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ABSTRACT

Recently, significant progress has been made in developing reasoning-capable
Large Language Models (LLMs) through long Chain-of-Thought (CoT) tech-
niques. However, this long-CoT reasoning process imposes substantial memory
overhead due to the large Key-Value (KV) Cache memory overhead. Post-training
KV Cache quantization has emerged as a promising compression technique and
has been extensively studied in short-context scenarios. However, directly apply-
ing existing methods to long-CoT LLMs causes significant performance degra-
dation due to the following two reasons: (1) Large cumulative error: Existing
methods fail to adequately leverage available memory, and they directly quantize
the KV Cache during each decoding step, leading to large cumulative quantiza-
tion error. (2) Short-context calibration: Due to Rotary Positional Embedding
(ROPE), the use of short-context data during calibration fails to account for the
distribution of less frequent channels in the Key Cache, resulting in performance
loss. We propose Progressive Mixed-Precision KV Cache Quantization (PM-
KVQ) for long-CoT LLMSs to address the above issues in two folds: (1) To reduce
cumulative error, we design a progressive quantization strategy to gradually lower
the bit-width of the KV Cache in each block. Then, we propose block-wise mem-
ory allocation to assign a higher bit-width to more sensitive transformer blocks.
(2) To increase the calibration length without additional overhead, we propose
a new calibration strategy with positional interpolation that leverages short cali-
bration data with positional interpolation to approximate the data distribution of
long-context data. Extensive experiments on 7B—70B long-CoT LLMs show that
PM-KVQ improves reasoning benchmark performance by up to 8% over SOTA
baselines under the same memory budget and achieves 2.73-5.18 x throughput
over the original 16-bit LLMs. Our code will be released soon.

1 INTRODUCTION

Recently, many pioneers have developed remarkable reasoning Large Language Models (LLMs)
with long Chain-of-Thoughts (CoT) techniques, such as OpenAl-ol (OpenAl 2024), DeepSeek-
R1 (Guo et al., [2025)), QwQ (Team), 2025), and so on. To achieve better algorithmic performance,
these long-CoT reasoning LLMs are trained to generate up to 128K tokens with multiple complex
rationales from different perspectives (Guo et al., [2025). However, this long-CoT process demands
significant memory overhead (~10GB-100GB) to store the Key-Value (KV) Cache as the history
information, which limits the practical application scenarios for such long-CoT LLMs.

To mitigate the substantial memory overhead of long-CoT LLMs, various KV Cache compression
methods have been proposed (Liu et al., 2024c; |Yang et al., 2024; |Su et al., 2025; |Xiao et al.,
2023} |Fu et al.} 2024)). Among them, Post-training KV Cache Quantization is a promising compres-
sion technique that has already been well explored in short-context scenarios (e.g., <8K tokens).
QServe (Lin* et al., 2024) and MiKV (Yang et al., [2024)) observe that the Key Cache has more out-
liers than the Value Cache, leading to higher quantization error. More importantly, the outliers in the
Key Cache persist in certain channels. To this end, they propose a channel-wise equalization method
to migrate the outliers from the Key tensor to the Query tensor, thereby significantly reducing the
quantization error. KIVI (Liu et al.;[2024c)), SKVQ (Duanmu et al.| 2024)), and IntactKV (Liu et al.,
2024b)) gain insights from the data distribution of the attention map and preserve the first or most
recent tokens in higher bit-width within the KV Cache to maintain the performance.
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However, directly applying the above short-context-optimized methods to long-CoT LLMs results
in severe performance degradation. The reasons stem from the following two aspects: (1) Large
cumulative error in long-CoT LLMs: As a lossy compression method, directly quantizing the
Key and Value tensors (Liu et al., 2024c; [Lin* et al., [2024; [Yang et al.| 2024} |Duanmu et al., [2024)
introduces quantization errors at each decoding step when generating one token. As the number
of generated tokens increases, the accumulated quantization error grows larger, leading to a sig-
nificant performance degradation of long-CoT LLMs. (2) Short calibration data cannot reflect
long-context data distribution: The Rotary Positional Embedding (RoPE) operator incorporates
positional information into each channel of the Key Cache by rotating token embeddings using sine
and cosine functions of different frequencies. For low-frequency channels after RoPE, which have
a period of over 32K tokens, calibration using short sequences (e.g., 2K tokens) fails to accurately
reflect the data distribution of the Key Cache, leading to more significant quantization errors.

In this paper, we propose Progressive Mixed-Precision KV Cache Quantization (PM-KVQ) to ad-
dress the above two issues respectively. (1) To reduce cumulative error, we aim to fully utilize the
memory budget of the target hardware through two strategies. On the one hand, we propose to quan-
tize the KV Cache progressively. For example, to achieve extremely low-bit quantization, such as
2-bit, instead of directly quantizing KV Cache to 2-bit at each decoding step, we initially store KV
Cache in 16-bit format and then gradually reduce the bit-width to 2-bit through shifting operations
once the memory resource is fully occupied. On the other hand, we propose a block-wise memory al-
location technique to allocate higher bit-widths for more sensitive blocks. Specifically, we formalize
the bit-width allocation task as an Integer Programming problem, which can be effectively solved by
existing solvers with negligible latency. (2) To increase the effective calibration length without intro-
ducing additional computational or memory overhead, we retain the use of short-context data during
calibration to maintain low resource consumption. Furthermore, we propose leveraging positional
interpolation (Chen et al.} [2023) to embed long-context positional information into short-context
data, thereby enabling a more accurate estimation of the data distribution for long sequences.

To sum up, the proposed PM-KVQ mainly contains the following contributions:

* We design progressive quantization and block-wise memory allocation techniques tailored
for long-CoT scenarios to fully utilize the memory budget of the target hardware and effec-
tively reduce cumulative quantization error.

* We propose to use short-context calibration data with positional interpolation to increase
the effective length without incurring additional computational or memory overhead.

» Extensive experiments on long-CoT LLMs, ranging from 7B to 70B, show that the pro-
posed PM-KVQ achieves up to 8% accuracy improvement over SOTA baselines on rea-
soning benchmarks under 4-bit/2-bit KV Cache quantization settings, while delivering a
2.73-5.18x throughput improvement over the 16-bit model.

