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Abstract

Text classifiers are vulnerable to adversarial001
examples — correctly-classified examples that002
are deliberately transformed to be misclassified003
while satisfying acceptability constraints. The004
conventional approach to finding adversarial005
examples is to define and solve a combinatorial006
optimisation problem over a space of allowable007
transformations. While effective, this approach008
is slow and limited by the choice of transfor-009
mations. An alternate approach is to directly010
generate adversarial examples by fine-tuning011
a pre-trained language model, as is commonly012
done for other text-to-text tasks. This approach013
promises to be much quicker and more expres-014
sive, but is relatively unexplored. For this rea-015
son, in this work we train an encoder-decoder016
paraphrase model to generate a diverse range017
of adversarial examples. For training, we adopt018
a simple policy gradient algorithm and propose019
a constraint-enforcing reward that promotes020
the generation of valid adversarial examples.021
Experimental results over two text classifica-022
tion datasets show that our model has achieved023
a higher success rate than the untrained para-024
phrase model, and overall has proved more ef-025
fective than other competitive attacks. Finally,026
we show how key design choices impact the027
generated examples and discuss the strengths028
and weaknesses of the proposed approach.029

1 Introduction030

Adversarial attacks cause a victim model — an031

attacked machine learning model — to make a spe-032

cific mistake. These attacks occur across domains,033

pose a real-world security threat1 and are increas-034

ingly well-studied (Biggio and Roli, 2018; Zhang035

et al., 2020). In this paper we study adversarial at-036

tacks on text classifiers; where an adversary takes a037

correctly-classified original example and perturbs038

1For example, (Wallace et al., 2020) attacked Google
Translate with adversarial examples, causing vulgar outputs,
word flips, and dropped sentences.

it to create an incorrectly-classified adversarial ex- 039

ample. The adversarial example must typically 040

meet some acceptability constraints (e.g., a max- 041

imum edit distance from the original, preserving 042

semantic meaning, gramaticallity), although there 043

is no general consensus on these (Morris et al., 044

2020b). 045

The net sales decreased to EUR 49.8 million from EUR 59.9 million.
Net sales were limited to EUR 49.8 million from EUR 59.
Net sales were limited to EUR 49.8 million from EUR 59.9 million.
The Net sales were limited to EUR 49.8 million from EUR 59.
The net sales were limited to EUR 49.8 million from EUR 59.
The net sales were limited to EUR 49.8 million from EUR 59.9.
net sales were limited to EUR 49.8 million from EUR 59.9 million.

Elsewhere, the tendency is towards more developed packaging than before. 
Elsewhere the tendency is to favour more developed packaging than the previous.
Elsewhere the trend is toward more developed packaging than before.
Elsewhere the trend is towards more developed packaging than before.

Figure 1: Examples of successful adversarial attacks
against a sentiment classifier obtained with the proposed
approach. On top, the adversarial examples flip the
sentiment from the original neutral (blue) to positive
(green), and on bottom, sentiment goes from the original
negative (red) to neutral (blue).

How are text adversarial examples found? The 046

predominant approach is to repeatedly modify to- 047

kens until the predicted label changes (Zhang et al., 048

2020). Attacks taking this approach, known as 049

token-modification attacks (Roth et al., 2021), find 050

adversarial examples by solving a constrained com- 051

binatorial optimisation problem. First, they de- 052

fine the success condition, the constraints and 053

the allowed transformations, and then they use a 054

search algorithm to seek a solution (Morris et al., 055

2020a). While effective, these attacks also have 056

major downsides. Firstly, they are slow: the com- 057

putational budget heavily impacts their success rate, 058

with high-performing search algorithms requiring 059

many victim model queries per example, particu- 060

larly for long texts (Yoo et al., 2020). Secondly, 061

their allowed token-level transformations limit their 062

search space, largely preventing complex transfor- 063

mations like paraphrasing or style change. 064
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Alternatively, the adversarial example task can065

be formulated as a text-to-text problem, with orig-066

inal examples as input and adversarial examples067

as output. It could then be straightforwardly ap-068

proached with seq2seq models, as done for other069

text-to-text tasks like summarisation or transla-070

tion. This approach enjoys several principled ad-071

vantages over token-modification attacks. Firstly,072

once trained, finding adversarial examples is much073

faster (in the order of a few milliseconds, rather074

than minutes or even hours). Additionally, through075

beam search or sampling, this approach can easily076

generate multiple adversarial examples per given077

input, while also controlling their diversity, tonal-078

ity, or other characteristics. Finally, a seq2seq ap-079

proach is also intrinsically more flexible as it is not080

limited by a rigid set of allowed transformations.081

On the other hand, the main challenge of this082

approach is that it is notoriously difficult to train083

a model to generate controlled text. The training084

process can be unstable and time-consuming, and085

the generated text can be ungrammatical, irrele-086

vant, nonsensical, unnatural, bland, repetitive, or087

incoherent (Holtzman et al., 2020; Hu et al., 2017;088

Wong, 2017). For our task there is an additional089

challenge: the generated text must change the vic-090

tim model’s predicted label while not violating any091

constraint.092

For these reasons, in this paper we propose fine-093

tuning a pre-trained encoder-decoder paraphrase094

model so that it produces adversarial examples in-095

stead of paraphrases. We fine-tune using a rein-096

forcement learning (RL) policy-gradient algorithm097

— REINFORCE with baseline (Williams, 1992) —098

and attack a sentiment classifier. For training, we099

propose an original reward function that both in-100

centivises adversarial examples and penalises any101

violation of the constraints. To improve gener-102

ated text coherence, our loss function includes a103

Kullback-Leibler (KL) divergence term (Kullback104

and Leibler, 1951) that limits parameter drift from105

the pre-trained paraphrase model. The attack re-106

quires the victim model’s prediction confidence,107

but no other information, which makes our attack108

either a grey-box (Biggio and Roli, 2018) or a black-109

box attack (Zhang et al., 2020), depending on the110

definition.2111

We have evaluated the proposed approach on112

two sentiment analysis datasets, reporting the at-113

2These assumptions are not unrealistic: for example, most
pre-trained models on the Hugging Face Model Hub report
both predictions and confidences.

