
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PM-KVQ: PROGRESSIVE MIXED-PRECISION KV
CACHE QUANTIZATION FOR LONG-COT LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recently, significant progress has been made in developing reasoning-capable
Large Language Models (LLMs) through long Chain-of-Thought (CoT) tech-
niques. However, this long-CoT reasoning process imposes substantial memory
overhead due to the large Key-Value (KV) Cache memory overhead. Post-training
KV Cache quantization has emerged as a promising compression technique and
has been extensively studied in short-context scenarios. However, directly apply-
ing existing methods to long-CoT LLMs causes significant performance degra-
dation due to the following two reasons: (1) Large cumulative error: Existing
methods fail to adequately leverage available memory, and they directly quantize
the KV Cache during each decoding step, leading to large cumulative quantiza-
tion error. (2) Short-context calibration: Due to Rotary Positional Embedding
(RoPE), the use of short-context data during calibration fails to account for the
distribution of less frequent channels in the Key Cache, resulting in performance
loss. We propose Progressive Mixed-Precision KV Cache Quantization (PM-
KVQ) for long-CoT LLMs to address the above issues in two folds: (1) To reduce
cumulative error, we design a progressive quantization strategy to gradually lower
the bit-width of the KV Cache in each block. Then, we propose block-wise mem-
ory allocation to assign a higher bit-width to more sensitive transformer blocks.
(2) To increase the calibration length without additional overhead, we propose
a new calibration strategy with positional interpolation that leverages short cali-
bration data with positional interpolation to approximate the data distribution of
long-context data. Extensive experiments on 7B–70B long-CoT LLMs show that
PM-KVQ improves reasoning benchmark performance by up to 8% over SOTA
baselines under the same memory budget and achieves 2.73–5.18× throughput
over the original 16-bit LLMs. Our code will be released soon.

1 INTRODUCTION

Recently, many pioneers have developed remarkable reasoning Large Language Models (LLMs)
with long Chain-of-Thoughts (CoT) techniques, such as OpenAI-o1 (OpenAI, 2024), DeepSeek-
R1 (Guo et al., 2025), QwQ (Team, 2025), and so on. To achieve better algorithmic performance,
these long-CoT reasoning LLMs are trained to generate up to 128K tokens with multiple complex
rationales from different perspectives (Guo et al., 2025). However, this long-CoT process demands
significant memory overhead (∼10GB-100GB) to store the Key-Value (KV) Cache as the history
information, which limits the practical application scenarios for such long-CoT LLMs.

To mitigate the substantial memory overhead of long-CoT LLMs, various KV Cache compression
methods have been proposed (Liu et al., 2024c; Yang et al., 2024; Su et al., 2025; Xiao et al.,
2023; Fu et al., 2024). Among them, Post-training KV Cache Quantization is a promising compres-
sion technique that has already been well explored in short-context scenarios (e.g., <8K tokens).
QServe (Lin* et al., 2024) and MiKV (Yang et al., 2024) observe that the Key Cache has more out-
liers than the Value Cache, leading to higher quantization error. More importantly, the outliers in the
Key Cache persist in certain channels. To this end, they propose a channel-wise equalization method
to migrate the outliers from the Key tensor to the Query tensor, thereby significantly reducing the
quantization error. KIVI (Liu et al., 2024c), SKVQ (Duanmu et al., 2024), and IntactKV (Liu et al.,
2024b) gain insights from the data distribution of the attention map and preserve the first or most
recent tokens in higher bit-width within the KV Cache to maintain the performance.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

However, directly applying the above short-context-optimized methods to long-CoT LLMs results
in severe performance degradation. The reasons stem from the following two aspects: (1) Large
cumulative error in long-CoT LLMs: As a lossy compression method, directly quantizing the
Key and Value tensors (Liu et al., 2024c; Lin* et al., 2024; Yang et al., 2024; Duanmu et al., 2024)
introduces quantization errors at each decoding step when generating one token. As the number
of generated tokens increases, the accumulated quantization error grows larger, leading to a sig-
nificant performance degradation of long-CoT LLMs. (2) Short calibration data cannot reflect
long-context data distribution: The Rotary Positional Embedding (RoPE) operator incorporates
positional information into each channel of the Key Cache by rotating token embeddings using sine
and cosine functions of different frequencies. For low-frequency channels after RoPE, which have
a period of over 32K tokens, calibration using short sequences (e.g., 2K tokens) fails to accurately
reflect the data distribution of the Key Cache, leading to more significant quantization errors.

In this paper, we propose Progressive Mixed-Precision KV Cache Quantization (PM-KVQ) to ad-
dress the above two issues respectively. (1) To reduce cumulative error, we aim to fully utilize the
memory budget of the target hardware through two strategies. On the one hand, we propose to quan-
tize the KV Cache progressively. For example, to achieve extremely low-bit quantization, such as
2-bit, instead of directly quantizing KV Cache to 2-bit at each decoding step, we initially store KV
Cache in 16-bit format and then gradually reduce the bit-width to 2-bit through shifting operations
once the memory resource is fully occupied. On the other hand, we propose a block-wise memory al-
location technique to allocate higher bit-widths for more sensitive blocks. Specifically, we formalize
the bit-width allocation task as an Integer Programming problem, which can be effectively solved by
existing solvers with negligible latency. (2) To increase the effective calibration length without intro-
ducing additional computational or memory overhead, we retain the use of short-context data during
calibration to maintain low resource consumption. Furthermore, we propose leveraging positional
interpolation (Chen et al., 2023) to embed long-context positional information into short-context
data, thereby enabling a more accurate estimation of the data distribution for long sequences.

To sum up, the proposed PM-KVQ mainly contains the following contributions:

• We design progressive quantization and block-wise memory allocation techniques tailored
for long-CoT scenarios to fully utilize the memory budget of the target hardware and effec-
tively reduce cumulative quantization error.

• We propose to use short-context calibration data with positional interpolation to increase
the effective length without incurring additional computational or memory overhead.

• Extensive experiments on long-CoT LLMs, ranging from 7B to 70B, show that the pro-
posed PM-KVQ achieves up to 8% accuracy improvement over SOTA baselines on rea-
soning benchmarks under 4-bit/2-bit KV Cache quantization settings, while delivering a
2.73–5.18× throughput improvement over the 16-bit model.

2 RELATED WORK

2.1 LONG COT LARGE LANGUAGE MODELS

Long-CoT (Long-Chain-of-Thought) LLMs aim to enhance multi-step reasoning capabilities for
complex tasks like mathematical proofs, scientific reasoning, and multi-hop QA. Models such as
OpenAI-o1 (OpenAI, 2024), QwQ (Team, 2025), and DeepSeek-R1 (Guo et al., 2025) employ ad-
vanced techniques to extend CoT reasoning depth. DeepSeek, specifically, integrates iterative self-
refinement and tool-augmented reasoning (e.g., code execution and symbolic solvers) to maintain
coherence across extended reasoning chains. Its architecture emphasizes hierarchical decomposition
of problems and error-correction mechanisms, achieving state-of-the-art performance.