2 RELATED WORK

2.1 LONG COT LARGE LANGUAGE MODELS

Long-CoT (Long-Chain-of-Thought) LLMs aim to enhance multi-step reasoning capabilities for
complex tasks like mathematical proofs, scientific reasoning, and multi-hop QA. Models such as
OpenAl-ol (OpenAll 2024), QwQ (Team, 2025), and DeepSeek-R1 (Guo et al., 2025) employ ad-
vanced techniques to extend CoT reasoning depth. DeepSeek, specifically, integrates iterative self-
refinement and tool-augmented reasoning (e.g., code execution and symbolic solvers) to maintain
coherence across extended reasoning chains. Its architecture emphasizes hierarchical decomposition
of problems and error-correction mechanisms, achieving state-of-the-art performance.

While long-CoT can significantly improve model performance, it introduces excessively more de-
coding tokens (e.g., >32K tokens per request) and large GPU memory overhead. Despite employing
efficient attention designs, such as Multi-Query Attention (MQA) (Shazeer,[2019), Group-Query At-
tention (GQA) (Ainslie et al., 2023)), and Multi-head Latent Attention (MLA) (Liu et al., 2024a), the
memory overhead of the KV Cache in long-CoT LLMs remains significantly large, often surpass-
ing that of the model weights. Consequently, reducing the memory overhead of the KV Cache is
significantly important for large batch sizes and long context requirements.



Under review as a conference paper at ICLR 2026

2.2 POST-TRAINING KV CACHE QUANTIZATION

To alleviate the large memory overhead with long reasoning contexts, many efforts have been made
to reduce the KV Cache size. Post-training KV Cache quantization stands as a promising technique
for efficient inference. KV Cache quantization methods try to use low bit-width integers to represent
the cached key and value states, instead of using high bit-width floating-point values. Existing
methods typically apply asymmetric uniform quantization for KV Cache:

XBF16 — Z-‘
Xas m = \‘ ) (1)
Y Sasym
max(XBFm) — Z
Sasym = 2% _ 1 ) (2)

where Xpri6 denotes the 16-bit brain floating point (BF16) Key or Value tensor, X,eyrm, denotes
the integer Key or Value tensor, Sasym and Z = min(Xgpi6) denote the scaling factor and the zero
point respectively, b denotes the quantization bit-width, |-| denotes the rounding function.

Specifically, MKLV (Hariri et al.,|2025) discovers that the sensitivity of Key and Value tensors are
quite different, with the Key tensors being more sensitive to quantization than the Value tensors.
Therefore, MKLV simply assigns a higher bit-width to Key tensors and a lower bit-width to Value
tensors. WKVQuant (Yue et al., [2024) proposes to change the data flow of the previous KV Cache
quantization by using the unquantized current Key and Value to calculate the attention operator,
and then quantize the current Key and Value. SKVQ (Duanmu et al., 2024)) further improves the
WKVQuant by using a sliding window that stores the most recent 128 Key and Value features
in floating-point format to reduce the cumulative quantization error. MiKV (Yang et al.| [2024)
is inspired by H20 (Zhang et al., |2023) to use the heavy-hitter oracle to discover the important
tokens in a higher bit-width and quantize the rest of the unimportant tokens into a lower bit-width.
KIVI (Liu et al.l 2024c) discovers that the Value tensors are much flatter than Key tensors, and the
outliers in Key tensors typically appear in certain channels. To this end, KIVI utilizes per-channel
quantization for Key Cache and per-token quantization for Value Cache in a group-wise manner to
reduce the quantization error. RotateKV (Su et al., 2025) combines the channel-wise equalization
and the rotation-based equalization with Hadamard matrices to further reduce the quantization error.

In this paper, we adopt effective strategies from prior work, such as storing the first token in INT16
and using a sliding window for recent tokens. To further reduce quantization errors, we propose
two improvements: (1) Progressive Quantization — initially store KV cache in higher precision and
gradually lower the bit-width as memory memory becomes saturated; (2) Block-wise Memory Al-
location — allocate more memory to sensitive transformer blocks when capacity allows, thereby
preserving performance.

3 METHOD

3.1 PROGRESSIVE QUANTIZATION

As discussed in Section[2.2] existing post-training KV Cache quantization methods quantize at every
decoding step, causing large cumulative errors. A sliding window with high-precision cache allevi-
ates this, but very low bit-widths (e.g., 2-bit) still lead to severe accuracy loss in long-CoT tasks. We
show that existing KV cache quantization methods underutilize the memory budget and miss
opportunities to reduce cumulative errors. As illustrated in the left panel of Figure [[(a), SOTA
methods store 2-bit KV Cache at every decoding step, causing substantial memory waste when the
budget is not fully used.

To address the above issue, we propose a progressive quantization strategy to make full use of
the memory resources by gradually shrinking the bit-width of the KV Cache, thereby significantly
reducing the cumulative quantization error. For each transformer block, we use “Fbit” to represent
the final bit-width of the progressive quantization process. In this case, we can easily calculate the
memory budget for each transformer block based on the maximum context length of the target long-
CoT LLM. As shown in Figure[T|(a) right, the Fbit in this example is 2-bit and the maximum context
length is 32K. During generation, we initially store the KV Cache in 16-bit format to alleviate the
large cumulative quantization error. Once the memory budget is fully utilized, we apply a bit-
width shrinking strategy to accommodate more tokens by progressively reducing the bit-width of
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Figure 1: Method Overview. (a) Progressive quantization: we progressively shrink the bit-width of
KV Cache to fully utilize the memory budget. (b) Block-wise memory allocation: we allocate a
higher bit-width to those transformer blocks with higher sensitivity. (c) Calibration with Positional
Interpolation to approximate the distribution of long-context data with short-context data.

the existing KV Cache. Specifically, we use powers of two for quantization bit-widths, gradually
decreasing them in the order of 16, 8, 4, and 2 bits.

