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ABSTRACT

High-resolution image inputs allow Large Vision-Language Models (LVLMs) to
capture finer visual details, improving comprehension. However, the increased
training and computational costs associated with such inputs pose significant chal-
lenges. A common approach to mitigate these costs involves slicing the input into
uniform patches using sliding windows, each aligned with the vision encoder’s
input size. While efficient, this method fragments the input, disrupting the con-
tinuity of contextual, which negatively impacts cross-patch perception tasks. To
address these limitations, we propose HiRes-LLaVA, a novel framework designed
to efficiently process high-resolution inputs of any size without altering the original
contextual and geometric information. HiRes-LLaVA introduces two key compo-
nents: (i) a SliceRestore adapter (SRA) that reconstructs sliced patches into their
original form, enabling efficient extraction of both global and local features through
down-up-sampling and convolutional layers, and (ii) a Self-Mining Sampler (SMS)
that compresses vision tokens based on internal relationships, preserving original
context and positional information while reducing training overhead. To assess
the ability of handling context fragmentation, we construct a new benchmark,
EntityGrid-QA, consisting of edge-related tasks. Extensive experiments demon-
strate the superiority of HiRes-LLaVA on both existing public benchmarks and
EntityGrid-QA. For example, with SRA, our method achieves a performance im-
provement of ∼ 9% over state-of-the-art LVLMs in addressing fragmentation
issues. Additionally, our SMS outperforms other visual token downsamplers, while
offering comparable efficiency.

1 INTRODUCTION

Recent progress in Large Vision-Language Models (LVLMs) (Alayrac et al., 2022; Li et al., 2023c;b;d;
Liu et al., 2023f; Zhu et al., 2023) has significantly enhanced capabilities in vision-language tasks,
fostering improved understanding, reasoning, and interaction. Early LVLMs (Li et al., 2023b;
Zhu et al., 2023; Liu et al., 2023d) processed images at low resolutions, typically 224× 224, which
hindering their ability to capture detailed visual information. This limitation often results in inaccurate
recognition of objects and their contextual relationships within images (Ding et al., 2023; Li et al.,
2023e).

Enhancing the high-resolution capabilities of LVLMs presents substantial challenges, i.e., training
visual encoders to handle high-resolution inputs requires significant computational resources as well
as struggling with handling arbitrary image sizes (Bai et al., 2023a; Chen et al., 2023c). Recent
advances have introduced resource-efficient methods to improve the input resolution of LVLMs.
One effective strategy involves using a sliding window technique (Li et al., 2023e; Xu et al., 2024a;
Liu et al., 2024b) to segment high-resolution images into smaller patches. These patches are then
processed by a visual encoder that has been trained on fixed-size lower-resolution inputs, maintaining
computational efficiency while enhancing detail capture.

Although effective, this slicing approach leads to the fragmentation of the original input, resulting
in a disruption of context. As illustrated in Fig.1, slicing the entire image can alter the original
context, especially when an object is located at the edge of two slices. This slicing strategy makes
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(a)  Fragment input construction

Question: What is the icon in the picture? 
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Figure 1: Illustration of the fragmentation issue. (a) We construct nine image inputs with
objects placed in nine different positions. Four of these positions,i.e.,(2,4,6,8) are located at the
edges of two slices, resulting in fragmentation issues. (b) We input these nine images along with
corresponding questions into the LVLMs to evaluate the accuracy of object recognition at different
positions. Note that the green circles with numbers are for illustration purposes only and are not
utilized by the LVLMs. (c) The visualization of accuracy at various positions demonstrates that our
method outperforms both slicing-based and non-slicing methods across all positions.

it more challenging for the model to identify the fragmented objects and text, thereby hindering
the model’s overall understanding of the image and impeding its ability to perform more complex
cognitive tasks. Furthermore, existing approaches (Xu et al., 2024a; Liu et al., 2024b) generally use a
sampler, such as Q-Former (Li et al., 2023c), to reduce the long context caused by high-resolution
input. However, this plain Q-Former like sampler utilizes a fixed number of queries to compress and
capture visual features through a cross-attention mechanism, suffering from problems, e.g., lacking
position information and high training overhead Yao et al. (2024).

In this paper, we propose HiRes-LLaVA, an efficient approach to integrating high-resolution data
into LVLMs without disrupting the original context. As illustrated in Fig.1 (c), our method maintains
consistent accuracy even when objects are positioned across different slices. HiRes-LLaVA utilizes
a new SliceRestore Adapter to combine sliced low-resolution patch features into a high-resolution
feature map, preserving the image’s complete context. This map is processed through dual parallel
fusion modules to capture both global and local information. The enhanced high-resolution map
is then segmented back into small patches. The SliceRestore Adapter is a lightweight module that
can be seamlessly integrated into any attention layer of the low-resolution vision encoder, enabling
efficient fine-tuning without altering pre-trained parameters. Furthermore, we introduce a self-mining
sampler that uses average pooled sliced patches as queries. Unlike fixed learnable query-based
methods, our self-mining sampler preserves the original context and positional information while
optimizing efficiently.

To evaluate our proposed method, we tested it on nine widely-used public benchmarks and also
introduced a new benchmark, EntityGrid-QA, specifically designed to measure how well VLMs
handle context fragmentation caused by slicing approaches. Our comprehensive experiments show
that HiRes-LLaVA not only performs better than current models on these public benchmarks but also
significantly surpasses SOTA LVLMs over ∼ 9% on the EntityGrid-QA benchmark. Additionally, our
SMS outperforms other visual token downsampling methods, all while maintaining similar efficiency.

2 RELATED WORKS

Large Vision-Language Model. Leveraging pre-trained Large Language Models (LLMs) like
LLaMA (Touvron et al., 2023) and Vicuna (Chiang et al., 2023), Large Vision-Language Models
(LVLMs) have achieved significant advancements in areas such as image/video understanding (Li
et al., 2022; 2023c; Zhu et al., 2023; Alayrac et al., 2022; Chen et al., 2023a; Zhang et al., 2023a;
Li et al., 2023d), medical analysis (Li et al., 2023b), and autonomous driving (Ding et al., 2023;
Xu et al., 2023). These models utilize vision encoders trained via contrastive learning (Dosovitskiy
et al., 2020; Radford et al., 2021) to align visual features with language. Visual embeddings are then
adapted to match LLM dimensionality through visual projectors, which can be (i) learned queries,
like the perceiver resampler (Alayrac et al., 2022) or Q-Former (Li et al., 2023c; Zhu et al., 2023),
using fixed queries for cross-attention, or (ii) MLP modules, as seen in the LLaVA series (Liu et al.,
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2023f). Recent efforts have aimed to enhance visual representation by combining features from
DINO-V2 (Oquab et al., 2023) and SAM (Kirillov et al., 2023) with CLIP’s Vision Transformers
(ViT) (Ranzinger et al., 2023; Lin et al.). However, the reliance on CLIP-ViT, which requires fixed-
resolution images (e.g., 336× 336), limits the capability to handle higher resolutions and varying
aspect ratios, thereby hindering performance in fine-grained tasks.

