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Quantization is a critical step to enable efficient LLM serving under limited re-
source. However, previous research observes that certain weights in the LLM,
known as outliers, are significantly sensitive to quantization noises. Existing quan-
tization methods leave these outliers as floating points or higher precisions to re-
tain performance, posting challenges on the efficient hardware deployment of the
mixed-precision model. This work investigates an alternative way to tame the sen-
sitive weights’ impact on the quantization error, by reducing the loss Hessian trace
with respect to outliers through an efficient fine-tuning process. We proposeNoise
Perturbation Fine-tuning (NPFT), which identifies outlier weights and add ran-
domweight perturbations on the outliers as the model going through a PEFT opti-
mization. NPFT tames the sensitivity of outlierweights so that the quantizedmodel
performance can be improved without special treatment to the outliers. When ap-
plied to OPT and LLaMA models, our NPFT method achieves stable performance
improvements for both uniform and non-uniform quantizers, while also offering
better inference efficiency. Notably, the simplest RTN can achieve performance on
par with GPTQ using our NPFT on LLaMA2-7B-4bits benchmark.

1. Introduction
Large Language Models (LLMs), usually with billions of parameters, have demonstrated impres-
sive problem-solving abilities across diverse tasks [1–4]. The enhanced performance, largely driven
by the scaling of both training data and model parameters [5], has made it challenging to deploy
LLMs on edge computing devices. For example, a model like GPT-3 [6], with 175 billion parame-
ters, requires 350 GB storage space in FP16 and powerful GPUs such as A100 for quick inference,
which makes deployment on devices like laptops or mobile phones infeasible without significant
model compression. As a promising approach, low-bit weight quantization can help address this
issue by enabling efficient inference and reducing storage requirements. Pioneering works such as
GPTQ [7] and Squeeze LLM [8] can compress LLaMA [9] model weights to 3-4 bits with a nearly
lossless performance, achieving 2-3× speed up on GPUs.
The most straightforward way to perform weight quantization is via linear uniform quantization,
which quantizes the entire model to the same bit-width using simple quantizers like Round-to-
Nearest (RTN). However, it is widely acknowledged that weights are not equally important in a neural
network. There is a small fraction of weights that are very sensitive to quantization and lead to signif-
icant performance degradation if quantized. This is because these sensitive weights (also referred
to as outliers) have a larger impact on the outputs of their respective layers, which in turn affects
the final loss of the model. As shown in Fig. 1, the performance of two OPT [10] models dropped
significantly after applying RTN quantization. However, preserving 0.5% of the outliers as FP16
can greatly recover the performance of the quantized model. A 4-bit quantized model with 0.5%
full-precision outliers can achieve performance comparable to that of a full-precision model.
In light of this, existing work typically focuses on reducing the quantization error of outliers by
preserving them. For example, SqueezeLLM [8] proposed to store outliers as a sparse FP16 ma-
trix and design a non-uniform sensitivity-based quantizer for other weights. In SpQR [11], out-
liers are extracted in the form of channel groups and quantized to a higher bit-width. AWQ [12]
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Figure 1: (Left) RTN suffers from the degradation caused by quantizing outliers. Preserving 0.5%
of the outliers in FP16 can greatly recover the performance of the quantized model. (Right) NPFT
brings significant improvement to the performance of single bit-width modelswithout preserving
any outliers in FP16. When applied to OPT 1.3B/2.7B models, our method outperforms RTN base-
line by a large PPL margin of over 2.9/0.9 on the C4 benchmark.

