

PM-KVQ: PROGRESSIVE MIXED-PRECISION KV CACHE QUANTIZATION FOR LONG-COT LLMs

Anonymous authors

Paper under double-blind review

ABSTRACT

Recently, significant progress has been made in developing reasoning-capable Large Language Models (LLMs) through long Chain-of-Thought (CoT) techniques. However, this long-CoT reasoning process imposes substantial memory overhead due to the large Key-Value (KV) Cache memory overhead. Post-training KV Cache quantization has emerged as a promising compression technique and has been extensively studied in short-context scenarios. However, directly applying existing methods to long-CoT LLMs causes significant performance degradation due to the following two reasons: (1) **Large cumulative error**: Existing methods fail to adequately leverage available memory, and they directly quantize the KV Cache during each decoding step, leading to large cumulative quantization error. (2) **Short-context calibration**: Due to Rotary Positional Embedding (RoPE), the use of short-context data during calibration fails to account for the distribution of less frequent channels in the Key Cache, resulting in performance loss. We propose **Progressive Mixed-Precision KV Cache Quantization (PM-KVQ)** for long-CoT LLMs to address the above issues in two folds: (1) To reduce cumulative error, we design a progressive quantization strategy to gradually lower the bit-width of the KV Cache in each block. Then, we propose block-wise memory allocation to assign a higher bit-width to more sensitive transformer blocks. (2) To increase the calibration length without additional overhead, we propose a new calibration strategy with positional interpolation that leverages short calibration data with positional interpolation to approximate the data distribution of long-context data. Extensive experiments on 7B–70B long-CoT LLMs show that PM-KVQ improves reasoning benchmark performance by up to 8% over SOTA baselines under the same memory budget and achieves $2.73\text{--}5.18\times$ throughput over the original 16-bit LLMs. Our code will be released soon.

1 INTRODUCTION

Recently, many pioneers have developed remarkable reasoning Large Language Models (LLMs) with long Chain-of-Thoughts (CoT) techniques, such as OpenAI-o1 (OpenAI, 2024), DeepSeek-R1 (Guo et al., 2025), QwQ (Team, 2025), and so on. To achieve better algorithmic performance, these long-CoT reasoning LLMs are trained to generate up to 128K tokens with multiple complex rationales from different perspectives (Guo et al., 2025). However, this long-CoT process demands significant memory overhead (\sim 10GB-100GB) to store the Key-Value (KV) Cache as the history information, which limits the practical application scenarios for such long-CoT LLMs.

To mitigate the substantial memory overhead of long-CoT LLMs, various KV Cache compression methods have been proposed (Liu et al., 2024c; Yang et al., 2024; Su et al., 2025; Xiao et al., 2023; Fu et al., 2024). Among them, Post-training KV Cache Quantization is a promising compression technique that has already been well explored in short-context scenarios (e.g., <8K tokens). QServe (Lin* et al., 2024) and MiKV (Yang et al., 2024) observe that the Key Cache has more outliers than the Value Cache, leading to higher quantization error. More importantly, the outliers in the Key Cache persist in certain channels. To this end, they propose a channel-wise equalization method to migrate the outliers from the Key tensor to the Query tensor, thereby significantly reducing the quantization error. KIVI (Liu et al., 2024c), SKVQ (Duanmu et al., 2024), and IntactKV (Liu et al., 2024b) gain insights from the data distribution of the attention map and preserve the first or most recent tokens in higher bit-width within the KV Cache to maintain the performance.

054 However, directly applying the above short-context-optimized methods to long-CoT LLMs results
 055 in severe performance degradation. The reasons stem from the following two aspects: (1) **Large**
 056 **cumulative error in long-CoT LLMs**: As a lossy compression method, directly quantizing the
 057 Key and Value tensors (Liu et al., 2024c; Lin* et al., 2024; Yang et al., 2024; Duanmu et al., 2024)
 058 introduces quantization errors at each decoding step when generating one token. As the number
 059 of generated tokens increases, the accumulated quantization error grows larger, leading to a sig-
 060 nificant performance degradation of long-CoT LLMs. (2) **Short calibration data cannot reflect**
 061 **long-context data distribution**: The Rotary Positional Embedding (RoPE) operator incorporates
 062 positional information into each channel of the Key Cache by rotating token embeddings using sine
 063 and cosine functions of different frequencies. For low-frequency channels after RoPE, which have
 064 a period of over 32K tokens, calibration using short sequences (e.g., 2K tokens) fails to accurately
 065 reflect the data distribution of the Key Cache, leading to more significant quantization errors.
 066

067 In this paper, we propose **Progressive Mixed-Precision KV Cache Quantization (PM-KVQ)** to ad-
 068 dress the above two issues respectively. (1) To reduce cumulative error, we aim to fully utilize the
 069 memory budget of the target hardware through two strategies. On the one hand, we propose to quan-
 070 tize the KV Cache progressively. For example, to achieve extremely low-bit quantization, such as
 071 2-bit, instead of directly quantizing KV Cache to 2-bit at each decoding step, we initially store KV
 072 Cache in 16-bit format and then gradually reduce the bit-width to 2-bit through shifting operations
 073 once the memory resource is fully occupied. On the other hand, we propose a block-wise memory al-
 074 location technique to allocate higher bit-widths for more sensitive blocks. Specifically, we formalize
 075 the bit-width allocation task as an Integer Programming problem, which can be effectively solved by
 076 existing solvers with negligible latency. (2) To increase the effective calibration length without intro-
 077 ducing additional computational or memory overhead, we retain the use of short-context data during
 078 calibration to maintain low resource consumption. Furthermore, we propose leveraging positional
 079 interpolation (Chen et al., 2023) to embed long-context positional information into short-context
 080 data, thereby enabling a more accurate estimation of the data distribution for long sequences.
 081

082 To sum up, the proposed PM-KVQ mainly contains the following contributions:
 083

- 084 • We design progressive quantization and block-wise memory allocation techniques tailored
 085 for long-CoT scenarios to fully utilize the memory budget of the target hardware and effec-
 086 tively reduce cumulative quantization error.
- 087 • We propose to use short-context calibration data with positional interpolation to increase
 088 the effective length without incurring additional computational or memory overhead.
- 089 • Extensive experiments on long-CoT LLMs, ranging from 7B to 70B, show that the pro-
 090 posed PM-KVQ achieves up to 8% accuracy improvement over SOTA baselines on rea-
 091 soning benchmarks under 4-bit/2-bit KV Cache quantization settings, while delivering a
 092 2.73–5.18× throughput improvement over the 16-bit model.

093 2 RELATED WORK

094 2.1 LONG CoT LARGE LANGUAGE MODELS

095 Long-CoT (Long-Chain-of-Thought) LLMs aim to enhance multi-step reasoning capabilities for
 096 complex tasks like mathematical proofs, scientific reasoning, and multi-hop QA. Models such as
 097 OpenAI-o1 (OpenAI, 2024), QwQ (Team, 2025), and DeepSeek-R1 (Guo et al., 2025) employ ad-
 098 vanced techniques to extend CoT reasoning depth. DeepSeek, specifically, integrates iterative self-
 099 refinement and tool-augmented reasoning (e.g., code execution and symbolic solvers) to maintain
 100 coherence across extended reasoning chains. Its architecture emphasizes hierarchical decomposi-
 101 tion of problems and error-correction mechanisms, achieving state-of-the-art performance.

102 While long-CoT can significantly improve model performance, it introduces excessively more de-
 103 coding tokens (e.g., >32K tokens per request) and large GPU memory overhead. Despite employing
 104 efficient attention designs, such as Multi-Query Attention (MQA) (Shazeer, 2019), Group-Query At-
 105 tention (GQA) (Ainslie et al., 2023), and Multi-head Latent Attention (MLA) (Liu et al., 2024a), the
 106 memory overhead of the KV Cache in long-CoT LLMs remains significantly large, often surpass-
 107 ing that of the model weights. Consequently, reducing the memory overhead of the KV Cache is
 108 significantly important for large batch sizes and long context requirements.

108 2.2 POST-TRAINING KV CACHE QUANTIZATION
109

110 To alleviate the large memory overhead with long reasoning contexts, many efforts have been made
111 to reduce the KV Cache size. Post-training KV Cache quantization stands as a promising technique
112 for efficient inference. KV Cache quantization methods try to use low bit-width integers to represent
113 the cached key and value states, instead of using high bit-width floating-point values. Existing
114 methods typically apply asymmetric uniform quantization for KV Cache:

$$115 \quad \mathbf{X}_{\text{asym}} = \left\lfloor \frac{\mathbf{X}_{\text{BF16}} - Z}{S_{\text{asym}}} \right\rfloor, \quad (1)$$

$$117 \quad S_{\text{asym}} = \frac{\max(\mathbf{X}_{\text{BF16}}) - Z}{2^b - 1}, \quad (2)$$

118 where \mathbf{X}_{BF16} denotes the 16-bit brain floating point (BF16) Key or Value tensor, \mathbf{X}_{asym} denotes
119 the integer Key or Value tensor, S_{asym} and $Z = \min(\mathbf{X}_{\text{BF16}})$ denote the scaling factor and the zero
120 point respectively, b denotes the quantization bit-width, $\lfloor \cdot \rfloor$ denotes the rounding function.