High Resolution Large Vision-Language Model. To discern fine-grained visual details from high-
resolution inputs, an intuitive approach is to split images into patches and project them using linear
layers, treating these as a sequence for input into Large Vision-Language Models (LVLMs) (Bavishi
et al., 2023; Li et al., 2023a). While this eliminates the need for an image encoder, it often results in
insufficient visual representation, leading to increased training costs and suboptimal performance.
Alternatively, Up-Resize methods such as Qwen-VL (Bai et al., 2023a) adapt the positional embed-
dings of ViT from 224× 224 to 448× 448 and include an additional training phase to fine-tune the
ViT. However, this adaptation may alter the original visual position encoding from CLIP-ViT (Rad-
ford et al., 2021), potentially degrading visual representation. Dual-branch approaches introduce a
high-resolution branch with lightweight convolutional networks to manage high-resolution inputs
but require additional training data and parameters (Hong et al., 2023; Ding et al., 2023; Luo et al.,
2024; Li et al., 2024a). Slicing-based methods offer a compromise by using slicing windows to
divide the high-resolution image into patches that match the input size of a pre-trained vision en-
coder, maintaining efficiency in parameter use and training data while still achieving competitive
performance (Li et al., 2023e; Xu et al., 2024a). However, they suffer from "Context Fragmentation",
where the continuity of contextual information across patches is damaged, impacting tasks that
require cross-patch context. In this paper, we propose HiRes-LLaVA, a novel technique designed to
seamlessly integrate global-local high-resolution details into LVLMs without disrupting the original
context, effectively addressing the issue of Context Fragmentation.

3 METHOD

In this section, we first present the overall framework of HiRes-LLaVA in Section 3.1. The
two innovative components, namely SliceRestore adapter and self-mining sampler are detailed in
Section 3.2 and Section 3.3 respectively. To further evaluate the ability of VLMs to address the
context fragmentation issue, a new benchmark named EntityGrid-QA is proposed in Section 3.4.

3.1 OVERALL FRAMEWORK

The overall framework of HiRes-LLaVA is shown in Fig. 2. First, the original image is resized and
padded to a low resolution (typically 224× 224) and processed by the pre-trained vision encoder,
producing global features. To capture fine-grained details, the high-resolution image is split into
slices by a dynamic slicing strategy. Detailedly, we set a maximum slice count M , allowing an image
to automatically select an optimal bounding box by calculating the necessary m rows and n columns
based on the base resolution:

m =

⌈
H

r

⌉
, n =

⌈
W

r

⌉
.

where r is the base resolution in pretrained vision encoder. This slicing approach adapts to the
image’s original aspect ratio, only quadrupling the number of slices by scaling 2× of m and n if
“4 ∗m ∗ n” does not exceed M , ensuring detailed preservation without overwhelming the model.
Afterwards, these slices are processed by a shared vision encoder with the proposed SliceRestore
adapter, yielding slice features, followed by a shared self-mining sampler to reduce token length,
resulting in compressed features. As a result, our visual input to the language model includes a
low-resolution overview and multiple high-resolution slices, which also differentiated by three types
of separators to maintain clarity in (1) between the low-resolution image and high-resolution slices,
(2) between high resolutions slices and (3) the end of each slice row.

3.2 SLICERESTORE ADAPTER

As depicted in Fig. 2 (a), the SliceRestore adapter is integrated into the self-attention layer of vision
transformer. We denote the slice features in the l-th layer of ViT as {Pi}Ni=1 with Pi ∈ RL×D, where
N is the number of slices, L = H ×W is the token length, and D is the feature dimension. Each
slice feature is processed individually by the self-attention layer, Self-Attn(Pi), which lead to a loss
of global information in fragmented context. (see Fig. 1 (a)). Although low-resolution inputs contain
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Figure 2: Overall framework of HiRes-LLaVA. The vision encoding consists of two branches:
one for low-resolution images processed by the pre-trained vision encoder to extract global features,
and another dividing high-resolution images into multiple slices to capture fine-grained details. (a)
SliceRestore Adapter aims to address the Context Fragmentation issue, it restores sliced features
into a whole feature by capturing both local and global information, then splits the whole feature
back into slices. (b) Self-Mining Sampler compresses vision token numbers to reduce computation
and memory costs by using downsampled features as queries and the original features as keys and
values. Both low-resolution image input and each high-resolution slice are compressed by the same
self-mining sampler.

the overall information, when it comes to real-world scenes, small objects in slices are still difficult
to perceive. A naive approach would be concatenating slice features for self-attention, but this incurs
quadratic computation costs.

In this paper, we propose the SliceRestore Adapter (SRA) to efficiently capture complete information
from high-resolution inputs. This is formulated as:

{P̂i}Ni=1 = {Pi}Ni=1 + {Self-Attn(Pi)}Ni=1 + {Pl

i}Ni=1, (1)

where:

{Pl

i}Ni=1 = SRA({Pi}Ni=1), (2)

The SliceRestore adapter has three main steps to restore complete semantics from slice features:

1. Merging: Each slice feature Pi is first reshaped into Hi ∈ RH×W×D. These reshaped slice
features, {Hi}Ni=1, are then recover the original spatial structure and merged to form the original
input’s features F ∈ R(m∗W )×(n∗H)×D. m and n indicate the number of slices’ rows and columns,
respectively. N is equal to m ∗ n.