In addition, for the bit-width shrinking strategy, we design an “Equivalent Right Shift” strategy
that is mathematically equivalent to de-quantizing the 2b-bit KV Cache and then quantizing it to
b-bit. Here, b can be 8, 4, or 2, corresponding to shrinking the KV Cache from 16-bit to 8-bit, 8-bit
to 4-bit, and 4-bit to 2-bit, respectively. Specifically, we formulize the bit-width shrinking strategy
by using integer addition and shifting as follows:

Xy = (22 — 2" +1)(Xap +2°71)) >> 30, 3)

where X;, and X, represent the b-bit and 2b-bit tensor respectively. We keep the zero point un-
changed (Z, = Z93) and increase the scaling factor to S, = (2b + 1)S9 to preserve the dynamic
range of the data distribution. The detailed proof of equivalence for Equation (3 is shown in Sec-
tion[D] Furthermore, we compare the effect of three different bit-width shrinking strategies and show
that the “Equivalent Right Shift” strategy achieves better performance, as detailed in Section [#.4.1]

3.2 BLOCK-WISE MEMORY ALLOCATION

Existing KV Cache quantization methods typically apply a uniform bit-width across all transformer
blocks, which may not fully utilize the memory resources of the target hardwares. As shown in
Figure [T[b) left, in this example, the target hardware has sufficient memory to store the KV Cache
uniformly in 2-Fbit format, leaving a proportion of wasted memory. However, switching to a uni-
form 4-Fbit format may exceed the memory limit and trigger an out-of-memory error. Therefore,
using a uniform bit-width for KV Cache may not fully utilize the available memory across different
scenarios with varying memory resources.

To fully utilize the memory resource in different scenarios for better performance, we propose a
block-wise memory allocation strategy to assign a higher bit-width for more sensitive blocks. In-
spired by existing mixed-precision quantization methods (Li et al., |2023; [Zhao et al., [2024), we
employ a first-order Taylor approximation to estimate the sensitivity of the model output to pertur-
bations in the Key Cache and Value Cache. Here, we take the Key Cache as an example:

where L is the loss function, ¢ represents the i-th transformer block, K; is the Key Cache, Q(+) is
the b-bit quantization function, G, is the gradients of the loss function with respect to the K;, ©®
is the element-wise multiplication operator. The Value Cache follows a similar formulation.

To minimize the effect of KV Cache quantization in each transformer block, we aim to minimize
the following sensitivity term:

sip = |Gk, © (Ki — Qp(Ky))|l1 + [|Gv, © (Vi — Qp(Vi))l1, )
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where s; ; denotes the sensitivity of the KV Cache in the i-th transformer block to b-bit quantization.

Taking into account the sensitivity of all transformer blocks, our goal is to assign an appropriate bit-
width to each block to minimize the impact on the loss function, subject to a given memory budget.
To this end, we formulate the block-wise bit-width allocation as the following Integer Programming
problem:

N
arg min Z Z Tip - Sib, (6)
b

Tib f

N
Dowmip=1> > @iy (Mem(Qy(Ky)) + Mem(Qu(Vi))) < M, @)
b i b

xi,be{ovl},beBa (8)
where N is the number of transformer blocks, Mem(-) is the function to calculate the memory
usage of the quantized KV Cache, M is the memory budget for the KV Cache of all the transformer
blocks, x; j is the one-hot vector that indicates the bit-width choice b of the i-th block, and B is the

optional bit-width set, detailed in Section[4.1.3] The proposed Integer Programming problem can be
effectively solved by CVXPY (Diamond & Boyd, |[2016) within a few seconds.

3.3 CALIBRATION WITH POSITIONAL INTERPOLATION

Previous studies have observed that the Key Cache of LLMs contains outliers in certain channels,
which significantly increases the quantization error. Approaches such as QServe (Lin* et al., [2024)
address this issue by introducing a channel-wise reparameterization method to transfer the outliers
in Key tensors into Query tensors:

P =(QA) Q((KA™)T), A = diag(Xi), )
where i is the channel index, \; is the reparameterization factor of the i-th channel, and Q(-) is the
quantization function. Generally, \; is calibrated using a small dataset of sequences with a typical

length of 512 tokens, which is much shorter than the maximum output length of 32K tokens. The
calibration process follows Equation (10):

Ai = (max Km,i)“, (10)

where m is the token position index, and « is the parameter to adjust the strength of outlier transfer,
which can be set as a fixed number or obtained by grid search (Lin et al., |[2024)).

However, applying the above reparameterization technique to long-CoT LLMs using short calibra-
tion data (e.g., 512) may fail to accurately capture the distribution of the Key Cache. This limitation
arises because Rotary Positional Embedding (RoPE) (Su et al., 2024) is used to inject positional
information into the Key Cache, which introduces periodic variations across different channels:

Kmﬂ' __ |cos mé; —sinmb; Km,i o 2 2 cos(mé)i + QO)
l[N(WHg] B [sin mb;  cosmb; ] [Kmﬂgrg] Y Km:i + Km,i+% {sin(mb‘i + w)} , (D
where K and K denote the Keys before and after RoPE respectively, d is the hidden dimension of
each attention head, and 6; denotes the rotary frequency of channel 4 and i + d/2. Since §; = 62"/
decreases with increasing ¢, the frequency of the sine curve is extremely low in channels with indices
near d/2 and d. For example, in the DeepSeek-R1-Distill-Qwen-7B, the lowest frequency sine
curve has a period of up to 54,410 tokens. Therefore, when using short sequences of 512 tokens

for calibration, as shown in Figure[I]c) top, we cannot obtain the reparameterization factor that can
completely reflect the sine-like data distribution.

Directly increasing the length of calibration data significantly increases both latency and memory
costs due to the O(N?) complexity of the self-attention operator. Instead, we embed long-context
positional information into short calibration data by leveraging positional interpolation (Chen et al.,
2023). Specifically, we multiply a position scaling factor s to the position index m in the rotary
matrix of RoPE for positional interpolation, as shown below:

Af(:m,i _ |cos(s-mbi) —sin(s - mb;) K, - /KT T K2 cos(s-mb; + ¢)
KWH_% sin(s-mb;)  cos(s-mb;) Km7i+g \ med m,i+¢ |sin(s-mb; + @) | °

12)
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As shown in Figure [T[c) bottom, by applying positional interpolation, we can increase the largest
positional index by sx without additional computation and memory overhead.