121 Specifically, MKLV (Hariri et al., 2025) discovers that the sensitivity of Key and Value tensors are
122 quite different, with the Key tensors being more sensitive to quantization than the Value tensors.
123 Therefore, MKLV simply assigns a higher bit-width to Key tensors and a lower bit-width to Value
124 tensors. WKVQuant (Yue et al., 2024) proposes to change the data flow of the previous KV Cache
125 quantization by using the unquantized current Key and Value to calculate the attention operator,
126 and then quantize the current Key and Value. SKVQ (Duanmu et al., 2024) further improves the
127 WKVQuant by using a sliding window that stores the most recent 128 Key and Value features
128 in floating-point format to reduce the cumulative quantization error. MiKV (Yang et al., 2024)
129 is inspired by H2O (Zhang et al., 2023) to use the heavy-hitter oracle to discover the important
130 tokens in a higher bit-width and quantize the rest of the unimportant tokens into a lower bit-width.
131 KIVI (Liu et al., 2024c) discovers that the Value tensors are much flatter than Key tensors, and the
132 outliers in Key tensors typically appear in certain channels. To this end, KIVI utilizes per-channel
133 quantization for Key Cache and per-token quantization for Value Cache in a group-wise manner to
134 reduce the quantization error. RotateKV (Su et al., 2025) combines the channel-wise equalization
135 and the rotation-based equalization with Hadamard matrices to further reduce the quantization error.
136

137 In this paper, we adopt effective strategies from prior work, such as storing the first token in INT16
138 and using a sliding window for recent tokens. To further reduce quantization errors, we propose
139 two improvements: (1) Progressive Quantization – initially store KV cache in higher precision and
140 gradually lower the bit-width as memory memory becomes saturated; (2) Block-wise Memory Al-
141 location – allocate more memory to sensitive transformer blocks when capacity allows, thereby
142 preserving performance.

143 3 METHOD
144145 3.1 PROGRESSIVE QUANTIZATION
146

147 As discussed in Section 2.2, existing post-training KV Cache quantization methods quantize at every
148 decoding step, causing large cumulative errors. A sliding window with high-precision cache allevi-
149 ates this, but very low bit-widths (e.g., 2-bit) still lead to severe accuracy loss in long-CoT tasks. **We**
150 **show that existing KV cache quantization methods underutilize the memory budget and miss**
151 **opportunities to reduce cumulative errors.** As illustrated in the left panel of Figure 1(a), SOTA
152 methods store 2-bit KV Cache at every decoding step, causing substantial memory waste when the
153 budget is not fully used.

154 To address the above issue, we propose a progressive quantization strategy to make full use of
155 the memory resources by gradually shrinking the bit-width of the KV Cache, thereby significantly
156 reducing the cumulative quantization error. *For each transformer block, we use “Fbit” to represent*
157 *the final bit-width of the progressive quantization process.* In this case, we can easily calculate the
158 memory budget for each transformer block based on the maximum context length of the target long-
159 CoT LLM. As shown in Figure 1(a) right, the Fbit in this example is 2-bit and the maximum context
160 length is 32K. During generation, we initially store the KV Cache in 16-bit format to alleviate the
161 large cumulative quantization error. **Once the memory budget is fully utilized**, we apply a bit-
width shrinking strategy to accommodate more tokens by progressively reducing the bit-width of

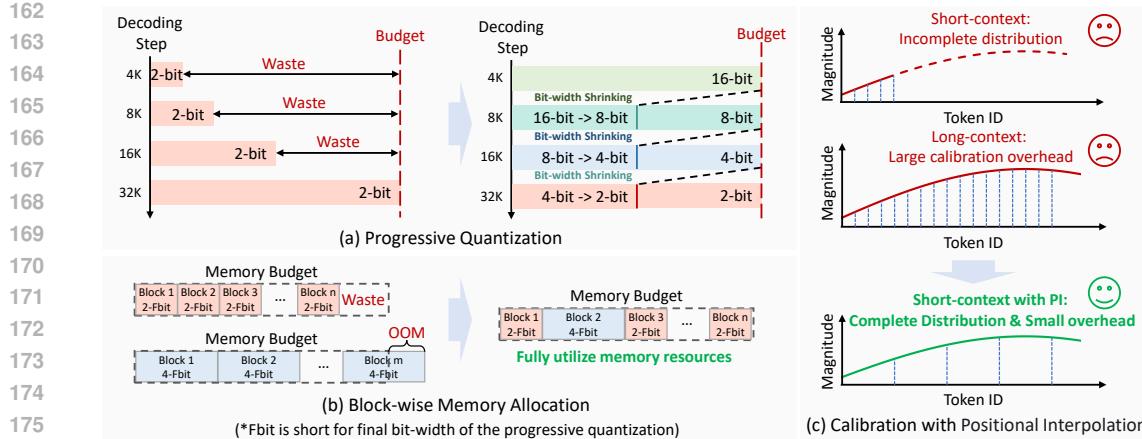


Figure 1: Method Overview. (a) Progressive quantization: we progressively shrink the bit-width of KV Cache to fully utilize the memory budget. (b) Block-wise memory allocation: we allocate a higher bit-width to those transformer blocks with higher sensitivity. (c) Calibration with Positional Interpolation to approximate the distribution of long-context data with short-context data.

the existing KV Cache. Specifically, we use powers of two for quantization bit-widths, gradually decreasing them in the order of 16, 8, 4, and 2 bits.

In addition, for the bit-width shrinking strategy, we design an “**Equivalent Right Shift**” strategy that is mathematically equivalent to de-quantizing the $2b$ -bit KV Cache and then quantizing it to b -bit. Here, b can be 8, 4, or 2, corresponding to shrinking the KV Cache from 16-bit to 8-bit, 8-bit to 4-bit, and 4-bit to 2-bit, respectively. Specifically, we formulate the bit-width shrinking strategy by using integer addition and shifting as follows:

$$\mathbf{X}_b = ((2^{2b} - 2^b + 1)(\mathbf{X}_{2b} + 2^{b-1})) \gg 3b, \quad (3)$$

where \mathbf{X}_b and \mathbf{X}_{2b} represent the b -bit and $2b$ -bit tensor respectively. We keep the zero point unchanged ($Z_b = Z_{2b}$) and increase the scaling factor to $S_b = (2^b + 1)S_{2b}$ to preserve the dynamic range of the data distribution. The detailed proof of equivalence for Equation (3) is shown in Section D. Furthermore, we compare the effect of three different bit-width shrinking strategies and show that the “**Equivalent Right Shift**” strategy achieves better performance, as detailed in Section 4.4.1.

3.2 BLOCK-WISE MEMORY ALLOCATION

Existing KV Cache quantization methods typically apply a uniform bit-width across all transformer blocks, which may not fully utilize the memory resources of the target hardwares. As shown in Figure 1(b) left, in this example, the target hardware has sufficient memory to store the KV Cache uniformly in 2-Fbit format, leaving a proportion of wasted memory. However, switching to a uniform 4-Fbit format may exceed the memory limit and trigger an out-of-memory error. Therefore, using a uniform bit-width for KV Cache may not fully utilize the available memory across different scenarios with varying memory resources.

To fully utilize the memory resource in different scenarios for better performance, we propose a block-wise memory allocation strategy to assign a higher bit-width for more sensitive blocks. Inspired by existing mixed-precision quantization methods (Li et al., 2023; Zhao et al., 2024), we employ a first-order Taylor approximation to estimate the sensitivity of the model output to perturbations in the Key Cache and Value Cache. Here, we take the Key Cache as an example:

$$\mathcal{L}(Q_b(\mathbf{K}_i)) \approx \mathcal{L}(\mathbf{K}) + \mathbf{G}_{\mathbf{K}_i} \odot (\mathbf{K}_i - Q_b(\mathbf{K}_i)), \quad (4)$$

where \mathcal{L} is the loss function, i represents the i -th transformer block, \mathbf{K}_i is the Key Cache, $Q_b(\cdot)$ is the b -bit quantization function, $\mathbf{G}_{\mathbf{K}_i}$ is the gradients of the loss function with respect to the \mathbf{K}_i , \odot is the element-wise multiplication operator. The Value Cache follows a similar formulation.