2. Capturing: We propose two fusion modules for extracting both local and global information
from F. The local fusion module focuses on transferring edge details among slices, facilitating a
nuanced exchange of local information. On the other hand, the global fusion module is leveraged
to capture broader contextual cues. To achieve this, The local fusion module uses a single layer
depth-wise convolution with 3× 3 kernel to efficiently capture local details and retain image-related
biases. The global fusion module employs self-attention to capture the global context. Given the
quadratic computation cost of self-attention, we first downsample Fl to create an overview of the
image in a smaller size, i.e., the same size of the low-resolution image and feed it to a self-attention
block and then upsample back to the original size, by simpling using an interpolation. The enhanced
whole feature F is obtained by element-wise addition of the outputs from the local and global fusion
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Figure 3: Construction process of EntityGrid-QA benchmark. There are three steps: (a) Entity
Sampling. Select one or two entities from the pre-defined entity set; (b) Image Generation. Put the
selected entities in one position sampled from the nine pre-defined positions of the blank image, we
can obtain the generated images. Note that the dash and solid lines in (b) are for illustration purposes
only, and not presented to models. (c) QA pairs Generation. Based on the generated images, entity
category and positions, we can automatically generate the question-answer pairs (QAs).

modules:
F = Depth-Wise Conv(F)︸ ︷︷ ︸

local fusion

+Up(Self-Attn(Down(F)))︸ ︷︷ ︸
global fusion

. (3)

3. Slicing: Finally, the enhanced whole feature F is sliced back into the original slice format, resulting
in {Pi}Ni=1, where Pi ∈ RL×D.

This process allows model to capture the complete semantics from high-resolution inputs while
maintaining computational efficiency.

3.3 SELF-MINING SAMPLER

High-resolution images necessitate processing significantly more visual tokens, contributing to a
substantial part of the computational load. Existing solutions, such as Q-Former (Li et al., 2023c),
utilize a fixed number of queries to compress and capture visual features through a cross-attention
mechanism. While this method effectively captures visual information regardless of image resolution
in a computationally affordable manner, it suffers from several limitations: (i) Lacking Positional
Information. Learned queries lose positional information, degrading performance in tasks requiring
spatial relationships and precise localization. (ii) High Training Overhead. Training Q-Former-like
resamplers requires more data and longer training times to convert visual features into learnable
queries, posing challenges in data-scarce domains.

To address the issue, we propose the self-mining sampler, as shown in Fig. 2 (b). The key idea of the
self-mining sampler is to better initialize the query and narrow the receptive field that per query needs
to compress. Specifically, we reshape the one-dimensional output vision tokens of the vision encoder
(e.g., CLIP-ViT), P ∈ RL×D, into a two-dimensional form, H ×W ×D, where L = H×W . After
applying average-pooling with kernel size S × S, we obtain Pc ∈ RH2×W2×D, where W2 < W
and H2 < H . Next, we compute the final compressed tokens using the cross-attention mechanism,
Cross-Attn(Pc,P), with Pc as the query and P as the key and values. Compared with fixed learnable
query-based methods, our self-mining sampler compresses the vision tokens based on themselves,
preserving the original context and positional information while reducing training overhead.

3.4 ENTITYGRID-QA BENCHMARK

Existing benchmarks, particularly document-related datasets, can evaluate the fine-grained under-
standing of LVLMs. However, these benchmarks are inadequate for assessing the ability to handle
fragmented inputs, as filtering slicing-related questions is time-consuming and labor-intensive. There-
fore, we introduce a new benchmark named EntityGrid-QA, which is fully synthesized but still
challenging for frontier models, to better assess LVLMs’ ability to handle fragmentation.
Construction Process. As shown in Fig. 3, the construction process of EntityGrid-QA consists of
three main steps: Entity Sampling, Image Generation, and QA Pairs Generation. Examples of our
benchmark are provided in the Appendix. Each step is detailed as follows:

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

(a) Entity Sampling. We first construct an entity set that includes various types such as English
Words (e.g., "apple"), Number (e.g., "0.596"), Object (e.g., a teddy bear) and Icon (e.g., "tomato")
as shown in Fig. 3 (a). Then, we select several entities from a predefined entity set, which can be
denoted as E = {ei}Mi=1, where ei is the i-th entity and M is the number of selected entities.

(b) Image Generation. The selected entities E are positioned in nine predefined positions (labeled
1 to 9) within a blank image I using a 3x3 grid layout, as shown in Fig. 3 (b). The resolution of the
blank image is set to 2R, where R is the base resolution for existing LVLMs, e.g., 224× 224. In this
way, each I would be divided into four slices during inference, and the each slice would match the
input size of well-pretrained vision encoder, without the requirement of additional operations, e.g.,
resize and padding. Note that our HiRes-LLaVA can process any number of slices, but some existing
LVLMs, i.e., LLaVA-Next (Liu et al., 2023d) can only receive four slices as input. Hence, for a fair
comparison, we only generate the images with a fixed resolution 2R × 2R. For each entity ei, we
generate P images that iterate over all predefined positions, i.e., 9 positions as shown in Fig. 3.

(c) QA Pairs Generation. We mainly focus on evaluating the model’s fine-granite recognition
ability on the area of the slice boundary and center of the slices. For each type of entity, we apply
a specific question prompt, e.g., "What is the object in the picture?". As shown
in Fig. 3 (c), we formulate the question-answer pairs as the multiple choice problem. Based on the
selected entity E and the question Q, we apply the entity-specific augmentation to automatically
generate the other three choices for the question. For example, given a number, the optional
augmentations can be add, delete or shift the decimal point, or alter one of the digit of the number.
The ground truth option letter the answer, can be obtained by comparing the choices with the selected
entity. Note that for the triplets of image-question-answer of the same entity, it only varies in the
position of the generated images I while maintaining the same question, order of choices and ground
truth answer which is perfectly assess the model.

After the construction, we create a training set of Entity-QA with 7k images covering 4 type of
entities and a testing set with 3.6K images and 20 entities for each type. Note that the entities are
non-overlapped between the training set and testing set. The examples of the benchmark can be found
in the Appendix.

Evaluation Metric. To evaluate the ability to handle the fragmentation, we introduce a new metric
that measures the precision discrepancies between entities located at the edge positions (Pedge =
{2, 4, 5, 6, 8}) and other locations (Pcenter = {1, 3, 7, 9}), defined as:

Discrepancy1 =

∑
p∈Pedge

Ap/|Pedge|∑
p∈Pcenter

Ap/|Pcenter|
, (4)

Discrepancy2 =

∑
p∈Pedge

Ap/|Pedge| −
∑

p∈Pcenter
Ap/|Pcenter|∑

p∈Pcenter
Ap/|Pcenter|

, (5)

where Ap is the average accuracy of three tasks when entities located at the position p, | · | is the
number of elements in the set.