proposed to select outliers based on activation distribution and reduce their quantization error by
per-channel scaling. In general, existing works tend to preserve outliers at a higher precision than
normal weights. However, even though this may not significantly impact the overall size of the
quantized model, it results in the model being in a mixed-precision state. According to [13], most
GPUs prefer operations with a uniform data type, as mixed precision requires different storage
methods inmemory, hindering the full utilization of GPUmemory bandwidth. Additionally, mixed
precision disrupts the SIMD processing model, leading to inefficient use of GPU cores.
In this paper, we aim to mitigate the special treatment on outlier weights by enabling the model to
maintain good performance even after quantizing these outliers to the same bit-width. Drawing
inspiration from previous work on analyzing quantization error impacts, like HAWQ [14, 15] and
HERO [16], we pinpoint the quantization error of the outliers is contributed by both their quan-
tization errors and the loss function’s Hessian trace with respect to them. This observation leads
to the proposal of an efficient fine-tuning method named Noise Perturbation Fine-tuning (NPFT),
which helps reduce the Hessian trace of outlier weights with a short parameter-efficient fine-tuning
(PEFT) process. Specifically, we estimate the Hessian trace with the expectedmodel loss under ran-
dom weight perturbations. We further fine-tune the model to reduce the outlier Hessian trace by
performing PEFT optimization with randomweight perturbation being added to the outlier weight
locations in the base model. The NPFT process avoids the costly higher-order gradient computa-
tion needed to optimize Hessian or Fisher matrix directly, while also enjoys a smoother convergence
compared to full QAT as all weights are still kept as floating-points in the training process. As shown
in Fig. 1, NPFT fine-tuned model shows better PPL than quantized baseline even with the simple
RTN quantizer.
In summary, we make the following contribution in this paper:

• We propose NPFT, a PEFT method that efficiently reduces the Hessian trace of outlier
weights in LLMs;

• The reduced Hessian trace enables outlier weights to be quantized to the same precision
as other weights, without special treatment, while still preserving good quantized model
performance;

• NPFT works with different post-training quantizers, enhancing the performance of quan-
tized models across various bit-width settings.

NPFT enables stable perplexity improvements on various uniform and non-uniform quantizers. For
example, NPFT helps RTN achieve a 3.69 perplexity improvement on OPT-1.3B-4bits and achieve
performance comparable to GPTQ on LLaMA2-7B-4bits. Additionally, by eliminating the need of
preserving any outlier weights in FP16, NPFT achieves a 10% reduction in inference latency on the
4090 GPU.
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2. Related Work
LLM Quantization. LLM quantization can be categorized into two branches: quantization-aware
training (QAT) methods [17–20] and post-training quantization (PTQ) methods [7, 8, 11, 12, 21].
QAT typically requires extensive retraining to recover accuracy after quantization, whereas PTQ
does not involve retraining. Although QAT can enhance the performance of quantized models, it
is not easily scalable to LLMs due to the significant computational resources required for retrain-
ing and the difficulties in convergence. Therefore, most works on LLM quantization focus on PTQ,
which is also the focus of our work. The main difference between our proposed fine-tuning method
and QAT lies in our objective: instead of training the quantized weights to recover the performance,
we aim to regularize the sensitivity of the weights in the floating point model, making the model
more suitable for different PTQmethods. Additionally, our method requires significantly less train-
ing time compared to QAT. For example, it only takes one hour of training on LLaMA2-7B.
Sensitivity-aware PTQ. There exists a small fraction of weights that are more sensitive to quantiza-
tion. Quantizing themwill lead to significant performance degradation. To address this, sensitivity-
aware PTQmethods have been investigated. Someworks focus onmitigating outlier activations. For
example, [22] preserved outlier activations in floating-point format, while [21] established an out-
lier suppression framework that transfers outlier factors to other layers. Otherworks focus on outlier
weights, which is also the issue we aim to mitigate in this paper. [11] proposed a hybrid sparse-
quantized format where the outlier weights are kept in high precision. [8] also isolated outliers in
a sparse FP16 matrix using a Hessian sensitivity-based non-uniform quantizer. [12] extracted the
outliers based on activation distribution and performed per-channel scaling to reduce their quanti-
zation loss. Even though all theseworks have achieved promising results, it is important to note that
they all place the quantized model in a mixed-precision state, which is unfavorable for hardware
deployment. In this work, we aim to reduce the need for special handling of outliers by allowing
the model to retain strong performance even when outliers are quantized to the same bit-width.
Hessian-aware Quantization. Previous works [14, 15] have shown that the Hessian eigenvalues of
the loss function can be used as criteria to determine layer importance in designingmixed-precision
quantization schemes. [16] also proved that themodel robustness against quantization perturbation
can be enhanced by regularizing Hessian eigenvalues. The use of the Hessian to assess the weight
sensitivity, or Hessian regularization to improve quantization performance, has been extensively
explored in CNNmodels. However, explicit Hessian regularizations are infeasible for LLMs due to
their billions of parameters. In this work, we propose an efficient fine-tuning approach, which can
reduce the Hessian trace while bypassing the expensive higher-order gradient calculations required
to direct Hessian regularization.

