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Abstract
Schrödinger bridges (SBs) provide an elegant
framework for modeling the temporal evolution
of populations in physical, chemical, or biological
systems. Such natural processes are commonly
subject to changes in population size over time
due to the emergence of new species or birth and
death events. However, existing neural parame-
terizations of SBs such as diffusion Schrödinger
bridges (DSBs) are restricted to settings in which
the endpoints of the stochastic process are both
probability measures and assume conservation
of mass constraints. To address this limitation,
we introduce unbalanced DSBs which model the
temporal evolution of marginals with arbitrary
finite mass. This is achieved by deriving the time
reversal of stochastic differential equations with
killing and birth terms. We present two novel
algorithmic schemes that comprise a scalable
objective function for training unbalanced DSBs
and provide a theoretical analysis alongside chal-
lenging applications on predicting heterogeneous
molecular single-cell responses to various cancer
drugs and simulating the emergence and spread
of new viral variants.

1. Introduction
Modeling the evolution of distributions is a fundamental
principle that finds application in various domains such
as natural sciences (Bunne et al., 2021; Schiebinger et al.,
2019), signal processing (Kolouri et al., 2017), and eco-
nomics (Galichon, 2018). These fields rely on capturing the
collective dynamics of particles and face inherent challenges
due to the limitations of continuous monitoring. Observa-
tions are only typically restricted to discrete time points,
making it difficult to track individual particles along their
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trajectories. For instance, in biology, assessing cellular re-
sponses to cancer drugs typically involves killing the cells,
resulting in unpaired measurements of cell populations be-
fore and after treatment. Similarly, reconstructing the dy-
namics of infectious diseases presents difficulties in tracing
the origin and complete infection history of new viral vari-
ants.

Optimal transport (OT) (Santambrogio, 2015; Villani, 2009)
has recently emerged as a central tool to reconstruct popu-
lation dynamics from periodic snapshots, by providing an
actionable way of connecting these unpaired measurements.
The fundamental objective of OT is to flow a distribution
(µ0) into another (µ1) while minimizing a user-designed
cost. In its static form, its solution yields a (stochastic) map
between two marginals, which describes the transition from
the initial to the final one (Cuturi, 2013; Schiebinger et al.,
2019).

However, in many cases, the primary interest lies in accu-
rately describing the continuous dynamics of particles over
time (Bunne et al., 2022; Tong et al., 2020; Bunne et al.,
2023). The dynamic OT problem thus aims at estimating a
path measure, i.e., a probability measure over the space of
particle trajectories, rather than a static map between initial
and final observations. This formulation, also known as
the Schrödinger bridge (SB) problem (Schrödinger, 1932),
seeks a path measure that minimizes a specified cost func-
tion while respecting fixed initial and terminal distributions.
To solve the SB problem, recent advancements in diffusion
models (Song et al., 2021b; Ho et al., 2020) have led to the
emergence of powerful algorithmic approximations called
diffusion Schrödinger bridges (DSBs) (De Bortoli et al.,
2021; Chen et al., 2021; Vargas et al., 2021).

When reconstructing temporal dynamics, traditional DSBs
assume that both extreme marginals are normalized mea-
sures on the state-space. In this work, we relax this require-
ment by considering marginals with arbitrary mass and
formulate the unbalanced SB problem. This increased flexi-
bility is particularly relevant in biological applications, as
living entities can experience death or proliferation between
successive observations. For example, the occurrence and
characteristics of cell deaths and births play a crucial role in
understanding cellular responses to drugs.

In order to incorporate time-varying mass into the traditional
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Figure 1. Unbalanced Schrödinger bridge. The time evolution of a cell population encompasses alterations in transcriptomic profiles as
well as natural and externally-induced death and birth events.

DSB methodology, we employ a generalized approach in-
spired by the work of Chen et al. (2022). The main novelty
of our work lies in the development of time-reversal formu-
las for stochastic differential equations (SDEs) with birth
and death mechanisms. This can be seen as a rigorous exten-
sion of DSB from the Euclidean space Rd to its one-point
compactification, denoted as Rd ∪{∞}, in which the added
point∞ serves as a ”cemetery” or ”coffin state.”

To summarize, we make the following contributions: (a) We
derive the time-reversal of diffusions with killing terms and
show they correspond to diffusions with birth. Analogously,
we show that time-reversing diffusions with birth yields
diffusions with death. (b) We leverage these formulas and
associated loss functions to propose a framework for solving
the DSB on Rd ∪ {∞}. (c) We design scalable algorithms
to approximately tackle these unbalanced DSBs problems
with both deaths and births. (d) We assess the performance
of our algorithms on various tasks, with a particular focus
on enhancing the modeling of cellular responses to cancer
drugs. Notably, our experiments demonstrate a significant
impact of including information on deaths and births occur-
ring at intermediate times.

2. Background
Schrödinger bridge and unbalanced transport. The
Schrödinger Bridge (SB) problem can be seen as the dy-
namical counterpart of the static entropy regularized OT
problem. More precisely, the Schrödinger Bridge PSB is
defined by

PSB = argmin{KL(P|P0) : P0 = µ0, PT = µ1} (1)

where µ0, µ1 are probability measures and P0 is a refer-
ence probability path measure, i.e. a probability measure
on the space of continuous functions C([0, T ],Rd). In the
case where P0 is given by a Brownian motion, it can be
shown that PSB

0,T is the coupling between µ0 and µ1 for the
quadratic Wasserstein distance with T−1 entropy regular-
ization (Mikami, 2002). The solutions of (1) are generally
intractable and one has to resort to numerical schemes. One
popular method to approximate PSB is the iterative pro-
portional fitting (IPF) algorithm (Sinkhorn & Knopp, 1967;

Knight, 2008; Peyré & Cuturi, 2019; Cuturi & Doucet, 2014)
which defines processes (Pn)n∈N such that, for any n ∈ N,

P2n+1 = argmin{KL(P|P2n) : PT = µ1}
P2n+2 = argmin{KL(P|P2n+1) : P0 = µ0}

(2)

Under mild assumptions, limn→+∞ Pn = PSB. While opti-
mal transport deals with couplings between two (or more)
probability measures, unbalanced optimal transport removes
this conservation of mass constraint and tackles the problem
of coupling finite measures with possibly different mass.
These unbalanced extensions can be broadly classified into
two families. Previous work investigates relaxations of the
classical OT formula where the hard marginal constraints
are replaced by soft ones (Chizat et al., 2018; Liero et al.,
2018; Yang & Uhler, 2019; Kondratyev et al., 2016). An-
other line of work extends the finite measures to measures
of the same mass by adding a cemetery (or coffin) state {∞}
and performing classical optimal transport on this extended
space (Pele & Werman, 2009; Caffarelli & McCann, 2010;
Gramfort et al., 2015; Ekeland, 2010). Caffarelli & Mc-
Cann (2010) show the equivalence between a partial OT
problem and the OT problem on an extended space with a
coffin state which accounts for the loss of mass. We follow
this line of work and denote the extended state-space as
R̂d = Rd ∪{∞}. Finally, some of the theoretical properties
of the solutions of Schrödinger bridge problems on R̂d are
studied by (Chen et al., 2022).

Diffusion Schrödinger bridges. In order to numerically
approximate the solutions of (1), De Bortoli et al. (2021) in-
troduced DSBs, which leverage recent advances in diffusion
models (Song et al., 2021b; Ho et al., 2020) to solve IPF
iterations (2). The procedure alternates between a projec-
tion on the space of path-measures with either correct initial
distribution or correct terminal distribution. Assuming that
P0 is associated with the SDE dXt = ft(Xt)dt + dBt,
then P1 is associated with the time-reversal (Haussmann
& Pardoux, 1986; Anderson, 1982; Cattiaux et al., 2021)
of this SDE, initialized at µ1. More precisely, we have
(YT−t)t∈[0,T ] ∼ P1 with Y0 ∼ µ1 and

dYt =
[
− fT−t(Yt) +∇ log pT−t(Yt)

]
dt+ dBt
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where pt is the density of P0
t and (Bt)t≥0 a d-dimensional

Brownian motion. The quantity∇ log pt is called the Stein
score and can be estimated using score-matching techniques
(Hyvärinen & Dayan, 2005; Vincent, 2011). While the first
iteration of DSB can be understood as training a diffusion
model, subsequent iterations of DSB go beyond that by
alternating between the optimization of the forward and
backward processes.

3. Time-Reversal of Birth and Death Processes
To numerically address the unbalanced Schrödinger bridge
problem, it is crucial to derive formulas for the IPF proce-
dure which can be easily discretized. In particular, following
the framework of (De Bortoli et al., 2021), we need to derive
time-reversal formulas. We present a succinct overview of
the core concepts and leave a thorough discussion to Ap-
pendices A to D. To simplify notation, given the function
f : Rd → R, we hereinafter write δf(x) := (f(x)−f(∞)).

Diffusion processes with killing. A diffusion process
with killing can be intuitively characterized in terms of its
SDE representation:

dXt = b(Xt)dt+ dBt, (3)

(where b : Rd → Rd is the drift) by defining the killing rate
k(x) ≥ 0 as P (Xt dies in [t, t+ h]) = k(Xt)h + o(h).
Rigorous definitions can be obtained using either Feynman-
Kac semigroups (see Appendix C) or infinitesimal genera-
tors, but we choose the latter approach, since it simplifies
the study of birth processes. To this end, we consider the
one-point compactification of Rd, denoted R̂d = Rd∪{∞},
where∞ denotes the cemetery state after a particle is killed.
For a smooth function f on R̂d, we define an operator K̂ as

K̂(f)(x) =
[
⟨b(x),∇f(x)⟩+ 1

2∆f(x)

− k(x)δf(x)
]
1Rd(x)

(4)

It can be shown that (4) is the infinitesimal generator asso-
ciated with the Feynman-Kac semigroup with killing rate
k, i.e., K̂(f) = limt→0(1/t)(E[f(Xt) | X0 = x] − f(x))
for a process (Xt)t≥0 which is a diffusion with killing on
R̂d. A rigorous treatment of such processes is provided in
Proposition C.6.

Time-reversal of diffusions with killing. We are now
ready to derive our main result: a time-reversal formula
for diffusion processes with killing. Let (Xt)t∈[0,T ] be
the diffusion process with killing rate k, defined by the
generator (4), and (Yt)t∈[0,T ] := (XT−t)t∈[0,T ] be its time
reversal.

Proposition 3.1 (Time reversal; informal). Under mild as-
sumptions, the generator B̂ of the time-reversed process

(Yt)t∈[0,T ] is given for any sufficiently smooth function f
and any x ∈ R̂d by

B̂(f)(t, x) =
[
⟨−b(x) +∇ log pT−t(x),∇f(x)⟩
+ 1

2∆f(x)
]
1Rd(x)

+
∫
Rd

pT−t(x̃)
ST−t

k(x̃)δf(x̃)dx̃ 1∞(x).

(5)

Here, pt is the probability density of Xt and St := P[Xt =
∞].

The key terms appearing in (5) are highlighted in blue.
Note that, if there is no killing in Xt, i.e., k(x) ≡ 0, then
B̂(f)(t, x) reduces to the well-known time-reversal formula
for Euclidean diffusions (Haussmann & Pardoux, 1986;
Cattiaux et al., 2021). In the presence of killing, instead,
Proposition 3.1 leads to the following important observation:
The time-reversal of a diffusion process with killing is a dif-
fusion process with birth. More precisely, the second line
of (5) suggests that the killing rate x 7→ k(x) is turned into
a birth rate x 7→ k(x)pt(x)/St. As a consequence, a region
with a high probability of birth in the backward process is
one in which: (a) the killing rate is large, i.e., many particles
die in the forward process; (b) the density pt is large, i.e., it
is visited often by Xt; (c) St is small, i.e., most of the mass
in the forward process is located somewhere in Rd at time t.

Time-reversal of diffusions with birth. So far, we have
established that the time reversal of a diffusion process with
killing is, itself, a diffusion process with birth. However,
the IPF procedure also requires to time-reverse the latter,
and we, therefore, devote the rest of this section to show
that: The time-reversal of a diffusion process with birth is a
diffusion process with killing. Consider a diffusion process
of the form (3) with birth rate q(x) ≥ 0. Similar to (4), one
can define such a process via the generator B̂ such that, for
any sufficiently smooth f and x ∈ R̂d,

B̂(f)(x) =
[
⟨b(x),∇f(x)⟩+ 1

2∆f(x)
]
1Rd(x)

+
∫
Rd δf(x̃)q(x̃)dx̃ 1∞(x).

(6)

Then, under mild assumptions and using techniques similar
to those in Proposition 3.1, one can show that the generator
K̂ associated with the time-reversed diffusion with birth in
(6) can be expressed as,

K̂(f)(t, x) =
[
⟨−b(x) +∇ log pT−t(x),∇f(x)⟩
+ 1

2∆f(x)
]
1Rd(x)

− ST−t

pT−t(x)
q(x)δf(x) 1Rd(x).

(7)

for any sufficiently smooth function f and x ∈ R̂d. The
key terms in (7) are highlighted in red. Comparing (7)
with (4), we conclude that the time-reversal of a diffusion
with birth rate q(x) is a diffusion with killing rate x 7→
ST−tq(x)/pT−t(x).
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4. Unbalanced Iterative Proportional Fitting
Equipped with the notion of time reversal, we are now
ready to derive an IPF scheme for marginals with arbitrary
mass. First, we recall the basics of unbalanced SBs and then
present two algorithms to approximate the unbalanced IPF
numerically.

Unbalanced SBs. For simplicity, we assume that the tar-
get measures µ0, µ1 satisfy µ0(Rd) ≥ µ1(Rd) and their
restrictions to Rd have smooth densities p0, p1 w.r.t. the
Lebesgue measure. We start by recalling a result from Chen
et al. (2022) which extends the Schrödinger equations to the
unbalanced marginals and forward processes with killing.
We let the process with infinitesimal generator K̂0 defined
in (4) be our prior motion P0 and aim to solve (1). Unlike
in Section 2, though, we consider PSB and P0 to be path
measures on the extended space R̂d. To state the solution to
(1) in this case, we define the functions (φ, φ̂,Ψ, Ψ̂) which,
for any t ∈ [0, T ] and x ∈ Rd, satisfy:

∂tφt(x) = −⟨b(x),∇φt(x)⟩
− 1

2∆φt(x) + k(x)φt(x)− k(x)Ψt

∂tΨt = 0,

∂tφ̂t(x) = −div(bφ̂t)(x) +
1
2∆φ̂t(x)− k(x)φ̂t(x)

∂tΨ̂t =
∫
Rd k(x)φ̂t(x)dx.

