionally, Figure 21 illustrates the restoration results as noise levels vary, highlighting how the sparse nature
of the 3D features results in different impacts on restoration performance depending on the noise’s location
within the feature.

F.5 POTENTIAL DEFENSE STRATEGIES FOR INVERSION ATTACK

To counter inversion attacks, several defense mechanisms have been proposed, each with unique strengths and
limitations.
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Differential privacy (DP) protects against privacy leakages by adding noise, such as Gaussian or Laplacian,
based on a mathematically defined privacy budget (??). This approach provides robust protection against
worst-case scenarios but excessively sacrifices utility. Recent advancements have integrated DP with generative
models (?Xue et al., 2023), achieving better privacy-utility trade-offs. However, these methods rely on separate
generative models, introducing latency that makes them unsuitable for real-time applications.

Adversarial training improves model robustness by training alongside an attack model. Early methods (??) used
generative models for obfuscation, but this led to inference overhead, which is impractical for latency-sensitive
environments. More recent approaches (Liu et al., 2019) have proposed adversarial training without generative
models, relying solely on the utility model. While this reduces inference overhead, it still requires retraining the
feature extractor for a given attack model.

Feature obfuscation, among other approaches, reduces mutual information between raw data and feature data
through loss functions (Zhang et al., 2022), offering a good balance between privacy and utility. However, this
approach also requires managing both a utility model and an independent model, adding complexity to system
management and maintenance.

Future research should focus on developing defense techniques that offer optimal privacy-utility trade-offs
without sacrificing real-time performance, especially for latency-sensitive applications like autonomous driving.
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Figure 10: (Left) The voxel distribution based on the number of points inside each voxel using a
cumulative distribution function. (Right) The distribution of voxels within the range of x to x+1
meters that are not single-point voxels.

KITTI eval # 340

KITTI eval # 340

# points: 577

# points: 535

# points: 281

# points: 284

Voxelization

Original data

Voxelization result

Figure 11: Effect of voxelization process on point cloud. The voxel size is 5 cm x 5 cm x 10 cm,
and the maximum number of points per voxel is set as 5. Then points in each voxel are averaged to
get a single representative value for each channel.

Table 4: Alpha values of SF loss for VoxelBackBone with KITTI and Waymo dataset.
ConcreTizer employs multiple blocks, each with a distinct alpha value.

# of Downsampling
(LayerDepth) 1 (3rd) 2 (6th) 3 (9th) 4 (12th)

KITTI VOC 0.7 0.75 0.8 0.825
ConcreTizer 0.7 (0.7, 0.75) (0.7, 0.75, 0.75) (0.7, 0.75, 0.75, 0.75)

Waymo VOC 0.6 0.6 0.72 0.75
ConcreTizer 0.6 (0.7, 0.7) (0.9, 0.7, 0.8) (0.9, 0.85, 0.95, 0.95)

Table 5: Alpha values of SF loss for VoxelResBackBone with KITTI and Waymo dataset.
ConcreTizer employs multiple blocks, each with a distinct alpha value.

# of Downsampling
(LayerDepth) 1 (3rd) 2 (6th) 3 (9th) 4 (12th)

KITTI VOC 0.7 0.75 0.8 0.8
ConcreTizer 0.7 (0.7, 0.8) (0.7, 0.8, 0.75) (0.7, 0.8, 0.75, 0.7)

Waymo VOC 0.6 0.5 0.68 0.75
ConcreTizer 0.6 (0.4, 0.4) (0.5, 0.5, 0.6) (0.65, 0.7, 0.8, 0.7)
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Table 6: Baseline 3D feature extractor (VoxelBackBone).