4 EXPERIMENT

4.1 IMPLEMENTATION DETAILS

We utilize the CLIP-ViT-L/14-224px (Radford et al., 2021) and InternViT-300M-448px as the vision
encoders, and Vicuna-v1.5-7B (Chiang et al., 2023) and LLaMA-3.1-8B (Dubey et al., 2024) as LLM.
We adopt a three-stage training approach, including an alignment stage, a capability enhancement
stage and the instruction tuning stage. During the alignment stage, only the self-mining sampler is
trainable. The learning rate is 1e-3. In the capability enhancement stage, both full model including
the vit, sampler and LLM is unfreezed. The learning rate is 2e-5 for LLM and sampler and 2e-6 for
ViT. In the instruction tuning stage, ViT is freezed and the SliceRestore adapter is loaded with the LR
of 2e-4. The learning rate of self-mining sampler and LLM is 2e-5. Four SliceRestore adapter are
applied in the last four blocks of the vision encoder. All stages use the batch size of 256. We adopt
AdamW (Loshchilov & Hutter, 2017) as the optimizer with β1 = 0.9 and β2 = 0.95 to stabilize
the training in the capability enhancement stage and the instruction tuning stage. In all stages, the
learning rates are warmed up for the first 0.03 epochs and then adjusted by a cosine scheduler in the
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Table 1: Quantitative results on 9 popular benchmarks. ‘MaxRes’ means the maximum resolution
supported. ‘Doc’, ‘Science’ and ‘Comprehensive’ indicate the document-related VQA, Science VQA
and comprehensive benchmarks.

Doc Science ComprehensiveMethod LLM MaxRes VQA-text ChartQA DocVQA InfoVQA| SQAI ai2d MME MMB MM-Vet
General LVLMs (normal resolution)

Qwen-VL-Chat Qwen-7B 448×448 61.5 66.3 62.6 - 68.2 57.7 - 60.6 -
LLaVA-1.5 Vicuna-1.5-13B 336x336 61.3 18.2 - - 71.6 59.5 1826 67.8 36.3
LLaVA-MORE LLaMA3.1-8B 384x384 62.1 - - - 77.5 63.6 1846 73.1 -
mPLUG-Owl3 Qwen1.5-7B 384x384 69.0 - - - - 73.4 - 77.6 40.1

Document LVLMs
DocPedia Vicuna 2560×2560 60.2 46.9 47.1 15.2 - - - - -
UReader Vicuna 896×1120 57.6 59.3 65.4 42.2 - - - - -
TextMonkey+ QWen-7B 896x896 64.3 59.9 66.7 28.6 - - - - -
mPLUG-DocOwl2 Qwen2-7B 1512x2016 66.7 70.0 80.7 46.4 - - - - -

General LVLMs (higher resolution)
Monkey Qwen-7B 896x896 67.6 - 66.5 36.1 - - - - -
LLaVA-NeXT-8B LLama3-8b-Ins 672x672 64.6 69.5 72.6 - - 71.6 1603/- 72.1 41.7
LLaVA-NeXT-13B Vicuna-13B 672x672 67.1 62.2 70.9 - 73.6 70.0 1901 70.0 48.4
LLaVA-UHD Vicuna-13B 672×1008 67.7 - - - 72.0 - 1535/- 68.0 -
Mini-Gemini-HD Llama3-8b-Ins 672x672 70.2 59.1 74.6 - 75.1 73.5 1606/- 72.7 -
Cambrian-1-8B Llama-3-Ins-8B 1024x1024 71.7 73.3 77.8 - 80.4 73.0 1547/- 75.9 -
Cambrian-1-13B Vicuna-1.5-13B 1024x1024 72.8 73.8 76.8 - 79.3 73.6 1610/- 75.7 -
HiRes-LLaVA Llama-3.1-Ins-8B 1344x1344 74.2 77.4 84.9 55.7 90.3 74.9 2213 75.7 53.5

remaining training. We don’t apply any weight decay in the training. The maximum number of slices
is 9 for InternViT and 16 for CLIP-ViT. Regarding the training data, we use the LLaVA-558k In the
alignment stage, 1.8M caption and OCR data in the capability enhancement stage and 3M multi-tasks
instruction data in the instruction tuning stage.

4.2 EXPERIMENTAL SETTING

We introduce experimental settings including the benchmarks and the compared LVLMs.
Benchmarks. We evaluate our models on four document-related VQA benchmarks, including
VQA-text(Singh et al., 2019), ChartQA test set (Masry et al., 2022), DocVQA test set (Mathew
et al., 2021), InfoVQA test set (Mathew et al., 2022), two general VQA benchmarks, including
AI2D (Kembhavi et al., 2016), ScienceQA (Lu et al., 2022), and three comprehensive benchmarks,
including MMBench (Liu et al., 2023g), MME (Fu et al., 2023) and MM-Vet (Yu et al., 2023).
LVLMs. We compare our model with SOTA LVLMs. (1) General baselines, i.e., Qwen-VL (Bai
et al., 2023a), LLaVA-1.5 (Liu et al., 2023d), mPLUG-Owl3 (Ye et al., 2024), Monkey (Li et al.,
2023e), Mini-Gemini (Li et al., 2024b), LLaVA-UHD (Xu et al., 2024a), LLaVA-NeXT (Liu et al.,
2024a) and Cambrian-1 (Tong et al., 2024), as representative general baselines. (2) Document
LVLMs, i.e., DocPedia (Feng et al., 2023), UReader (Ye et al., 2023), mPLUG-Docowl2 (Hu et al.,
2024), TextMonkey (Liu et al., 2024b).

4.3 STATE-OF-THE-ART COMPARISON

General Benchmarks. Table 1 reports the performance comparison of our methods against state-of-
the-art approaches on 11 benchmarks. Unexpectedly, our method utilizing LoRA fine-tuning (Hu
et al., 2021) surpasses well-established LVLMs that require substantial data and extensive full fine-
tuning, underscoring our model’s efficiency and effectiveness. Notably, although both our model
and Monkey (Li et al., 2023e) employ LoRA, Monkey is initialized from the pre-trained Qwen
model (Bai et al., 2023b), while our model is trained from scratch, which further proves our model’s
efficiency. Furthermore, our method demonstrates competitive performance against specialized
document-centric LVLMs such as TextMonkey (Liu et al., 2024b), proving its capability to manage
document-related tasks effectively.