tack success rates and the diversity of the generated 114

adversarial examples across four different decod- 115

ing methods and two training temperatures. The 116

results show that the the proposed approach has 117

been able to generate numerous and diverse adver- 118

sarial examples, with success rates much higher 119

than for the pre-trained paraphraser and compara- 120

ble token-modification attacks. In summary, this 121

paper makes the following key contributions: 122

1. an approach for the generation of adversar- 123

ial attacks to text classifiers based on a pre- 124

trained paraphraser and reinforcement learn- 125

ing; 126

2. a constraint-enforcing reward function that in- 127

centivises adversarial examples and penalises 128

constraint violations; 129

3. experimental results on two text classification 130

datasets showing the effectiveness of the pro- 131

posed approach, and a comprehensive analysis 132

and discussion. 133

2 Related Work 134

For ease of reference, we can divide the literature 135

on text classification adversarial attacks into token- 136

modification attacks and generative attacks. 137

Token-modification attacks. The vast major- 138

ity of existing text adversarial attacks are token- 139

modification attacks. They consist of four main 140

components: a goal function, a set of allowed 141

transformations, a set of constraints that must 142

be satisfied, and a search method (Morris et al., 143

2020a). These approaches typically create adversar- 144

ial perturbations by applying repeated token-wise 145

transformations, such as character replacements 146

(Ebrahimi et al., 2014) or synonym swaps (Ren 147

et al., 2019)3. A detailed description of these at- 148

tacks is not relevant to our work, so the reader 149

can refer to a recent survey (Roth et al., 2021) for 150

further details. 151

Generative attacks. Some previous work has 152

attempted to train a variety of generative models 153

to produce adversarial examples. For example, 154

long short-term memory variants have been used 155

by Iyyer et al. (2018) to paraphrase a sentence in 156

3These approaches typically produce one adversarial ex-
ample per original. TextAttack (Morris et al., 2020b) — the
most popular library for token-modification attacks — has
been set up to only return at most one adversarial example per
original, so this is what we have used throughout this paper.
While more could be searched for, it has not been well studied
how they could be found efficiently in incremental time.
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the form of a parse template, and by Vijayaragha-157

van and Roy (2019) to perturb examples. A feed-158

forward network was used by Lu et al. (2022) to159

generate distracting answers in a multiple-choice160

visual question answering task. Other work has161

attempted to use GANs and autoencoders (Zhao162

et al., 2018; Ren et al., 2020; Wong, 2017). How-163

ever, this line of approach has not been widely164

pursued, probably due to training difficulties. For165

example, Wong (2017) has reported widespread is-166

sues such as mode degeneracy, semantic divergence167

and reward hacking.168

Since their introduction, transformers have be-169

come a ubiquitous encoder-decoder architecture in170

contemporary natural language processing. They171

are typically trained with transfer learning, first172

solving a large-scale pre-training task (typically un-173

supervised or self-supervised), and then fine-tuning174

on the target task. Large transformers such as T5175

(Raffel et al., 2020) currently achieve state-of-the-176

art performance in many text-to-text tasks. Despite177

this success, no previous work we are aware of178

has attempted to fine-tune a pre-trained paraphrase179

model for adversarial example generation, as the180

proposed approach does. The closest works are181

Gan and Ng (2019), who create a dataset of adver-182

sarial paraphrases manually, and Qi et al. (2021),183

who use a pre-trained text style transfer model, but184

do not fine-tune it.185

3 Proposed Approach186

3.1 Overview187

Our overall goal is to fine-tune a pre-trained para-188

phrase model with a reinforcement learning ob-189

jective so that it can learn to generate adversarial190

examples. We use a T5 transformer as the base191

pre-trained model.192

During each training epoch, we generate one193

paraphrase per original example and collate them194

into batches of training data. The batches are used195

to compute a loss function (Section 3.2), which in-196

corporates both a reward function (Section 3.3) and197

a baseline (Section 3.4). We use a set of constraints198

(Section 3.5) to determine if the generated text is199

valid, and examples that fail receive zero reward.200

Figure 3 shows the overall setup.201

During validation, we generate a set of adversar-202

ial example candidates for each original example,203

using one of four decoding methods (Section 4.2).204

We call these paraphrases the set of adversarial205

example candidates, and consider the attack suc-206

cessful if at least one meets the given constraints. 207

The attack success rate is simply computed as the 208

ratio between the number of successful attacks and 209

the number of original examples. Generating more 210

paraphrases can obviously improve the attack suc- 211

cess rate, but the generation takes longer and the 212

memory requirements increase. As an effective 213

trade-off between these factors, we have chosen to 214

generate n = 48 paraphrases per original example. 215

The same procedure is used at test time. During 216

validation, we also update the reward baseline with 217

the average per-example reward across the candi- 218

date set. Training is stopped once the validation set 219

performance improvement drops below a threshold, 220

or after a maximum number of epochs (full details 221

are available in Appendix A). 222

3.2 Loss function 223

Let us have an input data distribution D, an origi- 224

nal example x ∈ D, and a pre-trained paraphrase 225

model with parameters θ. Given x, the model gen- 226

erates a paraphrase x′ with T tokens with proba- 227

bility pθ(x
′
t|x′1, . . . , x′t−1, x), t = 1 . . . T . We note 228

this predictive distribution as ρ for simplicity. Our 229

agent attempts to learn a policy π, still parametric 230

in θ and initially equal to ρ, that can create adversar- 231

ial examples, for which we have a reward function 232

r that scores success and failure. Training aims to 233

optimise π to maximise the expected value of r: 234

Eπ(r) = Ex∼D,x′∼π(x)r(x, x
′)

To optimise using gradient descent, the gradient 235

∆θEπ(r) is required, for which an estimator is pro- 236

vided by the policy gradient theorem (Sutton et al., 237

1999): 238

∆θEπ(r) = −r

T∑
t=1

∂

∂θ
log π(x′t|x′1, . . . , x′t−1, x)

(1) 239

where x′ is a sampled sequence (using any of a 240

number of sampling methods). The above is the 241

REINFORCE estimator (Williams, 1992). Using 242

an automatic differentiation framework we can con- 243

vert this into a loss function: 244

LRF = −r

T∑
t=1

log π(x′t|x′1, . . . , x′t−1, x)

= −r log π(x′|x)

(2) 245

This estimator is unbiased, but it typically exhibits 246

a large variance, which causes slow and unstable 247
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Original Fine-tuned
paraphrase model Paraphrase

"This movie is great." "It's great, this movie."