To minimize the effect of KV Cache quantization in each transformer block, we aim to minimize the following sensitivity term:

$$s_{i,b} = \|\mathbf{G}_{\mathbf{K}_i} \odot (\mathbf{K}_i - Q_b(\mathbf{K}_i))\|_1 + \|\mathbf{G}_{\mathbf{V}_i} \odot (\mathbf{V}_i - Q_b(\mathbf{V}_i))\|_1, \quad (5)$$

216 where $s_{i,b}$ denotes the sensitivity of the KV Cache in the i -th transformer block to b -bit quantization.
 217

218 Taking into account the sensitivity of all transformer blocks, our goal is to assign an appropriate bit-
 219 width to each block to minimize the impact on the loss function, subject to a given memory budget.
 220 To this end, we formulate the block-wise bit-width allocation as the following Integer Programming
 221 problem:

$$222 \quad \arg \min_{x_{i,b}} \sum_i^N \sum_b x_{i,b} \cdot s_{i,b}, \quad (6)$$

$$225 \quad \sum_b x_{i,b} = 1, \sum_i^N \sum_b x_{i,b} \cdot (Mem(Q_b(\mathbf{K}_i)) + Mem(Q_b(\mathbf{V}_i))) \leq \mathcal{M}, \quad (7)$$

$$227 \quad x_{i,b} \in \{0, 1\}, b \in B, \quad (8)$$

229 where N is the number of transformer blocks, $Mem(\cdot)$ is the function to calculate the memory
 230 usage of the quantized KV Cache, \mathcal{M} is the memory budget for the KV Cache of all the transformer
 231 blocks, $x_{i,b}$ is the one-hot vector that indicates the bit-width choice b of the i -th block, and B is the
 232 optional bit-width set, detailed in Section 4.1.3. The proposed Integer Programming problem can be
 233 effectively solved by CVXPY (Diamond & Boyd, 2016) within a few seconds.
 234

3.3 CALIBRATION WITH POSITIONAL INTERPOLATION

236 Previous studies have observed that the Key Cache of LLMs contains outliers in certain channels,
 237 which significantly increases the quantization error. Approaches such as QServe (Lin* et al., 2024)
 238 address this issue by introducing a channel-wise reparameterization method to transfer the outliers
 239 in Key tensors into Query tensors:

$$240 \quad \mathbf{P} = (\mathbf{Q}\Lambda) \cdot Q((\mathbf{K}\Lambda^{-1})^T), \Lambda = \text{diag}(\lambda_i), \quad (9)$$

241 where i is the channel index, λ_i is the reparameterization factor of the i -th channel, and $Q(\cdot)$ is the
 242 quantization function. Generally, λ_i is calibrated using a small dataset of sequences with a typical
 243 length of 512 tokens, which is much shorter than the maximum output length of 32K tokens. The
 244 calibration process follows Equation (10):

$$245 \quad \lambda_i = \left(\max_m K_{m,i} \right)^\alpha, \quad (10)$$

247 where m is the token position index, and α is the parameter to adjust the strength of outlier transfer,
 248 which can be set as a fixed number or obtained by grid search (Lin et al., 2024).

249 However, applying the above reparameterization technique to long-CoT LLMs using short calibra-
 250 tion data (e.g., 512) may fail to accurately capture the distribution of the Key Cache. This limitation
 251 arises because Rotary Positional Embedding (RoPE) (Su et al., 2024) is used to inject positional
 252 information into the Key Cache, which introduces periodic variations across different channels:

$$253 \quad \begin{bmatrix} \tilde{K}_{m,i} \\ \tilde{K}_{m,i+\frac{d}{2}} \end{bmatrix} = \begin{bmatrix} \cos m\theta_i & -\sin m\theta_i \\ \sin m\theta_i & \cos m\theta_i \end{bmatrix} \begin{bmatrix} K_{m,i} \\ K_{m,i+\frac{d}{2}} \end{bmatrix} = \sqrt{K_{m,i}^2 + K_{m,i+\frac{d}{2}}^2} \begin{bmatrix} \cos(m\theta_i + \varphi) \\ \sin(m\theta_i + \varphi) \end{bmatrix}, \quad (11)$$

256 where K and \tilde{K} denote the Keys before and after RoPE respectively, d is the hidden dimension of
 257 each attention head, and θ_i denotes the rotary frequency of channel i and $i + d/2$. Since $\theta_i = \theta^{-2i/d}$
 258 decreases with increasing i , the frequency of the sine curve is extremely low in channels with indices
 259 near $d/2$ and d . For example, in the DeepSeek-R1-Distill-Qwen-7B, the lowest frequency sine
 260 curve has a period of up to 54,410 tokens. Therefore, when using short sequences of 512 tokens
 261 for calibration, as shown in Figure 1(c) top, we cannot obtain the reparameterization factor that can
 262 completely reflect the sine-like data distribution.

263 Directly increasing the length of calibration data significantly increases both latency and memory
 264 costs due to the $O(N^2)$ complexity of the self-attention operator. Instead, we embed long-context
 265 positional information into short calibration data by leveraging positional interpolation (Chen et al.,
 266 2023). Specifically, we multiply a position scaling factor s to the position index m in the rotary
 267 matrix of RoPE for positional interpolation, as shown below:

$$268 \quad \begin{bmatrix} \tilde{K}_{m,i} \\ \tilde{K}_{m,i+\frac{d}{2}} \end{bmatrix} = \begin{bmatrix} \cos(s \cdot m\theta_i) & -\sin(s \cdot m\theta_i) \\ \sin(s \cdot m\theta_i) & \cos(s \cdot m\theta_i) \end{bmatrix} \begin{bmatrix} K_{m,i} \\ K_{m,i+\frac{d}{2}} \end{bmatrix} = \sqrt{K_{m,i}^2 + K_{m,i+\frac{d}{2}}^2} \begin{bmatrix} \cos(s \cdot m\theta_i + \varphi) \\ \sin(s \cdot m\theta_i + \varphi) \end{bmatrix}. \quad (12)$$

270 As shown in Figure 1(c) bottom, by applying positional interpolation, we can increase the largest
 271 positional index by $s \times$ without additional computation and memory overhead.
 272

273 **3.4 METHOD PIPELINE**
 274

275 In this paper, the proposed PM-KVQ combines the above three techniques to achieve better long-
 276 CoT performance with low bit-width KV Cache quantization. (1) Before the inference process,
 277 we first profile the sensitivity of each transformer block based on the calibration dataset, detailed in
 278 Section 4.1.1, and solve the Integer Programming problem to set the proper Fbit for each transformer
 279 block, as discussed in Section 3.2. Then, we apply the channel-wise reparameterization technique
 280 by using the calibration dataset with positional interpolation, as detailed in Section 3.3. (2) During
 281 the inference process, we apply progressive quantization to the KV Cache by gradually lowering the
 282 bit-width from 16-bit to the allocated Fbit, as shown in Section 3.1.
 283

284 **4 EXPERIMENTS**
 285

286 **4.1 EXPERIMENTAL SETUPS**
 287

288 **4.1.1 DATASETS**
 289

290 **For the calibration dataset**, we use the arXiv subset of RedPajama (Weber et al., 2024) as cal-
 291 ibration dataset. This subset consists of academic papers, containing mathematical formulas and
 292 reasoning process. We randomly select 512 samples, each with a length of 2,048 tokens, for cal-
 293 ibration. For positional interpolation, we set $s = 4$ in Equation (12), which means we embed an
 294 8,192 context length to 2,048 tokens. We set α in Equation (10) by grid searching over $[0,1]$ for the
 295 optimal α that minimizes the reconstruction loss of the self-attention operator with a grid size of 20.
 296

297 **For performance evaluation**, we mainly focus on evaluating the long-CoT LLMs on the math-
 298 ematical reasoning and code generation benchmarks with **long generation contexts** ($>16K$). For
 299 mathematical reasoning, we use the AIME-2024/2025 (AIME, 2025) and CMIMC-2024 (CMIMC,
 300 2025) datasets. For competition-level code generation, we select coding problems released between
 301 January 1, 2025, and April 6, 2025, from LiveCodeBench (Jain et al., 2024). Besides, as illustrated
 302 in Section C.2, we also evaluate the proposed PM-KVQ on the IFEval (Zhou et al., 2023) dataset
 303 with **short generation contexts** ($\sim 1K$) to demonstrate its strong generalizability across different
 304 context lengths. We sample 16 responses for each mathematical problem, 4 responses for each code
 305 generation problem, and 1 response for each instruction following problem, using a temperature of
 306 0.6, top-p of 0.95, and a maximum output length of 32,768 tokens.
 307

308 **4.1.2 BASELINES AND MODEL CHOICE**
 309

310 **For baselines**, we compare PM-KVQ with SOTA KV Cache quantization methods, including the
 311 uniform bit-width methods RotateKV (Su et al., 2025), KIVI (Liu et al., 2024c), and mixed-precision
 312 quantization method MiKV (Yang et al., 2024), which retains the KV Cache of heavy hitters in BF16
 313 format and uses low bit-width for other tokens. Similar to KIVI, PM-KVQ stores the KV Cache for
 314 the first and most recent 128 tokens in INT16 format to mitigate performance degradation. All model
 315 weights in our experiments are in BF16 format.
 316

317 **For model choices**, we evaluate the different quantization methods above on the Deepseek-R1-
 318 Distill (Guo et al., 2025) series as well as the QwQ-32B model (Team, 2025). Specifically, the
 319 Deepseek-R1-Distill series is an LLM family distilled from DeepSeek-R1. We choose Deepseek-
 320 R1-Distill-Qwen-7B/14B/32B and Deepseek-R1-Distill-LLaMA-8B/70B, ranging from 7B to 70B.
 321

322 **4.1.3 BIT-WIDTH AND BATCH SIZE SETUPS**
 323

324 **For the bit-width settings**, to demonstrate the effectiveness of the proposed PM-KVQ, we select
 325 quantization bit-widths that lead to significant performance degradation when using baseline meth-
 326 ods for each long-CoT LLM. Specifically, we use 4-bit for DeepSeek-LLaMA-8B and 2-bit for
 327 other LLMs. Notably, the bit-width for the proposed PM-KVQ stands for the Fbit, as discussed
 328 in Section 3.1. In addition, for the optional bit-width set B in Section 3.2, we use $B = \{4, 8\}$
 329