3. Method

3.1. Identifying Outliers by Hessian Sensitivity
Not all parameters in a neural network contribute equally. In previous works [8, 11], outliers are
defined as weights that have a significant impact on the final loss after quantization. Typically, the
sensitivity of an arbitrary entry wi,j in weight W can be calculated as the induced loss increase:

si,j = L(Wq)− L(W ) (1)
where L is the loss function andWq denotes the weight matrix where wi,j is quantized. We can use
Taylor expansion to well approximate the loss increase under quantization as:

L(Wq)− L(W ) ≈ gT (Wq −W ) +
1

2
(Wq −W )TH(Wq −W ) (2)

where g ∈ Rd×1 and H ∈ Rd×d denote the gradient and Hessian of the loss with respect to W . d
denotes the number of parameters in the weight matrix. Wq and W are flattened into d× 1 vectors
in this equation.
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For pretrained models that are near convergence, the gradient g approaches zero. The quantization
loss will therefore be dominated by the second-order term. In other words, for a fixed quantization
bit-width, the sensitivity of weight wi,j is reflected in the corresponding entry in the diagonal ofH .
However, it is infeasible to identify high-sensitivity outliers through direct calculation of H , as the
computational cost ofH for LLMs is prohibitively high. In this paper, we followed [8] and used the
Fisher Information Matrix to identify outliers, which can be calculated as:

H ≈ F = ggT = ||∂L/∂wi,j ||22 (3)
for a specific weight element wi,j .
After identifying outliers, previous works typically preserve them in FP16 [8, 11] or quantize them
to higher bit-widths [12] to reduce quantization degradation. In this paper, we aim to address this
issue at its root by reducing the sensitivity of outliers.

3.2. Efficient Hessian Regularization
To mitigate the loss increase brought by quantizing outliers, a straightforward way is to add a reg-
ularization term that can minimize the squared sum of the H’s eigenvalues [16], thereby reducing
the outliers’ sensitivity. However, even with the Fisher approximation, directly regularizing H still
requires the computation of higher-order gradients, which is computationally unfeasible for LLMs.
In this paper, we propose an efficient approach for H regularization.
Fortunately, previous works have provided insights on computing Tr(H) without direct access to
H . Based on the fast trace estimation algorithm proposed in [23], Tr(H) can be estimated using
sampled random vector z ∈ Rd whose components are i.i.d sampled from a distribution with zero
mean and identity covariance matrix. Specifically, the estimation is derived as:

Tr(H) = Tr(HI) = Tr(HEz[zz
T ]) = Ez[z

THz] (4)
where I is the identity matrix and E(·) is the expectation.
Considering the random vector z as a perturbation added to the converged weight matrix W , the
expected loss increase induced by the weight perturbation can be approximated with Taylor expan-
sion, similar to Equation (2), as

Ez[L(W + z)− L(W )] ≈ 1

2
Ez[z

THz] =
1

2
Tr(H), (5)

where the first-order term in the Taylor expansion is ignored given the convergence assumption.
As we focus on the weight sensitivity to quantization, we consider a distribution of weight pertur-
bation z that can mimic the impact of quantization on weight values. Specifically, given the quanti-
zation bin width as∆, the round-to-nearest function will change wi,j by at most∆/2. This suggests
that we can represent quantized weight Wq as W + δ, where δ ∈ Rd, ∥δ∥∞ < ∆/2. Therefore, we
approximate the distribution of δ with random weight perturbation z sampled from a zero-mean
uniform distribution between [−∆/2,∆/2]. Note that the covariance of z is ∆2

12 I , which is propor-
tional to identity matrix I . We can therefore estimate the Hessian trace following the derivation in
Equation (4) and (5) as

Tr(H) ∝ Ez∼U [−∆/2,∆/2][L(W + z)− L(W )]. (6)

Based on the fact that Tr(H) will be dominated by the outliers of W since their hessian sensitivity
is typically more than 100 times greater than that of other weights in terms of scale, it is feasible
to reduce outliers sensitivity if we can minimize EzL(W + z) under weight perturbation z applied
to the outlier locations. By fine-tuning the model to be robust to weight perturbations on outlier
locations, we achieve a computationally-efficient implicit regularization on the Hessian matrix.