While long-CoT can significantly improve model performance, it introduces excessively more de-
coding tokens (e.g., >32K tokens per request) and large GPU memory overhead. Despite employing
efficient attention designs, such as Multi-Query Attention (MQA) (Shazeer, 2019), Group-Query At-
tention (GQA) (Ainslie et al., 2023), and Multi-head Latent Attention (MLA) (Liu et al., 2024a), the
memory overhead of the KV Cache in long-CoT LLMs remains significantly large, often surpass-
ing that of the model weights. Consequently, reducing the memory overhead of the KV Cache is
significantly important for large batch sizes and long context requirements.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2.2 POST-TRAINING KV CACHE QUANTIZATION

To alleviate the large memory overhead with long reasoning contexts, many efforts have been made
to reduce the KV Cache size. Post-training KV Cache quantization stands as a promising technique
for efficient inference. KV Cache quantization methods try to use low bit-width integers to represent
the cached key and value states, instead of using high bit-width floating-point values. Existing
methods typically apply asymmetric uniform quantization for KV Cache:

Xasym =

⌊
XBF16 − Z

Sasym

⌉
, (1)

Sasym =
max(XBF16)− Z

2b − 1
, (2)

where XBF16 denotes the 16-bit brain floating point (BF16) Key or Value tensor, Xasym denotes
the integer Key or Value tensor, Sasym and Z = min(XBF16) denote the scaling factor and the zero
point respectively, b denotes the quantization bit-width, ⌊·⌉ denotes the rounding function.

Specifically, MKLV (Hariri et al., 2025) discovers that the sensitivity of Key and Value tensors are
quite different, with the Key tensors being more sensitive to quantization than the Value tensors.
Therefore, MKLV simply assigns a higher bit-width to Key tensors and a lower bit-width to Value
tensors. WKVQuant (Yue et al., 2024) proposes to change the data flow of the previous KV Cache
quantization by using the unquantized current Key and Value to calculate the attention operator,
and then quantize the current Key and Value. SKVQ (Duanmu et al., 2024) further improves the
WKVQuant by using a sliding window that stores the most recent 128 Key and Value features
in floating-point format to reduce the cumulative quantization error. MiKV (Yang et al., 2024)
is inspired by H2O (Zhang et al., 2023) to use the heavy-hitter oracle to discover the important
tokens in a higher bit-width and quantize the rest of the unimportant tokens into a lower bit-width.
KIVI (Liu et al., 2024c) discovers that the Value tensors are much flatter than Key tensors, and the
outliers in Key tensors typically appear in certain channels. To this end, KIVI utilizes per-channel
quantization for Key Cache and per-token quantization for Value Cache in a group-wise manner to
reduce the quantization error. RotateKV (Su et al., 2025) combines the channel-wise equalization
and the rotation-based equalization with Hadamard matrices to further reduce the quantization error.

In this paper, we adopt effective strategies from prior work, such as storing the first token in INT16
and using a sliding window for recent tokens. To further reduce quantization errors, we propose
two improvements: (1) Progressive Quantization – initially store KV cache in higher precision and
gradually lower the bit-width as memory memory becomes saturated; (2) Block-wise Memory Al-
location – allocate more memory to sensitive transformer blocks when capacity allows, thereby
preserving performance.

3 METHOD

3.1 PROGRESSIVE QUANTIZATION

As discussed in Section 2.2, existing post-training KV Cache quantization methods quantize at every
decoding step, causing large cumulative errors. A sliding window with high-precision cache allevi-
ates this, but very low bit-widths (e.g., 2-bit) still lead to severe accuracy loss in long-CoT tasks. We
show that existing KV cache quantization methods underutilize the memory budget and miss
opportunities to reduce cumulative errors. As illustrated in the left panel of Figure 1(a), SOTA
methods store 2-bit KV Cache at every decoding step, causing substantial memory waste when the
budget is not fully used.

To address the above issue, we propose a progressive quantization strategy to make full use of
the memory resources by gradually shrinking the bit-width of the KV Cache, thereby significantly
reducing the cumulative quantization error. For each transformer block, we use “Fbit” to represent
the final bit-width of the progressive quantization process. In this case, we can easily calculate the
memory budget for each transformer block based on the maximum context length of the target long-
CoT LLM. As shown in Figure 1(a) right, the Fbit in this example is 2-bit and the maximum context
length is 32K. During generation, we initially store the KV Cache in 16-bit format to alleviate the
large cumulative quantization error. Once the memory budget is fully utilized, we apply a bit-
width shrinking strategy to accommodate more tokens by progressively reducing the bit-width of

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

(a) Progressive Quantization

(b) Block-wise Memory Allocation
(c) Calibration with Positional Interpolation

Decoding
Step

32K

16K

8K

4K

32K

16K

8K

4K

Decoding
Step

2-bit

16-bit -> 8-bit

16-bit

Budget

Bit-width Shrinking

Bit-width Shrinking

Bit-width Shrinking

2-bit

2-bit

2-bit

2-bit
Waste

Waste

Waste

8-bit

8-bit -> 4-bit 4-bit

4-bit -> 2-bit

Budget

Memory Budget

Memory Budget

Block 1
2-Fbit

Block 2
2-Fbit

Block 3
2-Fbit

Block n
2-Fbit

… Waste

Block 1
4-Fbit

Block 2
4-Fbit

(*Fbit is short for final bit-width of the progressive quantization)

Block m
4-Fbit

…

OOM

Memory Budget
Block 1
2-Fbit

Block 2
4-Fbit

Block 3
2-Fbit

Block n
2-Fbit

…

Fully utilize memory resources

Token ID

M
ag

n
it

u
d

e

Short-context:
Incomplete distribution

Token ID

M
ag

n
it

u
d

e

Long-context: 
Large calibration overhead

Token ID

M
ag

n
it

u
d

e

Short-context with PI: 
Complete Distribution & Small overhead

Figure 1: Method Overview. (a) Progressive quantization: we progressively shrink the bit-width of
KV Cache to fully utilize the memory budget. (b) Block-wise memory allocation: we allocate a
higher bit-width to those transformer blocks with higher sensitivity. (c) Calibration with Positional
Interpolation to approximate the distribution of long-context data with short-context data.

the existing KV Cache. Specifically, we use powers of two for quantization bit-widths, gradually
decreasing them in the order of 16, 8, 4, and 2 bits.

In addition, for the bit-width shrinking strategy, we design an “Equivalent Right Shift” strategy
that is mathematically equivalent to de-quantizing the 2b-bit KV Cache and then quantizing it to
b-bit. Here, b can be 8, 4, or 2, corresponding to shrinking the KV Cache from 16-bit to 8-bit, 8-bit
to 4-bit, and 4-bit to 2-bit, respectively. Specifically, we formulize the bit-width shrinking strategy
by using integer addition and shifting as follows:

Xb =
(
(22b − 2b + 1)(X2b + 2b−1)

)
>> 3b, (3)

where Xb and X2b represent the b-bit and 2b-bit tensor respectively. We keep the zero point un-
changed (Zb = Z2b) and increase the scaling factor to Sb = (2b + 1)S2b to preserve the dynamic
range of the data distribution. The detailed proof of equivalence for Equation (3) is shown in Sec-
tion D. Furthermore, we compare the effect of three different bit-width shrinking strategies and show
that the “Equivalent Right Shift” strategy achieves better performance, as detailed in Section 4.4.1.

3.2 BLOCK-WISE MEMORY ALLOCATION

Existing KV Cache quantization methods typically apply a uniform bit-width across all transformer
blocks, which may not fully utilize the memory resources of the target hardwares. As shown in
Figure 1(b) left, in this example, the target hardware has sufficient memory to store the KV Cache
uniformly in 2-Fbit format, leaving a proportion of wasted memory. However, switching to a uni-
form 4-Fbit format may exceed the memory limit and trigger an out-of-memory error. Therefore,
using a uniform bit-width for KV Cache may not fully utilize the available memory across different
scenarios with varying memory resources.