324 Table 1: Main results of long-CoT Language Models on reasoning-related benchmarks with SOTA
 325 KV Cache quantization methods. “BS” is short for “batch size”.
 326

327 Models (Target GPU)	Quantization Methods	Bit-width (K-V)	AIME-2024		AIME-2025		CMIMC-2024		LiveCode pass@1
			pass@1	Voting	pass@1	Voting	pass@1	Voting	
329 DeepSeek- 330 Qwen-7B (1×4090-24G)	--	16-16	41.04 \pm 6.74	63.33	30.00 \pm 3.33	36.67	27.29 \pm 5.17	43.33	26.29 \pm 1.34
	RotateKV (BS=32,40)	2-2	0.00 \pm 0.00	0.00	0.00 \pm 0.00	0.00	0.00 \pm 0.00	0.00	0.00 \pm 0.00
	MiKV (BS=32)	2/16-2/16	0.00 \pm 0.00	0.00	0.63 \pm 0.02	3.33	2.29 \pm 0.02	3.33	5.86 \pm 0.85
	MiKV (BS=40)	2-2	0.00 \pm 0.00	0.00	0.00 \pm 0.00	0.00	0.00 \pm 0.00	0.00	0.00 \pm 0.00
	KIVI (BS=32,40)	2-2	32.08 \pm 5.25	43.33	24.58 \pm 3.51	33.33	20.83 \pm 3.63	23.33	19.00 \pm 2.37
	PM-KVQ (BS=32)	2/4-2/4	40.21 \pm 5.71	66.67	28.96 \pm 4.20	40.00	25.83 \pm 5.20	40.00	24.71 \pm 1.48
	PM-KVQ (BS=40)	2-2	40.00 \pm 5.40	60.00	28.12 \pm 4.71	33.33	26.46 \pm 4.64	40.00	24.57 \pm 1.42
	--	16-16	44.17 \pm 4.49	66.67	30.63 \pm 6.58	50.00	26.67 \pm 4.41	36.67	32.14 \pm 1.99
334 DeepSeek- 335 LLaMA-8B (1×4090-24G)	RotateKV (BS=6,8)	4-4	42.92 \pm 3.89	66.67	27.29 \pm 6.48	40.00	26.46 \pm 5.33	30.00	32.00 \pm 1.56
	MiKV (BS=6)	4/16-4/16	35.63 \pm 7.14	66.67	24.79 \pm 3.72	36.67	25.21 \pm 3.53	33.33	27.00 \pm 1.30
	MiKV (BS=8)	4-4	41.67 \pm 6.56	60.00	26.46 \pm 7.02	43.33	22.92 \pm 4.84	26.67	29.71 \pm 1.67
	KIVI (BS=6,8)	4-4	41.25 \pm 6.65	60.00	27.92 \pm 4.70	46.67	26.25 \pm 4.98	36.67	30.29 \pm 1.76
	PM-KVQ (BS=6)	4/8-4/8	47.71 \pm 6.84	73.33	31.25 \pm 5.64	50.00	28.13 \pm 4.08	36.67	31.71 \pm 0.86
	PM-KVQ (BS=8)	4-4	43.33 \pm 5.57	63.33	31.25 \pm 5.64	50.00	28.96 \pm 5.10	40.00	31.57 \pm 1.17
	--	16-16	68.13 \pm 7.26	80.00	50.00 \pm 5.77	60.00	49.58 \pm 4.84	66.67	45.71 \pm 1.34
	KIVI (BS=12,16)	2-2	48.13 \pm 8.85	70.00	33.96 \pm 3.17	43.33	27.71 \pm 3.67	33.33	34.43 \pm 3.11
339 DeepSeek- 340 Qwen-14B (1×A100-40G)	PM-KVQ (BS=12)	2/4-2/4	67.71 \pm 6.94	80.00	46.67 \pm 7.36	60.00	47.71 \pm 4.20	60.00	42.14 \pm 0.95
	PM-KVQ (BS=16)	2-2	63.33 \pm 4.08	83.33	42.08 \pm 6.55	60.00	46.67 \pm 5.27	70.00	41.86 \pm 1.78
	--	16-16	72.08 \pm 4.39	86.67	53.12 \pm 5.71	66.67	52.50 \pm 5.71	70.00	46.86 \pm 2.18
	KIVI (BS=12,16)	2-2	63.96 \pm 6.89	83.33	45.42 \pm 5.38	60.00	40.63 \pm 5.17	56.67	40.43 \pm 1.10
342 DeepSeek- 343 Qwen-32B (1×A100-80G)	PM-KVQ (BS=12)	2/4-2/4	69.17 \pm 5.95	83.33	48.54 \pm 5.89	60.00	51.25 \pm 4.70	66.67	43.57 \pm 1.64
	PM-KVQ (BS=16)	2-2	67.29 \pm 4.89	83.33	48.96 \pm 7.33	63.33	50.42 \pm 7.16	73.33	43.57 \pm 0.62
	--	16-16	78.54 \pm 4.85	86.67	67.71 \pm 3.48	76.67	71.25 \pm 3.51	80.00	54.71 \pm 0.74
	KIVI (BS=12,16)	2-2	61.25 \pm 5.51	76.67	51.67 \pm 5.27	63.33	48.33 \pm 5.77	63.33	41.86 \pm 1.21
346 QwQ-32B (1×A100-80G)	PM-KVQ (BS=12)	2/4-2/4	66.46 \pm 3.81	80.00	49.58 \pm 4.39	63.33	54.58 \pm 5.12	66.67	45.14 \pm 0.70
	PM-KVQ (BS=16)	2-2	67.29 \pm 3.38	76.67	49.79 \pm 6.29	70.00	56.67 \pm 3.91	73.33	44.57 \pm 0.40

349 for DeepSeek-LLaMA-8B, and $B = \{2, 4\}$ for other long-CoT LLMs. We use asymmetric group-
 350 wise quantization for KV Cache with a group size of 128, as shown in Equation (1). All of the
 351 performance results are conducted with fake quantization on an 8×A100-80G GPU server.

352 **For the batch size setups**, we assign a target GPU with different memory resources for different
 353 LLMs to show the memory constraints in real-world scenarios, as shown in Table 1. On the one
 354 hand, to demonstrate the effectiveness of progressive quantization, we set the batch size for each
 355 LLM such that all methods can fully utilize the memory resources of the target GPU. Specifically,
 356 we use a batch size of 8 for LLaMA-8B with a 4-bit KV Cache, 40 for Qwen-7B with a 2-bit
 357 KV Cache, and 16 for the other LLMs, as shown in Table 1. On the other hand, to evaluate the
 358 effectiveness of block-wise memory allocation, we use smaller batch sizes to allocate more memory
 359 per instance, ensuring that higher bit-widths cannot be directly used under the same constraints. In
 360 this setting, we use a batch size of 6 for LLaMA-8B with a 4-bit KV Cache, 32 for Qwen-7B with a
 361 2-bit KV Cache, and 12 for the remaining LLMs, as also shown in Table 1.

362 4.2 MAIN RESULTS

364 As illustrated in Table 1, for long-CoT LLMs smaller than 10B, we compare PM-KVQ with
 365 RotateKV, MiKV, and KIVI. For the 2-bit DeepSeek-R1-Distill-Qwen-7B, applying RotateKV or
 366 MiKV causes the model unable to generate meaningful responses. The SOTA method KIVI also
 367 suffers from significant performance loss by up to 9%. PM-KVQ outperforms KIVI by up to 8%
 368 when applying uniform Fbit for each transformer block (batch size = 40). When the batch size is
 369 reduced to 32, each sample receives a larger memory budget. However, this budget is still insuf-
 370 ficient to apply uniform 4-bit quantization across all blocks. As a result, KIVI is constrained to
 371 2-bit quantization, underutilizing the available memory. In contrast, PM-KVQ leverages block-wise
 372 memory allocation to better utilize the larger memory, achieving an additional performance gain of
 373 up to 0.84%. For the 4-bit DeepSeek-R1-Distill-LLaMA-8B, PM-KVQ surpasses the SOTA meth-
 374 ods by up to 6.5% on AIME-2024, and even achieve better performance than the original LLM on
 375 mathematical benchmarks. Besides, for LLMs smaller than 10B, the average voting accuracy of
 376 PM-KVQ exceeds KIVI by up to 15.56%, demonstrating greater stability of the proposed method.

377 For larger long-CoT LLMs from 10B to 32B, we only compare the proposed PM-KVQ with KIVI
 378 because MiKV and RotateKV fail to generate meaningful information under 2-bit quantization, as

378 discovered in the 2-bit DeepSeek-R1-Distill-Qwen-7B. As shown in Table 1, PM-KVQ also demon-
 379 strates superior performance compared to KIVI, improving average pass@1 and voting accuracy by
 380 up to 15.00% and 17.78% on various LLMs. Especially, for the DeepSeek-R1-Distill-Qwen-14B,
 381 KIVI causes a performance degradation of 21.87% on CMIMC-2024, whereas PM-KVQ has a sig-
 382 nificantly lower degradation of only 1.87% and 2.91% under batch sizes of 16 and 12, respectively.