3.3. Noise Perturbation Fine-tuning
Following the conclusion in section 3.2, the goal of regularizing H is converted into minimize the
expected loss under randomly sampled perturbation z. Following the stochastic gradient descent
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process, we add one independent sample of zi to the weight in each step of model fine-tuning to
fulfill the expected loss computation. Our implementation adopts a two-phase setting as follows.
Per-channel Noise Sampling. At the beginning of each epoch, the outlier positions will be iden-
tified using the Fisher matrix F and perturbation ratio γ. Then zi will be randomly sampled and
added to the corresponding outlier weights in W . Previous work [11] has shown that the outliers
exhibit strong channel correlations, i.e., outliers are usually concentrated in certain columns of W .
Therefore, zi can be sampled per channel and added to all outliers in this channel. The process of
sampling and applying noise can be expressed using the following Torch-style pseudocode 1 :

Algorithm 1 Sample and apply noise
1: Input: weight matrix W , Perturbation ratio γ, Calibration data X ,
2: Output: weight with noise W +zi
3: Calculate F using X
4: outlier_positions = Filter(F , γ) # Obtain top γ% sensitive positions
5: Wo = torch.zeros(W.shape), zi = torch.zeros(W.shape)
6: for position in outlier_positions do
7: Wo[position] = W [position] # Obtain outlier weights
8: end for
9: nonzero_channels = torch.nonzero_columns(Wo) # Obtain the indices of all channels that con-

tain outliers
10: for col_idx in nonzero_channels do
11: noise = torch.rand_like(W [: col_idx]) ∗ (W [: col_idx].max − W [: col_idx].min) + W [:

col_idx].min # Randomly sample noise on this channel
12: noise− = noise.mean # Ensure that noise has zero mean
13: zi[: col_idx] = noise
14: end for
15: W+ = zi # Add noise to W
16: return W

Parameter Efficient Fine-tuning. For efficient fine-tuning, we apply the LoRA [24]adapters on both
self-attention and MLP weights, and merge LoRA weights to the base model after fine-tuning. This
pipeline is shown more clearly in Fig. 2. The weight perturbation is added on the corresponding
location of the basemodelweight, so that the gradient computationwith respect to the LoRAweight
does not require any approximation. To ensure that base model performance is not excessively
compromised, we also introduce a weighted L(W ). The overall training objective is:

min
U,V

[L(W + zi + UTV ) + βL(W + UTV )], (7)

where zi is the weight perturbation following Algorithm 1 and U, V are the LoRA weights.
The proposed fine-tuning process enables the outliers to be less sensitive to the quantization noise,
thereby improving the model performance after post-training quantization.

4. Evaluations

4.1. Experiment Setup
Models and Datasets. We perform an extensive evaluation of NPFT across a range of models, in-
cluding LLaMA [9] and OPT [10] models. We carry out language modeling evaluations using the
C4 dataset [25] and the WikiText2 dataset [26]. We also validate NPFT on three common-sense
reasoning tasks in Appendix B.
Baseline Methods. We compare NPFT against various methods PTQ methods including RTN,
GPTQ [7], AWQ [12] and Squeeze LLM [8]. Unless otherwise mentioned, we use Squeeze LLM

1Note that in Algorithm 1, W and zi are in matrix form with dimensions
√
d×

√
d.
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Figure 2: (Left) Existing PTQmethods preserve outliers in FP16 to prevent significant performance
degradation, but the mixed-precision format is not hardware-friendly. (Right) Our proposed NPFT
regularizes the outliers’ sensitivity through efficient fine-tuning, which enhances the performance
of single bit-width quantized models without special treatment to the outliers.