(a)

Original Fine-tuned
paraphrase model Set of paraphrases

Check for an
adversarial example

Compute paraphrase
reward baseline

"This movie is great." {"A great movie!." 
"I love this movie."

"The movie - superb!"}

Victim model

(b)

Figure 2: Sample generation during training and validation. (a) During training, we generate one paraphrase per
original example, decoding with nucleus sampling. (b) During validation, we generate a set of paraphrases per
original example, decoding with one of four methods (Section 4.2). We then check if any paraphrase in the set is a
successful adversarial example, and also use the set (for the training split) to update the reward baseline (Section
3.4).

Victim model

Paraphrase reward

KL penalty

Final reward Loss function

logprobs

Reference
paraphrase model

logprobs
logprobsFine-tuned

paraphrase model

Optimise parameters

Original &
paraphrase

Reward baseline

Pre-trained T5

Constraints

Figure 3: A diagram of the training approach. As input, training uses batches of (original, paraphrase) pairs. The
parameters are updated using a REINFORCE with baseline algorithm. The overall loss function depends on the
reward function, the baseline, the constraints, and the KL divergence penalty, which compares the probabilities
computed by the fine-tuned and pre-trained paraphrase models.

learning. The variance can be reduced by subtract-248

ing a baseline, b, from r:249

Lb = −(r − b) log π(x′|x) (3)250

provided b is highly correlated with r. This esti-251

mator is biased in the case that b depends on x′252

(Williams, 1992), but typically delivers improved253

training speed and stability.254

We also would like to prevent the trained distri-255

bution, π, from diverging too much from the origi-256

nal predictive distribution, ρ, since that is likely to257

affect the coherence and paraphrase quality of the258

generated text. Following previous work (Jaques259

et al., 2017; Ziegler et al., 2019) we add a KL diver-260

gence penalty, DKL, to discourage this behaviour.261

The modified reward function, after the baseline262

and the KL divergence term are incorporated, be-263

comes:264

R(x, x′) = r(x, x′)− b(x)− βDKL (4)265

where β is a scaling constant, and: 266

DKL = Ex∼D,x′∼π(x)[log π(x
′|x)− log ρ(x′|x)]

(5) 267

This leads to the overall loss function: 268

L = −R(x, x′) log π(x′|x) (6) 269

Finally, to prevent longer sequences from being 270

unfairly penalised, we normalise the log probability 271

terms log π(x′|x) and log ρ(x′|x) in (5) and (6) by 272

dividing each by the generated sequence length, T . 273

3.3 Paraphrase reward 274

Let f be the probability output by the victim classi- 275

fier, x be the original example with label y, and x′ 276

be a paraphrase. Let V (x, x′) = f(x)y−f(x′)y be 277

the degradation in confidence in y that x′ induces 278

in f . Then the paraphrase reward to use in (4) is: 279

r(x, x′) = max(0,min(α, ηδ(x, x′)V (x, x′)))
(7) 280
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where α is an upper bound, η a scalar multiplier,281