383 For the 70B-level long-CoT LLM, we evaluate the 2-bit DeepSeek-R1-Distill-LLaMA-70B model
 384 on the AIME-2024 benchmark. The original 16-bit model achieves a pass@1 of 69.14%. When the
 385 KV Cache is quantized to 2-bit using KIVI, the pass@1 drops significantly to 51.88%. In contrast,
 386 the proposed PM-KVQ enables the 2-bit model to achieve a much higher pass@1 of 64.79% under
 387 both batch sizes of 12 and 16, outperforming the KIVI baseline by 12.91%.

389 4.3 EFFICIENCY ANALYSIS

390 We evaluate 7B and 32B long-CoT LLMs
 391 on an A100-80G GPU, comparing the
 392 throughput of PM-KVQ (Fbit=2) against
 393 the original 16-bit LLMs and the 2-bit
 394 KIVI baseline. We adopt the official set-
 395 tings of KIVI (Liu et al., 2024c), using its
 396 inference engine and 4/2-bit CUDA ker-
 397 nels for efficiency evaluation. Besides,
 398 we implement 16/8-bit CUDA kernels and
 399 bit-width shrinking kernels to support PM-
 400 KVQ. To fully utilize the A100-80G mem-
 401 ory, we set the batch sizes of the original
 402 7B and 32B models to 18 and 1, respec-
 403 tively, while the quantized models allow larger batch sizes of 110 and 4.

404 As shown in Table 2, across different model sizes and output lengths, PM-KVQ achieves a
 405 2.73–5.18× throughput improvement over the original 16-bit LLMs. Compared with KIVI, the
 406 throughput of PM-KVQ is at a similar level, with a slight reduction primarily due to the use of higher
 407 bit-widths during inference. Notably, the overhead of bit-width shrinking is negligible, as it is trig-
 408 gered only when memory is fully utilized. **Overall, PM-KVQ incurs a throughput degradation**
 409 **of 2.45–16.18% compared to KIVI but achieves a substantial relative accuracy improvement**
 410 **of 10.57–23.48%.** To further evaluate the efficiency of the quantization procedure, we measure the
 411 latency of block-wise memory allocation and calibration with positional interpolation. As shown in
 412 Section C.3, both the 7B and 32B LLMs complete these procedures within one hour using PM-KVQ.

413 4.4 ABLATION STUDIES

415 In this section, we conduct detailed ablation studies to show the effect of bit-wise shrinking strate-
 416 gies introduced in Section 3.1, and the effectiveness of the positional interpolation discussed in
 417 Section 3.3. We also analyze the sensitivity of different transformer blocks detailed in Section C.1.

419 4.4.1 THE EFFECT OF BIT-WIDTH SHRINKING STRATEGIES

421 Table 3: Ablation results of different bit-width shrinking strategies.

423 Model	Bit-width Shrinking Strategy	Bit-width (K-V)	AIME-2024	
			424 pass@1	Voting
425 DeepSeek-LLaMA-8B	426 - -	427 16-16	428 44.17	429 66.67
	430 Direct Right Shift	431 4-4	432 12.08	433 23.33
	434 Modified Right Shift	435 4-4	436 28.75	437 46.67
	438 Equivalent Right Shift (Ours)	439 4-4	440 38.33	441 66.67

442 We compare three different bit-width shrinking strategies for reducing the KV Cache from 2b-bit to
 443 b-bit. Specifically, b can be 8, 4, or 2, corresponding to shrinking the KV Cache from 16-bit to 8-bit,
 444 8-bit to 4-bit, and 4-bit to 2-bit, respectively.

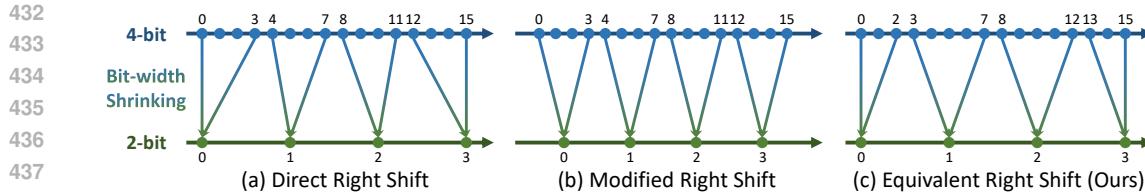


Figure 2: Different bit-width shrinking strategies when the bit-width is reduced from 4-bit to 2-bit.

(1) **Direct Right Shift**: By directly right-shifting by b bits, only the higher b bits of the original $2b$ -bit value are retained. As shown in Figure 2 (a), to preserve the dynamic range of the quantized values, we keep the zero point unchanged ($Z_b = Z_{2b}$) and increase the scaling factor to $S_b = (2^b + 1)S_{2b}$ to compensate for the magnitude reduction caused by the right-shift operation.

(2) **Modified Right Shift**: This strategy also uses b -bit right shifting strategy to perform the bit-width shrinking. However, instead of keeping the dynamic range unchanged, this strategy aims to ensure that quantization levels sharing the same upper b bits before the shift can have their mean values directly mapped to the lower bit-width representation, as demonstrated in Figure 2 (b). To achieve this, we change the scaling factor by $S_b = 2^b \cdot S_{2b}$ and zero point by $Z_b = Z_{2b} + \frac{1}{2}(S_b - S_{2b})$.

(3) **Equivalent Right Shift (in Section 3.1)**: As shown in Figure 2 (c), this strategy is equivalent to directly de-quantizing the $2b$ -bit KV Cache and then quantizing it to b -bit.

We evaluate the above three bit-width shrinking strategies on the AIME-2024 benchmark with DeepSeek-R1-Distill-LLaMA-8B. As shown in Table 3, both the Direct Right Shift and Modified Right Shift strategies result in significant performance degradation, reducing the pass@1 by 32.09% and 15.42%, respectively. In contrast, the Equivalent Right Shift demonstrates a notable improvement over the other two strategies, increasing the pass@1 by 26.25% and 9.58%, and maintaining a lossless voting accuracy. Therefore, we adopt the Equivalent Right Shift strategy in PM-KVQ.

4.4.2 THE EFFECT OF POSITIONAL INTERPOLATION

We evaluate the long-CoT performance across varying lengths of calibration data and position scaling factor s . We utilize the DeepSeek-R1-Distill-LLaMA-8B to generate four responses for each problem in the AIME-2024-I dataset. As shown in Table 4, when the calibration sequence length is set to 2,048, applying positional interpolation with $s = 4$ improves pass@1 by 1.66% compared to not using positional interpolation, achieving accuracy comparable to that obtained using calibration sequences of 8,192 tokens. We also observe that when s increases to 16, positional interpolation may lead to performance degradation. This indicates that the computational savings of positional interpolation are not unlimited, and overly aggressive scaling can indeed performance drop.

Table 4: Ablation results of different calibration sequence lengths and position scaling factors.

Model	Calibration Sequence Length	Position Scaling Factor	Effective Length	AIME-2024-I	
				pass@1	Voting
DeepSeek-LLaMA-8B	2,048	1	2,048	46.67	60.00
	2,048	4	8,192	48.33	60.00
	2,048	16	32,768	46.67	53.33
	8,192	1	8,192	48.33	60.00

5 CONCLUSION

In this paper, we introduce Progressive Mixed-precision KV Cache Quantization (PM-KVQ), a post-training KV Cache quantization method designed for long-CoT LLMs. To reduce the large cumulative error caused by uniform bit-width quantization, we design progressive quantization and block-wise memory allocation techniques. To increase the effective calibration length without incurring additional overhead, we propose a new calibration strategy with positional interpolation. Extensive experiments and ablation studies demonstrate the effectiveness of the proposed PM-KVQ and each proposed technique. Overall, the proposed PM-KVQ significantly outperforms SOTA baselines by up to 8% on reasoning-related mathematics and coding benchmarks and achieves 2.73–5.18 \times throughput compared to the original 16-bit LLMs.

486 ETHICS STATEMENT
487488 This work focuses on reducing the substantial overhead caused by the linearly growing KV cache in
489 long-context processing through KV Cache quantization. On the one hand, the proposed PM-KVQ
490 better preserves model accuracy after low-precision KV cache quantization, making it more accessible
491 for cost-constrained institutions, individuals, and application scenarios. On the other hand, as a
492 lossy compression technique, quantization can introduce distribution shifts and performance degra-
493 dation, potentially leading to increased hallucinations or instruction-following failures. Therefore,
494 additional caution and oversight are required during deployment.
495496 REPRODUCIBILITY STATEMENT
497498 We describe the calibration and evaluation datasets, as well as the data processing procedures, in
499 Section 4.1.1. All datasets and models used in our experiments are publicly available. Detailed
500 information on the quantization bit-widths and batch sizes used for each long-CoT LLM is also
501 provided in Section 4.1.3. To facilitate reproducibility, we also release our source code along with
502 detailed guidelines.
503504 REFERENCES
505506 AIME. American invitational mathematics examination, 2025. URL <https://artofproblemsolving.com/>.
507509 Joshua Ainslie, James Lee-Thorp, Michiel De Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit
510 Sanghali. Gqa: Training generalized multi-query transformer models from multi-head check-
511 points. *arXiv preprint arXiv:2305.13245*, 2023.512 Shouyuan Chen, Sherman Wong, Liangjian Chen, and Yuandong Tian. Extending context window
513 of large language models via positional interpolation. *arXiv preprint arXiv:2306.15595*, 2023.
514515 CMIMC. Carnegie mellon informatics and mathematics competition, 2025. URL <https://cmimc.math.cmu.edu/math>.
516518 OpenCompass Contributors. Opencompass: A universal evaluation platform for foundation models.
519 <https://github.com/open-compass/opencompass>, 2023.
520521 Steven Diamond and Stephen Boyd. CVXPY: A Python-embedded modeling language for convex
522 optimization. *Journal of Machine Learning Research*, 17(83):1–5, 2016.
523523 Haojie Duanmu, Zhihang Yuan, Xiuhong Li, Jiangfei Duan, Xingcheng Zhang, and Dahua Lin.
524 Skvq: Sliding-window key and value cache quantization for large language models. *arXiv preprint*
525 *arXiv:2405.06219*, 2024.
526527 Tianyu Fu, Haofeng Huang, Xuefei Ning, Genghan Zhang, Boju Chen, Tianqi Wu, Hongyi Wang,
528 Zixiao Huang, Shiyao Li, Shengen Yan, et al. Moa: Mixture of sparse attention for automatic
529 large language model compression. *arXiv preprint arXiv:2406.14909*, 2024.
530531 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
532 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
533 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.
534535 Mohsen Hariri, Lam Nguyen, Sixu Chen, Shaochen Zhong, Qifan Wang, Xia Hu, Xiaotian Han, and
536 Vipin Chaudhary. More for keys, less for values: Adaptive kv cache quantization. *arXiv preprint*
537 *arXiv:2502.15075*, 2025.
538539 Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. *arXiv preprint arXiv:2403.07974*, 2024.
540