(8)

together with the boundary conditions:

φ0φ̂0 = p0, φ1φ̂1 = p1

and

Ψ0Ψ̂0 = 0, Ψ1Ψ̂1 = µ0(Rd)− µ1(Rd)

Proposition 4.1. Under mild conditions, there exists a
unique solution PSB to (1) on R̂d. The paths (Xt)t∈[0,T ] ∼
PSB are associated with the generator K̂SB given, for any
smooth f , t ∈ [0, T ] and x ∈ R̂d, by

K̂SB
t (f)(x) = 1Rd(x)

[
⟨b(x) +∇ logφt(x),∇f(x)⟩

+ 1
2∆f(x)−

Ψt

φt(x)
k(x)δf(x)

] (9)

In addition, (XT−t)t∈[0,T ] is associated with B̂SB, given
for any smooth f and x ∈ R̂d, by

B̂SBt (f)(x) =
[
⟨−b(x) +∇ log φ̂T−t(x),∇f(x)⟩
+ 1

2∆f(x)
]
1Rd(x)

+
∫
Rd

φ̂T−t(x̃)

Ψ̂T−t
k(x̃)δf(x̃)dx̃ 1∞(x).

(10)

To improve readability, we highlight the control terms
(φ,Ψ) of the process with killing in red and those of the
diffusion with birth in blue.

The first part of the proof is a consequence of Chen et al.
(2022, Theorem 9). The generator (9) is given by Chen
et al. (2022, Theorem 10) while the generator (10) is ob-
tained using Proposition 3.1. We leave the discussion on
the connections between (10) and (5), and (9) and (7) to
Appendix C and comment, instead, on the interest of this
result. Define χ, χ̂ : [0, T ] × R̂d → R, for any t ∈ [0, T ]

and x ∈ R̂d, as

χt(∞) = Ψt, χt(x) = φt(x)

χ̂t(∞) = Ψ̂t, χ̂t(x) = φ̂t(x)

It holds that χ and χ̂ satisfy a pair of Backward and Forward
Kolmogorov equations. In Appendix C we show that, if K̂0,⋆

denotes the dual of K̂0, (8) is equivalent to

∂tχt = −K̂0χt, ∂tχ̂t = K̂0,⋆χ̂t,

This means that (8) is in fact a system of dual equations,
even though appearing non-symmetric at first sight. This
system can therefore be related to existing work such as
Liu et al. (2022). Finally, Proposition 4.1 reveals that the
solution PSB when the reference is a killing process is also a
killing process. In particular, (9) implies that the difference
between its generator and the one of the reference depends
only on (φ,Ψ). Analogously, the time reversal of PSB is
a birth process which, as seen in (10), only depends on
(φ̂, Ψ̂).

Unbalanced iterative proportional fitting. We now de-
scribe the unbalanced IPF scheme which serves as the foun-
dation for our proposed algorithms. We consider the se-
quence (Pn)n∈N of measures on R̂d, given by (2), and re-
call that P0 is associated with a diffusion with killing. For
any n ∈ N, we have that: (a) P2n+1 is a diffusion with
birth, given by the time-reversal of P2n, initialized at µ1;
(b) P2n+2 is a diffusion with killing, given by the time-rever-
sal of P2n+1, initialized at µ0. In order to extend DSBs to
unbalanced problems, we need to estimate the parameters
appearing in (5) and (7). Contrary to De Bortoli et al. (2021),
it is not sufficient to estimate the drift of the diffusion, since
we also need to update the killing/birth rate. This motivates
the following result.

Proposition 4.2. Under mild assumptions, there exist
(φn, φ̂n,Ψn, Ψ̂n)n∈N such that, for any n ∈ N, P2n is ini-
tialized at P2n

0 = µ0 and associated with K̂n given for any
t ∈ [0, T ] and x ∈ R̂d by

K̂n
t (f)(x) =

[
⟨b(x) +∇ logφn

t (x),∇f(x)⟩

+ 1
2∆f(x)− k(x)

Ψn
t

φn
t (x)

δf(x)
]
1Rd(x)

Similarly, P2n+1 is initialized at P2n+1
T = µ1 and associ-
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ated with B̂n+1 given by

B̂n+1
t (f)(x) =

[
⟨−b(x) +∇ log φ̂n+1

T−t(x),∇f(x)⟩
+ 1

2∆f(x)
]
1Rd(x)

+
∫
Rd

φ̂n+1
T−t(x̃)

Ψ̂n+1
T−t

k(x̃)δf(x)dx̃ 1∞(x)

(11)

We have that for, any n ∈ N, t ∈ [0, T ] and x ∈ Rd

logφn
t (x) + log φ̂n+1

t (x) = log p2nt (x)

Ψn
t Ψ̂

n+1
t = 1−

∫
Rd p

2n
t (x)dx,

logφn+1
t (x) + log φ̂n+1

t (x) = log p2n+1
t (x)

Ψn+1
t Ψ̂n+1

t = 1−
∫
Rd p

2n+1
t (x)dx, (12)

where pnt is the density w.r.t. the Lebesgue measure of Pn
t

restricted to Rd.

Leveraging Proposition 4.2 and in particular (12), we can
derive an iterative algorithm to compute the path measures
(Pn)n∈N by updating (φn, φ̂n,Ψn, Ψ̂n)n∈N.

Sampling from diffusion with killing or birth. Fi-
nally, whether it be to approximate the quantity
(φn, φ̂n,Ψn, Ψ̂n)n∈N or to sample from the (approximate)
unbalanced Schrödinger bridge, we need to discretize birth
and death dynamics. We start by discussing how to sample
from a diffusion with killing of the form (4). Our approach
is based on the Lie-Trotter-Kato formula (Ethier & Kurtz,
2009, Corollary 6.7, p.33). Since K̂, given by (4), can be
decomposed in K̂cont and K̂disc such that

K̂cont(f)(x) = ⟨b(x),∇f(x)⟩+ 1
2∆f(x)

K̂disc(f)(x) = −k(x)δf(x)

we alternate between sampling according to K̂cont and to
K̂disc, where the latter describes a pure killing process. For
small-enough step-sizes, Ethier & Kurtz (2009, Corollary
6.7, p.33) assert that this amounts to sampling according to
K̂. We discretize the diffusion process using the standard
Euler-Maruyama method and use coin flipping for K̂disc

(see Appendix D for details).

Sampling diffusion with birth is, however, more problematic.
We can still decompose B̂ from (6) into B̂cont and B̂disc with

B̂cont(f)(x) = ⟨b(x),∇f(x)⟩+ 1
2∆f(x)

B̂disc(f)(∞) =
∫
Rd q(x̃)δf(x̃)dx̃,

but B̂disc is a pure birth process, which is more difficult to
sample from. We do that by considering time intervals of
size γ > 0 and assuming that the birth rate can be written
as q(x̃) = ℓ(x̃)p(x̃), where

∫
Rd p(x̃)dx̃ = 1. We can then

sample X̂ ∼ p and then let X = X̂ with probability ℓ(X̂)γ
and X =∞ otherwise, in which case the birth is rejected.

When executing our IPF scheme, the form of B̂n+1
disc , given

by (11), is

B̂n+1
disc (f)(t,∞) =

∫
Rd

φ̂n+1
T−t(x̃)

Ψ̂n+1
T−t

k(x̃)δf(x̃)dx̃

=
∫
Rd

p2n
T−t(x̃)

φn
T−t(x)Ψ̂

n+1
T−t

k(x̃)δf(x̃)dx̃,

where we obtained the second equality using (12). We
therefore have that ℓ(x̃) = k(x̃)/(φn

T−t(x)Ψ̂
n+1
T−t) and

p(x̃) = p2nT−t(x̃). To sample backward paths P2n+1, we
first sample a forward trajectory (Xt)t∈[0,T ] ∼ P2n. If
the particle is at∞ at time t, then we sample a Bernoulli
variable with parameter γk(XT−t)/(φ

n
T−t(XT−t)Ψ̂

n+1
T−t).

The particle is born if this random variable is equal to one.
In that case, we set Yt+γ = XT−t (and Yt+γ = ∞ oth-
erwise). After birth, backward trajectories evolve according
to the continuous diffusion in Rd described by B̂cont. We
call this method shadow trajectory sampling and illustrate
it in Fig. 2 while providing the algorithm in Appendix D.

Figure 2. Shadow trajectory sampling.

5. Unbalanced Diffusion Schrödinger Bridge
with Temporal Difference Loss

Equipped with Proposition 4.2 and the sampling strategies
presented in the previous paragraph, we are now ready to
describe our numerical implementation of (2). We parame-
terize logφn

t , log φ̂
n
t with the two networks ft,θn and f̂t,θ̂n ,

respectively. Note that, contrary to the classical diffusion
Schrödinger bridge setting (De Bortoli et al., 2021; Chen
et al., 2021), we need to estimate logφn

t , log φ̂
n
t and not

only∇ logφn
t ,∇ log φ̂n

t .

Estimating logφn and log φ̂n. To learn f̂t,θ̂n+1 , we first
sample from P2n using ft,θn and Ψn

t , which are assumed to
be known. Once this is done, we compute a loss on f̂t,θ̂n+1

combining the mean-matching (MM) loss (De Bortoli et al.,
2021) (which is a loss on ∇f̂t,θ̂) and a temporal difference

(TD) loss (Liu et al., 2022) (which is a loss on f̂t,θ̂). The
MM loss was designed to compute iterates in classical DSB
while the TD loss was introduced in Liu et al. (2022) in



Unbalanced Diffusion Schrödinger Bridge

order to compute generalized Schrödinger bridges. The TD
loss can be seen as a regularizer to the MM loss. Indeed,
at equilibrium, minimizers f̂t,θ̂⋆ of the MM loss satisfy

f̂t,θ̂⋆ = log φ̂⋆
t + ct, where ct only depends on the time t.

In Appendix F, we provide further details on how the MM
and TD losses can be adapted to the unbalanced setting.
So far we have described how to update f̂t,θn+1 given ft,θn

and Ψn
t . The update of Ψ̂n+1

t , instead, leverages the closed-
form expression Ψ̂n+1

t = (1 −
∫
Rd p

2n
t (x)dx)/Ψn

t , which
follows from (12). Ψ̂n+1

t can, in fact, be computed on the
fly, by approximating

∫
Rd p

2n
t (x)dx with the proportion of

live particles at time t in the forward process. Once we have
estimated (f̂t,θ̂n+1 , Ψ̂n+1) we can estimate (ft,θn+1 ,Ψn+1

t )
in a similar fashion.

Updating Ψn. We know from (8) that at Ψn
t does not

depend on t.1 Using this observation, we consider a correc-
tion strategy which projects Ψt on constant functions. As a
consequence of (8), we have for any n ∈ N,

Ψn = (µ0(Rd)− µ1(Rd))/
∫ 1

0

∫
Rd k(x̃)φ̂

n
t (x̃)dx̃. (13)

We propose a numerical approximation of (13) in Ap-
pendix F.

Algorithm. We are now ready to introduce our numeri-
cal approximation of Unbalanced IPF, termed Unbalanced
Diffusion Schrödinger Bridge with Temporal Difference
(UDSB-TD) and described in Algorithm 1. The proce-
dures UPDATE-PSI, SAMPLE-FORWARD and SAMPLE-
BACKWARD are given in Appendix F. While our algorithm
resembles the one of Liu et al. (2022), we highlight some
key differences: (a) In Liu et al. (2022), the forward and
backward processes do not incorporate killing and/or birth;
(b) as a consequence, it is not possible to update the killing
and birth rates to match a desired mass constraint. It can, in
fact, be shown that the formulation of Liu et al. (2022) cor-
responds to the reweighted approach in Chen et al. (2022),
which is not equivalent to the unbalanced SB.

Limitations of UDSB-TD. Although theoretically
grounded, UDSB-TD has some limitations. Like in Liu
et al. (2022), it needs estimates of logφn

t , log φ̂
n
t , and not

only of ∇ logφn
t ,∇ log φ̂n

t , in order to update Ψ̂ and Ψ.
While the TD loss allows for that, it is less stable than the
MM loss and, more importantly, requires estimates of ρ0, ρ1
which might not be available in practice. Furthermore,
the formula (13) used to update Ψ might be numerically
unstable, especially in high dimensions.

Heuristic estimation of Ψ. To circumvent these limita-
tions, we introduce another algorithm (UDSB-F) that ex-

1This is because the system (8) is still valid for the iterates
(φn, φ̂n,Ψn, Ψ̂n)n∈N.

Algorithm 1 UDSB-TD training

Input: θ, θ̂, µ0, µ1

Output: θ, θ̂
1: for epoch n ∈ {0, ..., N} do
2: ψ ← UPDATE-PSI(θ, θ̂, ψ)
3: (Yt)t∈[0,T ] ← SAMPLE-BACKWARD(θ, θ̂, ψ)
4: while reuse paths do
5: LMM(θ)← LMM((Yt)t∈[0,T ]; θ)
6: LTD(θ)← LTD((Yt)t∈[0,T ]; θ)
7: Update θ using∇θ(LMM + LTD)
8: end while
9: (Xt)t∈[0,T ] ← SAMPLE-FORWARD(θ, θ̂, ψ)

10: while reuse paths do
11: LMM(θ̂)← LMM((Xt)t∈[0,T ]; θ̂)

12: LTD(θ̂)← LTD((Xt)t∈[0,T ]; θ̂)

13: Update θ̂ using ∇θ̂(LMM + LTD)
14: end while
15: end for

hibits a better behavior w.r.t. the dimension of the problem
and does not require the estimation of logφn

t , log φ̂
n
t . While

we do not prove the theoretical validity of this new proce-
dure, we verify empirically in Appendix G that its results
are consistent with UDSB-TD in small dimensions. Fol-
lowing (9), we know that, at equilibrium, the update on
the killing rate is given by x 7→ Ψt/φt(x). Therefore, we
propose to approximate this ratio by x 7→ gζ,t(x), where gζ
is learnable. Rewriting (13) at equilibrium, we have∫ 1

0

∫
Rd k(x)

Ψt

φt(x)
pt(x)dx = µ0(Rd)− µ1(Rd).

This suggests considering the loss L(ζ) =∫ 1

0
E[k(Xt)gζ,t(Xt)]dt − µ0(Rd) + µ1(Rd). We

again highlight that minimizing this loss does not ensure
that gζ,t is the optimal update in Proposition 4.1. However,
using this loss we remark that we no longer need to
estimate logφn

t , log φ̂
n
t . Therefore, we can drop the TD

loss and make the algorithm more scalable by not requiring
estimates of ρ0, ρ1. The algorithm performing the revised
update of the killing rate is presented fully in Appendix F.