and δ(x, x′) a Dirac delta function that is 1 if the282

constraints (Section 3.5) are met, and 0 otherwise.283

3.4 Reward baseline284

As shown in Equation 4, the gradient estimator285

requires a baseline b for the reward. We use a per-286

example baseline, b(x), and define it as the average287

reward of the set of adversarial example candidates288

generated for each x in the training set. The base-289

line is updated in each validation phase (see Figure290

2b). Intuitively, the b(x) baseline is high when the291

model can easily generate adversarial examples for292

x, and low when it cannot.293

3.5 Adversarial example constraints294

In addition to switching the predicted label, an ad-295

versarial example should both preserve meaning296

(Michel et al., 2019) and be linguistically accept-297

able. We enforce these principles by using the298

following constraints:299

Retains the true label. The original and para-300

phrase must have the same ground-truth label.301

Since the ground-truth label of the paraphrase is302

latent, this constraint is failed if the paraphrase303

contradicts the original with a probability ≥ 0.2 ac-304

cording to a natural language inference pre-trained305

model.306

Is semantically consistent. The original and307

paraphrase must have (broadly) the same seman-308

tic content. To assess this, we extract sentence309

embeddings of both using a pre-trained Siamese-310

BERT model (Reimers and Gurevych, 2019), com-311

pute their cosine similarity, and impose a minimum312

threshold of 0.8.313

Is linguistically acceptable. Paraphrases should314

be acceptable sentences. This constraint is met only315

if the generated sentence is deemed linguistically316

acceptable with a probability ≥ 0.5, according to a317

pre-trained language model.318

Through trial and error, we decided to also in-319

troduce two additional constraints to prevent the320

generation of undesirable solutions:321

The sentence length is similar. To prevent the322

generation of very short sentences, we require the323

original and paraphrase to have sentence length324

within 30 characters of each other.325

Avoids linking contrast phrases. Regardless of326

the true class, the model can “soften” the generated327

paraphrase by starting or ending it with a linking328

contrast phrase, such as “however” or “nonetheless”329

(see Table 3). To encourage the generation of more330

interesting solutions, we disallow this behaviour, 331

unless the original example itself starts or ends with 332

that phrase. 333

4 Experimental setup 334

4.1 Datasets 335

The experiments have been carried out on two En- 336

glish sentiment analysis datasets, each consisting 337

of sentences or short text fragments. The first is 338

the Rotten Tomatoes dataset (Pang and Lee, 2005) 339

which contains extracts of movie reviews with sen- 340

timent labelled as either positive or negative. We 341

have used the predefined training, test and valida- 342

tion splits. The second is the Financial PhraseBank 343

dataset (Malo et al., 2014) which contains financial 344

news fragments with sentiment labelled as posi- 345

tive, neutral or negative. We have used the dataset 346

version with at least 50% annotator label agree- 347

ment, and randomly selected 10% of the data as the 348

validation set and 10% as the test set. 349

For both datasets, we have excluded the training 350

examples that the victim model classified incor- 351

rectly, as they could be said to be already “adver- 352

sarial”. We have also only included examples with 353

32 tokens or fewer, since the pre-trained paraphrase 354

model had been trained on sequences in that range. 355

4.2 Hyperparameters and design choices 356

Since design choices significantly impact the at- 357

tack success rate of the trained model, in the ex- 358

periments we have explored the impact of two: the 359

decoding sampling temperature used during train- 360

ing, which controls the exploration of the agent; 361

and the decoding method used for inference and 362

evaluation, which affects the diversity and quality 363

of the generated candidate set. All other hyper- 364

parameters have been kept constant. Appendix A 365

provides a complete list of the hyperparameters and 366

more training details. 367

4.2.1 Decoding temperature during training 368

During training, we generate the paraphrases using 369

nucleus sampling, with the probabilities returned 370

by a softmax operator. The temperature parameter 371

used in the softmax, which we denote as τ , visi- 372

bly affects the generated text: higher temperatures 373

produce more randomness and more diverse train- 374

ing examples, but also a lower percentage of valid 375

English sentences. We have therefore investigated 376

two values of τ : a low-temperature condition of 377

τ = 0.85, and a high-temperature condition of τ = 378
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Rotten Tomatoes Financial PhraseBank

Decoding method Untrained τ = 0.85 τ = 1.15 Untrained τ = 0.85 τ = 1.15
Sampling 29.3 38.1 38.3 19.1 66.0 62.7
Beam search 14.5 61.9 60.8 11.3 82.0 67.7
Low-diversity beam search 20.6 39.9 52.6 13.2 79.2 79.0
High-diversity beam search 24.5 52.9 37.4 21.4 43.4 59.1

Table 1: Attack success rate (as a percentage) of the untrained and trained models on the test set, averaged across
three different random seeds. We use τ to refer to the decoding temperature during training. The best results for
each dataset are in bold. Training has improved the attack success rate for all conditions (p < 0.01 according to a
bootstrap hypothesis test (Dror et al., 2018)). Among the evaluation decoding methods, beam search had the highest
success rates, followed by low-diversity beam search.

Rotten Tomatoes Financial PhraseBank

Attack method Success % Avg Queries Success % Avg Queries

Adversarial attacks (see Appendix C)

LM-WR-BS-m5bw2 39.6 42 39.0 58
TextFooler (Jin et al., 2019) 67.7 52 50.9 72

BAE-R (Garg and Ramakrishnan, 2020) 65.2 53 60.4 76
LM-WR-BS-m25bw5 69.4 282 69.2 290
CF-WR-BS-m25bw5 79.4 327 64.8 498

LM-WR-GA-p60mi20mr5 69.1 425 69.2 463
LM-WR-BS-m50bw10 77.2 790 75.5 697
IGA (Wang et al., 2021) 86.9 512 76.1 860
LM-WADR-BS-m25bw5 93.9 976 91.2 1331

Trained model Queries (Avg Successes) Queries (Avg Successes)

Eval: beam search, train: τ = 1.15, best run 85.5 48 (19.6) 88.1 48 (27.6)

Table 2: Comparison of the best-performing trained models against a range of other adversarial attacks. For these
attacks we show the average number of victim model queries needed to find a single adversarial example. In contrast,
the trained model performs a fixed number of victim model’s queries (48) and generates multiple adversarial
examples. The rows are sorted by increasing Avg Queries value for the Rotten Tomatoes dataset.

1.15. We found both these values retain sentence379

semantics and give somewhat diverse examples,380

while also being fittingly different from each other.381

4.2.2 Decoding method during evaluation382

During evaluation, i.e. both validation and test, we383

generate a set of n = 48 paraphrases per original384

example, and then check if any are valid adversarial385

examples based on the constraints. The decoding386

method used influences the characteristics of the387

generated text — and consequently, the attack suc-388

cess rate. This is a key design choice and we have389

therefore investigated four different methods:390

Sampling. We have used nucleus sampling, with391

top-p at 0.95 and the temperature at 1.392

Beam search. We have set the number of beams393

to 48, one per generated example.394

Low-diversity beam search. Diverse beam395

search (Vijayakumar et al., 2018) is a beam-search396

variant that increases diversity of generated se-397

quences by dividing the beams into groups and398

encouraging diversity between them. For this con-399

dition we have used six beam groups, set the diver-400

sity penalty to 1, and again used 48 beams, one per 401

generated example. 402

High-diversity beam search. As above, but 403

with 48 beam groups instead of six. 404

5 Results 405

5.1 Attack success rate 406

First, we have investigated if the proposed approach 407

improved the attack success rate. As mentioned in 408

Section 3.1, an attack is counted as successful if 409

at least one example in the candidate set is a true 410

adversarial example, in that it meets the validity 411

constraints while also inducing a misclassification 412

(NB: typically, many more than one are). The at- 413

tack success rate is then computed as the percent- 414

age of successful attacks. In this section, we report 415

the attack success rate for the trained and untrained 416

paraphrase models, averaged across three seeds, on 417

the test split of the two datasets, across the two tem- 418

perature settings and the four decoding methods. 419

Results. The results are reported in Table 1, 420

showing that the proposed approach has improved 421

the attack success rate across all training condi- 422
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tions. All improvements have been statistically423