To fully utilize the memory resource in different scenarios for better performance, we propose a
block-wise memory allocation strategy to assign a higher bit-width for more sensitive blocks. In-
spired by existing mixed-precision quantization methods (Li et al., 2023; Zhao et al., 2024), we
employ a first-order Taylor approximation to estimate the sensitivity of the model output to pertur-
bations in the Key Cache and Value Cache. Here, we take the Key Cache as an example:

L(Qb(Ki)) ≈ L(K) +GKi
⊙ (Ki −Qb(Ki)), (4)

where L is the loss function, i represents the i-th transformer block, Ki is the Key Cache, Qb(·) is
the b-bit quantization function, GKi is the gradients of the loss function with respect to the Ki, ⊙
is the element-wise multiplication operator. The Value Cache follows a similar formulation.

To minimize the effect of KV Cache quantization in each transformer block, we aim to minimize
the following sensitivity term:

si,b = ∥GKi ⊙ (Ki −Qb(Ki))∥1 + ∥GVi ⊙ (Vi −Qb(Vi))∥1, (5)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

where si,b denotes the sensitivity of the KV Cache in the i-th transformer block to b-bit quantization.

Taking into account the sensitivity of all transformer blocks, our goal is to assign an appropriate bit-
width to each block to minimize the impact on the loss function, subject to a given memory budget.
To this end, we formulate the block-wise bit-width allocation as the following Integer Programming
problem:

argmin
xi,b

N∑
i

∑
b

xi,b · si,b, (6)

∑
b

xi,b = 1,

N∑
i

∑
b

xi,b · (Mem(Qb(Ki)) +Mem(Qb(Vi))) ≤ M, (7)

xi,b ∈ {0, 1} , b ∈ B, (8)
where N is the number of transformer blocks, Mem(·) is the function to calculate the memory
usage of the quantized KV Cache, M is the memory budget for the KV Cache of all the transformer
blocks, xi,b is the one-hot vector that indicates the bit-width choice b of the i-th block, and B is the
optional bit-width set, detailed in Section 4.1.3. The proposed Integer Programming problem can be
effectively solved by CVXPY (Diamond & Boyd, 2016) within a few seconds.

3.3 CALIBRATION WITH POSITIONAL INTERPOLATION

Previous studies have observed that the Key Cache of LLMs contains outliers in certain channels,
which significantly increases the quantization error. Approaches such as QServe (Lin* et al., 2024)
address this issue by introducing a channel-wise reparameterization method to transfer the outliers
in Key tensors into Query tensors:

P = (QΛ) ·Q
(
(KΛ−1)T

)
,Λ = diag(λi), (9)

where i is the channel index, λi is the reparameterization factor of the i-th channel, and Q(·) is the
quantization function. Generally, λi is calibrated using a small dataset of sequences with a typical
length of 512 tokens, which is much shorter than the maximum output length of 32K tokens. The
calibration process follows Equation (10):

λi =
(
max
m

Km,i

)α

, (10)

where m is the token position index, and α is the parameter to adjust the strength of outlier transfer,
which can be set as a fixed number or obtained by grid search (Lin et al., 2024).

However, applying the above reparameterization technique to long-CoT LLMs using short calibra-
tion data (e.g., 512) may fail to accurately capture the distribution of the Key Cache. This limitation
arises because Rotary Positional Embedding (RoPE) (Su et al., 2024) is used to inject positional
information into the Key Cache, which introduces periodic variations across different channels:[

K̃m,i

K̃m,i+ d
2

]
=

[
cosmθi − sinmθi
sinmθi cosmθi

] [
Km,i

Km,i+ d
2

]
=

√
K2

m,i +K2
m,i+ d

2

[
cos(mθi + φ)
sin(mθi + φ)

]
, (11)

where K and K̃ denote the Keys before and after RoPE respectively, d is the hidden dimension of
each attention head, and θi denotes the rotary frequency of channel i and i+d/2. Since θi = θ−2i/d

decreases with increasing i, the frequency of the sine curve is extremely low in channels with indices
near d/2 and d. For example, in the DeepSeek-R1-Distill-Qwen-7B, the lowest frequency sine
curve has a period of up to 54,410 tokens. Therefore, when using short sequences of 512 tokens
for calibration, as shown in Figure 1(c) top, we cannot obtain the reparameterization factor that can
completely reflect the sine-like data distribution.

Directly increasing the length of calibration data significantly increases both latency and memory
costs due to the O(N2) complexity of the self-attention operator. Instead, we embed long-context
positional information into short calibration data by leveraging positional interpolation (Chen et al.,
2023). Specifically, we multiply a position scaling factor s to the position index m in the rotary
matrix of RoPE for positional interpolation, as shown below:[

K̃m,i

K̃m,i+ d
2

]
=

[
cos(s ·mθi) − sin(s ·mθi)
sin(s ·mθi) cos(s ·mθi)

] [
Km,i

Km,i+ d
2

]
=

√
K2

m,i +K2
m,i+ d

2

[
cos(s ·mθi + φ)
sin(s ·mθi + φ)

]
.

(12)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

As shown in Figure 1(c) bottom, by applying positional interpolation, we can increase the largest
positional index by s× without additional computation and memory overhead.

3.4 METHOD PIPELINE

In this paper, the proposed PM-KVQ combines the above three techniques to achieve better long-
CoT performance with low bit-width KV Cache quantization. (1) Before the inference process,
we first profile the sensitivity of each transformer block based on the calibration dataset, detailed in
Section 4.1.1, and solve the Integer Programming problem to set the proper Fbit for each transformer
block, as discussed in Section 3.2. Then, we apply the channel-wise reparameterization technique
by using the calibration dataset with positional interpolation, as detailed in Section 3.3. (2) During
the inference process, we apply progressive quantization to the KV Cache by gradually lowering the
bit-width from 16-bit to the allocated Fbit, as shown in Section 3.1.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUPS

4.1.1 DATASETS

For the calibration dataset, we use the arXiv subset of RedPajama (Weber et al., 2024) as cal-
ibration dataset. This subset consists of academic papers, containing mathematical formulas and
reasoning process. We randomly select 512 samples, each with a length of 2,048 tokens, for cal-
ibration. For positional interpolation, we set s = 4 in Equation (12), which means we embed an
8,192 context length to 2,048 tokens. We set α in Equation (10) by grid searching over [0,1] for the
optimal α that minimizes the reconstruction loss of the self-attention operator with a grid size of 20.

For performance evaluation, we mainly focus on evaluating the long-CoT LLMs on the math-
ematical reasoning and code generation benchmarks with long generation contexts (>16K). For
mathematical reasoning, we use the AIME-2024/2025 (AIME, 2025) and CMIMC-2024 (CMIMC,
2025) datasets. For competition-level code generation, we select coding problems released between
January 1, 2025, and April 6, 2025, from LiveCodeBench (Jain et al., 2024). Besides, as illustrated
in Section C.2, we also evaluate the proposed PM-KVQ on the IFEval (Zhou et al., 2023) dataset
with short generation contexts (∼1K) to demonstrate its strong generalizability across different
context lengths. We sample 16 responses for each mathematical problem, 4 responses for each code
generation problem, and 1 response for each instruction following problem, using a temperature of
0.6, top-p of 0.95, and a maximum output length of 32,768 tokens.

4.1.2 BASELINES AND MODEL CHOICE

For baselines, we compare PM-KVQ with SOTA KV Cache quantization methods, including the
uniform bit-width methods RotateKV (Su et al., 2025), KIVI (Liu et al., 2024c), and mixed-precision
quantization method MiKV (Yang et al., 2024), which retains the KV Cache of heavy hitters in BF16
format and uses low bit-width for other tokens. Similar to KIVI, PM-KVQ stores the KV Cache for
the first and most recent 128 tokens in INT16 format to mitigate performance degradation. All model
weights in our experiments are in BF16 format.