6. Experiments
In this section, we assess the performance of our UDSB
solver in two tasks: the reconstruction of simple dynamics
in the plane and the modeling of cellular responses to a
cancer drug. For the treatment of COVID variants spread
and additional experiments comparing the two schemes
discussed in Section 4 (UDSB-TD and UDSB-F), we di-
rect the reader to Appendix G. Henceforth, we utilize the
UDSB-F algorithm due to its enhanced stability and wider
applicability.
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Figure 3. Synthetic datasets. (a) Initial (blue) and final (red) empirical distributions, consisting of 3 groups of points moving horizontally.
When some groups are missing in observations (b, e, dashed), standard SBs fail to learn the correct dynamics (c, f). By introducing death
and birth priors (gray rectangles), unbalanced SBs recover, instead, the true evolution law (d, g). They learn valid interpolations (d1-3)
between incomplete marginals which also reproduce the (arbitrary) mass loss observed at the end (h, circles).

Synthetic dynamics. We first consider the toy dataset
displayed in Fig. 3a, consisting of 3 groups of points that
are known to move along the horizontal axis. Standard
SBs easily reconstruct the dynamics whenever representa-
tives of all groups appear in observed marginals. However,
some clusters may not appear in the empirical distribution.
Under-representation could be, for instance, attributable to
the exceedingly small number of samples considered or be
related to other experimental factors. We represent two of
these cases: one group does not appear in the end marginal
in Fig. 3b, while two are missing in those of Fig. 3e (top-
right and middle-left). In both cases, standard SBs fail to
capture the correct dynamics, since they generate diagonal
trajectories (Fig. 3c, 3f). Orphan particles, which start at
the top-left, are in fact forced to reach their closest points
in the final marginal, i.e., the middle cluster on the right.
This is the product of the assumption placed by SBs that
all particles move continuously in the state space. It is not
possible to encode the knowledge that a (known) fraction of
particles should leave (or enter) the system and that some
particles may be extraneous.

Unbalanced SBs provide instead a natural way of identifying
regions containing particles that should likely not be con-
sidered when learning the diffusion, or ones in which new
particles should appear. They consist of death (and birth)
priors, which we draw here as gray rectangles. A death
zone is, for instance, placed close to the orphan marginal in
Fig. 3b, while a birth zone stands beside the central cluster
on the right of Fig. 3e, since that group of particles does
not have a counterpart in the initial marginal. UDSBs then

learn trajectories between incomplete marginals, by only
using live particles. The statuses of particles are determined
by incrementally adjusting the death (and birth) priors to
match a predefined amount of mass loss. For example, we
consider three different amounts of mass remaining at time
t1 (Fig. 3h) and compute UDSB trajectories for each of
them (Fig. 3d). In all cases, our algorithm computes correct
paths for live particles while ensuring that the number of
deaths matches the mass constraint (Fig. 3h).

Cellular dynamics. Unbalanced SBs have a natural ap-
plication in the field of cellular biology, where the appear-
ance or disappearance of mass has the physical meaning
of cell birth or death. We examine the dataset collected
by (Bunne et al., 2021), which tracks the time evolution of
single-cell markers of melanoma cells undergoing treatment
with a cancer drug. Cell statuses are recorded at 3 different
times and their evolution can be approximated by standard
SBs as a continuous diffusion in their (50-dimensional) fea-
ture space. However, this model ignores that consecutive
measurements capture different cell populations, owing to
the death of some cells –caused either by natural or drug-
induced reasons– and to the birth of new ones. Trajectories
of dying cells are therefore artificially steered to match the
final marginal while the presence of newborn cells cannot
be properly taken into account. By allowing for jumps in
the trajectories of cell statuses, unbalanced SBs overcome,
instead, both limitations and more accurately reproduce the
measurements. They can, in fact, kill cells with statuses that
are dissimilar to the ones found in subsequent measurements
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Figure 4. Single-cell response to a cancer drug. (a) Cell states (projected along their first two principal components) are measured at the
beginning (blue) and at the end (red). The predictions computed by UDSB-F (c) closely matches the one of a standard SB solver (b) but
also accounts for changes in cell population observed at intermediate times (d). The dynamics learned by our unbalanced SB solver (e)
define the evolution of cell states but also describe death and birth events (black and white dots). Ellipses identify the 3σ region around
the mean of the observed population at each timepoint.

Cell Differentiation

Methods MMD ↓ Wε ↓
Chen et al. (2021) 1.86e-2 (0.04e-2) 6.23 (0.02)
Ours, no deaths/births 1.86e-2 (0.09e-2) 6.27 (0.11)
Ours 1.75e-2 (0.11e-2) 6.11 (0.11)

Table 1. Cell evolution prediction results. We compare our
method against a baseline, a classical SB solver, by measuring
the quality of the predicted end statuses of cells. We use two dis-
tributional metrics (MMD, Wε) and report averages and standard
deviations (in parentheses) over 10 runs.

while also generating new cells close to observed ones. In
Fig. 4e, we plot the temporal evolution of cell trajectories
computed by UDSB-F. Colored ellipses represent statuses
less than 3 standard deviations away from empirical means.
Deaths, represented by black dots, allow removing some
of the cells that are far away from observed statuses, while
birth (white dots) help introduce new cells located in the
densest parts of the state-space. UDSB-F ensures that the
number and temporal distribution of deaths/births match
observations at both timepoints (Fig. 4d). At the same time,
it learns a standard SB on live particles, which produces
better quality predictions of the end marginal (Table 1) com-
pared to the (balanced) SB solver by (Chen et al., 2021).
Interestingly, if we sample trajectories from UDSB-F but
disregard deaths and births, the quality of the predictions
deteriorates below the baseline, pointing to the role of the
coffin state in improving the modeling.

7. Conclusion
In conclusion, this work addresses the important task of
transporting data in the unbalanced setting, where mass
can appear or disappear, which is particularly relevant for
accurately tracking population changes in various biology

applications. Our key contribution is an extension of the
IPF procedure for solving diffusion models with death and
birth mechanisms, enabling comprehensive modeling of dy-
namics with time-varying mass information. The derivation
of time-reversal formulas for diffusions with killing and
birth terms plays a crucial role in this extension, providing
the foundation for the proposed algorithms. The resulting
efficient and scalable algorithms are evaluated on various
tasks, including the modeling of cellular responses to cancer
drugs as well as simulating the emergence and spread of
viruses.

Furthermore, our work opens up exciting research avenues
via the established connections between the versatile SB for-
mulation and other fields. In terms of modeling, one promis-
ing direction is the application of our approach to solving
equilibria in mean-field stochastic games where agents may
enter or exit the game, as observed in traffic transportation
data or epidemiology. Additionally, the exploration of the
links between unbalanced SB and fields such as stochastic
optimal control and Wasserstein geometry holds the promise
of deepening the theoretical understanding of SB problems
on the extended, non-Euclidean spaces.
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(Supplementary Material)

In these appendices, we give more details on the stochastic processes we investigate, better describe their links with the
Schrödinger bridge problem, and present additional experiments. Notations are defined in Appendix A. In Appendix B, we
prove the existence of diffusions with killing under mild assumptions, by using general theoretical results from (Ethier &
Kurtz, 2009). We then prove time-reversal formulas (Appendix C). Discretization schemes of diffusions with killing, as well
as the link with their time reversal, are discussed in Appendix D. Appendix E recalls related literature and compares it to
this work. Appendix F examines instead the implementation of UDSB-TD and supplies additional details on the more
scalable heuristic estimation of Ψ, which we use in UDSB-F. Finally, Appendix G includes additional experiments and
details datasets, prior processes, models, hyper-parameters, and evaluation metrics.

A. Notation
We denote Ck

b (Rd,R) the set of functions which are k differentiable and bounded. Similarly, we denote Ck
b (Rd,R) the set

of functions which are k differentiable and compactly supported. The set Ck
0(Rd,R) denotes the functions which are k

differentiable and vanish when ∥x∥ → +∞. For any A ⊂ Rd, we denote cl(A) its closure. Similarly, we denote int(A) its
interior. Finally, we define ∂A = cl(A)∩ int(A)c, the topological boundary of A. We denote by B̄(a ; r) the closed ball with
center a ∈ Rd and radius r > 0. We denote by B(a ; r) the associated open ball. We denote R̂d = Rd ∪ {∞}, the one-point
compactification of Rd. We refer to Kelley (2017) for details on this construction. We simply note that f ∈ C(R̂d), if
f ∈ C(Rd) and f − f(∞) ∈ C0(Rd) and that f ∈ Ck(R̂d) for any k ∈ N if the restriction of f to Rd is in Ck(Rd) and
f ∈ C(R̂d). We recall that in our context, {∞} will play the role of a cemetery state. The space of right continuous with left
limit functions on (0,+∞] with valued in E where E is a topological space is denoted D((0,+∞],E), we refer to Ethier
& Kurtz (2009, p.116) for more details on the topology of this space. For a measure µ on a measurable space E and f a
measurable function on E such that

∫
E
|f |(x)dµ(x) < +∞, we denote µ(f) =

∫
E
f(x)dµ(x).

Next, we define a solution of the martingale problem associated with A, in the sense of Ethier & Kurtz (2009). We only
consider the case where the solutions are right continuous. We assume that E is a metric space and let A ⊂ F(E)× F(E),
where F(E) is the space of real-valued measurable functions on E. A E-valued right continuous stochastic process (Xt)t≥0
is a solution of the martingale associated with A if for any (f, g) ∈ A, (f(Xt) −

∫ t

0
g(Xs)ds)t≥0 is a martingale with

respect to its own filtration. In layman terms, in the case where A is a function, this means that f(Xt) can be written as

f(Xt) =
∫ t

0
A(f)(Xs)ds+Mt,

where (Mt)t≥0 is a martingale. The notion of solution of a martingale problem is associated with the notion of weak
solution to a Stochastic Differential Equation (SDE). We refer to Stroock & Varadhan (1997) for an extensive study of SDEs
from the point of view of martingale problems.

B. Existence of Diffusions with Killing
In this section, we prove the existence of killed diffusions using the theory of infinitesimal generators. We will leverage
general results from (Ethier & Kurtz, 2009). We begin by introducing the infinitesimal generator we are going to study. Let
A : C2

b(Rd,R)→ Cc(Rd,R) be given for any f ∈ C2
c(Rd,R) and x ∈ Rd by

A(f)(x) = 1
2∆f(x) + ⟨b(x),∇f(x)⟩ − k(x)f(x), (14)

with b ∈ C(Rd,Rd) called the drift function and k ∈ C(Rd,R+) called the killing rate. The regularity assumptions are
summarized in the following hypothesis.

12
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Assumption B.1. b ∈ C(Rd,Rd) and k ∈ C(Rd,R+).

Contrary to a classical diffusion associated with a Itô Stochastic Differential Equation (SDE), (14) incorporates a zero order
term x 7→ −k(x)f(x). The fact that k is non-negative is key to the rest of our study. Before stating our main result, we
begin by stating a maximum principle for A.

B.1. A Maximum Principle

In order to apply Ethier & Kurtz (2009, Theorem 5.4), we need to ensure that A satisfies a maximum principle. Such
results are ubiquitous in the analysis of Partial Differential Equations (PDEs). In what follows, we use an extension of the
Hopf maximum principle, see Protter & Weinberger (2012, Theorem 5). For completeness, we provide the proof of this
well-known result in our setting following Protter & Weinberger (2012). We start with the following lemma.

Lemma B.2. Assume Assumption B.1. Let U ⊂ Rd be an open set and f ∈ C2(cl(U),R). Assume that for any x ∈ U, we
have A(f)(x) > 0. Assume that there exists x0 ∈ cl(U) such that f(x0) = sup{f(x) : x ∈ cl(U)}. Then x0 ∈ ∂U.

Proof. First, assume that x0 ∈ U. Then, we have ∇f(x0) = 0 and ∇2f(x0) ≺ 0 and therefore, ∆f(x0) ≤ 0. Since
k ∈ C(Rd,R+), we get that A(f)(x0) ≤ 0, which is a contradiction. Hence x0 ∈ ∂U.

This lemma is also called the weak maximum principle. Equipped with Lemma B.2, we are now ready to prove the main
result of this section (Protter & Weinberger, 2012, Theorem 6).

Proposition B.3. Assume Assumption B.1. Let U ⊂ Rd be an open bounded connected set and f ∈ C2(cl(U),R). Assume
that for any x ∈ U, A(f)(x) ≥ 0. Assume that there exists x0 ∈ U such that f(x0) = sup{f(x) : x ∈ cl(U)}. Then f is
constant on U.

Proof. In this proof, we are going to proceed by contradiction. We construct a function and a domain which contradicts
Lemma B.2. First, we start by identifying an open set in U such that at least one element of the boundary is a maximizer of
f and every element in the interior of the open set is not a maximizer.

Let x0 ∈ U such that f(x0) = M = sup{f(x) : x ∈ cl(U)} and x1 ∈ U such that f(x1) < M . Since U is connected,
there exists γ ∈ C([0, 1],U) such that γ(0) = x0 and γ(1) = x1. Since γ([0, 1]) is compact and Uc is closed, there
exists δ > 0 such that for any t ∈ [0, 1] and x ̸∈ U, ∥γ(t) − x∥ > δ. Denote t0 = sup{f(γ(t)) = M : t ∈ [0, 1]}.
Note that {f(γ(t)) = M : t ∈ [0, 1]} is not empty since 0 ∈ {f(γ(t)) = M : t ∈ [0, 1]}. Let t⋆ ∈ (t0, 1] such that
∥γ(t⋆)− γ(t0)∥ ≤ δ/2. In what follows, we denote x⋆ = γ(t⋆).

Next, we define R ∈ C([0, δ/2],R) given for any s ∈ [0, δ/2] by R(s) = sup{f(x⋆ + sz) : ∥z∥ ≤ 1}, we emphasize that
B̄(x⋆ ; δ/2) ⊂ U and therefore R is well-defined. Since γ(t0) ∈ B̄(x⋆ ; δ/2) and f(γ(t0)) = M , we have R(δ/2) = M .
Note that R is non-decreasing and denote s⋆ = inf{s ∈ [0, δ/2] : R(s) = M}. By continuity, there exists x1 ∈ U such
that ∥x1 − x⋆∥ = s⋆ and f(x1) =M . In addition, by definition of s⋆, for any x ∈ B(x⋆ ; s⋆), f(x) < M .