3.4 METHOD PIPELINE

In this paper, the proposed PM-KVQ combines the above three techniques to achieve better long-
CoT performance with low bit-width KV Cache quantization. (1) Before the inference process,
we first profile the sensitivity of each transformer block based on the calibration dataset, detailed in
Section[4.1.1] and solve the Integer Programming problem to set the proper Fbit for each transformer
block, as discussed in Section [3.2] Then, we apply the channel-wise reparameterization technique
by using the calibration dataset with positional interpolation, as detailed in Section (2) During
the inference process, we apply progressive quantization to the KV Cache by gradually lowering the
bit-width from 16-bit to the allocated Fbit, as shown in Section 3.1}

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUPS
4.1.1 DATASETS

For the calibration dataset, we use the arXiv subset of RedPajama (Weber et al., 2024) as cal-
ibration dataset. This subset consists of academic papers, containing mathematical formulas and
reasoning process. We randomly select 512 samples, each with a length of 2,048 tokens, for cal-
ibration. For positional interpolation, we set s = 4 in Equation (IZ), which means we embed an
8,192 context length to 2,048 tokens. We set « in Equation (I0) by grid searching over [0,1] for the
optimal « that minimizes the reconstruction loss of the self-attention operator with a grid size of 20.

For performance evaluation, we mainly focus on evaluating the long-CoT LLMs on the math-
ematical reasoning and code generation benchmarks with long generation contexts (>16K). For
mathematical reasoning, we use the AIME-2024/2025 (AIME! 2025) and CMIMC-2024 (CMIMC|
2025) datasets. For competition-level code generation, we select coding problems released between
January 1, 2025, and April 6, 2025, from LiveCodeBench (Jain et al.| 2024)). Besides, as illustrated
in Section [C.2] we also evaluate the proposed PM-KVQ on the IFEval (Zhou et al 2023) dataset
with short generation contexts (~1K) to demonstrate its strong generalizability across different
context lengths. We sample 16 responses for each mathematical problem, 4 responses for each code
generation problem, and 1 response for each instruction following problem, using a temperature of
0.6, top-p of 0.95, and a maximum output length of 32,768 tokens.

4.1.2 BASELINES AND MODEL CHOICE

For baselines, we compare PM-KVQ with SOTA KV Cache quantization methods, including the
uniform bit-width methods RotateKV (Su et al., 2025), KIVI (Liu et al.;,|2024c), and mixed-precision
quantization method MiKV (Yang et al.,2024)), which retains the KV Cache of heavy hitters in BF16
format and uses low bit-width for other tokens. Similar to KIVI, PM-KVQ stores the KV Cache for
the first and most recent 128 tokens in INT16 format to mitigate performance degradation. All model
weights in our experiments are in BF16 format.

For model choices, we evaluate the different quantization methods above on the Deepseek-R1-
Distill (Guo et al., 2025) series as well as the QwQ-32B model (Team, 2025). Specifically, the
Deepseek-R1-Distill series is an LLM family distilled from DeepSeek-R1. We choose Deepseek-
R1-Distill-Qwen-7B/14B/32B and Deepseek-R1-Distill-LLaMA-8B/70B, ranging from 7B to 70B.

4.1.3 BIT-WIDTH AND BATCH SI1ZE SETUPS

For the bit-width settings, to demonstrate the effectiveness of the proposed PM-KVQ, we select
quantization bit-widths that lead to significant performance degradation when using baseline meth-
ods for each long-CoT LLM. Specifically, we use 4-bit for DeepSeek-LLaMA-8B and 2-bit for
other LLMs. Notably, the bit-width for the proposed PM-KVQ stands for the Fbit, as discussed
in Section In addition, for the optional bit-width set B in Section we use B = {4,8}
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Table 1: Main results of long-CoT Language Models on reasoning-related benchmarks with SOTA
KV Cache quantization methods. “BS” is short for “batch size”.

Models Quantization Bit-width AIME-2024 AIME-2025 CMIMC-2024 LiveCode
(Target GPU) Methods (K-V) pass@1 Voting pass@1 Voting pass@1 Voting  pass@1
-- 16-16 41.04+674  63.33  30.00+333  36.67 27.29+s517  43.33  26.29+134
RotateKV (BS=32,40) 2-2 0.00+0.00 0.00 0.00-+0.00 0.00 0.00+0.00 0.00 0.00+0.00
DeepSeek- MiKV (BS=32) 2/16-2/16  0.00+0.00 0.00 0.6340.02 3.33 2.29+0.02 3.33 5.86+0.85
Qwen-7B MiKV (BS=40) 2-2 0.00+0.00 0.00 0.00+0.00 0.00 0.00+0.00 0.00 0.00+0.00
(1x4090-24G)  KIVI (BS=32,40) 2-2 32.08+525 43.33  24.58+351  33.33  20.83+363  23.33  19.00+237
PM-KVQ (BS=32) 2/4-2/4  40.21+571  66.67  28.96+420 40.00 25.83+520 40.00 24.71+1.48
PM-KVQ (BS=40) 2-2 40.00+540  60.00 28.12+471  33.33  26.46+464 40.00 24.57+142
-- 16-16 44.17+449  66.67  30.63+658 50.00  26.67+441  36.67 32.14+19
RotateKV (BS=6,8) 4-4 42924389  66.67 27.29+648 40.00 26.46+533 30.00 32.00+1.56
DeepSeek- MiKV (BS=6) 4/16-4/16  35.63+7.14  66.67 24.79+372  36.67 25214353  33.33  27.00+1.30
LLaMA-8B MiKV (BS=8) 4-4 41.67+656 60.00 26.46+702 43.33 22924484  26.67 29.71+167
(1x4090-24G)  KIVI (BS=6,8) 4-4 41.25+665 60.00 27.92+470 46.67  26.25+498  36.67 30.29+1.76
PM-KVQ (BS=6) 4/8-4/8 47.71+684 7333  31.25+564 50.00  28.13+408  36.67 31.71+0386
PM-KVQ (BS=8) 4-4 43334557 63.33  31.25+564  50.00  28.96+s510  40.00 31.57+1.17
DeepSeek- -- 16-16 68.13+726  80.00  50.00+577  60.00  49.58+484  66.67 45.71+1.34
chfn—14B KIVI (BS=12,16) 2-2 48.13+485  70.00 33.96+3.17 4333 27714367 33.33 34431311
(1xA100-40G) PM-KVQ (BS=12) 2/4-2/4 67.71+694 80.00 46.67+736 60.00 47.71+420 60.00 42.14+095
PM-KVQ (BS=16) 2-2 63.33+408 83.33  42.08+655 60.00 46.67 +527  70.00 41.86+1.78
DeepSeek- -- 16-16 72.08+439  86.67 53.124571  66.67  52.50+571  70.00 46.86+2.18
Qwé’n—32B KIVI (BS=12,16) 2-2 63.96+689 83.33 45424538 60.00 40.63+517  56.67 40.43+1.10
(1xA100-80G) PM-KVQ (BS=12) 2/4-2/4 69.17+595 83.33 48544589 60.00 51.25+470 66.67 43.57+164
PM-KVQ (BS=16) 2-2 67.29+489 83.33 48.96+733 63.33 5042+716 73.33 43.57+062
-- 16-16 78.54+485 86.67 67.71+348 76.67  71.25+351  80.00 54.71+0.74
QwQ-32B KIVI (BS=12,16) 2-2 61.25+551  76.67 51.67+527 63.33  48.33+577  63.33  41.86+1.21
(1xA100-80G) PM-KVQ (BS=12) 2/4-2/4  66.46+381  80.00 49.58+439 6333  54.58+s512  66.67 45.14+0.70
PM-KVQ (BS=16) 2-2 67.29+338 76.67 49.79+620 70.00  56.67+391  73.33  44.57+040