without outlier retention as baseline. To conduct fair comparison, we quantize the fine-tunedmodel
using existing quantizers (both uniform and non-uniform) and ensure that the quantizer settings
match those in the original works. The results in the experiments are either taken from the original
paper or obtained by running its open-source code.
Efficiency Profiling. We further compare the latency and memory usage of saving and not saving
outliers as FP16 using sqLLM quantizer. Specifically, we measure the latency for generating 128
tokens on a NVIDIA RTX 4090 GPU, using the same optimized cuda kernel in [8]. As NPFT indeed
introduces additional training overhead, we also compare the fine-tuning time cost and memory
usage of NPFT with QAT method EfficientQAT [17].
Hyperparameters. To filter the outliers, we use a calibration dataset comprising 128 randomly se-
lected segments of 512 tokens each from the C4 [25] dataset. Results of different calibration datasets
can be found in Appendix C. In the OPT experiments, we identify 0.5% of the sensitive weights as
outliers and applied noise to them. The OPT models are fine-tuned for 6 epochs with a learning
rate of 5e-6, while in the LLaMA experiments, the perturbation ratio is set to 0.05%, and the model
is fine-tuned for 3 epochs with a learning rate of 5e-5. The β is set to 0.5 for all experiments. Noise
is applied in an output-channel-wise manner.

4.2. Main Results

Tab. 1 shows quantization results for OPT along with representative PTQ methods. Specifically,
we use uniform quantizers RTN and GPTQ, as well as the non-uniform quantizer sqLLM to quan-
tize our fine-tuned models and compare PPLs with each quantizer’s original results. Note that for
sqLLMweonly used its dense-only setting, where both normalweights and outlierswere quantized.
Our NPFT can bring significant improvements to the uniform quantizer. In the OPT-1.3B-4bits ex-
periment, NPFT achieves a 3.69 PPL degradation for RTN on the C4 dataset and 11.89 on WikiText.
For GPTQ, NPFT can improve the performance of OPT-2.7B on C4 by approximately 8.5%. SqLLM,
as the strongest non-uniformPTQbaseline, can still have its performance further improved byNPFT
in the single precision setting. The relatively lower performance enhancement is due to the fact that
this quantizer has already reduced the quantization error of outlier weights.
In Tab. 2, we observe that this pattern extends to 7B models. It is worth noting that with the assis-
tance of NPFT, RTN can achieve performance on par with GPTQ for LLaMA-2-7B-4bits. We solely
use a small fraction of the C4 dataset as calibration data to filter and fine-tune outlierweights. Mean-
while, NPFT also improves the performance when evaluated on unseen datasets like WikiText.
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Table 1: Performance comparison of various quantization methods for OPT-1.3B (top)/2.7B (bot-
tom) on 3-bit and 4-bit settings. Both uniform and non-uniform quantizers are adopted.

OPT-1.3B 3-bit 4-bit
Method Avg. Bits PPL (C4) PPL (Wiki) Avg. Bits PPL (C4) PPL (Wiki)
Baseline 16 14.72 14.62 16 14.72 14.62
RTN 3 inf. inf. 4 24.68 48.19

RTN + NPFT (0.5%) 3 inf. inf. 4 21.74 36.30
GPTQ 3 21.63 20.97 4 16.97 15.47

GPTQ + NPFT (0.5%) 3 19.82 20.71 4 15.57 15.50
sqLLM 3.04 16.42 16.30 4.09 15.01 14.94

sqLLM + NPFT (0.5%) 3.04 16.40 16.30 4.09 14.87 14.77

OPT-2.7B 3-bit 4-bit
Method Avg. Bits PPL (C4) PPL (Wiki) Avg. Bits PPL (C4) PPL (Wiki)
Baseline 16 13.17 12.47 16 13.17 12.47
RTN 3 inf. inf. 4 17.52 16.92

RTN + NPFT (0.5%) 3 inf. inf. 4 16.58 16.32
GPTQ 3 18.17 16.88 4 15.00 12.87

GPTQ + NPFT (0.5%) 3 16.59 16.85 4 13.76 12.88
sqLLM 3.04 14.45 13.85 4.07 13.38 12.80

sqLLM + NPFT (0.5%) 3.04 14.39 13.79 4.07 13.37 12.74

Table 2: Performance comparison of various quantization methods for LLaMA2-7B on 3-bit and 4-
bit settings. Both uniform and non-uniform quantizers are adopted.