In the rest of the proof, we first present the easier case, where we assume that there exists a unique x1 ∈ U such that
∥x1 − x⋆∥ = s⋆ and f(x1) = M . The general case will require one more construction. Let r1 = s⋆/2 and note that
B̄(x1 ; r1) ⊂ U. The set V = B(x1 ; r1) is the open set on which we are going to apply Lemma B.2. We are now going to
define a function f̃ ∈ C2(cl(V),R) such that (a) for any x ∈ V, A(f̃)(x) > 0. (b) f̃ admits a maximizer in V. This will
contradict Lemma B.2. For any α > 0, we introduce the following auxiliary function wα ∈ C2(B(x⋆ ; δ),R) given for any
x ∈ B(x⋆ ; δ) by

wα(x) = exp[−α∥x− x⋆∥2/2]− exp[−α(s⋆)2/2].

Since V ⊂ B(x⋆ ; δ) we have that wα is well-defined on V. In addition, using this result and the fact that for any x ∈ V,
∥x− x⋆∥ ≥ ∥x1 − x⋆∥ − ∥x1 − x∥ ≥ s⋆/2 we have for any x ∈ V and α > 0

A(wα)(x) ≥ exp[−α∥x− x⋆∥2/2](α2∥x− x⋆∥2 + α(d− C∥x− x⋆∥)− C)
≥ exp[−α∥x− x⋆∥2/2](α2(s⋆)2/4 + α(d− Cδ/2)− C).

where C = sup{∥b(x)∥ + k(x) : x ∈ cl(U)}. Hence, there exists α0 > 0 such that for any x ∈ V, A(wα0)(x) > 0. In
addition, for any x ∈ ∂V, if ∥x− x⋆∥ ≤ s⋆, we have wα0(x) ≤ 1− exp[−α(s⋆)2/2]. If ∥x− x⋆∥ > s⋆, then wα0(x) < 0.
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We let ξ = inf{f(x) : x ∈ ∂V ∩ B̄(x⋆ ; s⋆)}. If x ∈ B(x⋆ ; s⋆) then f(x) < M . Similarly, because we have
assume that there exists a unique x1 ∈ U such that ∥x1 − x⋆∥ = s⋆ and f(x1) = M and x1 ̸∈ ∂V, we have that if
x ∈ ∂B(x⋆ ; s⋆) ∩ ∂V, f(x) < M . Hence, ξ < M . Let ε > 0 such that ξ + ε(1 − exp[−α(s⋆)2/2]) < M and we
get that for any x ∈ B̄(x⋆ ; s⋆) ∩ ∂V, f(x) + εwα0

(x) < M . In addition, for any x ∈ ∂V ∩ B̄(x⋆ ; s⋆)c, we have
f(x) + εwα0

(x) ≤ M − εwα0
(x) < M . Therefore, we get that for any x ∈ ∂V, f(x) + εwα0

(x) < M . In addition,
f(x1) + εwα0

(x1) =M , since wα0
(x1) = 0. In addition, we have that for any x ∈ V, A(f + εwα0

)(x) > 0. We have a
contradiction with Lemma B.2 upon letting f̃ = f + εwα0

. As emphasize above, we cannot conclude since we made the
additional assumption that x1 was the unique element such that ∥x1 − x⋆∥ = s⋆ and f(x1) =M .

In the rest of the proof, we treat the general case which requires one more construction. Let s̃ = s⋆/2 and consider
x̃ ∈ [x⋆, x1] such that ∥x̃ − x1∥ = s⋆/2. The ball B(x̃ ; s̃) is going to replace B(x⋆ ; s⋆) in the proof above. Next, we
consider r1 = s̃/2 and note that B̄(x1 ; r1) ⊂ U. The set V = B(x1 ; r1) is the open set on which we are going to apply
Lemma B.2. We are now going to define a function f̃ ∈ C2(cl(V),R) such that (a) for any x ∈ V, A(f̃)(x) > 0. (b) f̃
admits a maximizer in V. This will contradict Lemma B.2. For any α > 0, we introduce the following auxiliary function
wα ∈ C2(B(x̃ ; δ),R) given for any x ∈ B(x̃ ; δ) by

wα(x) = exp[−α∥x− x̃∥2/2]− exp[−αs̃2/2],

Since V ⊂ B(x̃ ; δ) we have that wα is well-defined on V. In addition, using this result and the fact that for any x ∈ V,
∥x− x̃∥ ≥ ∥x1 − x̃∥ − ∥x1 − x∥ ≥ s̃/2 we have for any x ∈ V and α > 0

A(wα)(x) ≥ exp[−α∥x− x̃∥2/2](α2∥x− x̃∥2 + α(d− C∥x− x̃∥)− C)
≥ exp[−α∥x− x̃∥2/2](α2(s̃)2/4 + α(d− Cδ/2)− C).

where C = sup{∥b(x)∥ + k(x) : x ∈ cl(U)}. Hence, there exists α0 > 0 such that for any x ∈ V, A(wα0
)(x) > 0. In

addition, for any x ∈ ∂V, if ∥x− x̃∥ ≤ s̃, we have wα0
(x) ≤ 1− exp[−α(s̃)2/2]. If ∥x− x̃∥ > s̃, then wα0

(x) < 0.

We let ξ = inf{f(x) : x ∈ ∂V ∩ B̄(x̃ ; s̃)}. If x ∈ B̄(x̃ ; s̃) and x ̸= x1 then f(x) < M . Hence, ξ < M . Let ε > 0
such that ξ + ε(1− exp[−α(s̃)2/2]) < M and we get that for any x ∈ B̄(x̃ ; s̃) ∩ ∂V, f(x) + εwα0

(x) < M . In addition,
for any x ∈ ∂V ∩ B̄(x̃ ; s̃)c, we have f(x) + εwα0

(x) ≤ M − εwα0
(x) < M . Therefore, we get that for any x ∈ ∂V,

f(x) + εwα0(x) < M . In addition, f(x1) + εwα0(x1) =M , since wα0(x1) = 0. In addition, we have that for any x ∈ V,
A(f+εwα0)(x) > 0. We have a contradiction with Lemma B.2 upon letting f̃ = f+εwα0 , which concludes the proof.

In Proposition B.3, we prove a maximum principle for the elliptic infinitesimal generator (14). In order to define the
backward Kolmogorov equation associated with the process, we need to consider the parabolic infinitesimal generator
instead, given for any f ∈ C2

c((0,+∞)× Rd,R) and t > 0, x ∈ Rd by

A(f)(x) = ∂tf(t, x) +
1
2∆f(t, x) + ⟨b(t, x),∇f(t, x)⟩ − k(x)f(t, x). (15)

It can be shown that the generator (15) also satisfies a strong version of the maximum principle (Nirenberg, 1953).

B.2. Infinitesimal Generator

Using Proposition B.3, we are ready to define diffusion processes with killing. The notion of solution to a martingale
problem are recalled in Appendix A. We also denote Â, the extension of A given in (14) to the one point compactification
R̂d and defined as follows: for any f ∈ C(R̂d) and x ∈ Rd, we have

Â(f)(x) = A(f − f(∞))(x), Â(f)(∞) = 0. (16)

The first equation can be rewritten for any f ∈ C(R̂d) and x ∈ Rd

A(f)(x) = 1
2∆f(x) + ⟨b(x),∇f(x)⟩ − k(x)(f(x)− f(∞)). (17)

We have the following theorem.

Theorem B.4. Assume Assumption B.1. For any probability measure ν on R̂d exists (Xt)t≥0 ∈ D((0,+∞], R̂d) solution
to the martingale problem associated with Â with initial condition ν.
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Proof. The space Rd is locally compact and separable. The generator A is a linear operator and C2
c(Rd,R) is dense in

Cc(Rd,R). In addition, using Proposition B.3, we have that A satisfies the positive maximum principle. We conclude the
proof upon applying Ethier & Kurtz (2009, Theorem 5.4, p.199).

Using Ethier & Kurtz (2009, Section 4, p.182) it is also possible to show the uniqueness (in some sense) of the process
under mild assumptions.

C. Time Reversal of Diffusions with Killing
Now that we have established the existence of a killed diffusion in Appendix B, we study its time-reversal. The main goal of
this section is to identify its associated infinitesimal generator. Before stating these results, we provide some results on the
extended generator (17). In particular, we derive the associated forward and backward Kolmogorov equations.

C.1. Feynman-Kac Semigroups

We start by giving a useful representation of killed diffusions using Feynman-Kac semigroups. We will consider the
following assumptions.

Assumption C.1. b ∈ C(Rd,R), k is bounded and there exists L ≥ 0 such that for any x, y ∈ Rd, ∥b(x)−b(y)∥ ≤ L∥x−y∥.
Assumption C.2. For every f ∈ C(Rd,R) and T > 0, there exists v ∈ C([0, T ]× Rd,R) and v ∈ C1,2((0, T ]× Rd,R)
such that for any t ∈ (0, T ] and x ∈ Rd, we have A(v)(t, x) = 0 with A given by (15) and v(0, x) = f(x). In addition,
there exist C ≥ 0 and m ∈ [0, 1/(2Td)] such that for any x ∈ Rd, sup{∥v(t, x)∥ : t ∈ [0, T ]} ≤ C exp[m∥x∥2].

Note that conditions on the existence and regularity of solutions to the parabolic equation A(v) = 0 and A given by (15)
have been established in the literature under various assumptions on the coefficients of A, see Friedman (2012) or Dynkin
& Dynkin (1965, Theorem 13.16). The following theorem is called the Feynman-Kac representation theorem and draws
an explicit link between SDEs and PDEs. It can be seen as a generalization of the backward Kolmogorov equation, see
Karatzas et al. (1991, Theorem 7.6).

Proposition C.3 (Feynman-Kac formula). Assume Assumption B.1, Assumption C.1 and Assumption C.2. For any
f ∈ C(Rd,R) and T > 0, there exists a unique solution v ∈ C([0, T ]×Rd,R) and v ∈ C1,2((0, T ]×Rd,R) to A(v) = 0.
In addition, we have that for any t ∈ [0, T ] and x ∈ Rd

v(t, x) = E[f(XT ) exp[−
∫ T

t
k(X0

s)ds]], (18)

where (Xt)t≥0 is the unique (strong) solution to dX0
s = b(X0

s)ds + dBs, X0
t = x and (Bs)s≥0 is a d-dimensional

Brownian motion.

The Feynman-Kac formula in Proposition C.3 will be used to establish a backward Kolmogorov equation for killed diffusions.
We conclude this section by giving an explicit form of the semigroup of killed diffusions under assumptions on the killing
rate. More precisely, we are going to show that these diffusions can be seen as a reweighting of the original unconstrained
diffusions. To do so, we need to precise the notion of semigroup. We start with the notion of Markov kernel.

Definition C.4. Let E,F be metric spaces. K : E× B(F)→ [0, 1] is called a Markov kernel if for any x ∈ E, K(x, ·) is a
probability measure and for any A ∈ B(F) we have that K(·,A) is measurable.

We are now ready to define the notion of semigroup. We refer to Ethier & Kurtz (2009, Chapter 4) for a discussion.

Definition C.5. Let (Pt)t≥0 be a collection of Markov kernels with E = F such that for any x ∈ E, P0(x, ·) = δx and for
any s, t ≥ 0, x ∈ E and A ∈ B(E) we have

Pt+s(x,A) =
∫
E
Pt(y,A)Ps(x, dy).

A semigroup on E is said to be strongly continuous on C0(E) if for any f ∈ C0(E), limt→0 Pt(f) = f uniformly and
Pt(f) ∈ C0(E).

The notion of semigroup is intrinsically linked with the one of infinitesimal generator. In particular, we define the generator
associated with a semigroup (Pt)t≥0 as

A(f) = lim
t→0

(Pt(f)− f)/t.
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The domain ofA, denotedD(A), is the space of functions for which the limit is well-defined. This definition of the generator
justifies the notation “Pt = etA”.

In Theorem B.4, we have shown the existence of (Markov) killed diffusions based on mild assumptions on the generator.
The next result goes further and gives an explicit representation of the associated semigroup. The following proposition is
adapted from Sznitman (1998, Theorem 1.1).
Proposition C.6. Assume Assumption B.1 and Assumption C.1. Let (X0

t )t≥0 be the unique (strong) solution to dX0
t =

b(X0
t )dt+ dBt and define (Pt)t≥0 such that for any t ≥ 0 and f ∈ C0(Rd)

Pt(f) = E[f(X0
t ) exp[−

∫ t

0
k(X0

s)ds]]. (19)

Then (Pt)t≥0 can be extended into a strongly continuous semigroup on R̂d. We have that (Pt)t≥0 admits a generator Â with
C2

c(Rd) ⊂ D(Â) and Â given by (16). In addition, we have the following perturbation formulas for any t ≥ 0, x ∈ Rd and
f ∈ C0(Rd):

Pt(x, f) = P0
t (x, f)−

∫ t

0
P0
s(x, kPt−s(f))ds, (20)

= P0
t (x, f)−

∫ t

0
Ps(x, kP

0
t−s(f))ds,

where (P0
t )t≥0 is the semigroup associated with (X0

t )t≥0. Finally, there exists a Markov process (Xt)t≥0 on R̂d associated
with the R̂d extension of (Pt)t≥0.

Proof. We first begin by proving (20). We have for any t ≥ 0

exp[−
∫ t

0
k(X0

s)ds] = 1−
∫ t

0
k(X0

s) exp[−
∫ t

s
k(X0

u)du]ds

= 1−
∫ t

0
k(X0

s) exp[−
∫ s

0
k(X0

u)du]ds.

Hence, for any t ≥ 0, x ∈ Rd and f ∈ C0(Rd), we have

Pt(x, f) = E[f(X0
t )]−

∫ t

0
E[f(X0

t )k(X
0
s) exp[−

∫ t

s
k(X0

u)du]]ds

= E[f(X0
t )]−

∫ t

0
E[k(X0

s)E[f(X̃0
t−s) exp[−

∫ t−s
0

k(X̃0
u)du] | X̃0

0 = X0
s]]ds

= E[f(X0
t )]−

∫ t

0
E[k(X0

s)Pt−s(X
0
s, f)]ds,

which concludes the proof of (20). Since k ∈ Cb(Rd,R), we have for any f ∈ C0(Rd) and x ∈ Rd, (s, t) ∈
Ps(x, kP

0
t−s(f)) which is continuous and therefore we get that for any f ∈ C0(Rd) and x ∈ Rd

limt→0
1
t

∫ t

0
P0
s(x, kPt−s(f)) = k(x)f(x). (21)

We extend (Pt)t≥0 to R̂d by denoting for any f ∈ C(R̂d), x ∈ Rd and t ≥ 0

P̂t(x, f) = Pt(x, f) + f(∞)(1− exp[−
∫ t

0
k(X0

s)ds]).