540 Shiyao Li, Xuefei Ning, Ke Hong, Tengxuan Liu, Luning Wang, XiuHong Li, Kai Zhong, Guohao
 541 Dai, Huazhong Yang, and Yu Wang. Llm-mq: Mixed-precision quantization for efficient llm
 542 deployment. In *NeurIPS 2023 Efficient Natural Language and Speech Processing Workshop*, pp.
 543 1–5, 2023.

544 Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
 545 Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
 546 on-device llm compression and acceleration. *Proceedings of Machine Learning and Systems*, 6:
 547 87–100, 2024.

548 Yujun Lin*, Haotian Tang*, Shang Yang*, Zhekai Zhang, Guangxuan Xiao, Chuang Gan, and Song
 549 Han. Qserve: W4a8kv4 quantization and system co-design for efficient llm serving. *arXiv
 550 preprint arXiv:2405.04532*, 2024.

552 Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao, Chengqi Dengr, Chong
 553 Ruan, Damai Dai, Daya Guo, et al. Deepseek-v2: A strong, economical, and efficient mixture-
 554 of-experts language model. *arXiv preprint arXiv:2405.04434*, 2024a.

556 Ruikang Liu, Haoli Bai, LIN Haokun, Yuening Li, Han Gao, Zhengzhuo Xu, Lu Hou, Jun Yao,
 557 and Chun Yuan. Intactkv: Improving large language model quantization by keeping pivot tokens
 558 intact. In *The 62nd Annual Meeting of the Association for Computational Linguistics (ACL 2024)*,
 559 2024b.

560 Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi
 561 Chen, and Xia Hu. Kivi: A tuning-free asymmetric 2bit quantization for kv cache. *arXiv preprint
 562 arXiv:2402.02750*, 2024c.

563 OpenAI. Introducing openai o1, September 2024. URL <https://openai.com/o1/>.

564 Noam Shazeer. Fast transformer decoding: One write-head is all you need. *arXiv preprint
 565 arXiv:1911.02150*, 2019.

566 Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
 567 hanced transformer with rotary position embedding. *Neurocomputing*, 568:127063, 2024.

568 Zunhai Su, Zhe Chen, Wang Shen, Hanyu Wei, Linge Li, Huangqi Yu, and Kehong Yuan. Rotatekv:
 569 Accurate and robust 2-bit kv cache quantization for llms via outlier-aware adaptive rotations.
 570 *arXiv preprint arXiv:2501.16383*, 2025.

571 Qwen Team. Qwq-32b: Embracing the power of reinforcement learning, March 2025. URL
 572 <https://qwenlm.github.io/blog/qwq-32b/>.

573 Maurice Weber, Daniel Y. Fu, Quentin Anthony, Yonatan Oren, Shane Adams, Anton Alexandrov,
 574 Xiaozhong Lyu, Huu Nguyen, Xiaozhe Yao, Virginia Adams, Ben Athiwaratkun, Rahul Cha-
 575 lamala, Kezhen Chen, Max Ryabinin, Tri Dao, Percy Liang, Christopher Ré, Irina Rish, and
 576 Ce Zhang. Redpajama: an open dataset for training large language models. *NeurIPS Datasets
 577 and Benchmarks Track*, 2024.

578 Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
 579 language models with attention sinks. *arXiv preprint arXiv:2309.17453*, 2023.

580 June Yong Yang, Byeongwook Kim, Jeongin Bae, Beomseok Kwon, Gunho Park, Eunho Yang,
 581 Se Jung Kwon, and Dongsoo Lee. No token left behind: Reliable kv cache compression via
 582 importance-aware mixed precision quantization. *arXiv preprint arXiv:2402.18096*, 2024.

583 Yuxuan Yue, Zhihang Yuan, Haojie Duanmu, Sifan Zhou, Jianlong Wu, and Liqiang Nie. Wkvquant:
 584 Quantizing weight and key/value cache for large language models gains more. *arXiv preprint
 585 arXiv:2402.12065*, 2024.

586 Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
 587 Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient gen-
 588 erative inference of large language models. *Advances in Neural Information Processing Systems*,
 589 36:34661–34710, 2023.

594 Tianchen Zhao, Xuefei Ning, Tongcheng Fang, Enshu Liu, Guyue Huang, Zinan Lin, Shengen Yan,
595 Guohao Dai, and Yu Wang. Mixdq: Memory-efficient few-step text-to-image diffusion mod-
596 els with metric-decoupled mixed precision quantization. In *European Conference on Computer*
597 *Vision*, pp. 285–302. Springer, 2024.

598 Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny
599 Zhou, and Le Hou. Instruction-following evaluation for large language models. *arXiv preprint*
600 *arXiv:2311.07911*, 2023.

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 A THE USE OF LARGE LANGUAGE MODELS (LLMs)
649650 In this paper, LLMs are only used to assist in polishing the writing of this paper. The technical
651 content, experiments, and conclusions are entirely conceived and conducted by the authors.
652653 B ADDITIONAL DETAILS OF EVALUATION
654655 B.1 INTRODUCTION OF DATASETS
656658 **American Invitational Mathematics Examination (AIME)** (AIME, 2025) is a mathematics com-
659 petition for high school students. It contains 30 challenging problems each year, designed to assess
660 mathematical problem-solving skills across various topics, including algebra, combinatorics, geom-
661 etry, number theory, and other subjects covered in high school curricula.662 **Carnegie Mellon Informatics and Mathematics Competition (CMIMC)** (CMIMC, 2025) is an
663 annual mathematics contest for high school students, hosted by students from Carnegie Mellon
664 University. The competition contains problems of algebra, combinatorics, and geometry, with each
665 category including ten standard problems along with one tiebreaker. Our model evaluation focuses
666 on the standard problem sets.667 **LiveCodeBench** (Jain et al., 2024) is an extensive and continuously updated benchmark designed
668 to evaluate the performance of LLMs in coding tasks. It continually gathers new problems from
669 competition platforms. The benchmark encompasses four distinct scenarios: code generation, au-
670 tomated code repair, code execution, and prediction of test outputs. In our experiments, we focus
671 specifically on the code generation scenario.672 **IFEval** (Zhou et al., 2023) is a benchmark proposed to systematically evaluate the ability of LLMs
673 to follow natural language instructions. The dataset contains 541 prompts, each annotated with one
674 or more verifiable instruction types such as word-count constraints, keyword frequency, formatting
675 requirements, or prohibitions on certain symbols. These instructions were deliberately designed
676 to be automatically checkable, enabling objective and reproducible evaluation without the need for
677 human annotators.678
679 C ADDITIONAL EXPERIMENTS
680681 C.1 THE SENSITIVITY OF DIFFERENT TRANSFORMER BLOCKS
682683 We analyze the sensitivity and the memory allocation results across different models. For models
684 with parameter size less than 10B, as shown in Figure 3, we observe that the deeper blocks tend to
685 be more sensitive to quantization and receive a larger memory budget for the KV Cache. In addition,
686 in the DeepSeek-R1-Distill-Qwen-7B model, the first block is much more sensitive than the other
687 shallow blocks. Our memory allocation strategy accurately captures this feature, assigning a higher
688 memory budget to the first block accordingly.689 For larger models with parameter size over 10B, as shown in Figure 4, KV Cache in deeper blocks
690 tend to be more sensitive than shallower blocks. We also observe that for the Qwen-based models,
691 the first block exhibits a large sensitivity. In particular, the sensitivity of the first block is the largest
692 among the first fifteen blocks in different Qwen-based models. This phenomenon is not observed in
693 the LLaMA-based models.694
695 C.2 PERFORMANCE IN SHORT-GENERATION-CONTEXT TASKS
696697 To verify the scalability of PM-KVQ to short-generation-context tasks, we evaluate it on IFE-
698 eval (Zhou et al., 2023), an instruction-following benchmark. We follow the experimental setup
699 described in Section 4.1 and adopt the evaluation metrics provided by OpenCompass (Contributors,
700 2023). Compared to reasoning benchmarks in Table 1, non-reasoning tasks are less challenging and
701 generally involve much shorter outputs. For instance, the average output length of the DeepSeek-
Qwen-7B model is 13,904 tokens on AIME-2024 but only 1,182 tokens on IFEval. As shown in