Figure 4 shows a visual comparison of results generated by LLaVA-Next (Liu et al., 2023d), Mon-
key (Li et al., 2023e), and our method, highlighting our superior performance, especially when the
region of interest spans across slices. For example, the number 1.14 in Fig. 4 (b) is split into two
slices, causing Monkey to misrecognize it as 1.4. Additionally, the slicing operation separates the
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Table 2: Comparison with the state-of-the-art methods on EntityGrid-QA. ‘↓’ indicates lower
scores are better, while ‘↑’ means higher scores are better. ‘Accuracymean’ and ‘Accuracystd’, repre-
senting the mean and standard deviation of the average accuracy across three tasks. ‘Accuracyedge’ and
‘Accuracycenter’ show the average accuracy for entities at Pedge and Pcenter, respectively. Discrepancy1
and Discrepancy2 are calculated using Eq. 4 and Eq. 5. Note that IXC4KHD and HiRes-LLaVA are
evaluated on 896x896 images and LLaVA-Next is evaluated on 672x672 images. The input resolution
for LLaVA is 336px.

Model Accuracymean ↑ Accuracystd ↓ Accuracyedge ↑ Accuracycenter ↑ Discrepancy1 ↑ Discrepancy2 ↓
LLaVA 53.33 0.19 52.0 55.00 94.50 5.45
LLaVA-NeXT 65.22 0.30 61.80 69.50 88.92 11.07

IXC-4KHD 63.78 0.53 58.00 71.00 81.69 18.31
HiRes-LLaVA 71.56 0.19 68.40 75.50 90.59 9.40

Q: What is the color of the tissue box? 
(A) gray (B) white (C) black (D) blue
Answer with the option's letter from the given choices directly.

Q: What percentage of North America's GDP did B2C e-
commerce account for in 2013?
Answer the question using a single word or phrase.

Q: What is percentage of mortality rate in Slovenia, 
25%, 18%, or 10%?
Answer the question using a single word or phrase..

Monkey: A Ours: D √ LLaVA-1.6: 1.4 Monkey: 1.43 Ours: 1.14 LLaVA-1.6: 18 Monkey: 18% Ours: 10%×LLaVA-1.6: A × √× × √× ×

Figure 4: The visualization comparison with the state-of-the-art methods. Dash lines are only
illustrated for the slice clarify, not presented to LVLMs.

year and percentage values into different slices, leading LLaVA-Next to incorrectly associate the
2017 percentage with 2014 due to the lack of global information. Our method, with the SliceRestore
adaptercapturing complete global high-resolution information, correctly predicts the answers.

EntityGrid-QA. To evaluate the ability to address input fragmentation, we compare four SOTA
slicing-based LVLMs with our HiRes-LLaVA and present the results in Table 2. According to the
experimental results, we can observe two key findings: (i) Our method performs competitively on
tasks with entities at Pcenter. For instance, our method scores 71.56% on Accuracymean and 75.50%
on Accuracycenter, compared to the best prior SOTA scores of 63.78% and 71.00%. (ii) Our method
significantly outperforms SOTAs in handling entities at Pedge. For example, the previous SOTA,
InternLM-Xcomposer-4KHD (Zhang et al., 2023b), shows a notable difference between Accuracyedge
and Accuracycenter, with 58.0% vs. 71.0%. In contrast, our method achieves a smaller difference,
with 68.4% on Accuracyedge and 75.5% on Accuracycenter. Additionally, the values of Discrepancy1
and Discrepancy2 further reflect the consistent performance of our method for both edge and center
cases, surpassing existing SOTAs. In summary, our HiRes-LLaVA demonstrates superior ability to
handle input fragmentation while maintaining competitive performance on center cases.

4.4 ABLATION STUDY

In this section, we conduct ablation studies to evaluate the effect of our proposed modules. In
our ablation study, we conduct the experiments following LLaVA’s setting on the LLaVA 1.2M
data (Liu et al., 2023d) with additional 79K document-oriented data, which is essential to evaluate
the high-resolution VLLMs, in the instruction tuning stage, i.e., DocVQA (Mathew et al., 2021),
ChartQA (Masry et al., 2022) and InfoVQA (Mathew et al., 2022). Unless specified, we use LoRA (Hu
et al., 2021) to efficiently finetune pretrained LLM, i.e., Vicuna-1.5-7B and CLIP-ViT-Large-224px
as the vision encoder with maximum 16 slices in our ablation.

Effect of the proposed modules. We ablate the two main components of our HiRes-LLaVA,
specifically the SliceRestore adapter (SRA) and the self-mining sampler (SMS), as shown in Table 3.
Our findings are as follows: Our SMS demonstrates superior performance compared to other samplers,
notably outperforming Resampler (Bai et al., 2023b) by 6.9% on the average score across four
benchmarks. Integrating the model with SRA leads to further improvements across these benchmarks.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: The ablation study of different proposed modules. Note that ‘G’, ‘L’, and ‘G-L’ indicate
using the global fusion, the local fusion, and the combination of them respectively. All results are
conducted with the maximum number of slices is 16 except the baseline model, LLaVA. The last row
is the improvement over the baseline model.

Components Doc Comprehensive
Downsampler SRA Separator VQA-Text ChartQA DocQA InfoVQA Avg. MMBench MM-Vet MME-P

Baseline(LLaVA) 53.3 23.8 22.6 26.0 31.4 64.0 - 1424.7

ConcatChannel ✗ ✗ 60.3 54.4 54.8 34.3 50.9 60.8 30.2 1355.5
Resampler ✗ ✗ 58.8 49.8 42.8 32.6 46.0 59.6 26.6 1404.0
C-Abstractor ✗ ✗ 59.0 55.6 54.7 36.7 51.5 63.5 30.4 1393.5
SMS ✗ ✗ 60.0 56.2 58.0 37.4 52.9 63.3 31.1 1411.3
SMS G ✗ 60.9 56.2 57.2 38.2 53.1 65.5 30.6 1415.8
SMS G & L ✗ 61.5 56.9 57.6 38.4 53.6 64.9 33.8 1452.9
SMS G & L ✓ 61.8 58.8 59.7 41.4 55.4 65.5 33.8 1456.1

improvement relative to the baseline +8.5 +35.0 +37.1 +15.4 +24.0 +1.5 - +31.4

Table 4: The ablation study of different vision encoder and large language models. Note that
CLIP-ViT-Large-224px uses 16 maximum slices and InternViT-300m-448px uses 9 slices.