significant (p < 0.01) according to a bootstrap test,424

as recommended by Dror et al. (2018). We have425

found no clear best between the two temperature426

values (τ = 0.85 and τ = 1.15), but beam search427

as the decoding method has reported the highest428

success rates on both datasets (61.9% on Rotten429

Tomatoes and 82.0% on Financial PhraseBank).430

5.2 Comparison with established adversarial431

attacks432

Next, we have compared the proposed approach to433

results from a range of adversarial attacks. We have434

created six different attacks with the TextAttack435

library (Morris et al., 2020b), varying the trans-436

formations and the search method, and we also437

compared against three established adversarial at-438

tack schemes: TextFooler (Jin et al., 2020), BAE-R439

(Garg and Ramakrishnan, 2020) and IGA (Wang440

et al., 2021). These attacks span a range of query441

budgets (i.e., the number of victim model queries442

per example attacked) and have a corresponding443

range of attack success rates (Yoo et al., 2020). To444

ensure a fair comparison, each attack abides by the445

same constraints as the trained model, while during446

the iterations the search is not allowed to modify447

the same word twice or stopwords. (more details448

are provided in Appendix C). For performance com-449

parison, we have used the best-performing trained450

model from Table 1 for each dataset and across451

seeds, and we have compared it with these attacks452

in terms of both attack success rate and number of453

victim model queries.454

Results. The results in Table 2 show that the455

trained model has achieved a much higher attack456

success rate than the corresponding adversarial at-457

tacks for a comparable average number of queries458

(e.g., 85.5% with 48 queries vs 67.7% with 52 for459

Rotten Tomatoes). In fact, its attack success rate460

has been similar to that of the most query-expensive461

attack tested, despite requiring a fraction of its462

queries (48 vs 976 on average for Rotten Toma-463

toes and 1331 for Financial PhraseBank). More464

so, the trained model has been able to generate465

not one, but many successful adversarial examples466

per original, averaging 19.6 out of 48 for Rotten467

Tomatoes and 27.6 for Financial PhraseBank. This468

staggering difference directly stems from the inher-469

ent design advantages of the seq2seq approach over470

the token-modification approach (which all these471

attacks use).472

5.3 Human validation of label invariance 473

We have also performed a small-scale human val- 474

idation of the label invariance. The assessment 475

has been performed using samples from the Finan- 476

cial PhraseBank test set and comparing adversarial 477

examples from the trained model, the untrained 478

model, and the most successful adversarial attack 479

we compared against. The results have showed that 480

the trained model and the compared attack have 481

been able to retain the same ground-truth label as 482

the original example at approximately similar rates 483

(59% and 50%, respectively). The untrained model 484

has been able to retain the ground-truth label in all 485

cases, yet at the price of a drastically lower success 486

rate. Note that, even if discounted by these empir- 487

ical label-invariance rates, the success rate of the 488

trained model would still remain more than double 489

that of the untrained model. Appendix D presents 490

the full details of this validation. 491

6 Discussion 492

6.1 Impact of the decoding method 493

We have compared the different decoding methods 494

used during evaluation/inference in terms of attack 495

success rates and a diversity score. To this aim, 496

we have defined an ad-hoc diversity score as the 497

number of clusters returned by a clustering algo- 498

rithm (HDBSCAN (McInnes et al., 2017)) over the 499

generated candidate sets (full details are available 500

in Appendix E). 501

Figure 4a shows that in terms of attack success 502

rate, beam search has been the best, followed by 503

low-diversity beam search, although we observed 504

significant variation between runs for all methods. 505

In turn, Figure 4b shows that in terms of the diver- 506

sity score, low-diversity beam search has generated 507

the most diverse examples, while sampling has gen- 508

erated the least. Appendix E also shows a compari- 509

son of fluency and diversity of generated bi-grams. 510

Overall, it could be argued that low-diversity beam 511

search has proved the best decoding method for 512

this task in terms of success attack rate/diversity 513

trade-off. 514

6.2 Learned strategies 515

During training, the model has displayed a wide 516

range of different generating behaviours, such as 517

phrase shuffling, synonym swapping and double 518

negatives, a selection of which is shown in Table 3. 519

Some behaviours have proved compatible with our 520

validity constraints, others have violated them. In 521
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Figure 4: Attack success rate and diversity of decoding methods. For each graph: RT = Rotten Tomatoes, FP =
Financial PhraseBank. (a) Attack success rate by decoding evaluation method. Beam search and low-diversity beam
search perform best. (b) Candidate set diversity of each decoding method, which we measure using a cluster-based
score (see Appendix E). More clusters means a more diverse candidate set.

Transformation Example

Original safe conduct, however ambitious and well-intentioned, fails to hit the entertainment bull’s-eye
Genuine paraphrase safe conduct might be ambitious and well-intentioned, but it misses the entertainment bull’s-eye
Synonym swapping safe conduct, however ambitious and well-intentioned, fails to strike the entertainment bull’s-eye
Case changes safe Conduct, however Ambitious And well-intentioned, fails to hit the entertainment bull’s-eye
Adding/removing punctuation safe conduct however ambitious and well-intentioned, fails to hit the entertainment bullseye..:;:
Ignoring grammar safe conduct ambitious well-intentioned bull’s-eye
Phrase shuffling safe conduct, fails to hit the entertainment bull’s-eye, however ambitious and well-intentioned
Contradictions safe conduct, however ambitious and well-intentioned, hit the entertainment bull’s-eye
Sentence truncation safe conduct, however ambitious and well-intentioned
Padding to max length safe conduct, however ambitious and well-intentioned, fails to hit the entertainment bull’s-eye and and and and and and
Very short sentences safe conduct.
Inserting phone-numbers safe conduct, however ambitious and well-intentioned, fails to hit the entertainment bull’s-eye 888-739-5110 888-739-5110
Using Unicode characters safe cond©√t, however ambitious and well-intentioned, fails to hit the entertainment bull’s-eye.
Adding linking contrast phrases although safe conduct, however ambitious and well-intentioned, fails to hit the entertainment bull’s-eye, nonetheless
Repeating phrases safe conduct, however ambitious and well-intentioned, fails to hit the entertainment bull’s-eye, entertainment bull’s-eye
Change language of fragment safe conduct, however ambitieux et well-intentioned, fails to hit the entertainment bull’s-eye
Rhetorical question safe conduct, however ambitious and well-intentioned, fails to hit the entertainment bull’s-eye - but why?
Double negatives safe conduct, however ambitious and well-intentioned, fails to fail to hit the entertainment bull’s-eye