for DeepSeek-LLaMA-8B, and B = {2,4} for other long-CoT LLMs. We use asymmetric group-
wise quantization for KV Cache with a group size of 128, as shown in Equation (I). All of the
performance results are conducted with fake quantization on an 8 x A100-80G GPU server.

For the batch size setups, we assign a target GPU with different memory resources for different
LLMs to show the memory constraints in real-world scenarios, as shown in Table [I} On the one
hand, to demonstrate the effectiveness of progressive quantization, we set the batch size for each
LLM such that all methods can fully utilize the memory resources of the target GPU. Specifically,
we use a batch size of 8 for LLaMA-8B with a 4-bit KV Cache, 40 for Qwen-7B with a 2-bit
KV Cache, and 16 for the other LLMs, as shown in Table[I On the other hand, to evaluate the
effectiveness of block-wise memory allocation, we use smaller batch sizes to allocate more memory
per instance, ensuring that higher bit-widths cannot be directly used under the same constraints. In
this setting, we use a batch size of 6 for LLaMA-8B with a 4-bit KV Cache, 32 for Qwen-7B with a
2-bit KV Cache, and 12 for the remaining LL.Ms, as also shown in Tablem

4.2 MAIN RESULTS

As illustrated in Table [T} for long-CoT LLMs smaller than 10B, we compare PM-KVQ with Ro-
tateKV, MiKYV, and KIVI. For the 2-bit DeepSeek-R1-Distill-Qwen-7B, applying RotateKV or
MiKYV causes the model unable to generate meaningful responses. The SOTA method KIVI also
suffers from significant performance loss by up to 9%. PM-KVQ outperforms KIVI by up to 8%
when applying uniform Fbit for each transformer block (batch size = 40). When the batch size is
reduced to 32, each sample receives a larger memory budget. However, this budget is still insuf-
ficient to apply uniform 4-bit quantization across all blocks. As a result, KIVI is constrained to
2-bit quantization, underutilizing the available memory. In contrast, PM-KVQ leverages block-wise
memory allocation to better utilize the larger memory, achieving an additional performance gain of
up to 0.84%. For the 4-bit DeepSeek-R1-Distill-LLaMA-8B, PM-KVQ surpasses the SOTA meth-
ods by up to 6.5% on AIME-2024, and even achieve better performance than the original LLM on
mathematical benchmarks. Besides, for LLMs smaller than 10B, the average voting accuracy of
PM-KVQ exceeds KIVI by up to 15.56%, demonstrating greater stability of the proposed method.

For larger long-CoT LLMs from 10B to 32B, we only compare the proposed PM-KVQ with KIVI
because MiKV and RotateKV fail to generate meaningful information under 2-bit quantization, as
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discovered in the 2-bit DeepSeek-R 1-Distill-Qwen-7B. As shown in Table[T} PM-KVQ also demon-
strates superior performance compared to KIVI, improving average pass@ 1 and voting accuracy by
up to 15.00% and 17.78% on various LLMs. Especially, for the DeepSeek-R1-Distill-Qwen-14B,
KIVI causes a performance degradation of 21.87% on CMIMC-2024, whereas PM-KVQ has a sig-
nificantly lower degradation of only 1.87% and 2.91% under batch sizes of 16 and 12, respectively.

For the 70B-level long-CoT LLM, we evaluate the 2-bit DeepSeek-R1-Distill-LLaMA-70B model
on the AIME-2024 benchmark. The original 16-bit model achieves a pass@1 of 69.14%. When the
KV Cache is quantized to 2-bit using KIVI, the pass@1 drops significantly to 51.88%. In contrast,
the proposed PM-KVQ enables the 2-bit model to achieve a much higher pass@1 of 64.79% under
both batch sizes of 12 and 16, outperforming the KIVI baseline by 12.91%.

4.3 EFFICIENCY ANALYSIS

We evaluate 7B and 32B long-CoT LLMs
on an A100-80G GPU, comparing the
throughput of PM-KVQ (Fbit=2) against
the original 16-bit LLMs and the 2-bit
KIVI baseline. We adopt the official set- Model
tings of KIVI (Liu et all, 2024c)), using its Method 16K 24K 32K
inference engine and 4/2-bit CUDA ker- 101.40 65.69  52.06

Table 2: The throughput (in tokens/s) across different
quantization methods and output lengths.