In addition, we let Pt(∞, f) = f(∞). Note that (P̂t)t≥0 defines a strongly continuous semigroup on R̂d. Using (21) and
the fact that C2

c(Rd) ⊂ D(A0), where A0 is the generator associated with (X0
t )t≥0, we get that the generator of (P̂t)t≥0 is

given for any f ∈ C2
c(Rd) and x ∈ Rd by

A(f)(x) = A0(f)(x)− k(x)f(x).

We conclude the proof upon using Ethier & Kurtz (2009, Theorem 1.1, p.157).

For an introduction to killed diffusions we refer to (Oksendal, 2013), see also (Karlin & Taylor, 1981; Blumenthal & Getoor,
2007).

Let us comment on the form of (19) in Proposition C.6. Formally speaking, this formula indicates that in order to integrate a
function f with respect to the killed diffusion we can consider an integration w.r.t. to the unconstrained diffusion (X0

t )t≥0
with a loss of mass given by the exponential term exp[−

∫ t

0
k(X0

s)ds]. Consider the limit case where k = +∞ on some
domain A and k = 0 otherwise. Then (19) becomes Pt(f) = E[f(X0

t )1t<τA ], where τA = inf{s ≥ 0 : Xs ∈ A}.

Equipped with the notion of Feynman-Kac semigroup, we can rewrite (18) in Proposition C.3 as v(t, x) = PT−t(x, f).
This remark is at the basis of the backward Kolmogorov formula for killed diffusions.
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C.2. Forward and Backward Kolmogorov Equations

In order to derive the time-reversal of a stochastic process it is useful to define its time-reversal (Haussmann & Pardoux,
1986). In what follows, we denote (Xt)t≥0, the killed diffusion, i.e., the process associated with (Pt)t≥0.
Proposition C.7. Assume Assumption B.1, Assumption C.1 and Assumption C.2. Let (Xt)t≥0 be given by Proposition C.6.
Then, for any f ∈ C0(Rd), T, t ≥ 0 with T ≥ t and x ∈ Rd

∂tPt(x, f) = A(Pt(·, f))(x), ∂tPT−t(x, f) = −A(PT−t(·, f))(x), (22)

with A given by (17).

The first part of (22) is referred to as the forward Kolmogorov equation while the second part is referred to as the backward
Kolmogorov equation. The proof is a direct consequence of Proposition C.6. Note that under Assumption C.2 we have
additional regularity assumptions on (t, x) 7→ PT−t(x, f) and therefore its evolution can be made explicit using the
expression of A.

C.3. Reversal of the Fokker-Planck Equation

In this paragraph, we provide a heuristic derivation of the time-reversal of the killed diffusion process. Under mild
assumptions, we get that Pt admits a density w.r.t the Lebesgue measure denoted pt for any t > 0. Note that

∫
Rd pt(x)dx ≤ 1.

In addition, we have that
∂tpt(x) = −div(b(t, ·)pt)(x) + 1

2∆pt(x)− k(x)pt(x).
Note that the right-hand side of the previous equation can formally be identified with the dual operatorA⋆. Now, considering
the time-reversal of the previous equation, we get

∂tpT−t(x) = −div({−b(t, ·) +∇ log pT−t}pT−t)(x) + 1
2∆pT−t(x) + k(x)pT−t(x).

Note that the non-negative term k(x)pt(x) is turned into a non-positive term −k(x)pT−t(x). This suggests that the death
behavior of the forward process is turned into a birth behavior for the backward process. We will make this statement precise
in the next paragraph. This is in contrast with common results which state that if the forward process is in a certain class
then so is the backward process. For instance, in the case of a reflected forward process, the backward is also reflected (Lou
& Ermon, 2023; Fishman et al., 2023).

C.4. Time Reversal of Diffusion With Births

In the previous paragraph, we provided the time-reversal of the dual generator in order to derive the backward evolution of
the density pt. In this section, we follow the approach of (Haussmann & Pardoux, 1986) to derive a pathwise time-reversal.
Doing so we will directly obtain the time-reversal of the generator (and not its dual). We start by recalling the expression of
the extended infinitesimal generator, (16). For any f ∈ C2(R̂d) and x ∈ R̂d we have

Â(f)(x) = [⟨b(x),∇f(x)⟩+ 1
2∆f(x)− k(x)(f(x)− f(∞))]1Rd(x).

In what follows, we let (Xt)t≥0 given by Proposition C.6. We denote St = P[Xt ∈ Rd] for any t ≥ 0. We will also make
the following assumption.
Assumption C.8. For any t ≥ 0, the measure µt on Rd given for any f ∈ Cc(Rd) by µt[f ] = E[f(Xt)1Rd(Xt)] admits a
density pt w.r.t. the Lebesgue measure. In addition (t, x) 7→ pt(x) ∈ C∞b ((0,+∞)× Rd, (0,+∞)). Finally, we assume
that St < 1 for any t > 0.

The following lemma is central to establish our result.
Lemma C.9. Assume Assumption B.1, Assumption C.1 and Assumption C.8. Then for any t > 0, h : Rd × {∞} → R and
g : {∞} → R measurable and bounded, we have

E[1Rd(Xt)h(Xt,∞)g(∞)] = E[1∞(Xt)
∫
Rd h(x,Xt)pt(x)dx/(1− St)g(Xt)].

Proof. Let t > 0, h : Rd × {∞} → R and g : {∞} → R measurable and bounded. First, we have

E[1Rd(Xt)h(Xt,∞)g(∞)] =
∫
Rd h(x,∞)g(∞)pt(x)dx

= E[1∞(Xt)
∫
Rd h(x,Xt)g(Xt)pt(x)dx]/(1− St),
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which concludes the proof.

Based on this lemma, we are now ready to state the our time-reversal result, extending the approach of (Haussmann &
Pardoux, 1986). We make the following assumption, which ensures that integration by part is valid in our setting.
Assumption C.10. For any f, g ∈ C2(R̂d) we have

E[1Rd(Xt)⟨∇f(Xt),∇g(Xt)⟩] = −E[1Rd(Xt)g(Xt)(∆f(Xt) + ⟨∇ log pt(Xt),∇f(Xt)⟩)].

We emphasize that Assumption C.10 finds sufficient condition on the parameters of the unconstrained diffusion such that
this integration by part formula is true in the unconstrained setting. We leave the extension of such results to the killed case
for future work. We are now ready to state our time-reversal formula.
Proposition C.11. Assume Assumption B.1, Assumption C.1, Assumption C.8 and Assumption C.10. Let (Xt)t≥0 given by
Proposition C.6, T > 0 and consider (Yt)t∈[0,T ] = (XT−t)t∈[0,T ]. Then (Yt)t∈[0,T ] is solution to the martingale problem
associated with R̂, where for any f ∈ C2(R̂d), t ∈ (0, T ) and x ∈ R̂d we have

R(f)(t, x) = [⟨−b(x) +∇ log pT−t(x),∇f(x)⟩+ 1
2∆f(x)]1Rd(x)

+
∫
Rd pT−t(x̃)k(x̃)(f(x̃)− f(∞))dx̃/(1− ST−t)1∞(x). (23)

Proof. Let f, g ∈ C2(R̂d). We are going to show that for any s, t ∈ [0, T ] with t ≥ s

E[(f(Yt)− f(Ys))g(Ys)] = E[g(Ys)
∫ t

s
R(f)(u,Yu)du].

This is equivalent to show that for any s, t ∈ [0, T ] with t ≥ s

E[(f(Xt)− f(Xs))g(Xt)] = E[−g(Xt)
∫ t

s
R(f)(u,Xu)du].

Let s, t ∈ [0, T ], with t ≥ s. In what follows, we denote for any u ∈ [0, t] and x ∈ R̂d, g(u, x) = E[g(Xt) | Xu = x].
Using Proposition C.7, we have that for any u ∈ [0, t] and x ∈ R̂d, ∂ug(u, x) + Â(g)(u, x) = 0, i.e. g satisfies the
backward Kolmogorov equation. For any u ∈ [0, t] and x ∈ R̂d, we have

Â(fg)(u, x) = ∂ug(u, x)f(x) + (⟨b(x),∇g(u, x)⟩+ 1
2∆g(u, x))f(x)1Rd(x)

+ (⟨b(x),∇f(x)⟩+ 1
2∆f(x))g(u, x)1Rd(x) + 1Rd(x)⟨∇f(x),∇g(u, x)⟩

+ 1Rd(f(x)g(u, x)− f(∞)g(u,∞))

= ∂ug(u, x)f(x) + Â(g)(u, x)f(x) + 1Rd(x)(f(x)− f(∞))g(u,∞)

+ (⟨b(x),∇f(x)⟩+ 1
2∆f(x))g(u, x)1Rd(x) + 1Rd(x)⟨∇f(x),∇g(u, x)⟩

= (⟨b(x),∇f(x)⟩+ 1
2∆f(x))g(u, x)1Rd(x) + 1Rd(x)⟨∇f(x),∇g(u, x)⟩

+ 1Rd(x)(f(x)− f(∞))g(u,∞). (24)

Using Assumption C.10, we have that for any u ∈ [0, t]

E[1Rd(Xu)⟨∇f(Xu),∇g(u,Xu)⟩]
= −E[1Rd(Xu)g(u,Xu)(∆f(Xu) + ⟨∇ log pu(Xu),∇f(Xu)⟩)]. (25)

In addition, using Lemma C.9, we have that for any u ∈ [0, t]

E[1Rd(Xu)h(Xu,∞)g(u,∞)] = E[1∞(Xu)
∫
Rd h(x,Xu)pu(x)dx/(1− Su)g(u,Xu)]. (26)

Combining (24), (25) and (26), we get that

E[Â(fg)(u,Xu)] = −R(f)(u,Xu)g(u,Xu).

In addition, we have

E[(f(Xt)− f(Xs))g(Xt)] = E[g(t,Xt)f(Xt)− f(Xs)g(s,Xs)]

= E[
∫ t

s
A(fg)(u,Xu)du]

= −E[
∫ t

s
R(f)(u,Xu)g(u,Xu)du] = −E[g(Xt)

∫ t

s
R(f)(u,Xu)du],

which concludes the proof.
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Proposition C.11 shows that the time-reversal of a diffusion with killing is a diffusion with the birth. The update can be split
into two parts. First, the drift of the diffusion is turned into (t, x) 7→ −b(x) +∇ log pT−t(x). This is in accordance with
classical time-reversal results for unconstrained diffusions. The main novelty of Proposition C.11 resides in the change of the
killing procedure to a birth procedure. The killing rate x 7→ k(x) is turned into a birth density (t, x) 7→ k(x)pt(x)/1− St.
This birth density means that, in the time-reversal process, we give birth to a particle near x if k(x)pt(x) is large. This
means that two could conditions must be met for a particle to have a high likelihood to be born (a) the killing rate must
be large, i.e. birth can only occur at places where particles died in the original process. (b) the density pt must be large,
i.e. birth can only occur at places which are visited by the original process.

C.5. Time Reversal of Diffusions with Births

In the Schrödinger bridge setting, we iterate on the time-reversal procedure. This means that we need to consider the
time-reversal of a birth process. In this section, we provide the heuristics to derive such a time-reversal. We assume that
there exists a birth process (Xt)t≥0 taking values in R̂d such that (Xt)t≥0 is Markov and solution to the martingale problem
associated with Â where for any f ∈ C2(R̂d) and x ∈ R̂d we have

Â(f)(x) = (⟨b(x),∇f(x)⟩+ 1
2∆f(x))1Rd(x) +

∫
Rd(f(x̃)− f(∞))q(x̃)1∞(x).

Similarly to the previous section, we consider Assumption C.8 and therefore, we have the existence (and regularity) of a
density pt. Under similar assumptions to Proposition C.11, we have that its time-reversal is also the solution to a martingale
problem with generator R̂ given for any f ∈ C2(R̂d), t ∈ [0, T ] and x ∈ R̂d by

R̂(f)(t, x) = (⟨−b(x) +∇ log pT−t(x),∇f(x)⟩+ 1
2∆f(x))1Rd(x)

− (1− ST−t)q(x)/pT−t(x)(f(x)− f(∞))1Rd(x). (27)

Therefore, the time-reversal of a diffusion process with birth is a diffusion process with death. Similarly to Proposition C.11,
the drift is updated as in the unconstrained case, i.e., x 7→ b(x) is replaced by (t, x) 7→ −b(x) +∇ log pT−t(x). The birth
measure x 7→ q(x) is changed into the killing rate (t, x) 7→ (1− ST−t)q(x)/pT−t(x).

Entropic time-reversal with jumps. In fact (23) and (27) can be inferred from the results of (Conforti & Léonard, 2022).
In this work, the authors consider a pure jump process, i.e., no diffusion, with jumps in Rd. In that case the infinitesimal
generator A is given for any f ∈ C2

c(Rd) and x ∈ Rd

A(f)(x) = ⟨b(x),∇f(x)⟩+
∫
Rd(f(y)− f(x))J(x, dy),

where J is a Markov kernel. Under mild entropic assumptions, the authors prove that the time-reversal is also a process with
pure jumps associated with the infinitesimal generatorR is given for any f ∈ C2

c(Rd), x ∈ Rd and t ∈ [0, T ] by

R(f)(x) = −⟨b(x),∇f(x)⟩+
∫
Rd(f(y)− f(x))R(x, dy),

where R is a Markov kernel such that for any f ∈ C2
c(Rd × Rd)∫

Rd

∫
Rd f(x, y)pt(x)J(x, dy)dx =

∫
Rd

∫
Rd f(x, y)pt(y)R(y,dx)dy.

This equation is sometimes called the flux equation, see Conforti & Léonard (2022, Equation (1.1)). Our setting is different
in that we also consider a diffusive part, i.e. there is an additional term 1

2∆f in our generator and our generator is defined
on the extended space R̂d in order to properly account for the killing and birth processes.

However, assuming that we can extend the flux equation to our setting, we have in the case of a death process J(x, dy) =
k(x)δ∞(dy). Hence, we have that

R(x,dy)(1− St)δ∞(x) = J(y,dx)pt(y),
and therefore R(x, dy) = k(y)pt(y)/(1− St)δ∞(y), which is the update we have in (23). Similarly, in the case of a birth
process J(x, dy) = δ∞(x)q(y)dy. Hence, we have that

R(x,dy)pt(x)δ∞(x) = J(y,dx)(1− St),

and therefore R(x, dy) = q(x)(1 − St)/pt(x)δ∞(y), which is the update we have in (27). Finally, we emphasize that
obtaining a ratio of the form pt(x)/P(Xt = ∞) is similar to what has been obtained in the case of discrete state-space
time-reversal, see (Campbell et al., 2022; Benton et al., 2022) for instance.
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C.6. Duality

In this section, we show that the system (8) can be understood as a pair of Kolmogorov forward and backward equations.