LLaMA2-7B 3-bit 4-bit
Method Avg. Bits PPL (C4) PPL (Wiki) Avg. Bits PPL (C4) PPL (Wiki)
Baseline 16 6.97 5.47 16 6.97 5.47
RTN 3 404.45 542.86 4 7.72 6.12

RTN + NPFT (0.05%) 3 224.39 320.64 4 7.42 6.08
GPTQ 3 10.45 8.97 4 7.42 5.90

GPTQ + NPFT (0.05%) 3 10.22 8.99 4 7.40 5.94
AWQ 3.24 7.84 6.24 4.24 7.15 5.72
sqLLM 3.02 7.72 6.18 4.05 7.12 5.62

sqLLM + NPFT (0.05%) 3.02 7.69 6.12 4.05 7.08 5.60

4.3. Theoretical Insight Verification

Reduction of Outliers Sensitivity. In Fig. 3, we illustrate the changes in outlier sensitivity after
applying NPFT. Previous literature has established that the distribution of outliers in the weight
matrix tends to exhibit a channel-wise pattern [11]. Therefore, we randomly select an input chan-
nel from the weight matrix of OPT-1.3B and unfold it along the output channels to compare the
sensitivity of outliers. It is clearly shown that after NPFT, the sensitivity of outliers (both in MLP
and self-attention layers) is significantly reduced. This aligns with the conclusions derived in Sec-
tion 3.2. This also explains why NPFT enhances the performance of quantized models: NPFT helps
reduce the performance degradation caused by quantizing outliers.

4.4. Efficiency Profiling

Inference Efficiency. In Tab. 3, we present the latency and peak GPU memory usage when using
the sqLLM quantizer, comparing scenarios with and without retaining full-precision outliers. The
outliers are stored using the sparse format described in [8] and utilize the corresponding kernel for
inference. When generating 128 tokens on a single 4090 GPU, the uniformly-quantized OPT-1.3B-
4bits model trained with NPFT achieves a 10% reduction in latency, lower CUDA memory usage,
and demonstrates better performance compared to themodelwith outliers retained. A similar trend
is observed in LLaMA2-7B-4bits model.
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Figure 3: Visualization of outlier sensitivity in OPT-1.3B. The sensitivity is obtained by calculating
F . After fine-tuning, the outliers become less sensitive compared to the original model.

Table 3: Latency (s) and peak cudamemory usage (GB) of 4-bit models when generating 128 tokens
on a 4090 GPU. NPFT enables single-precision models to achieve the same level of perplexity (PPL)
as mixed-precision models, while also offering better inference efficiency.

Method OPT-1.3B-4bits LLaMA2-7B-4bits
Lat. (s) cuda Mem. (G) PPL(C4) Lat. (s) cuda Mem. (G) PPL(C4)

sqLLM 2.40 1.08 15.01 4.80 4.46 7.12
sqLLM w/0.5% ol. 2.62 1.09 14.94 5.01 4.74 7.08
sqLLM + NPFT 2.40 1.08 14.87 4.80 4.46 7.08

Training Efficiency. We also compare the computational overhead with the latest QAT method
EfficientQAT [17], whose pipeline also follows a two-phase setting (Block-AP and E2E-QP). As
shown in Tab. 4, NPFT’s training time for LLaMA2-7B is approximately one-fourth that of Effi-
cientQAT. It is worth noting that, unlike EfficientQAT, which requires dedicated training for each
bit-width model, NPFT achieves optimization for multiple bit-width models in one-shot. This not
only significantly simplifies the training procedure but also greatly enhances the efficiency of model
quantization. NPFT requires significantly fewer samples and shorter sequence lengths for calibra-
tion data (shown in Tab. 5), enabling us to perform full-parameter fine-tuning of LLaMA2-7B on a
single V100 GPU. The overhead of NPFT mainly comes from memory usage, as the model needs to
be loaded into memory when calculating the noise. This memory consumption can be addressed
through layer-wise computation in future work.
Table 4: Training time and memory comparison on LLaMA2-7B. NPFT can fine-tune multiple bit-
width models in one shot, requiring significantly less training time.