Quantization Output Length

nels for efficiency evaluation. Besides, g‘::gnsﬁﬂ(_ KIVI 506.72 352.44 284.10
we implement 16/8-bit CUDA kernels and PM-KVQ 42472 32348 269.51
bit-width shrinking kernels to support PM- _ 1234  10.35 8.92

KVQ. To fully utilize the A100-80G mem- gf:é’ns‘;‘;; KIVI 3565 3328 31.59

ory, we set the batch sizes of the original PM-KVQ 33.74 3215 30.81
7B and 32B models to 18 and 1, respec-

tively, while the quantized models allow larger batch sizes of 110 and 4.

As shown in Table [2] across different model sizes and output lengths, PM-KVQ achieves a
2.73-5.18x throughput improvement over the original 16-bit LLMs. Compared with KIVI, the
throughput of PM-KVQ is at a similar level, with a slight reduction primarily due to the use of higher
bit-widths during inference. Notably, the overhead of bit-width shrinking is negligible, as it is trig-
gered only when memory is fully utilized. Overall, PM-KVQ incurs a throughput degradation
of 2.45-16.18% compared to KIVI but achieves a substantial relative accuracy improvement
of 10.57-23.48%. To further evaluate the efficiency of the quantization procedure, we measure the
latency of block-wise memory allocation and calibration with positional interpolation. As shown in
Section|C.3] both the 7B and 32B LLMs complete these procedures within one hour using PM-KVQ.

4.4 ABLATION STUDIES

In this section, we conduct detailed ablation studies to show the effect of bit-wise shrinking strate-
gies introduced in Section and the effectiveness of the positional interpolation discussed in
Section[3.3] We also analyze the sensitivity of different transformer blocks detailed in Section [C.I]

4.4.1 THE EFFECT OF BIT-WIDTH SHRINKING STRATEGIES

Table 3: Ablation results of different bit-width shrinking strategies.

Bit-width AIME-2024

Model Bit-width Shrinking Strategy
(K-V) pass@1 Voting
-- 16-16 44.17  66.67
Direct Right Shift 4-4 12.08 23.33
DeepSeek-LLaMA-8B Modified Right Shift 44 2875 46.67
Equivalent Right Shift (Ours) 4-4 38.33 66.67

We compare three different bit-width shrinking strategies for reducing the KV Cache from 2b-bit to
b-bit. Specifically, b can be 8, 4, or 2, corresponding to shrinking the KV Cache from 16-bit to 8-bit,
8-bit to 4-bit, and 4-bit to 2-bit, respectively.
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Figure 2: Different bit-width shrinking strategies when the bit-width is reduced from 4-bit to 2-bit.

(1) Direct Right Shift: By directly right-shifting by b bits, only the higher b bits of the original 2b-bit
value are retained. As shown in Figure[2](a), to preserve the dynamic range of the quantized values,
we keep the zero point unchanged (Z;, = Zs;) and increase the scaling factor to .S, = (2b +1)Sq
to compensate for the magnitude reduction caused by the right-shift operation.

(2) Modified Right Shift: This strategy also uses b-bit right shifting strategy to perform the bit-
width shrinking. However, instead of keeping the dynamic range unchanged, this strategy aims to
ensure that quantization levels sharing the same upper b bits before the shift can have their mean
values directly mapped to the lower bit-width representatlon as demonstrated in Flgure 2] (b). To
achieve this, we change the scaling factor by S;, = 2°- S5, and zero point by Z;, = Zy, +3 (Sb —Sap).

(3) Equivalent Right Shift (in Section[3.1): As shown in Figure[2](c), this strategy is equivalent to
directly de-quantizing the 2b-bit KV Cache and then quantizing it to b-bit.

We evaluate the above three bit-width shrinking strategies on the AIME-2024 benchmark with
DeepSeek-R1-Distill-LLaMA-8B. As shown in Table 3] both the Direct Right Shift and Modified
Right Shift strategies result in significant performance degradation, reducing the pass@ 1 by 32.09%
and 15.42%, respectively. In contrast, the Equivalent Right Shift demonstrates a notable improve-
ment over the other two strategies, increasing the pass@1 by 26.25% and 9.58%, and maintaining a
lossless voting accuracy. Therefore, we adopt the Equivalent Right Shift strategy in PM-KVQ.

4.4.2 THE EFFECT OF POSITIONAL INTERPOLATION

We evaluate the long-CoT performance across varying lengths of calibration data and position scal-
ing factor s. We utilize the DeepSeek-R1-Distill-LLaMA-8B to generate four responses for each
problem in the AIME-2024-1 dataset. As shown in Table[d when the calibration sequence length is
set to 2,048, applying positional interpolation with s = 4 improves pass@1 by 1.66% compared to
not using positional interpolation, achieving accuracy comparable to that obtained using calibration
sequences of 8,192 tokens. We also observe that when s increases to 16, positional interpolation
may lead to performance degradation. This indicates that the computational savings of positional
interpolation are not unlimited, and overly aggressive scaling can indeed performance drop.

Table 4: Ablation results of different calibration sequence lengths and position scaling factors.

Calibration Sequence  Position Scaling  Effective AIME-2024-1

Model o
Length Factor Length pass@1  Voting
2,048 1 2,048 46.67 60.00
DeepSeek- 2,048 4 8,192 48.33 60.00
LLaMA-8B 2,048 16 32,768 46.67 53.33
8,192 1 8,192 48.33 60.00

5 CONCLUSION

In this paper, we introduce Progressive Mixed-precision KV Cache Quantization (PM-KVQ), a post-
training KV Cache quantization method designed for long-CoT LLMs. To reduce the large cumula-
tive error caused by uniform bit-width quantization, we design progressive quantization and block-
wise memory allocation techniques. To increase the effective calibration length without incurring
additional overhead, we propose a new calibration strategy with positional interpolation. Extensive
experiments and ablation studies demonstrate the effectiveness of the proposed PM-KVQ and each
proposed technique. Overall, the proposed PM-KVQ significantly outperforms SOTA baselines
by up to 8% on reasoning-related mathematics and coding benchmarks and achieves 2.73-5.18x
throughput compared to the original 16-bit LLMs.
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ETHICS STATEMENT

This work focuses on reducing the substantial overhead caused by the linearly growing KV cache in
long-context processing through KV Cache quantization. On the one hand, the proposed PM-KVQ
better preserves model accuracy after low-precision KV cache quantization, making it more accessi-
ble for cost-constrained institutions, individuals, and application scenarios. On the other hand, as a
lossy compression technique, quantization can introduce distribution shifts and performance degra-
dation, potentially leading to increased hallucinations or instruction-following failures. Therefore,
additional caution and oversight are required during deployment.