Define χ, χ̂ : [0, T ]× R̂d → R, for any t ∈ [0, T ] and x ∈ R̂d, as

χt(∞) = Ψt, χt(x) = φt(x) and χ̂t(∞) = Ψ̂t, χ̂t(x) = φ̂t(x).

Recall the formula of a generator with killing:

(K̂0f)(x) :=

(
⟨b(x),∇f(x)⟩+ 1

2
∆f(x)− k(x) (f(x)− f(∞))

)
1Rd(x).

Then it is evident that the equations governing Ψt and φt(x) can be rewritten as:

∂tχt = −K̂0χt

which is the usual Kolmogorov backward equation. On the other hand, we will show below that equations governing Ψ̂t and
φ̂t(x) can be interpreted as the Kolmogorov forward equation. To this end, for any two functions f, g : R̂d → R, define the
usual L2-inner product as:

⟨g, f⟩ :=
∫
Rd

f(x)g(x)dx+ f(∞) · g(∞).

For any operator K, its dual K⋆ with respect to ⟨·, ·⟩ is defined as the operator satisfying the relation:

∀f, g, ⟨g,Kf⟩ = ⟨K⋆g, f⟩.

Using the standard integration by part formulas, we get

⟨g, K̂0f⟩ =
∫
Rd

g(x)

(
⟨b(x),∇f(x)⟩+ 1

2
∆f(x)− k(x) (f(x)− f(∞))

)
dx

=

∫
Rd

(
⟨g(x)b(x),∇f(x)⟩+ 1

2
g(x)∆f(x)− k(x)g(x)f(x) + k(x)g(x)f(∞)

)
dx

=

∫
Rd

(
−div

(
b(x)g(x)

)
+

1

2
∆g(x)− k(x)g(x)

)
f(x)dx+

(∫
Rd

k(x)g(x)dx

)
· f(∞)

=: ⟨K̂0,⋆g, f⟩

where the dual of K̂0 is given by

(K̂0,⋆g)(x) :=

(
−div

(
b(x)g(x)

)
+

1

2
∆g(x)− k(x)g(x)

)
1Rd +

(∫
Rd

k(x)g(x)dx

)
1∞.

With these definitions, it holds that χ̂ satisfies the Forward Kolmogorov equation: (8) is equivalent to

∂tχ̂t = K̂0,⋆χ̂t.

D. Unbalanced IPF
In this section, we state the SDEs describing the evolution of log-potentials logφ and log φ̂ along backward and forward
trajectories of the optimal solution to the unbalanced SB problem. We then further comment on the sampling strategies
used for birth processes. We provide formulas which generalize the prior process (3) to diffusions with arbitrary (scalar)
diffusivity σ : [0, 1]→ R+.

D.1. SDEs for Log-Potentials

To simplify the notation, in this and subsequent sections, we denote the Neural Networks parametrizing logφ and log φ̂ as
Y θ and Ŷ θ̂, and their score as:

Zθ(t, xt) = σ∇xY
θ(i, xt)

Ẑ θ̂(t, xt) = σ∇xŶ
θ̂(i, xt)
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Forward dynamics. When accounting for time-varying diffusivity, the forward diffusion process (3) reads:

d
→
Xt = (b+ σZθ) dt+ σ dWt (28)

Along paths (
→
Xt)t, the log-potentials evolve as:

dYt =
(

1
2 ∥Zt∥2 + kt

(
1− Ψ

expYt

))
dt+ ⟨Zt, dWt⟩

dŶt =

(
1
2

∥∥∥Ẑt

∥∥∥2 +∇x · (−b+ σẐt) +
〈
Ẑt, Zt

〉
− kt

)
dt+

〈
Ẑt, dWt

〉 (29)

Backward Dynamics The time-reversal of (28) is:

d
←
Xt = (b− σẐ θ̂) dt+ σ dWt (30)

The log-potentials along (
←
Xt)t follow, instead, the SDEs:

dYs =
(

1
2 ∥Zs∥2 + σ∇x · Zs +

〈
Zs, Ẑs

〉
+ ks

(
Ψ

expYs
− 1
))

ds+ ⟨Zs, dWs⟩

dŶs =

(
∇x · b+ 1

2

∥∥∥Ẑs

∥∥∥2 + ks

)
ds+

〈
Ẑs, dWs

〉 (31)

D.2. Discretization of Diffusions with Killing and Birth

In Algorithms 2 and 3, we need to sample both from the forward (function SAMPLE-FORWARD) and backward dynamics
(function SAMPLE-BACKWARD). We discretize Eqs. (28) and (30) using the standard Euler-Maruyama discretization
(i ∈ {0, I} is the discrete time index):

∆
→
Xi = (b+ σZθ)∆t+ σ∆Wi

and
∆
←
Xi = (b− σẐ θ̂)∆t+ σ∆Wi

The quantities ∆Ŷ and ∆Y are obtained analogously by discretizing Eqs. (29.2) and (31.1).

Transitions to and from the coffin state are, instead, simulated using the technique of shadow paths. The exact mechanism is
provided in Algorithms 2 and 3.

E. Related Work
Unbalanced optimal transport. We start by briefly recalling two different approaches to unbalanced OT. First, the hard
marginal constraints can be relaxed and replaced by soft ones. We refer to Chizat et al. (2018); Liero et al. (2018); Yang
& Uhler (2019); Kondratyev et al. (2016) and the references therein. Second, the measures of interest can be extended to
satisfy the conservation of mass constraint. This is usually done by adding a coffin state {∞}. After this operation, it is
possible to apply standard (although defined on this extended space) tools from OT (Pele & Werman, 2009; Caffarelli &
McCann, 2010; Gramfort et al., 2015; Ekeland, 2010). These works also include entropic relaxations of the OT objective.
Moving to the dynamic and static formulations of unbalanced Schrödinger bridges, Chen et al. (2022) have obtained the
main properties of the Schrödinger Bridge in the unbalanced setting. To the best of our knowledge, our study of the iterates
of the Iterate Proportional Fitting procedure is new.

Diffusion models. The time reversal of the continuous part of the dynamics has been investigated in Anderson (1982);
Haussmann & Pardoux (1986); Cattiaux et al. (2021). It is at the basis of diffusion models (Ho et al., 2020; Song et al.,
2021a). Such approaches represent the state-of-the-art generative models in many domains, from text-to-image generation
(Saharia et al., 2022) to protein modeling (Watson et al., 2022). To the best of our knowledge, no existing diffusion model
includes birth and death mechanisms in the forward and backward processes. Hence, the results we obtain are also new from
a diffusion model perspective. We highlight that the updates we obtain on the birth and death rates resemble closely the



Unbalanced Diffusion Schrödinger Bridge

update obtained for the time-reversal of discrete state-space diffusion models such as Shi et al. (2023). We refer to Benton
et al. (2022) for a treatment of general diffusion models through the lens of the infinitesimal generator. An alternative
approach to our derivations would have been to use these results to establish (i) a variational lower-bound defining a loss
function, (ii) a time-reversal formula. We leave such a study for future work.

Diffusion Schrödinger bridges and extensions. The Diffusion Schrödinger Bridge (DSB) (De Bortoli et al., 2021;
Vargas et al., 2021; Chen et al., 2021) is a new paradigm to solve transport problems efficiently in high dimensions. It
relies on the advent of diffusion models. Several extensions of DSBs have been proposed. Closest to our work is Liu et al.
(2022), which studies a generalized version of the SB problem. In that case, an extra functional is added to the quadratic
control corresponding to the Schrödinger bridge. Even though the updated equations share some similarities with ours, we
highlight some key differences: (i) there is an extra term in the Partial Differential Equation system we consider, which
can be identified with the fact that we consider death, (ii) the dynamics in Liu et al. (2022) do not include birth and death
mechanisms. As a result, the obtained procedure corresponds to a numerical scheme for Chen et al. (2022, Section 5), which
describes a reweighted SB. While the reweighted approach can also account for the loss of mass, it does not update the
particles in a meaningful way from a transport point of view, since the death and birth rate are never updated. Theoretical
properties of the solutions to Schrödinger bridge problems are investigated in Chen et al. (2022). Finally, we highlight that
recent approaches (Somnath et al., 2023; Liu et al., 2023; Shi et al., 2023) introduce new schemes to solve SBs based on the
ideas developed in Lipman et al. (2022).

F. Algorithmic Details
In this section, we clarify the design of our algorithm UDSB-F, which we introduce to mitigate the issues of UDSB-TD.
We present an approximation to the computation of the posterior killing rate which is conducive to stability and scalability.
We highlight the changes to the training and sampling procedures that this approximation entails and how it allows us to
tackle forward dynamics with both killing and births.

F.1. Estimating Extremal values of Log-Potentials

Sampling procedures in Algorithms 2 and 3 iteratively compute the values of Y and Ŷ by starting from one extreme (either
Ŷ0 or YI ) and then adding (or subtracting) the increments ∆Y and ∆Ŷ at each time-step. The computation of Ŷ0 or YI ,
however, requires some care. These extreme values can be approximated by:

Ŷ0 = log
µ0

φ0
≈ logµ0 − Y θ

0

YI = log
µ1

φ̂I
≈ logµ1 − Ŷ θ̂

I ,

but to evaluate these expressions we need access to the log-densities logµ0 and logµ1. Obviously, we should not rely on the
availability of exact, closed-form expressions, since that would make our algorithm not applicable to empirical data. We,
therefore, resort to coarse approximations computed once before starting the training. We can, for instance, fit Bayesian
Gaussian Mixture models but different solutions may be preferable when working with specific types of data.

We note that the need for estimates of marginal densities is a burdensome requirement, which is not placed by solvers of
balanced SBs and its removal motivates our algorithm UDSB-F.

F.2. Training Objectives

In this section, we explicitly state the training objectives used by UDSB-TD.

F.2.1. MM LOSSES

Mean-matching objective. It is easy to adapt the mean-matching objective (De Bortoli et al., 2021) to UDSBs since it
is computed from paths of live particles –which follow a standard diffusion process– and is therefore clearly independent
from deaths. We use the following first-order approximation (in ∆t) of its original expression (b̃ represents indifferently any
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Algorithm 2 SAMPLE-FORWARD(Y θ, Ŷ θ̂,Ψ) UDSB-TD sampling, death forward process
Input: drift b, diffusivity σ, initial mass M0, final mass M1, killing function k

1: Sample position X0 ∼ µ0

2: A0 ← 1 ▷ The particle is initially alive
3: Ŷ0 ← COMPUTE-INITIAL-Y-HAT(Y θ, Ŷ θ̂)
4: for step i in {1, ..., I} do
5: Xi ← Xi−1 +∆

→
Xi

6: Ŷi ← Ŷi−1 +∆Ŷi
7: if Ai−1 = 1 then
8: Flip coin D ∼ Bernoulli

(
1−Ψ k(i,Xi)

expY θ(i,Xi)
∆t
)

9: Ai+1 ← D ▷ Store particle’s fate
10: end if
11: end for
12: return (Xi, Ŷi, Ai)i

Algorithm 3 SAMPLE-BACKWARD(Y θ, Ŷ θ̂,Ψ) UDSB-TD sampling, death forward process
Input: drift b, diffusivity σ, initial mass M0, final mass M1, killing function k

1: Sample position XI ∼ µ1

2: Sample status AI ∼ Bernoulli
(
min

(
1, M1

M0

))
▷ Is the particle alive at k = K?

3: YI ← COMPUTE-INITIAL-Y(Y θ, Ŷ θ̂)
4: for step i in {I − 1, ..., 0} do
5: Xi ← Xi+1 −∆

←
Xi

6: Yi ← Yi+1 −∆Yi
7: if Ai+1 = 0 then
8: R← Fraction of dead particles at time k + 1:
9: Flip coin D ∼ Bernoulli

(
Ψ k(i,Xi)

R expY θ(i,Xi)
∆t
)

10: Ai ← D ▷ Store particle’s fate
11: end if
12: end for
13: return (Xi, Yi, Ai)i

forward or backward drift):

Lmm ≈ ∆t
∑
i

EXi

[∥∥∥(Xi+1 −Xi)− b̃∆t
∥∥∥2] .

When evaluated on forward (
→
Xi)i and backward (

←
Xi)i paths, this loss becomes:

Lmm((
←
Xi)i; θ) = ∆t

∑
i

∥∥∥∥(←Xi+1 −
←
Xi

)
− (b+ σ2∇xY

θ)∆t

∥∥∥∥2
Lmm((

→
Xi)i; θ̂) = ∆t

∑
i

∥∥∥∥(→Xi+1 −
→
Xi

)
− (b− σ2∇xŶ

θ̂)∆t

∥∥∥∥2 .
Minimizing these quantities allows, in our case, to learn the forward/backward trajectories of particles that do not jump to
the coffin state. However, it is not sufficient to fully characterize the magnitude of Y θ and Ŷ θ̂, since only their gradients
appear in it. Lmm is in fact invariant to constant shifts: i.e., there is no difference between Y θ and (Y θ − c) during training.
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Divergence objective. An alternative LMM candidate is given by the divergence-based objective Ldiv by Chen et al. (2021).
Its original formulation in the context of balanced SBs depends only on the scores Z and Ẑ. Surprisingly, the same is not
true for USBs since this objective is affected by the presence of deaths. We extend it to the unbalanced case by recalling (Liu
et al., 2022) that Ldiv can be also expressed as:

Ldiv(θ) = E
Xs∼

←
X

[∫ 1

0

(
dY θ

s (Xs) + dŶ θ̂
s (Xs)

)]
Ldiv(θ̂) = E

Xt∼
→
X

[∫ 1

0

(
dY θ

t (Xt) + dŶ θ̂
t (Xt)

)]
,

where the first expectation runs over the backward dynamics (from N ) while the second uses the forward dynamics (from
Q). The terms related to jumps that appear in the differentials of Ŷ and Y (Eqs. 29 and 31) do not completely cancel out
when summed (i.e., the term kΨ from dY remains). The objective Ldiv(θ), computed as the sum of the equations in (31), is
therefore:

Ldiv(θ) =

∫ 1

0

E
Xs∼

←
X

[
1

2

∥∥Zθ
s (Xs)

∥∥2 + σ∇x · Zθ
s (Xs) +

〈
Zθ
s (Xs), Ẑ

θ̂
s (Xs)

〉
− kΨ

eY
θ
s (Xs)

]
ds,

in which the term in blue is unique to USBs. Note that this new death-related term depends on the parameter that is being
optimized (θ) and cannot, therefore, be ignored when training the network Y θ. The same term also appears in the objective
Ldiv(θ̂), which is obtained by summing the differentials in (29):

Ldiv(θ̂) =

∫ 1

0

E
Xt∼

→
X

[
1

2

∥∥∥Ẑ θ̂
t (Xt)

∥∥∥2 + σ∇x · Ẑ θ̂
t (Xt) +

〈
Ẑ θ̂
t (Xt), Z

θ
t (Xt)

〉
− kΨ

eY
θ
1−t(Xt)

]
dt.