Table 3: Examples of the model’s generating behaviours during training. Rather than only paraphrasing, the model
has exhibited a variety of different behaviours. We have introduced two additional constraints to disallow the
behaviours of generating very short sentences and adding linking contrast phrases, but we have allowed the others.

the initial stages of our research, we had to adjust522

the reward function repeatedly to disallow some523

unwanted behaviours, leading to the additional con-524

straints of Section 3.5.4 Some behaviours, such525

as ignoring grammar, can be considered exploita-526

tions of the individual components of the reward527

function (i.e., “reward hacking”). In addition, the528

constraints have not been able to perfectly filter all529

the actual adversarial examples. However, since the530

components and the constraints are simply proxies531

for human preferences, the reward can still be effec-532

tive so long that these behaviours remain limited.533

7 Conclusion534

This paper has proposed an approach for generat-535

ing adversarial attacks for a text classifier based on536

fine-tuning a seq2seq paraphrase model. The pro-537

4This analysis was carried out solely on the training set.

posed approach has trained the paraphrase model 538

with an original reward function that encourages 539

misclassifications in the victim model while simul- 540

taneously ensuring that the generated attacks abide 541

by a set of validity constraints. The experimen- 542

tal results over two datasets have shown that the 543

trained model has been able to produce many more 544

adversarial examples than the untrained model. It 545

has also proved much more efficient than compa- 546

rable token-modification attacks in terms of the 547

success rate/number of queries trade-off. Future 548

work could include exploring more efficient and sta- 549

ble training algorithms, incorporating actual human 550

preferences into the reward objective, and experi- 551

menting with different pre-trained seq2seq models, 552

such as those for style transfer or dialogue genera- 553

tion. 554
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8 Ethical considerations555

In this paper we have trained a model to attack text556

classifiers. The obvious danger is that the proposed557

approach could be used by an actual adversary to558

attack real-world models. The general justification559

for adversarial attack research is that the preven-560

tative identification of effective attacks can help561

identify vulnerabilities and develop defences. In562

addition, research on adversarial attacks can con-563

tribute to data augmentation for robust model train-564

ing.565

In terms of biases, the trained model will likely566

reflect both the biases of the original examples used567

for its input, and those of the baseline paraphraser it568

was built upon. However, this seems to be in com-569

mon with all other conditional text generators such570

as machine translation and summarisation models.571

No explicit mitigation has been put in place for572

this.573
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A Training details814

This section provides all the details of our training815

setup.816

We have used an AdamW optimiser with early817

stopping, using the attack success rate of the val-818

idation set as the metric, and stopping once the819

metric dropped below the running median, or when820

a maximum number of epochs was reached (100 for821

Rotten Tomatoes, 200 for Financial PhraseBank).822

We have not done any layer freezing during training823

as we noticed that it tended to reduce performance.824

After the sample selection from the datasets, the825

splits contained the following number of examples:826

Rotten Tomatoes — training: 2972, validation: 367,827

test: 359; Financial PhraseBank — training: 1370,828

validation: 167, test: 159. The hyperparameters829

that have been kept constant across all experiments830

are listed in Table 4. The details of the various831

models — paraphrase model, victim models, and832

reward component models — are given in Table 5.833

Hyperparameter Value

General

LR 1× 10−4

Batch size 32
Gradient accumulation steps 2
Max paraphrase length 48
Min paraphrase length 3
Max original length 32
Padding multiple 8

Training generation

Generated sequences per original 1
Top-p 0.95

Eval generation

Generated sequences per original 48
Top-p (S) 0.95
Temperature (S) 1
Number of beams (BS, DBS) 48
Diversity penalty (DBS) 1

Reward function

Reward bounds [0, α = 10]
Victim degradation multiplier (η) 35
DKL scaling coefficient (β) 0.4
Character difference threshold ±30
Cosine similarity threshold 0.8 (≥)
NLI contradiction threshold 0.2 (≤)
Linguistic acceptability threshold 0.5 (≥)

Table 4: Hyperparameters used for training and evalu-
ation across all experiments. S refers to sampling, BS
to beam search, DBS to the two diverse beam search
conditions, and NLI to natural language inference. The
signs for the thresholds indicate the direction needed to
meet the condition.