Method Phase 1 Phase 2 Total Time (h)
Time (h) Mem. (G) Time (h) Mem. (G)

EfficientQAT (3bits) 3.3 8.5 1.5 6.4 4.8
EfficientQAT (4bits) 3.3 8.5 1.5 7.0 4.8

NPFT (3 & 4bits) (0.05%) 0.63 15.23 0.40 6.11 1.03
NPFT (3 & 4bits) (0.5%) 0.78 15.23 0.40 6.11 1.18
NPFT (3 & 4bits) (1%) 0.84 15.23 0.40 6.11 1.24
NPFT (3 & 4bits) (2%) 0.91 15.23 0.40 6.11 1.31

4.5. Ablation Study
Increasing Perturbation Ratio. In Fig. 4, we show the changes in model performance as the pertur-
bation ratio increases. Note that all groups of the same model are controlled for the same number
of training steps. When the perturbation ratio is relatively low (less than 2%), the model’s perfor-
mance does not vary significantly. However, as the ratio increases, it introduces challenges to model
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Table 5: Calibration data comparison on LLaMA2-7B. NPFT requires fewer training samples and
shorter sequence lengths, thereby reducing hardware requirements.

Method Phase 1 Phase 2 HW Req. PPL (Wiki)
samples Seqlen samples Seqlen

EfficientQAT (3bits) 4096 2048 4096 4096 A100 (80G) 5.81
NPFT w/ sqllm (3bits) 128 512 128 512 V100 (32G) 6.12
EfficientQAT (4bits) 4096 2048 4096 4096 A100 (80G) 5.53

NPFT w/ sqllm (4bits) 128 512 128 512 V100 (32G) 5.60

Figure 4: Impact of perturbation ratio on model
performance.

Figure 5: Training loss curves of OPT-1.3B. The
perturbed model converges more swiftly with
β > 0.

convergence, indicating a need for longer training times. LLaMA2-7B ismore robust to perturbation
than OPTs.
Effectiveness of Induced Base Model Loss. To retain base model performance, we induce a bal-
ancedL(W ) during fine-tuning. As illustrated in Fig. 5, The difference between the loss curves with
and without βL(W ) suggests that it benefits the model’s convergence under perturbation.
Perturbation on Different Layers. In Tab. 6, we compare the 4-bit performance changes of the
model when perturbing only the attention layers, only the MLP layers, and all layers together. The
results show that applying perturbations to all layers yields better performance. Benefiting from
LoRA, fine-tuning all layers does not result in a significant increase in training time.

Table 6: Model performance under perturbations applied to different layers. Applying
perturbations to all layers yields the best results.

Model self_attn mlp PPL (C4) PPL (Wiki) Training Time (h)

OPT-1.3B-4bits
✓ × 24.03 49.04 0.39
× ✓ 23.83 37.44 0.39
✓ ✓ 21.74 36.30 0.40

OPT-2.7B-4bits
✓ × 16.96 16.59 0.69
× ✓ 16.94 16.53 0.70
✓ ✓ 16.58 16.32 0.72

5. Conclusion
This work introduces Noise Perturbation Fine-tuning (NPFT), an efficient method to reduce the
sensitivity of outlier weights by applying random perturbations during fine-tuning. By reducing
the loss Hessian trace, NPFT improves quantized model performance without requiring special
treatment for outliers, enhancing both uniform and non-uniform quantizers. Experiments on OPT
and LLaMA models demonstrate consistent performance gains and improved inference efficiency.
Future work will focus on further optimizing NPFT for larger models and exploring its integration
with other quantization techniques to enhance quantization robustness.
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A. Performances under different noise distributions and samling
methods.

We compare different noise distributions and sampling methods in Tab. 7, with uniform noise and
output-channel sampling yielding the best improvements. The noise is effective, regardless of its
distribution, as long as it satisfies the zero mean and Cov ∝ I . The output-channel sampling per-
forms better because outliers are densely concentrated in specific output channels. In contrast, the
input-channel method considers only a few weights when computing the scale, leading to a poor
approximation of the true quantization.