In this case, however, the blue quantity is irrelevant since it does not depend on θ̂. By discretizing the two expressions for
Ldiv and removing unnecessary terms we obtain the losses:

Ldiv

(
(
←
Xi)i; θ

)
= ∆t

∑
i

(
1

2

∥∥∥∥Zθ
i (
←
Xi)

∥∥∥∥2 + σ∇x · Zθ
i (
←
Xi)

+

〈
Zθ
i (
←
Xi), Ẑ

θ̂
i (
←
Xi)

〉
− kΨ

eY
θ
i (
←
Xi)

)

Ldiv

(
(
→
Xi)i; θ̂

)
= ∆t

∑
i

(
1

2

∥∥∥∥Ẑ θ̂
i (
→
Xi)

∥∥∥∥2 + σ∇x · Ẑ θ̂
i (
→
Xi) +

〈
Ẑ θ̂
i (
→
Xi), Z

θ
i (
→
Xi)

〉)
.

(32)

Choosing the MM loss. Either one of the losses Lmm and Ldiv presented above can be used as LMM in Algorithm 1.
However, the choice determines the type of admissible reference drifts –which must be linear if the mean-matching loss
Lmm is selected– and the computational cost of training –which is higher for Ldiv due to the computation of the divergence.

F.2.2. TD LOSS

While sufficient to ensure that ∇xY
θ and ∇xŶ

θ̂ point “in the right direction”, LMM objectives described in the previous
section do not constrain the magnitude of Ŷ θ̂ (which always appears as Ẑ θ̂ = σ∇Ŷ θ̂). Furthermore, the only objective
(Ldiv(θ)) which depends on the magnitude of Y θ is likely insufficient to learn it in practice: the blue term in (32) disappears
when the prior killing rate is 0 or when Ψ becomes exceedingly small, leading to a very weak signal on Y θ. This motivates
our quest for a second type of loss (LTD) which allows learning the magnitudes of Y θ and Ŷ θ̂.

We adopt the TD loss introduced by [Liu Deep]. Its expressions for both networks are given by:

LTD (θ) =

∫ 1

0

E
Xs∼

←
X

[
|Y θ

s (Xs)− Ys|
]
ds

LTD

(
θ̂
)
=

∫ 1

0

E
Xt∼

→
X

[
|Ŷ θ̂

t (Xt)− Ŷt|
]
dt,

where (Ys)s is computed using (31) and (Ŷt)t using (29). In words, the TD loss measures the L1 distance between the
values of Y and Ŷ –which we compute on paths from N and Q respectively– and the output of neural networks Y θ and Ŷ θ̂.
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F.3. Computing Ψ

The previous section describes the losses designed to optimize Y θ and Ŷ θ̂ and we now describe how to update Ψ, which
is the third quantity estimated by UDSB-TD (being required to compute the posterior killing rate Ψk/φ). Its value is
refreshed at the beginning of every training epoch (line 1 of Algorithm 1) by UPDATE-PSI(). Ψ can be computed from the
closed-form expression:

Ψ =

(∫
X
µ0 dx−

∫
X
µ1 dx

)(∫ 1

0

dt

∫
d

dx kφ̂(t, x)

)−1
(33)

which directly follows from the Schrödinger Problem [Chen Unbalanced]. We use the following two approximations.

Approximation 1 The first approximation is the discrete counterpart of the update formula (33) derived from the
Schrödinger system, where the integration over Rd is replaced by a sum over paths (Xi)i:

Ψ ≈ (m0 −m1)

(∑
i

∆t
∑
n

k(i∆t,Xn
i ) exp Ŷ

θ̂(i∆t,Xn
i )

)−1
.

In the above formula, the superscript n indexes members of the batch.

Approximation 2 From (33), by multiplying and dividing by φ inside the integral and then applying the decomposition
φtφ̂t = pt, we obtain instead:

Ψ = (m0 −m1)

(∫ 1

0

dt

∫
d

dx
k

φ
φ̂φ(t, x)

)−1
= (m0 −m1)

(∫ 1

0

dt EXt

[
k

φ
(t,Xt)

])−1
≈ (m0 −m1)

(∑
i

∆t

N

∑
n

k(i∆t,Xn
i )

expY θ(i∆t,Xn
i )

)−1
,

which uses the network Y θ rather than Ŷ θ̂ (which is the one queried by approximation 1).

F.4. Revising the Update of Ψ

The above formulas to update Ψ are heavily dependent on good guesses of Y θ and Ŷ θ̂, since they both appear inside
exponential terms. In practice, however, reliable estimates may not always be available, for several reasons. First, the
user-defined approximations of Y and Ŷ at the extremes may not be good, especially with high dimensional state spaces and
complex data distributions. Second, even if learned approximations of log-potentials φ and φ̂ improve by the end of training,
they can still be inadequate at the beginning.

Unreliable values of Y θ and Ŷ θ̂ hamper convergence, making it slower or, in the worst case, precluding it. We, therefore,
re-parametrize the posterior killing rate k⋆ = kΨ/φ with the help of an additional neural network gζ as:

k⋆ ≈ k(t, x)gζt (x).

We learn gζ using a novel loss, called Ferryman loss, which we present next.

The Ferryman loss. At equilibrium, the amount of mass that reaches the coffin state∞ is given by:∫ 1

0

∫
Rd

k⋆(t, x)pt(x) dxdt

and should be equal to the difference of mass observed at the marginals µ0(Rd) − µ1(Rd). By matching these two
expressions, we get the loss:

L(ζ) =
∫ 1

0

E [k(Xt)gζ,t(Xt)] dt− µ1(Rd) + µ0(Rd), (34)
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where the expectation runs over paths. We stress that this loss does not guarantee the convergence of kgζ to the optimal
form of posterior killing rate kΨ/φ but achieves good-enough results in practice.

The loss function (34) tries to capture a mass constraint at the extremes, i.e., for t = 0 and t = 1. However, we can extend
it to the more general case in which the size of the population mt is also known at several intermediate times ti, i ∈ I .
This increases the amount of information that USBs are able to incorporate and allows learning better dynamics in many
real-world applications.

We call (Xt)t a trajectory and define binary random variables At which specify the status of the particle, by taking the value
1 when Xt ̸=∞. For the set of mass measurements mt, it should hold that P (At = 1) = EAt [At] = mt. This constraint is,
however, ill-suited to be directly optimized, since At is a discrete value and we should back-propagate through the expected
value. We, therefore, replace it with the quantity E(Xt,At)

[
kζ(t,Xt)1{At = 1}

]
. Furthermore, we relax the requirement

that the prior process is a death-only diffusion and consider a prior birth function q, together with the usual killing function
k.

The loss function used to train gζ then becomes:

LF (ζ) = E(Xt,At)

[∑
i∈I

∣∣∣∣∫ ti

0

(
(1−At) qg

ζ(t)−Atkg
ζ(t)

)
dt− mti −m0

M

∣∣∣∣
]
, (35)

where the dependency of k, q and gζ on Xt is hidden and M = maximti is a normalization constant. In words, LF

computes a soft count of deaths and births at each timestep t, by summing the probabilities of sampled particles to transition
from/to the coffin state. Clearly, these transition probabilities depend on the status At of each particle since, e.g., only alive
particles can die. For each time interval [0, ti], LF ensures that the approximated change of mass stays close to the observed
variation (mti −m0)/M .

To use (35) during training, we should also prevent the value of gζ from exploding. In our experiments, we, therefore, use a
regularized version of this loss, which we illustrate next.

Discretizing the Ferryman loss. The loss (35) may be unstable in practice because gζ can grow without bounds. This
would translate, upon discretization, into invalid transition probabilities k∆t to the coffin state, i.e., probabilities bigger than
1. We, therefore, modify the loss to prevent this. We define the following quantities:

k→∞(xn) = P (Xn+1 =∞|Xn = xn) = kgζ(n, xn)∆t

q←∞(xn) = P (Xn+1 = xn|Xn =∞) = qgζ(n, xn+1)∆t,

where (xn)n is a sampled trajectory and which are, respectively, the conditional probabilities of death (k→∞) and birth
(q←∞) given the position at step n. The revised Ferryman loss can then be written as:

LF (ζ) = E(Xt,At)

[∑
i∈I

∣∣∣∣∣
ni∑
n=0

((1−An) ⌈q←∞(Xn)⌋ −An⌈k→∞(Xn)⌋)−
mni
−m0

M

∣∣∣∣∣+
+

ni∑
n=0

∣∣∣q←∞(Xn)− ⌈q←∞(Xn)⌋
∣∣∣+ ni∑

n=0

∣∣∣k→∞(Xn)− ⌈k→∞(Xn)⌋
∣∣∣], (36)

where ⌈x⌋ denotes clipping of x to the unit interval. (36) differs in two ways from (35): (i) it uses clipped transition
probabilities in the first sum and (ii) contains two regularization terms, which penalize values of q←∞ and k→∞ bigger than
1.

F.5. A Revised Algorithm

We detail the revised training procedure of UDSB-F in Algorithm 4. The associated sampling procedures are given in
Algorithms 5 and 6 in the specific case of a death-only forward process, to allow a direct comparison with the original
sampling in Algorithms 2 and 3.
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Algorithm 4 UDSB-F training

Input: Zθ, Ẑ θ̂, gζ

Output: θ, θ̂, ζ

for epoch e ∈ {0, ..., E} do
(
←
Xi, Ai)i ← SAMPLE-BACKWARD-F(Zθ, Ẑ θ̂, gζ)

while reuse paths do

LMM(θ)← LMM

(
(
←
Xi); θ

)
Update θ using ∇θLMM ▷ Train forward score

end while
(
→
Xi, Ai)i ← SAMPLE-FORWARD-F(Zθ, Ẑ θ̂, gζ)

while reuse paths do

LMM(θ̂)← LMM

(
(
→
Xi); θ̂

)
Update θ̂ using ∇θ̂LMM ▷ Train backward score

LF (ζ)← LF

(
(
→
Xi, Ai); ζ

)
Update ζ using ∇ζLF ▷ Train transition function

end while
end for

Algorithm 5 SAMPLE-FORWARD-F(Zθ, Ẑ θ̂, gζ) UDSB-F sampling (death-only prior)
Input: drift b, diffusivity σ, initial mass M0, final mass M1, killing function k

1: Sample position X0 ∼ µ0

2: A0 ← 1 ▷ The particle is initially alive
3: for step i in {1, ..., I} do
4: Xi ← Xi−1 +∆

→
Xi

5: if Ai−1 = 1 then
6: Flip coin D ∼ Bernoulli

(
1− k(i,Xi)g

ζ(i)∆t
)

7: Ai+1 ← D ▷ Store particle’s fate
8: end if
9: end for

10: return (Xi, Ai)i

G. Experiments
In this section, we provide further details on the model architecture, training parameters, and metrics used. We also discuss
two additional experiments: The first (§G.1.1) compares the performances of the two unbalanced Schrödinger bridge (USB)
solvers which we in Section 4. The second (§G.3) involves modeling the emergence of the Delta variant during the COVID
pandemic.

G.1. Toy Experiments

This section contains details about the experiments which involve synthetically generated datasets.

G.1.1. COMPARISON BETWEEN UDSB-TD AND UDSB-T

We aim to test the ability of our two solvers, UDSB-TD and UDSB-F, to compute valid SBs while respecting arbitrary
mass constraints. To this end, we run both algorithms on the 2-dimensional toy dataset displayed in Fig. 5a.

Points are initially drawn from a mixture of (i) a uniform distribution (left, blue segment) and (ii) an isotropic Gaussian
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Algorithm 6 SAMPLE-BACKWARD-F(Zθ, Ẑ θ̂, gζ) UDSB-F sampling (death-only prior)
Input: drift b, diffusivity σ, initial mass M0, final mass M1, killing function k

1: Sample position XI ∼ µ1

2: Sample status AI ∼ Bernoulli
(
min

(
1, M1

M0

))
▷ Is the particle alive at k = K?

3: for step i in {I − 1, ..., 0} do
4: Xi ← Xi+1 −∆

←
Xi

5: if Ai+1 = 0 then
6: Flip coin D ∼ Bernoulli

(
k(i,Xi)g

ζ(i)∆t
)

7: Ai ← D ▷ Store particle’s fate
8: end if
9: end for

10: return (Xi, Ai)i

(center). Their final distribution is instead uniform and supported on two segments (right, in red). Given the constraints on
their endpoints, particles –which follow a Brownian prior– should travel from left to right. In the process, however, they
cross the area marked with a rectangle in the picture. It denotes a region of the state space in which deaths can occur, i.e., a
region in which k is non-zero.

We test our SB solvers under multiple mass scenarios, by specifying four different amounts of live particles at the end
(Fig. 5b). We picture the trajectories found by UDSB-TD in Fig. 5c, and those computed by UDSB-F in Fig. 5d. We
observe that, in both cases, the paths constitute valid SBs, i.e., correctly match the marginals. Furthermore, the predicted
end distributions are similar in quality in all scenarios (Table 2), and no algorithm consistently achieves better scores.

The trajectories computed by UDSB-TD and UDSB-F are nevertheless not identical. In particular, differences emerge
when comparing the positions of deaths (black dots), which are concentrated around the top and bottom ends of the killing
region in Fig. 5c, while appearing more uniform in Fig. 5d. This discrepancy is a direct consequence of different ways of
computing Ψ.

UDSB-TD updates Ψ using formulas that depend on log-potentials (logφ and log φ̂) which, as discussed in §F.4, are
usually not well-approximated at the beginning. Inaccurate values of potentials lead, in the initial phase of training, to
excessive deaths and therefore push the trajectories away from the death region, i.e., drive particles above or below the
rectangle. When the estimates of logφ and log φ̂ gradually improve, the algorithm readjusts the trajectories to reach the
desired amounts of particle deaths. However, the initial steering persists for the particles starting closer to the death zone
(central blue points in Fig. 5a) since their trajectories underwent the most significant distortion. Thanks to the improved
stability of the Ferryman loss, instead, the trajectories computed by UDSB-F evolve more gradually during training, and
particles are therefore free to cross the killing zone (and die) .