The GPU model used for training has been an 834

NVIDIA Quadro RTX 6000 with 24GB RAM. 835

Each training run has used a single GPU and the 836

runtime varied from around 4 hours to around 64. 837

The runtime depended heavily on the decoding 838

method (sampling was the fastest) and the max- 839

imum number of epochs. The training could be 840

potentially sped up by reducing the number of the 841

generated paraphrases during validation. In addi- 842

tion, using a GPU with more memory would allow 843

increasing the batch size, which would also reduce 844

the training time considerably. Occasionally, for 845

some random seeds and conditions, we have run 846

out of memory on the GPU, most likely due to un- 847

usually long predictions; repeating the runs with 848

different seeds has always circumvented this issue. 849

B Limitations 850

The proposed approach is certainly not without 851

limitations. The training process is GPU-intensive, 852

and a training run can take from a few hours to a 853

few days on a single GPU. A contemporary GPU 854

with at least 16 GB of RAM is probably the min- 855

imum computing requirement, with more RAM 856

allowing larger batch sizes and training speed-ups. 857

In addition, during training the model must query 858

the victim model many times, which may not be 859

possible under many scenarios. We have also ob- 860

served a high variance in the results across random 861

seeds. This problem is well known in reinforce- 862

ment learning (Henderson et al., 2018) and may 863

be mitigated by more sophisticated baselines, such 864

as RELAX (Grathwohl et al., 2018). Lastly, the 865

proposed approach seems to work best for short 866

sentences, as the paraphrase quality starts to visibly 867

drop as the sentence length increases. However, 868

this may not be a major limitation for the gener- 869

ation of adversarial attacks since larger blocks of 870

text could always be subdivided. 871

As a final note, the experiments have only cov- 872

ered two datasets in English and have not investi- 873

gated other languages. 874

C Token-modification attacks 875

We have created a variety of attack types using the 876

TextAttack library of (Morris et al., 2020b). For 877

all attacks, we have set the goal function as un- 878

targeted classification (i.e., attacking the correct 879

label with any other class). We have varied the 880

transformation, the search method, and some hy- 881

perparameters of the algorithms, and used the sets 882
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Purpose Size (MB) Identifier

Paraphraser 892 prithivida/parrot_paraphraser_on_T5 (Damodaran, 2021)
Victim model (RT) 268 textattack/distilbert-base-uncased-rotten-tomatoes
Victim model (FP) 329 mrm8488/distilroberta-fine-tuned-financial-news-sentiment-analysis
Acceptability 47 textattack/albert-base-v2-CoLA
STS 134 sentence-transformers/paraphrase-MiniLM-L12-v2
Contradiction 54 howey/electra-small-mnli

Table 5: The models used in this paper. We used small, distilled models to increase training speed and because of
our GPU memory requirements, but larger models would give better performance. As above, RT stands for Rotten
Tomatoes, FP for Financial PhraseBank. All identifiers refer to models on the Hugging Face Model Hub.

of constraints of Section 3.5. We have also used883

two extra constraints commonly used to improve884

the effectiveness of the search (e.g. (Cheng et al.,885

2020; Jin et al., 2019)): the attacks have not been886

allowed to modify the same word twice, nor modify887

stopwords. Tables 5 and 6 provide full details.888

D Human validation of the adversarial889

examples890

This section provides full details of the human val-891

idation of the adversarial examples. The valida-892

tion has used three annotators, one of which was893

a native English speaker and two were proficient894

English second-language speakers5.895

D.1 Evaluated approaches896

We have compared the untrained paraphrase model,897

the trained model, and the best-performing token-898

modification algorithm (LM-WADR-BS-bw5m25899

from Table 2) based on the attack success rate.900

For the trained model we have chosen a run us-901

ing low-diversity beam search, since in Section902

6.1 we have argued that this has proved the best903

decoding method overall.904

D.2 Evaluated examples905

We have used 41 original examples from the Finan-906

cial PhraseBank test set and generated adversarial907

examples for them. The original examples were908

split into two groups. The first is where all the909

three methods were able to produce adversarial ex-910

amples (18 examples). In the second, the trained911

model and the token-modification algorithm were912

able to produce adversarial examples, but the un-913

trained paraphrase model was not (23 examples).914

The original examples have been selected so as to915

have a close-to-balanced class distribution.916

5And, for full disclosure, co-authors of this submission.
For this reason, the validation has been carried out blindly,
without knowledge of the generating approach of the examples
under assessment.

D.3 Filtering adversarial candidates 917

Both the untrained paraphrase model and the 918

trained model can generate up to 48 adversarial ex- 919

amples per original example, which are too many 920

for a human annotator to easily evaluate. To amend 921

this, we have filtered the set of generated adver- 922

sarial examples to get a smaller, selected subset 923

that is less onerous to evaluate. The pseudocode 924

for the filtering is provided in Algorithm 1. The 925

goal is to end up with a set of roughly 6-12 can- 926

didates per original example that approximately 927

preserve the diversity of the larger set. In brief, 928

the algorithm computes sentence embeddings for 929

all candidates, applies a dimensionality reduction 930

algorithm, UMAP (McInnes et al., 2018), and then 931

applies a hierarchical clustering algorithm, HDB- 932

SCAN (McInnes et al., 2017). We have eventually 933

sampled a few candidates from each cluster, with 934

the actual number depending on the number of 935

clusters extracted by HDBSCAN. 936

Algorithm 1 Pseudocode for filtering the generated
adversarial examples.

Select all successes S from candidate set C ∈ S
if |S| ≤ 6 then

Return S′ = S
else

Compute sentence embeddings E(s),∀s ∈
S

Reduce dimensionality to get E′(s), ∀s ∈ S
Cluster E′(s)
Create S′ by sampling from each cluster
Return S′

end if

D.4 Label invariance 937

The aim of the validation has been to assess 938

whether the adversarial examples generated by the 939

three approaches had retained the same ground- 940

truth label as the original, and this question was 941
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Attack identifier Transformations Search method Max candidates Parameters

LM-WR-BS-m5bw2 Word replacement using language model Beam search 5 bw = 2
LM-WR-BS-m25bw5 Word replacement using language model Beam search 25 bw = 5
CF-WR-BS-m25bw5 Word replacement using CF embedding Beam search 25 bw = 5
LM-WR-GA-p60mi20mr5 Word replacement using language model Genetic algorithm 25 p = 60, mi = 20, mr = 5
LM-WR-BS-m50bw10 Word replacement using language model Beam search 50 bw = 10
LM-WADR-BS-m25bw5 Word replacement, addition, deletion using language model Beam search 25 bw = 5
TextFooler Word replacement using CF embedding WIR (delete) 50 -
BAE-R Word replacement using language model WIR (delete) 50 -
IGA Word replacement using CF embedding Genetic algorithm 50 p = 60, mi = 20, mr = 5

Table 6: Token modification attacks and their parameters. All attacks were generated using the TextAttack package.
We have used a DistilRoBERTa language model*. CF embedding refers to GloVE word embeddings that have been
counter-fitted, a procedure introduced in Mrkšić et al. (2016) and commonly used in finding word replacements.
WIR (delete) stands for Word Importance Ranking by deletion, a search method where the importance of each token
is estimated by deleting it and measuring the true-class confidence drop in the victim model. We use bw to mean
beam width, and for the genetic algorithm search parameters, p is the population size, mi the maximum number of
iterations, and mr the maximum number of replacements per index.