REPRODICIBILITY STATEMENT

We describe the calibration and evaluation datasets, as well as the data processing procedures, in
Section {.1.1] All datasets and models used in our experiments are publicly available. Detailed
information on the quantization bit-widths and batch sizes used for each long-CoT LLM is also
provided in Section [#.1.3] To facilitate reproducibility, we also release our source code along with
detailed guidelines.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this paper, LLMs are only used to assist in polishing the writing of this paper. The technical
content, experiments, and conclusions are entirely conceived and conducted by the authors.

B ADDITIONAL DETAILS OF EVALUATION

B.1 INTRODUCTION OF DATASETS

American Invitational Mathematics Examination (AIME) (AIME, [2025)) is a mathematics com-
petition for high school students. It contains 30 challenging problems each year, designed to assess
mathematical problem-solving skills across various topics, including algebra, combinatorics, geom-
etry, number theory, and other subjects covered in high school curricula.

Carnegie Mellon Informatics and Mathematics Competition (CMIMC) (CMIMC, [2025) is an
annual mathematics contest for high school students, hosted by students from Carnegie Mellon
University. The competition contains problems of algebra, combinatorics, and geometry, with each
category including ten standard problems along with one tiebreaker. Our model evaluation focuses
on the standard problem sets.

LiveCodeBench (Jain et al., 2024)) is an extensive and continuously updated benchmark designed
to evaluate the performance of LLMs in coding tasks. It continually gathers new problems from
competition platforms. The benchmark encompasses four distinct scenarios: code generation, au-
tomated code repair, code execution, and prediction of test outputs. In our experiments, we focus
specifically on the code generation scenario.

IFEval (Zhou et al[2023) is a benchmark proposed to systematically evaluate the ability of LLMs
to follow natural language instructions. The dataset contains 541 prompts, each annotated with one
or more verifiable instruction types such as word-count constraints, keyword frequency, formatting
requirements, or prohibitions on certain symbols. These instructions were deliberately designed
to be automatically checkable, enabling objective and reproducible evaluation without the need for
human annotators.

C ADDITIONAL EXPERIMENTS

C.1 THE SENSITIVITY OF DIFFERENT TRANSFORMER BLOCKS

We analyze the sensitivity and the memory allocation results across different models. For models
with parameter size less than 10B, as shown in Figure 3] we observe that the deeper blocks tend to
be more sensitive to quantization and receive a larger memory budget for the KV Cache. In addition,
in the DeepSeek-R1-Distill-Qwen-7B model, the first block is much more sensitive than the other
shallow blocks. Our memory allocation strategy accurately captures this feature, assigning a higher
memory budget to the first block accordingly.

For larger models with parameter size over 10B, as shown in Figure [d] KV Cache in deeper blocks
tend to be more sensitive than shallower blocks. We also observe that for the Qwen-based models,
the first block exhibits a large sensitivity. In particular, the sensitivity of the first block is the largest
among the first fifteen blocks in different Qwen-based models. This phenomenon is not observed in
the LLaMA-based models.

C.2 PERFORMANCE IN SHORT-GENERATION-CONTEXT TASKS

To verify the scalability of PM-KVQ to short-generation-context tasks, we evaluate it on IFE-
val (Zhou et al) |2023), an instruction-following benchmark. We follow the experimental setup
described in Section and adopt the evaluation metrics provided by OpenCompass (Contributors}
2023). Compared to reasoning benchmarks in Table[I] non-reasoning tasks are less challenging and
generally involve much shorter outputs. For instance, the average output length of the DeepSeek-
Qwen-7B model is 13,904 tokens on AIME-2024 but only 1,182 tokens on IFEval. As shown in

13
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Figure 3: Sensitivity to quantization of KV Cache in different transformer blocks. Different colors
represents different memory budgets.

Table 5: Results of long-CoT Language Models on non-reasoning benchmarks with SOTA KV
Cache quantization methods. “BS” is short for “batch size”.

Models Quantization Bit-width IFEval
(Target GPU) Methods (K-V) Prompt Strict  Prompt Loose  Instruct Strict  Instruct Loose
-- 16-16 58.77 68.50 63.27 72.60
RotateKV (BS=32,40) 2-2 0.00 0.00 0.00 0.00
DeepSeek- MiKV (BS=32) 2/16-2/16 57.30 66.17 61.18 70.06
Qwen-7B MiKV (BS=40) 2-2 0.00 0.00 0.00 0.00
(1x4090-24G)  KIVI (BS=32,40) 2-2 49.29 60.31 54.57 64.57
PM-KVQ (BS=32) 2/4-2/4 57.35 68.03 62.09 71.65
PM-KVQ (BS=40) 2-2 57.58 68.34 62.09 71.81
-- 16-16 57.82 68.98 61.61 71.81
RotateKV (BS=6,8) 4-4 58.06 68.50 61.37 71.50
DeepSeek- MiKV (BS=6) 4/16-4/16 44.08 56.38 46.92 59.53
LLaMA-8B MiKV (BS=8) 4-4 55.69 66.61 59.95 70.39
(1x4090-24G)  KIVI (BS=6,8) 4-4 57.35 68.35 71.14 71.81
PM-KVQ (BS=6) 4/8-4/8 58.77 69.61 63.74 73.70
PM-KVQ (BS=8) 4-4 57.58 68.19 61.14 71.34
DeepSeek- -- 16-16 70.14 78.74 74.40 81.73
P KIVI (BS=12,16) 2-2 67.54 77.01 72.04 80.47
Qwen-14B
(1xA100-40G) PM-KVQ (BS=12) 2/4-2/4 73.70 80.47 77.73 83.46
PM-KVQ (BS=16) 2-2 73.46 80.47 77.49 83.46
DeepSeek- -- 16-16 74.41 81.73 78.20 84.41
P KIVI (BS=12,16) 2-2 72.51 79.84 76.07 82.36
Qwen-32B
(1xA100-80G) PM-KVQ (BS=12) 2/4-2/4 75.83 83.15 78.91 85.35
PM-KVQ (BS=16) 2-2 76.07 83.30 78.91 85.35
-- 16-16 82.94 88.03 86.97 90.71
QwQ-32B KIVI (BS=12,16) 2-2 73.22 80.00 78.67 84.09
(1xA100-80G) PM-KVQ (BS=12) 2/4-2/4 81.99 86.77 85.55 89.45
PM-KVQ (BS=16) 2-2 81.75 86.61 85.55 89.45