For model choices, we evaluate the different quantization methods above on the Deepseek-R1-
Distill (Guo et al., 2025) series as well as the QwQ-32B model (Team, 2025). Specifically, the
Deepseek-R1-Distill series is an LLM family distilled from DeepSeek-R1. We choose Deepseek-
R1-Distill-Qwen-7B/14B/32B and Deepseek-R1-Distill-LLaMA-8B/70B, ranging from 7B to 70B.

4.1.3 BIT-WIDTH AND BATCH SIZE SETUPS

For the bit-width settings, to demonstrate the effectiveness of the proposed PM-KVQ, we select
quantization bit-widths that lead to significant performance degradation when using baseline meth-
ods for each long-CoT LLM. Specifically, we use 4-bit for DeepSeek-LLaMA-8B and 2-bit for
other LLMs. Notably, the bit-width for the proposed PM-KVQ stands for the Fbit, as discussed
in Section 3.1. In addition, for the optional bit-width set B in Section 3.2, we use B = {4, 8}

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Main results of long-CoT Language Models on reasoning-related benchmarks with SOTA
KV Cache quantization methods. “BS” is short for “batch size”.

Models Quantization Bit-width AIME-2024 AIME-2025 CMIMC-2024 LiveCode

(Target GPU) Methods (K-V) pass@1 Voting pass@1 Voting pass@1 Voting pass@1

- - 16-16 41.04±6.74 63.33 30.00±3.33 36.67 27.29±5.17 43.33 26.29±1.34

RotateKV (BS=32,40) 2-2 0.00±0.00 0.00 0.00±0.00 0.00 0.00±0.00 0.00 0.00±0.00

DeepSeek- MiKV (BS=32) 2/16-2/16 0.00±0.00 0.00 0.63±0.02 3.33 2.29±0.02 3.33 5.86±0.85

Qwen-7B MiKV (BS=40) 2-2 0.00±0.00 0.00 0.00±0.00 0.00 0.00±0.00 0.00 0.00±0.00

(1×4090-24G) KIVI (BS=32,40) 2-2 32.08±5.25 43.33 24.58±3.51 33.33 20.83±3.63 23.33 19.00±2.37

PM-KVQ (BS=32) 2/4-2/4 40.21±5.71 66.67 28.96±4.20 40.00 25.83±5.20 40.00 24.71±1.48

PM-KVQ (BS=40) 2-2 40.00±5.40 60.00 28.12±4.71 33.33 26.46±4.64 40.00 24.57±1.42

- - 16-16 44.17±4.49 66.67 30.63±6.58 50.00 26.67±4.41 36.67 32.14±1.99

RotateKV (BS=6,8) 4-4 42.92±3.89 66.67 27.29±6.48 40.00 26.46±5.33 30.00 32.00±1.56

DeepSeek- MiKV (BS=6) 4/16-4/16 35.63±7.14 66.67 24.79±3.72 36.67 25.21±3.53 33.33 27.00±1.30

LLaMA-8B MiKV (BS=8) 4-4 41.67±6.56 60.00 26.46±7.02 43.33 22.92±4.84 26.67 29.71±1.67

(1×4090-24G) KIVI (BS=6,8) 4-4 41.25±6.65 60.00 27.92±4.70 46.67 26.25±4.98 36.67 30.29±1.76

PM-KVQ (BS=6) 4/8-4/8 47.71±6.84 73.33 31.25±5.64 50.00 28.13±4.08 36.67 31.71±0.86

PM-KVQ (BS=8) 4-4 43.33±5.57 63.33 31.25±5.64 50.00 28.96±5.10 40.00 31.57±1.17

DeepSeek-
Qwen-14B
(1×A100-40G)

- - 16-16 68.13±7.26 80.00 50.00±5.77 60.00 49.58±4.84 66.67 45.71±1.34

KIVI (BS=12,16) 2-2 48.13±4.85 70.00 33.96±3.17 43.33 27.71±3.67 33.33 34.43±3.11

PM-KVQ (BS=12) 2/4-2/4 67.71±6.94 80.00 46.67±7.36 60.00 47.71±4.20 60.00 42.14±0.95

PM-KVQ (BS=16) 2-2 63.33±4.08 83.33 42.08±6.55 60.00 46.67 ±5.27 70.00 41.86±1.78

DeepSeek-
Qwen-32B
(1×A100-80G)

- - 16-16 72.08±4.39 86.67 53.12±5.71 66.67 52.50±5.71 70.00 46.86±2.18

KIVI (BS=12,16) 2-2 63.96±6.89 83.33 45.42±5.38 60.00 40.63±5.17 56.67 40.43±1.10

PM-KVQ (BS=12) 2/4-2/4 69.17±5.95 83.33 48.54±5.89 60.00 51.25±4.70 66.67 43.57±1.64

PM-KVQ (BS=16) 2-2 67.29±4.89 83.33 48.96±7.33 63.33 50.42±7.16 73.33 43.57±0.62

- - 16-16 78.54±4.85 86.67 67.71±3.48 76.67 71.25±3.51 80.00 54.71±0.74

QwQ-32B KIVI (BS=12,16) 2-2 61.25±5.51 76.67 51.67±5.27 63.33 48.33±5.77 63.33 41.86±1.21

(1×A100-80G) PM-KVQ (BS=12) 2/4-2/4 66.46±3.81 80.00 49.58±4.39 63.33 54.58±5.12 66.67 45.14±0.70

PM-KVQ (BS=16) 2-2 67.29±3.38 76.67 49.79±6.29 70.00 56.67±3.91 73.33 44.57±0.40

for DeepSeek-LLaMA-8B, and B = {2, 4} for other long-CoT LLMs. We use asymmetric group-
wise quantization for KV Cache with a group size of 128, as shown in Equation (1). All of the
performance results are conducted with fake quantization on an 8×A100-80G GPU server.

For the batch size setups, we assign a target GPU with different memory resources for different
LLMs to show the memory constraints in real-world scenarios, as shown in Table 1. On the one
hand, to demonstrate the effectiveness of progressive quantization, we set the batch size for each
LLM such that all methods can fully utilize the memory resources of the target GPU. Specifically,
we use a batch size of 8 for LLaMA-8B with a 4-bit KV Cache, 40 for Qwen-7B with a 2-bit
KV Cache, and 16 for the other LLMs, as shown in Table 1. On the other hand, to evaluate the
effectiveness of block-wise memory allocation, we use smaller batch sizes to allocate more memory
per instance, ensuring that higher bit-widths cannot be directly used under the same constraints. In
this setting, we use a batch size of 6 for LLaMA-8B with a 4-bit KV Cache, 32 for Qwen-7B with a
2-bit KV Cache, and 12 for the remaining LLMs, as also shown in Table 1.

4.2 MAIN RESULTS

As illustrated in Table 1, for long-CoT LLMs smaller than 10B, we compare PM-KVQ with Ro-
tateKV, MiKV, and KIVI. For the 2-bit DeepSeek-R1-Distill-Qwen-7B, applying RotateKV or
MiKV causes the model unable to generate meaningful responses. The SOTA method KIVI also
suffers from significant performance loss by up to 9%. PM-KVQ outperforms KIVI by up to 8%
when applying uniform Fbit for each transformer block (batch size = 40). When the batch size is
reduced to 32, each sample receives a larger memory budget. However, this budget is still insuf-
ficient to apply uniform 4-bit quantization across all blocks. As a result, KIVI is constrained to
2-bit quantization, underutilizing the available memory. In contrast, PM-KVQ leverages block-wise
memory allocation to better utilize the larger memory, achieving an additional performance gain of
up to 0.84%. For the 4-bit DeepSeek-R1-Distill-LLaMA-8B, PM-KVQ surpasses the SOTA meth-
ods by up to 6.5% on AIME-2024, and even achieve better performance than the original LLM on
mathematical benchmarks. Besides, for LLMs smaller than 10B, the average voting accuracy of
PM-KVQ exceeds KIVI by up to 15.56%, demonstrating greater stability of the proposed method.