Blocks Layers Output size (KITTI) Output size (Waymo)
Input Voxelization result 4×41×1600×1408 4×41×1504×1504

Down block 1
4×3×3×3, 16

16×3×3×3, 16
16×3×3×3, 32, stride 2,2,2, padding 1,1,1

32×21×800×704 32×21×752×752

Down block 2
32×3×3×3, 32
32×3×3×3, 32

32×3×3×3, 64, stride 2,2,2, padding 1,1,1
64×11×400×352 64×11×376×376

Down block 3
64×3×3×3, 64
64×3×3×3, 64

64×3×3×3, 64, stride 2,2,2, padding 0,1,1
64×5×200×176 64×5×188×188

Down block 4
64×3×3×3, 64
64×3×3×3, 64

64×3×1×1, 128, stride 2,1,1
128×2×200×176 128×2×188×188

Table 7: 3D feature extractor with residual blocks (VoxelResBackBone).

Blocks Layers Output size (KITTI) Output size (Waymo)
Input Voxelization result 4×41×1600×1408 4×41×1504×1504

Down block 1

4×3×3×3, 16

[
16×3×3×3, 16
16×3×3×3, 16 ] ×2

16×3×3×3, 32, stride 2,2,2, padding 1,1,1

32×21×800×704 32×21×752×752

Down block 2 [
32×3×3×3, 32
32×3×3×3, 32 ] ×2

32×3×3×3, 64, stride 2,2,2, padding 1,1,1
64×11×400×352 64×11×376×376

Down block 3 [
64×3×3×3, 64
64×3×3×3, 64 ] ×2

64×3×3×3, 128, stride 2,2,2, padding 0,1,1
128×5×200×176 128×5×188×188

Down block 4 [
128×3×3×3, 128
128×3×3×3, 128 ] ×2

128×3×1×1, 128, stride 2,1,1
128×2×200×176 128×2×188×188

Table 8: Inversion attack model with point regression (PR).

Blocks Layers Output size (KITTI) Output size (Waymo)
Input Down block 4 result 128×2×50×44 128×2×50×50

Up block 4
128×3×1×1, 64, stride 2,1,1

64×3×3×3, 64
64×3×3×3, 64

64×5×50×44 64×5×50×50

Up block 3
64×3×2×2, 64, stride 2,2,2

64×3×3×3, 64
64×3×3×3, 64

64×11×100×88 64×11×100×100

Up block 2
64×2×2×2, 32, stride 2,2,2

32×3×3×3, 32
32×3×3×3, 32

32×21×200×176 32×21×200×200

Up block 1 32×2×2×2, 16, stride 2,2,2 16×41×400×352 16×41×400×400
Regression 16×3×3×3, 3 3×41×400×352 3×41×400×400

Table 9: Inversion attack model with VOC.

Blocks Layers Output size (KITTI) Output size (Waymo)
Input Down block 4 result 128×2×50×44 128×2×50×50

Up block 4
128×3×1×1, 64, stride 2,1,1

64×3×3×3, 64
64×3×3×3, 64

64×5×50×44 64×5×50×50

Up block 3
64×3×2×2, 64, stride 2,2,2

64×3×3×3, 64
64×3×3×3, 64

64×11×100×88 64×11×100×100

Up block 2
64×2×2×2, 32, stride 2,2,2

32×3×3×3, 32
32×3×3×3, 32

32×21×200×176 32×21×200×200

Up block 1 32×2×2×2, 16, stride 2,2,2 16×41×400×352 16×41×400×400
Classification 16×3×3×3, 1 1×41×400×352 1×41×400×400

Table 10: Inversion attack model with VOC and DCS (ConcreTizer ).

Blocks Layers Output size (KITTI) Output size (Waymo)
Input Down block 4 result 128×2×50×44 128×2×50×50

Up block 4
128×3×1×1, 64, stride 2,1,1

64×3×3×3, 64
64×3×3×3, 64

64×5×50×44 64×5×50×50

Classification 4 64×3×3×3, 1 1×6×50×44 1×6×50×50

Up block 3
64×3×2×2, 64, stride 2,2,2

64×3×3×3, 64
64×3×3×3, 64

64×11×100×88 64×11×100×100

Classification 3 64×3×3×3, 1 1×11×100×88 1×11×100×100

Up block 2
64×2×2×2, 32, stride 2,2,2

32×3×3×3, 32
32×3×3×3, 32

32×21×200×176 32×21×200×200

Classification 2 32×3×3×3, 1 1×21×200×176 1×21×200×200
Up block 1 32×2×2×2, 16, stride 2,2,2 16×41×400×352 16×41×400×400