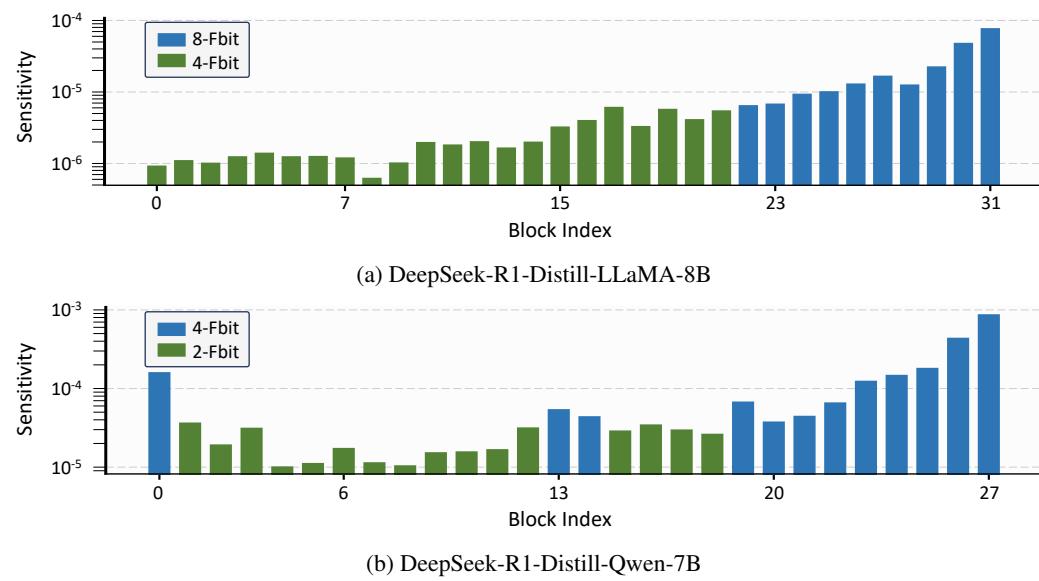


Figure 3: Sensitivity to quantization of KV Cache in different transformer blocks. Different colors represents different memory budgets.

Table 5: Results of long-CoT Language Models on non-reasoning benchmarks with SOTA KV Cache quantization methods. “BS” is short for “batch size”.

Models (Target GPU)	Quantization Methods	Bit-width (K-V)	IFEval			
			Prompt Strict	Prompt Loose	Instruct Strict	Instruct Loose
DeepSeek- Qwen-7B (1×4090-24G)	--	16-16	58.77	68.50	63.27	72.60
	RotateKV (BS=32,40)	2-2	0.00	0.00	0.00	0.00
	MiKV (BS=32)	2/16-2/16	57.30	66.17	61.18	70.06
	MiKV (BS=40)	2-2	0.00	0.00	0.00	0.00
	KIVI (BS=32,40)	2-2	49.29	60.31	54.57	64.57
	PM-KVQ (BS=32)	2/4-2/4	57.35	68.03	62.09	71.65
	PM-KVQ (BS=40)	2-2	57.58	68.34	62.09	71.81
	--	16-16	57.82	68.98	61.61	71.81
DeepSeek- LLaMA-8B (1×4090-24G)	RotateKV (BS=6,8)	4-4	58.06	68.50	61.37	71.50
	MiKV (BS=6)	4/16-4/16	44.08	56.38	46.92	59.53
	MiKV (BS=8)	4-4	55.69	66.61	59.95	70.39
	KIVI (BS=6,8)	4-4	57.35	68.35	71.14	71.81
	PM-KVQ (BS=6)	4/8-4/8	58.77	69.61	63.74	73.70
DeepSeek- Qwen-14B (1×A100-40G)	PM-KVQ (BS=8)	4-4	57.58	68.19	61.14	71.34
	--	16-16	70.14	78.74	74.40	81.73
	KIVI (BS=12,16)	2-2	67.54	77.01	72.04	80.47
	PM-KVQ (BS=12)	2/4-2/4	73.70	80.47	77.73	83.46
DeepSeek- Qwen-32B (1×A100-80G)	PM-KVQ (BS=16)	2-2	73.46	80.47	77.49	83.46
	--	16-16	74.41	81.73	78.20	84.41
	KIVI (BS=12,16)	2-2	72.51	79.84	76.07	82.36
	PM-KVQ (BS=12)	2/4-2/4	75.83	83.15	78.91	85.35
QwQ-32B (1×A100-80G)	PM-KVQ (BS=16)	2-2	76.07	83.30	78.91	85.35
	--	16-16	82.94	88.03	86.97	90.71
	KIVI (BS=12,16)	2-2	73.22	80.00	78.67	84.09
	PM-KVQ (BS=12)	2/4-2/4	81.99	86.77	85.55	89.45
PM-KVQ (BS=16)	2-2	81.75	86.61	85.55	89.45	

Table 5, although our method is not specifically designed for short-output scenarios, it outperforms KIVI and achieves accuracy comparable to the original 16-bit models.

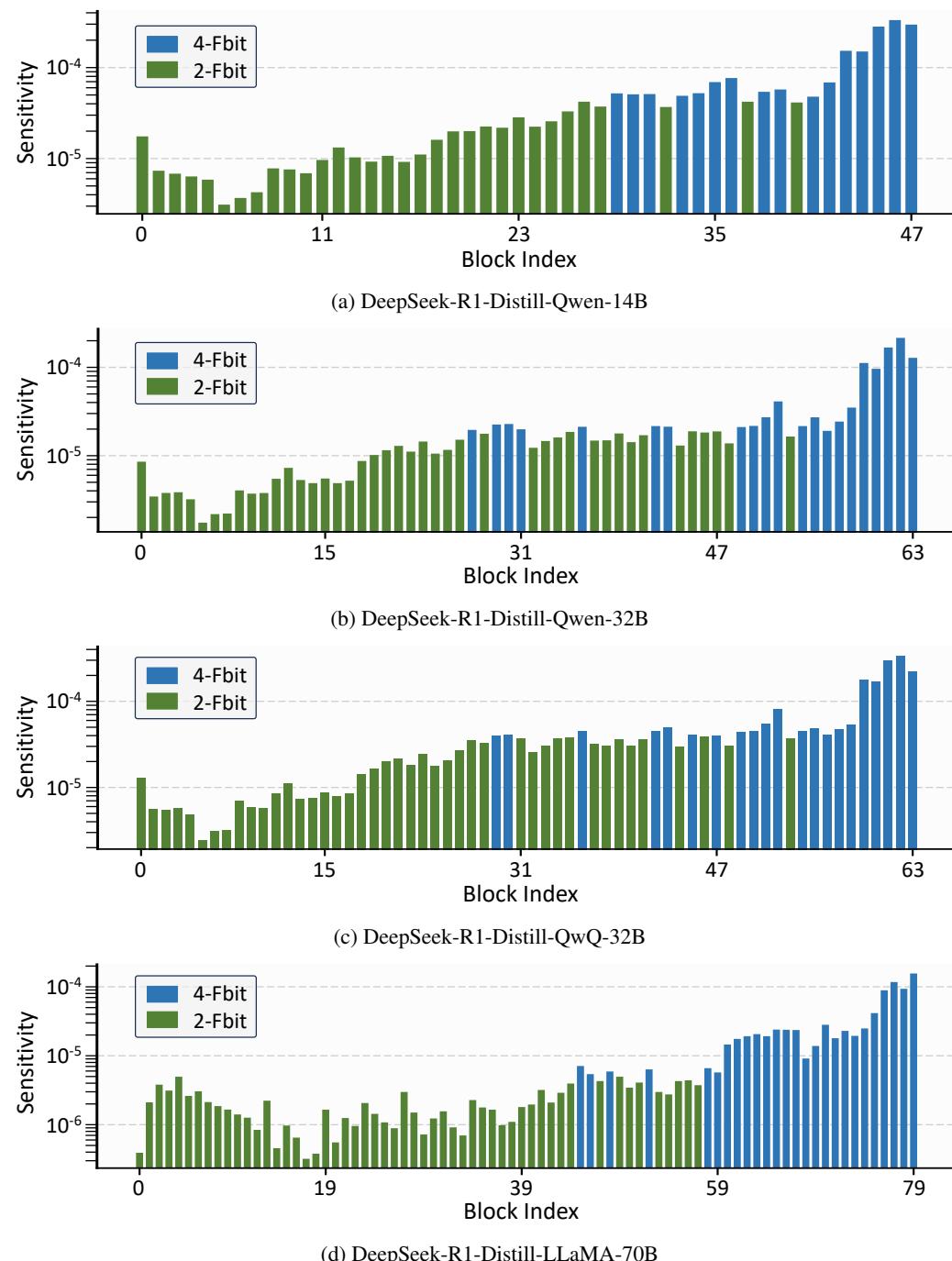


Figure 4: Sensitivity to quantization of KV Cache in different transformer blocks. Different colors represent different memory budgets.