For larger long-CoT LLMs from 10B to 32B, we only compare the proposed PM-KVQ with KIVI
because MiKV and RotateKV fail to generate meaningful information under 2-bit quantization, as

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

discovered in the 2-bit DeepSeek-R1-Distill-Qwen-7B. As shown in Table 1, PM-KVQ also demon-
strates superior performance compared to KIVI, improving average pass@1 and voting accuracy by
up to 15.00% and 17.78% on various LLMs. Especially, for the DeepSeek-R1-Distill-Qwen-14B,
KIVI causes a performance degradation of 21.87% on CMIMC-2024, whereas PM-KVQ has a sig-
nificantly lower degradation of only 1.87% and 2.91% under batch sizes of 16 and 12, respectively.

For the 70B-level long-CoT LLM, we evaluate the 2-bit DeepSeek-R1-Distill-LLaMA-70B model
on the AIME-2024 benchmark. The original 16-bit model achieves a pass@1 of 69.14%. When the
KV Cache is quantized to 2-bit using KIVI, the pass@1 drops significantly to 51.88%. In contrast,
the proposed PM-KVQ enables the 2-bit model to achieve a much higher pass@1 of 64.79% under
both batch sizes of 12 and 16, outperforming the KIVI baseline by 12.91%.

4.3 EFFICIENCY ANALYSIS

Table 2: The throughput (in tokens/s) across different
quantization methods and output lengths.

Model Quantization Output Length

Method 16K 24K 32K

DeepSeek-
Qwen-7B

– 101.40 65.69 52.06
KIVI 506.72 352.44 284.10

PM-KVQ 424.72 323.48 269.51

DeepSeek-
Qwen-32B

– 12.34 10.35 8.92
KIVI 35.65 33.28 31.59

PM-KVQ 33.74 32.15 30.81

We evaluate 7B and 32B long-CoT LLMs
on an A100-80G GPU, comparing the
throughput of PM-KVQ (Fbit=2) against
the original 16-bit LLMs and the 2-bit
KIVI baseline. We adopt the official set-
tings of KIVI (Liu et al., 2024c), using its
inference engine and 4/2-bit CUDA ker-
nels for efficiency evaluation. Besides,
we implement 16/8-bit CUDA kernels and
bit-width shrinking kernels to support PM-
KVQ. To fully utilize the A100-80G mem-
ory, we set the batch sizes of the original
7B and 32B models to 18 and 1, respec-
tively, while the quantized models allow larger batch sizes of 110 and 4.

As shown in Table 2, across different model sizes and output lengths, PM-KVQ achieves a
2.73–5.18× throughput improvement over the original 16-bit LLMs. Compared with KIVI, the
throughput of PM-KVQ is at a similar level, with a slight reduction primarily due to the use of higher
bit-widths during inference. Notably, the overhead of bit-width shrinking is negligible, as it is trig-
gered only when memory is fully utilized. Overall, PM-KVQ incurs a throughput degradation
of 2.45–16.18% compared to KIVI but achieves a substantial relative accuracy improvement
of 10.57–23.48%. To further evaluate the efficiency of the quantization procedure, we measure the
latency of block-wise memory allocation and calibration with positional interpolation. As shown in
Section C.3, both the 7B and 32B LLMs complete these procedures within one hour using PM-KVQ.

4.4 ABLATION STUDIES

In this section, we conduct detailed ablation studies to show the effect of bit-wise shrinking strate-
gies introduced in Section 3.1, and the effectiveness of the positional interpolation discussed in
Section 3.3. We also analyze the sensitivity of different transformer blocks detailed in Section C.1.

4.4.1 THE EFFECT OF BIT-WIDTH SHRINKING STRATEGIES

Table 3: Ablation results of different bit-width shrinking strategies.

Model Bit-width Shrinking Strategy Bit-width AIME-2024

(K-V) pass@1 Voting

DeepSeek-LLaMA-8B

- - 16-16 44.17 66.67
Direct Right Shift 4-4 12.08 23.33

Modified Right Shift 4-4 28.75 46.67
Equivalent Right Shift (Ours) 4-4 38.33 66.67

We compare three different bit-width shrinking strategies for reducing the KV Cache from 2b-bit to
b-bit. Specifically, b can be 8, 4, or 2, corresponding to shrinking the KV Cache from 16-bit to 8-bit,
8-bit to 4-bit, and 4-bit to 2-bit, respectively.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

4-bit

2-bit

Bit-width
Shrinking

0 3 4 7 8 11 12 15

0 1 2 3

(a) Direct Right Shift

0 2 3 7 8 1312 15

0 1 2 3

0 3 4 7 8 1112 15

0 1 2 3

(b) Modified Right Shift (c) Equivalent Right Shift (Ours)

Figure 2: Different bit-width shrinking strategies when the bit-width is reduced from 4-bit to 2-bit.

(1) Direct Right Shift: By directly right-shifting by b bits, only the higher b bits of the original 2b-bit
value are retained. As shown in Figure 2 (a), to preserve the dynamic range of the quantized values,
we keep the zero point unchanged (Zb = Z2b) and increase the scaling factor to Sb = (2b + 1)S2b

to compensate for the magnitude reduction caused by the right-shift operation.

(2) Modified Right Shift: This strategy also uses b-bit right shifting strategy to perform the bit-
width shrinking. However, instead of keeping the dynamic range unchanged, this strategy aims to
ensure that quantization levels sharing the same upper b bits before the shift can have their mean
values directly mapped to the lower bit-width representation, as demonstrated in Figure 2 (b). To
achieve this, we change the scaling factor by Sb = 2b ·S2b and zero point by Zb = Z2b+

1
2 (Sb−S2b).

(3) Equivalent Right Shift (in Section 3.1): As shown in Figure 2 (c), this strategy is equivalent to
directly de-quantizing the 2b-bit KV Cache and then quantizing it to b-bit.

We evaluate the above three bit-width shrinking strategies on the AIME-2024 benchmark with
DeepSeek-R1-Distill-LLaMA-8B. As shown in Table 3, both the Direct Right Shift and Modified
Right Shift strategies result in significant performance degradation, reducing the pass@1 by 32.09%
and 15.42%, respectively. In contrast, the Equivalent Right Shift demonstrates a notable improve-
ment over the other two strategies, increasing the pass@1 by 26.25% and 9.58%, and maintaining a
lossless voting accuracy. Therefore, we adopt the Equivalent Right Shift strategy in PM-KVQ.

4.4.2 THE EFFECT OF POSITIONAL INTERPOLATION

We evaluate the long-CoT performance across varying lengths of calibration data and position scal-
ing factor s. We utilize the DeepSeek-R1-Distill-LLaMA-8B to generate four responses for each
problem in the AIME-2024-I dataset. As shown in Table 4, when the calibration sequence length is
set to 2,048, applying positional interpolation with s = 4 improves pass@1 by 1.66% compared to
not using positional interpolation, achieving accuracy comparable to that obtained using calibration
sequences of 8,192 tokens. We also observe that when s increases to 16, positional interpolation
may lead to performance degradation. This indicates that the computational savings of positional
interpolation are not unlimited, and overly aggressive scaling can indeed performance drop.