Algorithm Comparison

MMD ↓ Wε ↓
Final mass UDSB-TD UDSB-F UDSB-TD UDSB-F

45% 8.92e-3 12.60e-3 1.33 1.70
56% 9.42e-3 6.74e-3 1.61 1.28
67% 3.28e-3 5.65e-3 1.14 1.08
78% 5.78e-3 6.58e-3 1.52 1.28
89% 5.43e-3 8.03e-3 0.96 1.53
100% 1.74e-3 5.96e-3 1.24 1.06

Table 2. Prediction quality on toy dataset. MMD and Wasserstein distance between the predicted end marginal and the ground truth.
The two algorithms UDSB-TD and UDSB-F perform comparably, with the former often achieving better MMD scores and the latter
faring better with Wε.
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Figure 5. Comparison between UDSB-TD and UDSB-F. (a) Points, initially distributed according to the blue marginal, move towards
the red one. In doing so, they cross a region with non-zero killing probability (gray rectangle). Assuming 4 different amounts of end mass
(1-4), we use (c) UDSB-TD and (d) UDSB-F to compute particle paths. (b) The algorithms find similar, but not identical, trajectories,
which respect the end mass constraints in all cases. However, the predicted amounts of live particles at intermediate times differ, owing to
the different updates of Ψ used: deaths are clustered by UDSB-TD at the top and bottom of the killing zone and appear, instead, more
uniformly distributed in (d).

G.1.2. MODELS AND TRAINING

All models used in experiments on (low-dimensional) synthetic datasets share similar architectures and training procedures.

The architecture of networks fθ and f̂ θ̂ consists of:

• x encoder: a 3-layer MLP, with 32-dimension wide hidden layers, which takes points in the state space as input;

• t encoder: a 3-layer MLP, with 32 hidden dimensions, which takes the sinusoidal embedding (over 16 dimensions)
of the time t as input;

• net: a 3-layer MLP, with 32-dimension wide hidden layers, which receives the concatenation of the outputs of the two
previous modules as input and outputs the score.

All the above networks use the SiLU activation function.

We parametrize gζ with a 5-layer MLP with 64 hidden dimensions and Leaky-ReLU as non-linearity.

We run 15 iterations of our unbalanced IPF algorithm and update weights using the ADAMW optimizer with gradient
clipping. We set the initial learning rate to 1e-3 for f and f̂ , and to 1e-2 for q.

G.2. Cell Drug Response

We further comment on the pre-processing of the cell evolution dataset and provide details on the model architecture and
training procedure.

G.2.1. DATASET

We start with the dataset collected by Bunne et al. (2021), which captures the temporal evolution of melanoma cells treated
with a mix of the cancer drugs Trametinib and Erlotinib. The drug is given at time t = 0, and the first measurement,
which happens at time t = 8h, examines a population of 2452 cells. Each cell is characterized by 78 features which
are a combination of morphological features derived from microscopy (such as cell shapes) and detailed information on
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the abundance and location of proteins —obtained via the powerful Iterative Indirect Immunofluorescence Imaging (4i)
technique (Bunne et al., 2021)– and which we refer to as intensity features. Intensity features can be, in turn, categorized as
measuring either the sum or average intensity. We remove the 28 features belonging to the former group and are, therefore,
left with a 50-dimensional state space. We split the dataset into training and test sets according to an 80/20 split.

Two subsequent measurements of cells in the population take place at times t = 24h and t = 48h. Each captures a different
population, owing to cell death and birth. In particular (see Fig. 4d), the population is found to have grown by 35% after
24h while shrinking down to 75% of its original size at time t = 48h.

To compute the unbalanced DSB in Fig. 4e, we assume a Brownian prior motion of cells in the feature space. Furthermore,
we consider a prior killing rate proportional to the distance from the first-order spline interpolation (g) of the empirical
means of the train set. More precisely, this killing function penalizes cell statuses that deviate substantially (> 2σ) from
g in more than 20% of features. The birth rate is, instead, proportional to a Gaussian Kernel Density Estimation (KDE)
computed on the train set.

G.2.2. MODEL AND TRAINING

TThe algorithm UDSB-F requires 3 networks: fθ and f̂ θ̂ and gζ .

The architecture of the first two consists of:

• x encoder: a 3-layer MLP, with 300-dimension wide hidden layers, which takes the cell status x as input;

• t encoder: a 3-layer MLP, with 32 hidden dimensions, which takes the sinusoidal embedding (over 16 dimensions)
of the time t as input;

• net: a 3-layer MLP, with 300-dimension wide hidden layers, which receives the concatenation of the outputs of the
two previous modules as input and outputs the score.

All the above networks use the SiLU activation function.

To parametrize gζ , instead, we use a 5-layer MLP with 64 hidden dimensions and Leaky-ReLU as non-linearity.

We run 10 iterations of our unbalanced IPF algorithm and update weights using the ADAMW optimizer with gradient
clipping. We set the initial learning rate to 1e-3 for f and f̂ , and to 1e-2 for q. We use a batch size of 512.

G.3. COVID Variants Spread

To further test unbalanced SBs on real-world phenomena, we model the global evolution of the COVID pandemic over a
4-month period. We aim to reconstruct how multiple COVID variants propagate across countries between April 5, 2021, and
August 9, 2021. We choose this time window because it encompasses the appearance and quick spread of the Delta variant,
at the expense of the once-dominant Alpha variant.

It is important to emphasize that our task focuses on reconstructing the historical trajectory of the pandemic based on its
known initial and final statuses. This differs from the more common practice (Cao & Liu, 2021; Nixon et al., 2022) of
predicting how viruses spread solely based on present epidemiological data. Although our approach may not be directly
applicable to guiding policies and public health responses during an ongoing outbreak, it can nonetheless provide valuable
insights into the transmission and mutation of a pathogen, when its evolution at intermediate times is not known.

Results. By running our algorithm UDSB-F on two snapshots of the COVID pandemic, we are able to model it at
intermediate times. We can reconstruct the change in variant prevalence both in time and space. We can, for instance,
successfully model the proliferation of cases of Delta variant in Europe: Fig. 6g plots the predictions for each variant against
the ground truth, which is only known by our algorithm at the initial and final times. Remarkably, UDSB-F reconstructs
the spread of the Delta variant better than the baselines (Fig. 6h) and achieves the smallest Mean Square Error (MSE)
with respect to the observations (Table 3). Besides offering variant counts for each continent, our predictions also provide
time-resolved density estimates of COVID cases for each country (Fig. 6j).

We now provide further details regarding the dataset and how we represent the location and variant of COVID cases.
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Figure 6. COVID evolution experiment. We model variants spreading across countries, by diffusing over a state space X endowed
with location- and variant-dependent information. We represent (i) the location of COVID cases, by leveraging the notion of effective
distance between countries. It is based on (b) the number of flights that connect airports (a) in different countries. We compute (e)
effective distances as the product of (c) flight distances DF and (d) geographic distances: for the sake of clarity, we only plot pairwise
between the 21 countries with the highest number of COVID cases in 2021. (f) We encode different COVID variants by means of
low-dimensional representations of their spike proteins obtained from Protein Language Models. (g) By running UDSB-F on X , we can
recover the evolution of COVID variants in Europe more accurately than the baselines (h). (j) Furthermore, we approximately reconstruct
the geographic distribution of cases around the globe at intermediate times.
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Method MSE ↓
Spline interpolation (past) 3.07e-1
Spline interpolation (endpoints) 1.60e-1
SIR model 2.54e-1
UDSB-F 1.12e-1

Table 3. Prediction quality on COVID dataset. MSE between the predicted and observed presence of Delta variant cases in Europe.
UDSB-F beats the baselines consisting of a SIR infection model and of two cubic spline interpolations, using respectively the first 4
measurements (past), and the first and last 2 (endpoints).

G.3.1. DATASET

We start from bi-weekly records1 of sequenced viral sequences around the world. They provide the number of samples
linked to different COVID variants which are found in each country on a given day. We only consider samples belonging to
the 4 most prevalent variants in our time range, i.e., Alpha, Beta, Gamma, and Delta, and represent all the other variant with
a fifth category, named others. Each of the datapoints referring to the period between 2021-04-05 and 2021-08-09 therefore
contains the following entries:

• location: country for which the variants information is provided;

• date: the date of the measurement;

• [variant]: fraction of sequences belonging to the given variant;

• num sequences: number of sequences processed in the country.

When training our model, we only use the first and last measurements and leave the other ones for testing.

We represent COVID cases that spread among countries as vectors cT = (xT ;vT ) ∈ X , in which the first block of
coordinates (x) describes the geographic location of the virus and the second one (v) identifies its variant. The use of
standard SBs would require that points move continuously in X . While we can choose both kinds of embedding to make
this assumption approximately true, it is hard to strictly enforce it. This issue emphasizes the need for USBs, which account
for jumps in the diffusion. In this case, jumps allow (i) new variants to appear in locations where they were initially not
present and (ii) local outbreaks to suddenly disappear.

Location embedding. To (approximately) respect the continuity hypothesis, we cannot directly use country coordinates to
encode the location x of viruses. In fact, COVID cases do not preferentially propagate to neighboring countries, and using
this representation would then render SBs a poor fit to model such dynamics. We, therefore, set to leverage the intuition that
the virus tends to spread among countries that are either (i) close to each other or (ii) well-connected, especially via air
transportation.

Inspired by the approach pioneered by Brockmann & Helbing (2013), we compute an effective distance between countries,
which better represents the ease with which COVID moves between them.

To compute effective distances, we rely on flight data, obtained by OpenFlights2. Starting with 66934 commercial routes
(Fig. 6b), between 7698 airports (Fig. 6a), we count the number of flights Cij linking airports of country i with those in
country j. We first compute the flight distance DF

ij between i and j as DF
ij = 1/(Cij + ϵ) (where ϵ is a small constant) (Fig.

6c). In words, a small flight distance implies the existence of frequent connections between two countries. By multiplying
flight distances DF

ij by the geographic distance between countries (Fig. 6d), we obtain the matrix DE = (DE
ij)ij of effective

distances (Fig. 6e). DE is a connectivity matrix on the graph of nations and we can measure the shortest paths (Sij) between
nodes. We then embed in 2 dimensions the manifold induced by the metric (Sij)ij via UMAP (McInnes et al., 2020) and
therefore obtain a planar representation of the effective positions of countries (Fig. 6i). This layout resembles the world map,

1Dataset available at: https://www.kaggle.com/datasets/gpreda/COVID19-variants
2https://openflights.org

https://www.kaggle.com/datasets/gpreda/COVID19-variants
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e.g., it clusters European nations at the top, but also reflects the ease of traveling between countries, e.g., India is equally far
from the US and from the UK.

Variant embedding. Having described how we determine the location coordinates (x), we now turn to the representation
of COVID variants (v). We aim to capture the biological similarity between variants based on the similarity of corresponding
Spike proteins, which are critical in determining their infectiousness.

We focus on the mutations occurring in the receptor-binding domains (RBDs), a key part of the Spike protein. More
specifically, we encode the amino-acid sequences describing RBDs using ESM-2 (Lin et al., 2023), a state-of-the-art
language model optimized for proteins. When projected along their biggest 2 principal components, these embeddings
organize in the plane as shown in Fig. 6f. We construct the representation of the other variant type, by averaging the
embeddings of all the variants excluded by our analysis (gray dots in Fig. 6f). As expected, the Beta variant shares more
similarities with Alpha than with Delta, which emerged later in time and features additional mutations in its RBD.

Prior death/birth rates. To complete the description of the SB problem at hand, we need to specify the prior killing and
birth functions. We assume a positive prior probability that Delta cases emerge in India since early Delta samples were
detected in that country. Furthermore, we introduce birth places (for all variants) close to every country and killing zones
everywhere else. This prior allows UDSB-F to strike a balance between spreading the virus by making it move across
countries (initial infections) and growing native clusters (local proliferation).

G.3.2. MODEL AND TRAINING

We require 3 networks to parametrize the forward and backward scores (f and f̂ ) and the multiplicative reweighting factor
of the posterior killing function (g).

We use the same model architecture for fθ and f̂ θ̂, which consists of:

• x encoder: a 3-layer MLP, with 64-dimensional hidden layers, which takes c ∈ X as input;

• t encoder: a 3-layer MLP, with 32 hidden dimensions, which takes the sinusoidal embedding (over 16 dimensions)
of the time t as input;

• net: a 5-layer MLP, with 64-dimension wide hidden layers, which receives the concatenation of the outputs of the two
previous modules as input and outputs the score.

All the above networks use the SiLU activation function.

To parametrize gζ , instead, we use a 5-layer MLP with 64 hidden dimensions and Leaky-ReLU as non-linearity.

We run UDSB-F for 10 iterations with a batch size of 1024 and update the weights using the AdamW optimizer, with initial
learning rates of 1e-3, for f and f̂ , and 1e-2 for gζ .

Variant assignment. Given a point cT = (xT ,vT ) in the statespace X , we map it to one of the five COVID variants by
using a 1-Neighbor Classifier on v, from the scikit-learn library (Pedregosa et al., 2011), trained on the representations
in Fig. 6f.

Baselines. To assess the performance of our method, we first restrict to the sub-task of predicting how the Delta variant
spreads in Europe (Fig. 6h), in the time period under consideration. We consider the following 3 different baselines:

• Spline interpolation (past): a cubic spline interpolation of the first 4 available measurements, i.e., those happening
between April 5, 2021 and May 17, 2021. In this period, the Delta variant was not yet widespread in Europe, and, as a
consequence, the fitted curve underestimates the number of COVID registered in later months.

• Spline interpolation (endpoints): a cubic spline interpolation of the first 2 and last 2 known measurements.

• SIR model: a popular SDE-based model (Kermack & McKendrick, 1927) of infectious diseases.
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G.4. Evaluation Metrics

In this section, we detail the evaluation metrics used to benchmark our algorithms.

Wasserstein-2 distance. We measure accuracy of the predicted target population ν̂ to the observed target population ν
using the entropy-regularized Wasserstein distance (Cuturi, 2013) provided in the OTT library (Bradbury et al., 2018; Cuturi
et al., 2022).

Maximum mean discrepancy. Kernel maximum mean discrepancy (Gretton et al., 2012) is another metric to measure
distances between distributions, i.e., in our case between predicted population ν̂ and observed one ν. Given two random
variables x and y with distributions ν̂ and ν, and a kernel function ω, Gretton et al. (2012) define the squared MMD as:

MMD(ν̂, ν;ω) = Ex,x′ [ω(x, x
′)] + Ey,y′ [ω(y, y

′)]− 2Ex,y[ω(x, y)].

We report an unbiased estimate of MMD(ν̂, ν), in which the expectations are evaluated by averages over the population
particles in each set. We utilize the RBF kernel, and as is usually done, report the MMD as an average over the length scales:
2, 1, 0.5, 0.1, 0.01, 0.005.

H. Code Availability
The code used in this work can be found at https://github.com/matteopariset/unbalanced_sb.

https://github.com/matteopariset/unbalanced_sb