Table 7: Experimental results of different noise.
OPT-1.3B 4-bit
Method Avg. Bits PPL (C4) PPL (Wiki)
Baseline 16 14.72 14.62
RTN 4 24.68 48.19

RTN + NPFT (Uniform + o channel) 4 21.74 36.30
RTN + NPFT (Gaussian + o channel) 4 22.09 35.37
RTN + NPFT (Laplace + o channel) 4 23.18 36.80
RTN + NPFT (Uniform + i channel) 4 24.48 38.42

OPT-2.7B 4-bit
Method Avg. Bits PPL (C4) PPL (Wiki)
Baseline 16 13.17 12.47
RTN 4 17.52 16.92

RTN + NPFT (Uniform + o channel) 4 16.58 16.32
RTN + NPFT (Gaussian + o channel) 4 17.04 16.60
RTN + NPFT (Laplace + o channel) 4 17.00 16.55
RTN + NPFT (Uniform + i channel) 4 17.27 17.04

B. NPFT on common-sense reasoning tasks.
We further validated our method on 3 different downstream tasks, including PIQA (Physics), ARC
(Science and logic), and Storycloze (Story coherence). The results (accuracy %) are shown in Tab.
8. Consistent improvements are observed on all 3 tasks.

Table 8: OPT models performances on different common-sense reasoning tasks
OPT-1.3B 3-bit 4-bit
Method PIQA ARC Storycloze PIQA ARC Storycloze
Baseline 72.36 50.93 70.78 72.36 50.93 70.78
RTN 52.77 27.97 47.61 67.63 49.20 59.13

RTN + NPFT (0.5%) 54.57 28.07 47.10 68.61 50.25 63.40
GPTQ 68.34 46.17 65.25 70.73 59.97 69.64

GPTQ + NPFT (0.5%) 68.01 51.12 66.10 70.78 60.11 69.96

OPT-2.7B 3-bit 4-bit
Method PIQA ARC Storycloze PIQA ARC Storycloze
Baseline 74.81 54.34 71.74 74.81 54.34 71.74
RTN 51.90 26.05 46.98 73.72 52.90 70.78

RTN + NPFT (0.5%) 52.72 26.60 46.91 73.77 59.09 71.16
GPTQ 71.38 48.19 68.43 73.99 53.11 70.46

GPTQ + NPFT (0.5%) 71.57 54.12 68.11 73.66 59.55 71.23
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C. NPFT using various calibration datasets.
We conducted additional experiments with various calibration datasets, including C4, Wiki, and
Ptb, as shown in Tab. 9. NPFT consistently improves performance across all datasets. The calibra-
tion data in ourmethod identifies outliers, which exhibit generality in language generation tasks, re-
maining consistent across datasets as the most sensitive weights. These results demonstrate NPFT’s
robustness in regularizing universal outliers.

Table 9: OPT models performances on different calibration datasets.
OPT-1.3B 4-bit
Method Avg. Bits PPL (C4) PPL (Wiki) PPL (Ptb)
Baseline 16 14.72 14.62 20.29
RTN 4 24.68 48.19 57.30

RTN + NPFT (C4) 4 21.74 36.30 29.31
RTN + NPFT (Wiki) 4 22.08 36.33 32.53
RTN + NPFT (Ptb) 4 22.59 35.76 29.58

OPT-2.7B 4-bit
Method Avg. Bits PPL (C4) PPL (Wiki) PPL (Ptb)
Baseline 16 13.17 12.47 17.97
RTN 4 17.52 16.92 31.05

RTN + NPFT (C4) 4 16.58 16.32 21.21
RTN + NPFT (Wiki) 4 17.04 16.58 21.63
RTN + NPFT (Ptb) 4 17.20 16.80 21.89

D. Inference improvements of different context lengths.
As long-context processing is crucial for LLMs, we also added results with varying lengths in Tab.
10. The results show that the latency speedup of our method increases with longer outputs, achiev-
ing over a 3s improvement when generating 2048 tokens on RTX4090.

Table 10: OPT-1.3B-4bit latency(s) for generating different lengths of tokens.
Method num of tokens latency (s)

128 256 512 1024 2048
Full model 4.13 7.87 15.74 28.66 54.94

sqLLM w/0.5% ol. 2.62 5.21 10.47 21.15 43.65
sqLLM + NPFT 2.40 4.72 9.65 19.37 40.11
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