Table 4: Ablation results of different calibration sequence lengths and position scaling factors.

Model Calibration Sequence
Length

Position Scaling
Factor

Effective
Length

AIME-2024-I

pass@1 Voting

DeepSeek-
LLaMA-8B

2,048 1 2,048 46.67 60.00
2,048 4 8,192 48.33 60.00
2,048 16 32,768 46.67 53.33
8,192 1 8,192 48.33 60.00

5 CONCLUSION

In this paper, we introduce Progressive Mixed-precision KV Cache Quantization (PM-KVQ), a post-
training KV Cache quantization method designed for long-CoT LLMs. To reduce the large cumula-
tive error caused by uniform bit-width quantization, we design progressive quantization and block-
wise memory allocation techniques. To increase the effective calibration length without incurring
additional overhead, we propose a new calibration strategy with positional interpolation. Extensive
experiments and ablation studies demonstrate the effectiveness of the proposed PM-KVQ and each
proposed technique. Overall, the proposed PM-KVQ significantly outperforms SOTA baselines
by up to 8% on reasoning-related mathematics and coding benchmarks and achieves 2.73–5.18×
throughput compared to the original 16-bit LLMs.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work focuses on reducing the substantial overhead caused by the linearly growing KV cache in
long-context processing through KV Cache quantization. On the one hand, the proposed PM-KVQ
better preserves model accuracy after low-precision KV cache quantization, making it more accessi-
ble for cost-constrained institutions, individuals, and application scenarios. On the other hand, as a
lossy compression technique, quantization can introduce distribution shifts and performance degra-
dation, potentially leading to increased hallucinations or instruction-following failures. Therefore,
additional caution and oversight are required during deployment.

REPRODICIBILITY STATEMENT

We describe the calibration and evaluation datasets, as well as the data processing procedures, in
Section 4.1.1. All datasets and models used in our experiments are publicly available. Detailed
information on the quantization bit-widths and batch sizes used for each long-CoT LLM is also
provided in Section 4.1.3. To facilitate reproducibility, we also release our source code along with
detailed guidelines.

REFERENCES

AIME. American invitational mathematics examination, 2025. URL https://
artofproblemsolving.com/.

Joshua Ainslie, James Lee-Thorp, Michiel De Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit
Sanghai. Gqa: Training generalized multi-query transformer models from multi-head check-
points. arXiv preprint arXiv:2305.13245, 2023.

Shouyuan Chen, Sherman Wong, Liangjian Chen, and Yuandong Tian. Extending context window
of large language models via positional interpolation. arXiv preprint arXiv:2306.15595, 2023.

CMIMC. Carnegie mellon informatics and mathematics competition, 2025. URL https:
//cmimc.math.cmu.edu/math.

OpenCompass Contributors. Opencompass: A universal evaluation platform for foundation models.
https://github.com/open-compass/opencompass, 2023.

Steven Diamond and Stephen Boyd. CVXPY: A Python-embedded modeling language for convex
optimization. Journal of Machine Learning Research, 17(83):1–5, 2016.

Haojie Duanmu, Zhihang Yuan, Xiuhong Li, Jiangfei Duan, Xingcheng Zhang, and Dahua Lin.
Skvq: Sliding-window key and value cache quantization for large language models. arXiv preprint
arXiv:2405.06219, 2024.

Tianyu Fu, Haofeng Huang, Xuefei Ning, Genghan Zhang, Boju Chen, Tianqi Wu, Hongyi Wang,
Zixiao Huang, Shiyao Li, Shengen Yan, et al. Moa: Mixture of sparse attention for automatic
large language model compression. arXiv preprint arXiv:2406.14909, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Mohsen Hariri, Lam Nguyen, Sixu Chen, Shaochen Zhong, Qifan Wang, Xia Hu, Xiaotian Han, and
Vipin Chaudhary. More for keys, less for values: Adaptive kv cache quantization. arXiv preprint
arXiv:2502.15075, 2025.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. arXiv preprint arXiv:2403.07974, 2024.

10

https://artofproblemsolving.com/
https://artofproblemsolving.com/
https://cmimc.math.cmu.edu/math
https://cmimc.math.cmu.edu/math
https://github.com/open-compass/opencompass


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Shiyao Li, Xuefei Ning, Ke Hong, Tengxuan Liu, Luning Wang, Xiuhong Li, Kai Zhong, Guohao
Dai, Huazhong Yang, and Yu Wang. Llm-mq: Mixed-precision quantization for efficient llm
deployment. In NeurIPS 2023 Efficient Natural Language and Speech Processing Workshop, pp.
1–5, 2023.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
on-device llm compression and acceleration. Proceedings of Machine Learning and Systems, 6:
87–100, 2024.

Yujun Lin*, Haotian Tang*, Shang Yang*, Zhekai Zhang, Guangxuan Xiao, Chuang Gan, and Song
Han. Qserve: W4a8kv4 quantization and system co-design for efficient llm serving. arXiv
preprint arXiv:2405.04532, 2024.

Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao, Chengqi Dengr, Chong
Ruan, Damai Dai, Daya Guo, et al. Deepseek-v2: A strong, economical, and efficient mixture-
of-experts language model. arXiv preprint arXiv:2405.04434, 2024a.

Ruikang Liu, Haoli Bai, LIN Haokun, Yuening Li, Han Gao, Zhengzhuo Xu, Lu Hou, Jun Yao,
and Chun Yuan. Intactkv: Improving large language model quantization by keeping pivot tokens
intact. In The 62nd Annual Meeting of the Association for Computational Linguistics (ACL 2024),
2024b.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi
Chen, and Xia Hu. Kivi: A tuning-free asymmetric 2bit quantization for kv cache. arXiv preprint
arXiv:2402.02750, 2024c.

OpenAI. Introducing openai o1, September 2024. URL https://openai.com/o1/.

Noam Shazeer. Fast transformer decoding: One write-head is all you need. arXiv preprint
arXiv:1911.02150, 2019.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

Zunhai Su, Zhe Chen, Wang Shen, Hanyu Wei, Linge Li, Huangqi Yu, and Kehong Yuan. Rotatekv:
Accurate and robust 2-bit kv cache quantization for llms via outlier-aware adaptive rotations.
arXiv preprint arXiv:2501.16383, 2025.

Qwen Team. Qwq-32b: Embracing the power of reinforcement learning, March 2025. URL
https://qwenlm.github.io/blog/qwq-32b/.

Maurice Weber, Daniel Y. Fu, Quentin Anthony, Yonatan Oren, Shane Adams, Anton Alexandrov,
Xiaozhong Lyu, Huu Nguyen, Xiaozhe Yao, Virginia Adams, Ben Athiwaratkun, Rahul Cha-
lamala, Kezhen Chen, Max Ryabinin, Tri Dao, Percy Liang, Christopher Ré, Irina Rish, and
Ce Zhang. Redpajama: an open dataset for training large language models. NeurIPS Datasets
and Benchmarks Track, 2024.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. arXiv preprint arXiv:2309.17453, 2023.

June Yong Yang, Byeongwook Kim, Jeongin Bae, Beomseok Kwon, Gunho Park, Eunho Yang,
Se Jung Kwon, and Dongsoo Lee. No token left behind: Reliable kv cache compression via
importance-aware mixed precision quantization. arXiv preprint arXiv:2402.18096, 2024.