Table |5} although our method is not specifically designed for short-output scenarios, it outperforms
KIVI and achieves accuracy comparable to the original 16-bit models.
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Figure 4: Sensitivity to quantization of KV Cache in different transformer blocks. Different colors
represents different memory budgets.

15



Under review as a conference paper at ICLR 2026

C.3 EFFICIENCY ANALYSIS OF PRE-INFERENCE PROCESS

Before the inference process, PM-KVQ performs block-wise memory allocation and calibration
with positional interpolation as preparation. Following the experimental setup in Section we
measure the time required for these pre-inference procedures. As shown in Table [6] compared
with QServe (Lin* et al.|, 2024), PM-KVQ leverages positional interpolation to reduce calibration
sequence length from 8,192 to 2,048 tokens, substantially reducing the calibration time by up to
77.21%. The additional block-wise memory allocation procedure account for 22.50-23.53% pre-
inference time.

Table 6: Latency of block-wise memory allocation and calibration. “PI” is short for “Positional
Interpolation”.

Model Method M Al\l/{emct).ry Time
w/o Pl w/ Pl ocation

QServe (search «) v 52 min
geefnsj‘;%“ PM-KVQ (BS=40) v 13 min
W PM-KVQ (BS=32) v v 17 min
QServe (search «) v 187 min
8555:2‘;1; PM-KVQ (BS=16) v 44 min
PM-KVQ (BS=12) v v 57 min
QServe (search «) v 408 min
Ef?l\?il;_oB PM-KVQ (BS=16) v 93 min
PM-KVQ (BS=12) v v 120 min

D PROOF OF EQUIVALENT RIGHT SHIFT

Theorem D.1 (Equivalent Right Shift). Given a 16-bit floating-point tensor Xpgrje, let Xop and Xy,
denote the 2b-bit and b-bit quantized tensors of Xpgp;s, respectively. Then

Xy = (2% — 20 +1)(Xop +2°71)) >> 3b. (13)

Proof. Let the zero points be Zy, = Z, = Z. According to Equation (2), the scaling factors are
given by

max(Xpri6) — Z max(Xpr16) — Z
SQb = 22b 1 ) Sb = 2b 1 . (14)
It follows that
Sy = (2" +1)Sq. (15)
Define

S X -7 3 X -7
_ ABFI6 X, = BF16 .

Xop = 16
2b S S, (16)
Then the quantized tensors are obtained by rounding:
Xap = [Xon| . Xp= |X], am
and we have _ _
Xop = (2° +1)X,,. (18)
By the definition of rounding,
1 s 1
X2b_§ §X2b<X2b+§- (19)
Dividing both sides by 2° + 1 yields
Xop—3 o Xup+s
22X, < 2, 2
2 r1 S Ty (20)
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Perform the Euclidean division of Xy, by 2° + 1:
X2b=(J(2b+1)+r, WithOSQSQb—l,Ogrgzb_
Then,

1 1
r—3 o~ r+;

2 <X, < 2.
Q+2b+1_ b Q+2b+1

Now consider the expression:

(2% = 2" +1)(Xgp +271)) >> 3b = {(2% — 2+ (@2 + 1) +r+ le)J

923b

_ g+ (2% 2"+ 1)(r+2"")
=q+ 930 :

We proceed by considering two cases for the remainder r:

Case1: 0 < r < 20-1,

Then,

: 2071+ 2 1

_ <X - T2 .
T R e ik

1<
q2q

Hence, rounding gives X;, = PNQ,—‘ =q.

Moreover,
221) _ 2b 1 21771 22b _ 2b 1) - 2b71 22b . 2b71 1
+ (=P 2 @yt 1o,
23b 23b 23b 2
and
q+ (221) _ 2b + 1)(7, + 2b—1) 2b — 14+ (22b _ 2b + 1)(2!}—1 4 2b—1)
93b < 93b
(28— 1)2
Therefore,
g+ (2% =22+ 1)(r4+271) |
23b =0,
and thus

((2% = 2" + 1)(Xop +2"71)) >> 3b = ¢ = X,.

Case2: 21 +1 <r < 20,

Then,
1 27114 o 2b+ 1
- = — 2 I Xy < 72< 1.
Ity =4t~y SR sat gy et

Thus, rounding gives X; = sz—‘ =q+ 1.

Moreover,

q+(22b_2b+1)(r+2b—1)

(221) _ 2b + 1)(217—1 + 14+ 2b—1) 2317 +1
923b = >

23b 23b

>

L

and

g+ @0 -2+ 1(r+2"7") _2° -1+ (20 -2+ 1)(2"+2")

23b - 23b
23b 4 231771 _ 221) . 221771 + 2b+1 + 2b71 -1
= 23b
23(7—1 + 22b + 22b—1 _ 2b+1 _ 2b—1 11
=2 — 235 < 2.
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Therefore,
g+ (22 -2+ 1)(r 4201
L @24 ner 2 )
and thus
(2% =20 +1)(Xop +2°71)) >>3b =g+ 1 =X, (33)
In both cases, the desired equality holds, which completes the proof. O

E LIMITATIONS

In this paper, we do not consider all of the attention mechanisms, such as the multi-head latent
attention (MLA), which is quite different from the widely used Group-Query Attention (GQA).
Besides, we do not combine the proposed PM-KVQ with other system-level optimization techniques
and inference engines, which yields for future work.
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