810 C.3 EFFICIENCY ANALYSIS OF PRE-INFERENCE PROCESS
811

812 Before the inference process, PM-KVQ performs block-wise memory allocation and calibration
813 with positional interpolation as preparation. Following the experimental setup in Section 4.1, we
814 measure the time required for these pre-inference procedures. As shown in Table 6, compared
815 with QServe (Lin* et al., 2024), PM-KVQ leverages positional interpolation to reduce calibration
816 sequence length from 8,192 to 2,048 tokens, substantially reducing the calibration time by up to
817 77.21%. The additional block-wise memory allocation procedure account for 22.50–23.53% pre-
818 inference time.

819 Table 6: Latency of block-wise memory allocation and calibration. “PI” is short for “Positional
820 Interpolation”.
821

822 Model	823 Method	824 Calibration		825 Memory 826 Allocation	827 Time
		828 w/o PI	829 w/ PI		
825 DeepSeek- 826 Qwen-7B	827 QServe (search α)	✓			52 min
	828 PM-KVQ (BS=40)		✓		13 min
	829 PM-KVQ (BS=32)		✓	✓	17 min
828 DeepSeek- 829 Qwen-32B	830 QServe (search α)	✓			187 min
	831 PM-KVQ (BS=16)		✓		44 min
	832 PM-KVQ (BS=12)		✓	✓	57 min
831 DeepSeek- 832 LLaMA-70B	833 QServe (search α)	✓			408 min
	834 PM-KVQ (BS=16)		✓		93 min
	835 PM-KVQ (BS=12)		✓	✓	120 min

836 D PROOF OF EQUIVALENT RIGHT SHIFT
837

838 **Theorem D.1** (Equivalent Right Shift). *Given a 16-bit floating-point tensor \mathbf{X}_{BF16} , let \mathbf{X}_{2b} and \mathbf{X}_b
839 denote the 2b-bit and b-bit quantized tensors of \mathbf{X}_{BF16} , respectively. Then*

$$840 \mathbf{X}_b = ((2^{2b} - 2^b + 1)(\mathbf{X}_{2b} + 2^{b-1})) \gg 3b. \quad (13)$$

843 *Proof.* Let the zero points be $Z_{2b} = Z_b = Z$. According to Equation (2), the scaling factors are
844 given by

$$845 S_{2b} = \frac{\max(\mathbf{X}_{BF16}) - Z}{2^{2b} - 1}, \quad S_b = \frac{\max(\mathbf{X}_{BF16}) - Z}{2^b - 1}. \quad (14)$$

847 It follows that

$$848 S_b = (2^b + 1)S_{2b}. \quad (15)$$

849 Define

$$850 \tilde{\mathbf{X}}_{2b} = \frac{\mathbf{X}_{BF16} - Z}{S_{2b}}, \quad \tilde{\mathbf{X}}_b = \frac{\mathbf{X}_{BF16} - Z}{S_b}. \quad (16)$$

852 Then the quantized tensors are obtained by rounding:

$$853 \mathbf{X}_{2b} = \left\lfloor \tilde{\mathbf{X}}_{2b} \right\rfloor, \quad \mathbf{X}_b = \left\lfloor \tilde{\mathbf{X}}_b \right\rfloor, \quad (17)$$

856 and we have

$$857 \tilde{\mathbf{X}}_{2b} = (2^b + 1)\tilde{\mathbf{X}}_b. \quad (18)$$

858 By the definition of rounding,

$$859 \mathbf{X}_{2b} - \frac{1}{2} \leq \tilde{\mathbf{X}}_{2b} < \mathbf{X}_{2b} + \frac{1}{2}. \quad (19)$$

861 Dividing both sides by $2^b + 1$ yields

$$863 \frac{\mathbf{X}_{2b} - \frac{1}{2}}{2^b + 1} \leq \tilde{\mathbf{X}}_b < \frac{\mathbf{X}_{2b} + \frac{1}{2}}{2^b + 1}. \quad (20)$$

864 Perform the Euclidean division of \mathbf{X}_{2b} by $2^b + 1$:
 865

$$866 \quad \mathbf{X}_{2b} = q(2^b + 1) + r, \quad \text{with } 0 \leq q \leq 2^b - 1, 0 \leq r \leq 2^b. \quad (21)$$

867 Then,

$$868 \quad q + \frac{r - \frac{1}{2}}{2^b + 1} \leq \tilde{\mathbf{X}}_b < q + \frac{r + \frac{1}{2}}{2^b + 1}. \quad (22)$$

871 Now consider the expression:

$$872 \quad ((2^{2b} - 2^b + 1)(\mathbf{X}_{2b} + 2^{b-1})) >> 3b = \left\lfloor \frac{(2^{2b} - 2^b + 1)(q(2^b + 1) + r + 2^{b-1})}{2^{3b}} \right\rfloor \quad (23)$$

$$873 \quad = q + \left\lfloor \frac{q + (2^{2b} - 2^b + 1)(r + 2^{b-1})}{2^{3b}} \right\rfloor.$$

877 We proceed by considering two cases for the remainder r :

878 **Case 1:** $0 \leq r \leq 2^{b-1}$.

880 Then,

$$881 \quad q - \frac{1}{2} < q - \frac{\frac{1}{2}}{2^b + 1} \leq \tilde{\mathbf{X}}_b < q + \frac{2^{b-1} + \frac{1}{2}}{2^b + 1} = q + \frac{1}{2}. \quad (24)$$

883 Hence, rounding gives $\mathbf{X}_b = \left\lfloor \tilde{\mathbf{X}}_b \right\rfloor = q$.

885 Moreover,

$$887 \quad \frac{q + (2^{2b} - 2^b + 1)(r + 2^{b-1})}{2^{3b}} \geq \frac{(2^{2b} - 2^b + 1) \cdot 2^{b-1}}{2^{3b}} > \frac{2^{2b} \cdot 2^{b-1}}{2^{3b}} = \frac{1}{2} > 0, \quad (25)$$

889 and

$$890 \quad \frac{q + (2^{2b} - 2^b + 1)(r + 2^{b-1})}{2^{3b}} \leq \frac{2^b - 1 + (2^{2b} - 2^b + 1)(2^{b-1} + 2^{b-1})}{2^{3b}} \quad (26)$$

$$891 \quad = 1 - \frac{(2^b - 1)^2}{2^{3b}} < 1.$$

894 Therefore,

$$895 \quad \left\lfloor \frac{q + (2^{2b} - 2^b + 1)(r + 2^{b-1})}{2^{3b}} \right\rfloor = 0, \quad (27)$$

898 and thus

$$899 \quad ((2^{2b} - 2^b + 1)(\mathbf{X}_{2b} + 2^{b-1})) >> 3b = q = \mathbf{X}_b. \quad (28)$$

900 **Case 2:** $2^{b-1} + 1 \leq r \leq 2^b$.

902 Then,

$$903 \quad q + \frac{1}{2} = q + \frac{2^{b-1} + 1 - \frac{1}{2}}{2^b + 1} \leq \tilde{\mathbf{X}}_b < q + \frac{2^b + \frac{1}{2}}{2^b + 1} < q + 1. \quad (29)$$

905 Thus, rounding gives $\mathbf{X}_b = \left\lfloor \tilde{\mathbf{X}}_b \right\rfloor = q + 1$.

907 Moreover,

$$909 \quad \frac{q + (2^{2b} - 2^b + 1)(r + 2^{b-1})}{2^{3b}} \geq \frac{(2^{2b} - 2^b + 1)(2^{b-1} + 1 + 2^{b-1})}{2^{3b}} = \frac{2^{3b} + 1}{2^{3b}} > 1, \quad (30)$$

911 and

$$913 \quad \frac{q + (2^{2b} - 2^b + 1)(r + 2^{b-1})}{2^{3b}} \leq \frac{2^b - 1 + (2^{2b} - 2^b + 1)(2^b + 2^{b-1})}{2^{3b}} \quad (31)$$

$$914 \quad = \frac{2^{3b} + 2^{3b-1} - 2^{2b} - 2^{2b-1} + 2^{b+1} + 2^{b-1} - 1}{2^{3b}}$$

$$916 \quad = 2 - \frac{2^{3b-1} + 2^{2b} + 2^{2b-1} - 2^{b+1} - 2^{b-1} + 1}{2^{3b}} < 2.$$

918 Therefore,

919

$$920 \quad \left\lfloor \frac{q + (2^{2b} - 2^b + 1)(r + 2^{b-1})}{2^{3b}} \right\rfloor = 1, \quad (32)$$

921

922 and thus

923

$$924 \quad ((2^{2b} - 2^b + 1)(\mathbf{X}_{2b} + 2^{b-1})) >> 3b = q + 1 = \mathbf{X}_b. \quad (33)$$

925

926 In both cases, the desired equality holds, which completes the proof. \square

927

928 E LIMITATIONS

929

930 In this paper, we do not consider all of the attention mechanisms, such as the multi-head latent
 931 attention (MLA), which is quite different from the widely used Group-Query Attention (GQA).
 932 Besides, we do not combine the proposed PM-KVQ with other system-level optimization techniques
 933 and inference engines, which yields for future work.

934

935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971