Yuxuan Yue, Zhihang Yuan, Haojie Duanmu, Sifan Zhou, Jianlong Wu, and Liqiang Nie. Wkvquant:
Quantizing weight and key/value cache for large language models gains more. arXiv preprint
arXiv:2402.12065, 2024.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient gen-
erative inference of large language models. Advances in Neural Information Processing Systems,
36:34661–34710, 2023.

11

https://openai.com/o1/
https://qwenlm.github.io/blog/qwq-32b/


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Tianchen Zhao, Xuefei Ning, Tongcheng Fang, Enshu Liu, Guyue Huang, Zinan Lin, Shengen Yan,
Guohao Dai, and Yu Wang. Mixdq: Memory-efficient few-step text-to-image diffusion mod-
els with metric-decoupled mixed precision quantization. In European Conference on Computer
Vision, pp. 285–302. Springer, 2024.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny
Zhou, and Le Hou. Instruction-following evaluation for large language models. arXiv preprint
arXiv:2311.07911, 2023.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this paper, LLMs are only used to assist in polishing the writing of this paper. The technical
content, experiments, and conclusions are entirely conceived and conducted by the authors.

B ADDITIONAL DETAILS OF EVALUATION

B.1 INTRODUCTION OF DATASETS

American Invitational Mathematics Examination (AIME) (AIME, 2025) is a mathematics com-
petition for high school students. It contains 30 challenging problems each year, designed to assess
mathematical problem-solving skills across various topics, including algebra, combinatorics, geom-
etry, number theory, and other subjects covered in high school curricula.

Carnegie Mellon Informatics and Mathematics Competition (CMIMC) (CMIMC, 2025) is an
annual mathematics contest for high school students, hosted by students from Carnegie Mellon
University. The competition contains problems of algebra, combinatorics, and geometry, with each
category including ten standard problems along with one tiebreaker. Our model evaluation focuses
on the standard problem sets.

LiveCodeBench (Jain et al., 2024) is an extensive and continuously updated benchmark designed
to evaluate the performance of LLMs in coding tasks. It continually gathers new problems from
competition platforms. The benchmark encompasses four distinct scenarios: code generation, au-
tomated code repair, code execution, and prediction of test outputs. In our experiments, we focus
specifically on the code generation scenario.

IFEval (Zhou et al., 2023) is a benchmark proposed to systematically evaluate the ability of LLMs
to follow natural language instructions. The dataset contains 541 prompts, each annotated with one
or more verifiable instruction types such as word-count constraints, keyword frequency, formatting
requirements, or prohibitions on certain symbols. These instructions were deliberately designed
to be automatically checkable, enabling objective and reproducible evaluation without the need for
human annotators.

C ADDITIONAL EXPERIMENTS

C.1 THE SENSITIVITY OF DIFFERENT TRANSFORMER BLOCKS

We analyze the sensitivity and the memory allocation results across different models. For models
with parameter size less than 10B, as shown in Figure 3, we observe that the deeper blocks tend to
be more sensitive to quantization and receive a larger memory budget for the KV Cache. In addition,
in the DeepSeek-R1-Distill-Qwen-7B model, the first block is much more sensitive than the other
shallow blocks. Our memory allocation strategy accurately captures this feature, assigning a higher
memory budget to the first block accordingly.

For larger models with parameter size over 10B, as shown in Figure 4, KV Cache in deeper blocks
tend to be more sensitive than shallower blocks. We also observe that for the Qwen-based models,
the first block exhibits a large sensitivity. In particular, the sensitivity of the first block is the largest
among the first fifteen blocks in different Qwen-based models. This phenomenon is not observed in
the LLaMA-based models.

C.2 PERFORMANCE IN SHORT-GENERATION-CONTEXT TASKS

To verify the scalability of PM-KVQ to short-generation-context tasks, we evaluate it on IFE-
val (Zhou et al., 2023), an instruction-following benchmark. We follow the experimental setup
described in Section 4.1 and adopt the evaluation metrics provided by OpenCompass (Contributors,
2023). Compared to reasoning benchmarks in Table 1, non-reasoning tasks are less challenging and
generally involve much shorter outputs. For instance, the average output length of the DeepSeek-
Qwen-7B model is 13,904 tokens on AIME-2024 but only 1,182 tokens on IFEval. As shown in

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

0 7 15 23 31

Block Index

10-6

10-5

10-4

Se
n

si
ti

vi
ty

8-Fbit
4-Fbit

(a) DeepSeek-R1-Distill-LLaMA-8B

Block Index
0 6 13 20 27

10-5

10-4

10-3

Se
n

si
ti

vi
ty

4-Fbit
2-Fbit

(b) DeepSeek-R1-Distill-Qwen-7B

Figure 3: Sensitivity to quantization of KV Cache in different transformer blocks. Different colors
represents different memory budgets.

Table 5: Results of long-CoT Language Models on non-reasoning benchmarks with SOTA KV
Cache quantization methods. “BS” is short for “batch size”.

Models Quantization Bit-width IFEval

(Target GPU) Methods (K-V) Prompt Strict Prompt Loose Instruct Strict Instruct Loose

- - 16-16 58.77 68.50 63.27 72.60
RotateKV (BS=32,40) 2-2 0.00 0.00 0.00 0.00

DeepSeek- MiKV (BS=32) 2/16-2/16 57.30 66.17 61.18 70.06
Qwen-7B MiKV (BS=40) 2-2 0.00 0.00 0.00 0.00
(1×4090-24G) KIVI (BS=32,40) 2-2 49.29 60.31 54.57 64.57

PM-KVQ (BS=32) 2/4-2/4 57.35 68.03 62.09 71.65
PM-KVQ (BS=40) 2-2 57.58 68.34 62.09 71.81
- - 16-16 57.82 68.98 61.61 71.81
RotateKV (BS=6,8) 4-4 58.06 68.50 61.37 71.50

DeepSeek- MiKV (BS=6) 4/16-4/16 44.08 56.38 46.92 59.53
LLaMA-8B MiKV (BS=8) 4-4 55.69 66.61 59.95 70.39
(1×4090-24G) KIVI (BS=6,8) 4-4 57.35 68.35 71.14 71.81

PM-KVQ (BS=6) 4/8-4/8 58.77 69.61 63.74 73.70
PM-KVQ (BS=8) 4-4 57.58 68.19 61.14 71.34

DeepSeek-
Qwen-14B
(1×A100-40G)

- - 16-16 70.14 78.74 74.40 81.73
KIVI (BS=12,16) 2-2 67.54 77.01 72.04 80.47

PM-KVQ (BS=12) 2/4-2/4 73.70 80.47 77.73 83.46
PM-KVQ (BS=16) 2-2 73.46 80.47 77.49 83.46

DeepSeek-
Qwen-32B
(1×A100-80G)

- - 16-16 74.41 81.73 78.20 84.41
KIVI (BS=12,16) 2-2 72.51 79.84 76.07 82.36

PM-KVQ (BS=12) 2/4-2/4 75.83 83.15 78.91 85.35
PM-KVQ (BS=16) 2-2 76.07 83.30 78.91 85.35
- - 16-16 82.94 88.03 86.97 90.71

QwQ-32B KIVI (BS=12,16) 2-2 73.22 80.00 78.67 84.09

(1×A100-80G) PM-KVQ (BS=12) 2/4-2/4 81.99 86.77 85.55 89.45
PM-KVQ (BS=16) 2-2 81.75 86.61 85.55 89.45

Table 5, although our method is not specifically designed for short-output scenarios, it outperforms
KIVI and achieves accuracy comparable to the original 16-bit models.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