Components Doc Comprehensive
Vision Encoder LLM VQA-Text ChartQA DocQA InfoVQA Avg. MMBench MME-P

CLIP-ViT-Large-224px Vicuna-1.5 61.8 58.8 59.7 41.4 55.4 65.5 1456.1
CLIP-ViT-Large-224px LLaMA3.1 60.5 58.6 67.2 47.2 58.4 68.1 1453.4
InterViT300m-448px LLaMA3.1 63.4 65.9 74.4 53.2 64.2 68.0 1459.1

Table 5: The effect of different numbers of slices. ‘Max # Slices’ indicates the maximum number
of slices in the high-resolution images. ‘Max # V Tokens’ indicates the maximum number of visual
tokens.

Doc Comprehensive
Max #Slices Max #Tokens VQA-Text ChartQA DocQA InfoVQA Avg. MMBench MME-P

4 320 56.2 42.5 37.0 28.8 41.1 65.1 1436.3
9 640 59.9 51.6 49.3 34.9 48.9 64.3 1450.0

16 1088 61.8 58.8 59.7 41.4 55.4 65.5 1456.1

Additionally, the introduction of learnable queries to isolate slice representations, referred to as
Separator, results in a 1.8% enhancement in the average score.

Ablation study of kernel sizes in the self-mining sampler. Here we conduct the ablation study
of the self-mining sampler. In Table 6, we compare the performance of the average pooling with
different kernel sizes, i.e., s× s in Section 3.3. The results show that as the kernel size increases, i.e.,
the fewer vision tokens, the performance would degrade, since the information loss.

Ablation study of the number of high-resolution image slices. As shown in Table. 5, the number of
slices significantly affects the model’s performance on the document-related benchmarks. Specifically,
when increasing the number of slices from 4 to 16, the average performance improves by 14.3%
on four document-related benchmarks. As for the comprehensive benchmarks, larger number of
slices doesn’t effect model’s performance on MMBench too much and can bring a 19.8 improvement
on MME-Perception. Although the trend of the performance illustrates that applying higher slices
might bring more benefits, it will highly increase the computational cost during the training, i.e., 25
slices double the number of visual tokens of 16 slices. Balancing between the efficiency and the
performance, We use 9 slices for the InternViT-300M in our main experiments.

Ablation study of the selection of vision encoder and language model. In Table 4, we evaluate
the performance of different vision encoders and large language models on LVLM Benchmarks.
Experimental results show that compared to Vicuna-1.5-7B, LLaMA3.1-8B-Instruct can signifi-
cantly improve the model’s performance on both document-related benchmarks and comprehensive
benchmarks. Additionally, InternViT-300M-448px can maintain performance on comprehensive
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Table 6: Effect of different downsample kernel sizes in the self-mining sampler. ‘Downsample
Kernel Size’ is S × S defined in Section 3.3. ‘Base Resolution’ indicates the base resolution of the
vision encoder. ‘Max # V Tokens’ indicates the maximum number of visual tokens, i.e., H2 ×W2, as
the maximum number of slices is 16.

Base Downsample Max # V Tokens Doc
Resolution Kernel Size (Token/Slice) VQA-Text ChartQA DocVQA InfoVQA Avg.

224 2× 2 1088 (64) 61.8 58.8 59.7 41.4 55.4
224 4× 4 272 (16) 59.6 53.9 46.3 33.0 48.2
224 8× 8 68 (4) 54.9 46.8 35.3 29.6 41.7

336 2× 2 2448 (144) 63.6 58.5 65.7 40.7 57.1
336 3× 3 1088 (64) 61.2 56.7 59.8 38.7 54.1
336 4× 4 512 (36) 61.4 53.3 54.3 34.3 50.8
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62
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QKVQA

ChartQA
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Figure 5: (a) Ablation on data efficiency of HiRes-LLaVA. We sample the training data mixture at
ratios of 20%, 60%, and 100% and report the performance of our HiRes-LLaVAon seven benchmarks.
(b) Data efficiency comparison with Q-former and our proposed self-mining sampler (SMS).
The performance on ‘Doc QA’ is averaged from DocVQA, ChartQA and InfoVQA. The performance
on ‘General QA’ is averaged from the other four benchmarks. Our SMS can use 40% fewer data to
achieve competitive performance compared with Q-former, indicating our method’s efficiency. Note
that both Q-former and our SMS apply one cross-attention block.

benchmarks and further improve all document-related benchmarks by increasing the base resolution
and the number of vision tokens.

Data efficiency analysis. We evaluated the data efficiency of our method, HiRes-LLaVA, by
subsampling the training data mixture at ratios of 20%, 60%, and 100%. Results in Fig. 5 (a)
show that using the entire dataset achieves optimal performance. Remarkably, with only 60% of
the data, performance remains above 90% of the full dataset’s level, highlighting the potential for
improved data efficiency. Additionally, we compared our self-mining sampler’s efficiency against the
commonly used Q-former in LVLMs. As depicted in Fig. 5 (b), our method performs competitively
with Q-former even with only 20% of the data, demonstrating its effectiveness and efficiency.

5 CONCLUSION

In this paper, we present HiRes-LLaVA, a large visual-language model (LVLM) designed to effi-
ciently address input fragmentation caused by current slicing-based high-resolution LVLMs. To
evaluate this capability, we introduce a new benchmark, EntityGrid-QA, which includes identification,
position, and counting tasks. Comprehensive experimental results on 11 popular existing bench-
marks and EntityGrid-QA demonstrate the effectiveness of HiRes-LLaVA. Analytical evaluation and
visualization results are provided for a deeper understanding of the model’s performance.

Limitations. The samples in our constructed EntityGrid-QA are simple, lacking complex back-
grounds, and the categories of entities and tasks are limited. In the future, we aim to create a more
diverse dataset to better evaluate the performance of LVLMs in handling fragmented input.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

Training Datasets. Table 7 shows the detailed dataset construction of the capability enhancement
stage of HiRes-LLaVA. Specifically, it has 830K captioning including the ShareGPT4V (Chen et al.,
2023b), ShareGPT4o (Laboratory, 2023) and ALLAVA (Chen et al., 2024). The are 821K OCR
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data from SynthDoG (Kim et al., 2022) including English OCR data and Chinese OCR data, MMC-
Alignment (Liu et al., 2023c), UReader (Ye et al., 2023), K12 printed (100TAL, 2023) which is a
short OCR dataset. There is also 200K text instruction data from Magpie Pro (Xu et al., 2024b),
sampling from the generated data by llama3.1-70b, Llama3-70b and Qwen2-72B.