Classification 1 16×3×3×3, 1 1×41×400×352 1×41×400×400
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Table 11: Inversion attack result for VoxelResBackBone with KITTI and Waymo dataset.
Average CD and HD values in centimeters, and F1 scores with 15 cm and 30 cm thresholds for KITTI
and Waymo datasets. Metrics evaluate over two scene sets with 3769 and 3999 scenes, respectively.

#Downsampling 1 (3rd) 2 (6th) 3 (9th) 4 (12th)
(LayerDepth) CD (↓) HD (↓) F1score (↑) CD (↓) HD (↓) F1score (↑) CD (↓) HD (↓) F1score (↑) CD (↓) HD (↓) F1score (↑)

K
IT

T
I

Point Regression 1.2115 21.7866 0.3752 1.1540 31.3538 0.4101 2.9976 52.9479 0.2421 3.7381 55.6439 0.1483
UltraLiDAR 0.0766 8.2591 0.9040 0.0773 8.0839 0.9054 0.0811 7.8901 0.8945 0.0977 7.8521 0.8329

VOC (BCE loss) 0.0318 7.5409 0.9918 0.0368 7.5395 0.9907 0.1217 8.4344 0.8122 0.6315 23.0653 0.6012
VOC 0.0319 7.5384 0.9918 0.0349 7.5336 0.9917 0.0490 7.5900 0.9645 0.1261 10.9786 0.8726

ConcreTizer 0.0319 7.5384 0.9918 0.0367 7.5336 0.9913 0.0478 7.7806 0.9801 0.0714 9.5625 0.9350

W
ay

m
o

Point Regression 1.4991 54.7718 0.7556 2.0036 60.7505 0.7194 3.8474 70.1183 0.5761 4.5276 71.9906 0.4951
UltraLiDAR 0.0840 11.0301 0.9735 0.0890 11.6088 0.9635 0.1009 11.6971 0.9503 0.1243 11.9076 0.9128

VOC (BCE loss) 0.0380 10.2578 0.9981 0.0445 10.2615 0.9981 0.1038 11.9206 0.9150 0.5445 25.7258 0.6273
VOC 0.0380 10.2366 0.9983 0.0445 10.2678 0.9980 0.0658 10.5032 0.9758 0.1384 14.6677 0.8946

ConcreTizer 0.0380 10.2366 0.9983 0.0466 10.2431 0.9981 0.0629 10.6323 0.9922 0.0946 11.6200 0.9479
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Figure 12: Component-wise comparison with KITTI dataset.
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Figure 13: Component-wise comparison with Waymo dataset.
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Figure 14: Additional qualitative results for VoxelBackBone with KITTI dataset. Each row
presents the restoration result and corresponding original data for a specific KITTI validation scene.
The input is the 12th (the final) layer.
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Figure 15: Additional qualitative results for VoxelBackBone with Waymo dataset. Each row
presents the restoration result and corresponding original data for a specific Waymo validation scene.
The input is the 12th (the final) layer.
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Figure 16: Additional qualitative results for VoxelResBackBone with KITTI dataset. Each row
presents the restoration result and corresponding original data for a specific KITTI validation scene.
The input is the 12th (the final) layer.
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Figure 17: Additional qualitative results for VoxelResBackBone with Waymo dataset. Each row
presents the restoration result and corresponding original data for a specific Waymo validation scene.
The input is the 12th (the final) layer.
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Figure 18: Qualitative result for different DCS instances with ConcreTizer model.
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Figure 19: DCS #2 split option 0 to 2.
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Figure 20: DCS #4 split option 0 to 4.
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Figure 21: Qualitative results for different noise levels.
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