0 11 23 35 47
Block Index

10-5

10-4

Se
n

si
ti

vi
ty

4-Fbit
2-Fbit

(a) DeepSeek-R1-Distill-Qwen-14B

0 15 31 47 63
Block Index

10-5

10-4

Se
n

si
ti

vi
ty

4-Fbit
2-Fbit

(b) DeepSeek-R1-Distill-Qwen-32B

0 15 31 47 63
Block Index

10-5

10-4

Se
n

si
ti

vi
ty

4-Fbit
2-Fbit

(c) DeepSeek-R1-Distill-QwQ-32B

0 19 39 59 79
Block Index

10-5

10-4

Se
n

si
ti

vi
ty

10-6

4-Fbit
2-Fbit

(d) DeepSeek-R1-Distill-LLaMA-70B

Figure 4: Sensitivity to quantization of KV Cache in different transformer blocks. Different colors
represents different memory budgets.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

C.3 EFFICIENCY ANALYSIS OF PRE-INFERENCE PROCESS

Before the inference process, PM-KVQ performs block-wise memory allocation and calibration
with positional interpolation as preparation. Following the experimental setup in Section 4.1, we
measure the time required for these pre-inference procedures. As shown in Table 6, compared
with QServe (Lin* et al., 2024), PM-KVQ leverages positional interpolation to reduce calibration
sequence length from 8,192 to 2,048 tokens, substantially reducing the calibration time by up to
77.21%. The additional block-wise memory allocation procedure account for 22.50–23.53% pre-
inference time.

Table 6: Latency of block-wise memory allocation and calibration. “PI” is short for “Positional
Interpolation”.

Model Method Calibration Memory
Allocation Time

w/o PI w/ PI

DeepSeek-
Qwen-7B

QServe (search α) ✓ 52 min
PM-KVQ (BS=40) ✓ 13 min
PM-KVQ (BS=32) ✓ ✓ 17 min

DeepSeek-
Qwen-32B

QServe (search α) ✓ 187 min
PM-KVQ (BS=16) ✓ 44 min
PM-KVQ (BS=12) ✓ ✓ 57 min

DeepSeek-
LLaMA-70B

QServe (search α) ✓ 408 min
PM-KVQ (BS=16) ✓ 93 min
PM-KVQ (BS=12) ✓ ✓ 120 min

D PROOF OF EQUIVALENT RIGHT SHIFT

Theorem D.1 (Equivalent Right Shift). Given a 16-bit floating-point tensor XBF16, let X2b and Xb

denote the 2b-bit and b-bit quantized tensors of XBF16, respectively. Then

Xb =
(
(22b − 2b + 1)(X2b + 2b−1)

)
>> 3b. (13)

Proof. Let the zero points be Z2b = Zb = Z. According to Equation (2), the scaling factors are
given by

S2b =
max(XBF16)− Z

22b − 1
, Sb =

max(XBF16)− Z

2b − 1
. (14)

It follows that
Sb = (2b + 1)S2b. (15)

Define

X̃2b =
XBF16 − Z

S2b
, X̃b =

XBF16 − Z

Sb
. (16)

Then the quantized tensors are obtained by rounding:

X2b =
⌊
X̃2b

⌉
, Xb =

⌊
X̃b

⌉
, (17)

and we have
X̃2b = (2b + 1)X̃b. (18)

By the definition of rounding,

X2b −
1

2
≤ X̃2b < X2b +

1

2
. (19)

Dividing both sides by 2b + 1 yields

X2b − 1
2

2b + 1
≤ X̃b <

X2b +
1
2

2b + 1
. (20)

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Perform the Euclidean division of X2b by 2b + 1:

X2b = q(2b + 1) + r, with 0 ≤ q ≤ 2b − 1, 0 ≤ r ≤ 2b. (21)

Then,

q +
r − 1

2

2b + 1
≤ X̃b < q +

r + 1
2

2b + 1
. (22)

Now consider the expression:(
(22b − 2b + 1)(X2b + 2b−1)

)
>> 3b =

⌊
(22b − 2b + 1)(q(2b + 1) + r + 2b−1)

23b

⌋
= q +

⌊
q + (22b − 2b + 1)(r + 2b−1)

23b

⌋
.

(23)

We proceed by considering two cases for the remainder r:

Case 1: 0 ≤ r ≤ 2b−1.

Then,

q − 1

2
< q −

1
2

2b + 1
≤ X̃b < q +

2b−1 + 1
2

2b + 1
= q +

1

2
. (24)

Hence, rounding gives Xb =
⌊
X̃b

⌉
= q.

Moreover,

q + (22b − 2b + 1)(r + 2b−1)

23b
≥ (22b − 2b + 1) · 2b−1

23b
>

22b · 2b−1

23b
=

1

2
> 0, (25)

and
q + (22b − 2b + 1)(r + 2b−1)

23b
≤ 2b − 1 + (22b − 2b + 1)(2b−1 + 2b−1)

23b

= 1− (2b − 1)2

23b
< 1.

(26)

Therefore, ⌊
q + (22b − 2b + 1)(r + 2b−1)

23b

⌋
= 0, (27)

and thus (
(22b − 2b + 1)(X2b + 2b−1)

)
>> 3b = q = Xb. (28)

Case 2: 2b−1 + 1 ≤ r ≤ 2b.

Then,

q +
1

2
= q +

2b−1 + 1− 1
2

2b + 1
≤ X̃b < q +

2b + 1
2

2b + 1
< q + 1. (29)

Thus, rounding gives Xb =
⌊
X̃b

⌉
= q + 1.

Moreover,

q + (22b − 2b + 1)(r + 2b−1)

23b
≥ (22b − 2b + 1)(2b−1 + 1 + 2b−1)

23b
=

23b + 1

23b
> 1, (30)

and

q + (22b − 2b + 1)(r + 2b−1)

23b
≤ 2b − 1 + (22b − 2b + 1)(2b + 2b−1)

23b

=
23b + 23b−1 − 22b − 22b−1 + 2b+1 + 2b−1 − 1

23b

= 2− 23b−1 + 22b + 22b−1 − 2b+1 − 2b−1 + 1

23b
< 2.

(31)

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Therefore, ⌊
q + (22b − 2b + 1)(r + 2b−1)

23b

⌋
= 1, (32)

and thus (
(22b − 2b + 1)(X2b + 2b−1)

)
>> 3b = q + 1 = Xb. (33)

In both cases, the desired equality holds, which completes the proof.

E LIMITATIONS

In this paper, we do not consider all of the attention mechanisms, such as the multi-head latent
attention (MLA), which is quite different from the widely used Group-Query Attention (GQA).
Besides, we do not combine the proposed PM-KVQ with other system-level optimization techniques
and inference engines, which yields for future work.

18


	Introduction
	Related Work
	Long CoT Large Language Models
	Post-Training KV Cache Quantization

	Method
	Progressive Quantization
	Block-wise Memory Allocation
	Calibration with Positional Interpolation
	Method Pipeline

	Experiments
	Experimental Setups
	Datasets
	Baselines and Model Choice
	Bit-width and Batch Size Setups

	Main Results
	Efficiency Analysis
	Ablation Studies
	The Effect of Bit-width Shrinking Strategies
	The Effect of Positional Interpolation


	Conclusion
	The Use of Large Language Models (LLMs)
	Additional Details of Evaluation
	Introduction of Datasets

	Additional Experiments
	The Sensitivity of different Transformer Blocks
	Performance in Short-generation-context Tasks
	Efficiency Analysis of Pre-inference Process

	Proof of Equivalent Right Shift
	Limitations