Table 8 shows the detailed construction of the 3M instruction tuning dataset. First, we remove
23K caption data and ShareGPT data from original LLaVA-158K (Liu et al., 2023e) and include
GPT4V/GPT4o-generated caption data, i.e., LAION-GPT4v (LAION, 2023), ShareGPT4V (Chen
et al., 2023b) and ShareGPT4o (Laboratory, 2023). We use ALLAVA instruction data (Chen et al.,
2024). To enhance the common knowledge of our model, we convert the visual spatial reasoning (Liu
et al., 2023a), AI2D (Kembhavi et al., 2016), and Science QA (Lu et al., 2022) training set into the
instruct-tuning data. To activate the understanding science, we collect data from ViQuAE (Lerner
et al., 2022) TextbookQA (Kembhavi et al., 2017), IconQA (Lu et al., 2021) and sampled 50k data
from the Cambrian’s Data Engine (Tong et al., 2024). We also collect document-oriented data
from diverse datasets, includes ChartQA (Masry et al., 2022), DVQA (Kafle et al., 2018), PlotQA
(Methani et al., 2020), OCRVQA (Mishra et al., 2019), ST-VQA (Biten et al., 2019), DocVQA (Clark
& Gardner, 2018), InfoVQA (Mathew et al., 2022), DeepForm (Svetlichnaya, 2020), TAT-DQA (Zhu
et al., 2022), TableFact (Chen et al., 2019), LRV-Chart(Liu et al., 2023b) and WebSRC (Chen et al.,
2021). We merge some datasets from Cauldron (Laurençon et al., 2024), including RAVEN, ROBUT-
SQA, ROBUT-WTQ, HiTab, IAM, Rendered Text, ORAND-CAR-A, Visual7W, Chart2Text, ai2d,
vistext, Diagram-image-to-text.

Module Design Details. The self-mining sampler consists of one cross-attention block with an
output layer norm. The cross-attention block has a cross-attention layer and a FFN. Both of them
apply the residual shortcut. The cross-attention layer has two layer norm for the query and key/value,
respectively. As for the SliceRestore Adapter, the parameters of the self-attention layer with the
layer norm are initialized from the pretrained CLIP self-attention at the same depth. To provide the
positional information between slices, we apply a 2D RoPE (Su et al., 2024; Sun et al., 2023) on the
global fusion module.

Evaluation Details. We utilize the open-source evaluation tools, lmms-eval (Li* et al., 2024), to
align our evaluation method to LLaVA-Next (Liu et al., 2024a).

Table 7: Datasets in the capability enhancement stage.
Task Datasets(# Sample) Sum
Caption ShareGPT4V(89k),

ALLAVA4V(684k),
ShareGPT-4O(57k).

830K(44.8%)

OCR SynthDoG-EN(300k),
MMC-Alignment(200k),
UReader(101k),
K12 printed(120k),
SynthDoG-ZH(100k).

821k(44.4%)

Text Magpie Pro(200k) 200k(10.8%)

Total 1.8M

A.2 PERFORMANCE COMPARISON OF THE SAME DATASET.

To demonstrate the effectiveness of our method, we compare the performance of LLaVA-1.5 and
our method trained on the same data. Specifically, we train the both methods on two different scale
training data set, i.e., LLaVA-655K (Li et al., 2023b) and LLaVA-655K with additional Doc-79K
data. Results from Table 9 show that our method outperforms the LLaVA-1.5 under both training
data sets, confirms that the superior performance can be attributed to the method itself rather than the
volume of data.
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Table 8: Summary of datasets used in the instruction tuning stage.

Task Datasets(# Sample) Sum

General QA LLaVA(135K), ALLaVA(660K) VQAv2(83K),
GQA(72K), OKVQA(9K), A-OKVQA(66K),
VSR(12K), ShareGPT4V(89K), TextCaps(22K), Laion-
GPT4V(11K), ShareGPT-4O(57K), RAVEN(3K), Vi-
sual7w(14K), RefCOCO(48K), VG(86K)

1.4M (48.0%)

Science ScienceQA(19K), ai2d(14K), ViQuAE(4K),
TextbookQA(21K), IconQA(30K),
Data Engine(50K)

139K(4.6%)

Doc QA
/OCR

OCRVQA(80K), TextVQA(57K), SynthDog(30K),
LLaVAR(39K), WikiTableQuestions(29K),
KleisterCharity(15K), iiit(6K), MLHME(30K),
VisualMRC(19K), ChartQA(48K), DocVQA(102K),
InfoVQA(33K), DVQA(200K), PlotQA(10K),
TAT-DQA(2K), TableFact(65K), WebSRC(5K)
DeepForm(8K), Chart2text(27K)
Vistext(10K), chrome writting(9K), IAM(6K),
Rendered text (10K), Orand-CAR-A(2K), lrv-chart(2K),
ROBUT-SQA(9K), ROBUT-WTQ(4K), Hitab(3K),
Diagram-image-to-text(0.3K).

0.9M(30.1%)

Code
Generation

WebSight(50K) 50K(1.7%)

Text-only Magpie-Pro(150K), Evol(142K),
mathinstruct(81K), mathplus(95K).

469K(15.6%)

Total 3M

Table 9: Ablation study of different training data. Using the same training data, our HiRes-LLaVA con-
sistently outperforms LLaVA-1.5, demonstrating the superior effectiveness of our approach.

Model Data VQA-Text ChartQA DocQA InfoVQA Avg.

LLaVA-1.5 LLaVA-665k 53.3 13.7 14.2 19.4 25.1
LLaVA-1.5 LLaVA-665k + Doc-79k 53.3 23.8 22.6 26.0 31.4

HiRes-LLaVA LLaVA-665k 62.4 19.8 37.7 26.0 36.4
HiRes-LLaVA LLaVA-665k + Doc-79k 62.3 57.6 58.5 39.2 54.4

A.3 EFFICIENCY ANALYSIS

Comparison with other LVLMs. To validate the efficiency of our method, we compare the
computational cost, training, and inference times with various LVLMs in Table 10. For computational
cost, we report the FLOPs of the ViT backbone, connector, and LLM components for each model.
Experimental results demonstrate that HiRes-LLaVA, despite processing inputs at twice the resolution
of LLavA-Next (13442 vs. 6722), is able to reduce training time by approximately 74%.

Comparison with other downsampling methods. We also compare the FLOPs and training time
of our proposed downsampling strategy SMS with other vision token downsamplers, including
ConcatChannel (Jun Chen & Elhoseiny, 2023), Q-Former (Bai et al., 2023a), and C-Abstractor (Cha
et al., 2023), as shown in Table 11. The results show that our SMS, even when combined with
additional components like SRA, achieves competitive efficiency compared to existing state-of-the-
art downsamplers.
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Table 10: Comparison of the efficiency of different models. Note that training time is assessed under
the SFT setting on a machine with 8 V100 GPUs. The inference time is assessed on the InfoVQA
benchmark with 6096 images by using the lmms-eval. Note that using the same batch size per device
and resolution, LLaVA-Next would be out of the memory. The ratios of training time for ours relative
to LLaVA-Next are marked in purple.

Training Inference FLOPs Training Inference
batch size Resolution ViT Connector LLM time time

HiRes-LLaVA

2 1344x1344 6.6 T 195.2 G 37.1 T 60.7h (15.9%) 15.4m

HiRes-LLaVA w/o SRA

2 1344x1344 6.5 T 195.2 G 37.1 T 59.5h (15.6%) 12.9m

LLaVA-Next (LLaVA-1.6)

2 1344x1344 Out of the memeory

1 672x672 1.9 T 120.8 G 44.0 T 381.0h 13.2m

Table 11: Ablation study of the efficiency of individual components for different downsamplers.
We assume the inputs are an image with 16 slices and 100 text tokens. Note that no downsampling
method causes out-of-memory (OOM) issues during training. Training time is assessed under the
SFT setting on a machine with 8 V100 GPUs.

Components FLOPs Training
Downsampler SRA ViT Sampler LLM Time

NoDownsample ✗ 6.5 T 410.8 G 148.3T -

ConcatChannel ✗ 6.5 T 164.3 G 37.1 T 58.6h
Q-Former ✗ 6.5 T 205.5 G 37.1 T 58.9h
C-Abstractor ✗ 6.5 T 258.2 G 37.1 T 60.7h
SMS ✗ 6.5 T 195.2 G 37.1 T 59.5h
SMS ✓ 6.6 T 195.2 G 37.1 T 60.7h

A.4 MORE VISUALIZATION

Samples from EntityGrid-QA Benchmark. We illustrate three examples from our proposed
EntityGrid-QA benchmark in Fig. 6. These three samples visualize examples of the three tasks in the
benchmark we proposed. For each task, we write or paste the digital number or object directly onto
each position of an empty image, and ask questions to the models.

More Qualitative Results. To further validate the effectiveness of our model, we illustrate the more
qualitative results of InfoVQA, ChartQA and V* Benchmark in Fig. 7 and Fig. 8. Moreover, we give
two qualitative examples to present the HiRes-LLaVA’s capability of generating HTML code when
given a website image in Fig. 9.

A.5 BROADER IMPACTS

The development of HiRes-LLaVAadvances the field of vision-language models and has broad
implications for various applications, including document analysis, medical imaging and remote
sensing. However, alongside these potential benefits, there are considerable concerns.

HiRes-LLaVA, not having undergone rigorous safety training, might generate harmful or inappropriate
content, leading to legal and ethical issues. Furthermore, its enhanced ability to process high-
resolution inputs could be misused for creating misleading news, contributing to disinformation.
These potential negative impacts highlight the need for careful management and ethical guidelines in
the deployment of such technologies.
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(a) Decimal

(b) Text

(c) Object

…

…

…

…

…

…

What is the number in the picture?
A. 0.0002168
B. 0.002165
C. 0.002168
D. 0.802160

What is the letter in the picture? 
A. the letter is okuys
B. the letter is ouys
C. the letter is okyys
D. the letter is ouys

(d) Icon

… …
What is the icon in the picture?
A. Cylinder
B. raccoon
C. fence
D. bowling_pin

What is the object in the picture?
A. bed
B. couch
C. Bench
D. chair

Figure 6: Examples of our proposed EntityGrid-QA Benchmark.
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LLaVA-Next: politics Monkey: politics
Ours: civil unrest

Q: What category was the top story on the 
10th of June?

LLaVA-Next: waste Monkey: pollution
Ours: ocean pollution

Q: How many buildings were constructed 
by Hemlow?
LLaVA-Next: 21 Monkey: 9
Ours: 12

Q: What is the third ingredient listed to 
make Pasta?
LLaVA-Next: water Monkey: eggs
Ours: salt

Q: Who was the opponent of India in 
the semifinals of World Cup 2011?

LLaVA-Next: england Monkey: sri lanka
Ours: pakistan

×
√

×

×
√

×

Q: Which environment issue is mentioned 
in the bottom row of the bulb image in the 
infographic?

×
√

×

×
√

×

Need to counting the number of buildings

× ×
√

Figure 7: Qualitative results from InfoVQA (Mathew et al., 2022).
20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

LLaVA-Next: 10.4 Monkey: 12.13
Ours: 10.94

Q: What was Belgium's GDP in 2011?

Q: What is the color of the woman‘s scarf ?
(A) white
(B) red
(C) yellow
(D) green
LLaVA-Next: A Monkey: A
Ours: B

Q: What is the cartoon character on the clock.
(A) Bugs Bunny
(B) Mickey Mouse
(C) SpongeBob
(D) Donald Duck

LLaVA-Next: C Monkey: A
Ours: B

×
√

×

LLaVA-Next: 37596.8
Monkey: 386174.7
Ours: 375967.8

×
×

√

Q: What was the mortgage debt in the 
United States in 2020?

×
√

××
√

×

Figure 8: Qualitative results from ChartQA (Masry et al., 2022) and Vstar Benchmark (Wu &
Xie, 2023). We use the red circle to highlight the answer target in the image.
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GT

Ours

GT Ours

Figure 9: Qualitative results on Image2HTML task (Si et al., 2024). We visualize convert the
generated html code to website image and compare to the input image.
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