* https://huggingface.co/distilroberta-base
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Figure 5: Fluency scores for the various decoding methods. RT = Rotten Tomatoes, FP = Financial PhraseBank.
(a) Median perplexity of the generated candidate sets, with examples combined from the top two runs of each
decoding method. Three of the methods have been approximately comparable, while high-diversity beam search
has consistently produced the least fluent candidates. (b) Average number of distinct bigrams generated per epoch
performing evaluation on the training set. High-diversity beam search (in purple) has consistently generated more
unique bigrams than the other methods. The sampling decoding method has displayed a marked decrease in diversity
along the epochs, while the others have remained approximately constant. These results confirm the expected
trade-off between fluency and diversity.

asked to the annotators (Figure 6 shows a screen-942

shot of the instructions). To determine the senti-943

ment, we have used the same instructions as the944

original annotation of the Financial PhraseBank945

dataset (Malo et al., 2014). We have used majority946

voting among the annotators to determine the label947

invariance.948

The results of this assessment have been: 100%949

of the adversarial examples generated by the orig-950

inal paraphrase model have retained their label;951

59% for the trained model; and 50% for the token-952

modification algorithm. This shows that the trained953

model has degraded paraphrasing capability com- 954

pared to the original model, but it still has achieved 955

higher label invariance than the token-modification 956

approach. These results should be judged alongside 957

the success rate, which has been approximately 4 958

times higher for the trained model than the original 959

model on the Financial PhraseBank test set (Ta- 960

ble 1). It is also worth noting that label invariance 961

rates vary considerably in the literature, foremost 962

because there are no “standard settings” across pa- 963

pers. The rates depend on many factors, such as the 964

instructions given to the evaluators, their harshness 965
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or lenience, the use of crowd-sourcing platforms,966

the datasets used, etc. The most important require-967

ment is that the evaluation is applied equally to all968

baselines, which we do here.969

E Analysis of the decoding methods970

This section describes the analysis of the four de-971

coding methods and shows further results on flu-972

ency and diversity.973

Preprocessing. To measure diversity and flu-974

ency, we have selected the two runs with the highest975

attack success rate per decoding condition across976

both training temperatures.6977

Diversity. To quantify the diversity, we have978

built a score using the same procedure used for the979

selection of the adversarial examples for the human980

validation, described in full in Appendix D.3. The981

score has been simply defined as the number of982

distinct clusters returned by HDBSCAN, with the983

individual examples not included in any cluster984

counted as clusters themselves.985

The results are shown in Figure 4 in the main pa-986

per. We found that the high-diversity beam search987

showed less diversity than the low-diversity beam988

search. This was because it tended to generate989

many “degenerate” examples that were clustered990

together by our clustering procedure. The sampling991

method showed low diversity as it generated fewer992

unique examples on average than the other condi-993

tions. We speculate that the token probability over994

the vocabulary tends to become more concentrated995

as training progresses, as supported by Figure 5b.996

Fluency. As commonly done (e.g. (Wang and997

Wan, 2018)), we have used the language model’s998

perplexity as a proxy for fluency. We have also999

used the number of unique generated bigrams per-1000

forming evaluation on the training set after every1001

epoch as a further measurement of diversity. The1002

results are shown in Figure 5.1003

F Examples of generated text1004

Tables 7 and 8 show examples of the generated1005

text. We present one example per dataset, including1006

all the decoding methods with the best untrained1007

and trained models, and the best-performing token-1008

modification attack. For reasons of space, the ex-1009

amples only show eight generated adversarial can-1010

didates for each approach.1011

6We select the best two because there is significant varia-
tion in runs between random seeds and it would not be benefi-
cial to compare models that have failed to train properly.

Each decoding method has exhibited specific 1012

trends. Sampling and beam search have gener- 1013

ated examples that are very similar to each other, 1014

only differing slightly. Additionally, sampling has 1015

generated fewer unique candidates than the other 1016

methods. Both low and high-diversity beam search 1017

have generated good quality candidates, but also 1018

many that were ungrammatical or incoherent; and 1019

more so for the high-diversity case. Overall, we 1020

notice that the generated adversarial candidates 1021

seem to frequently contain consistent phrases or 1022

terms, which makes them universal adversarial ex- 1023

amples (Wallace et al., 2019). The training proce- 1024

dure clearly learns which phrases affect sentiment 1025

across many examples, and the approach inserts 1026

them into its generated solutions. This is less de- 1027

sirable than a model that can generate “tailored” 1028

paraphrases for each original example. The para- 1029

phrasing capability of the trained model is still 1030

remarkable, although at times visibly lower than 1031

that of the untrained model. Overall, the trained 1032

model seems to have been able to generate better 1033

paraphrases on Financial PhraseBank than Rotten 1034

Tomatoes, likely because of its simpler language. 1035
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Approach Generated Text
Original example suffers from unlikable characters and a self-conscious sense of its own quirky hipness.
Token-modification suffers from unlikable characters and gains a self-conscious sense of its own quirky hipness .

suffers from unlikable characters and has a sense of self-conscious hipness.
suffers from unlikable characters and a self-conscious sense of its own quirky hipness.
suffers from unlikable characters and a self-conscious sense of its own quirky hipness..
suffers from unlikable characters and an in-your-face sense of quirky hipness.
suffers from unlikable characters and a self-conscious sense of its own quirky hipness...
suffers from unlikable characters and an internal sense of eccentric hipness..
suffers from unlikeable characters and a self-conscious sense of its own quirky hipness. ”

Sampling, untrained

suffers from unlikable characters and self-conscious sense of humour.
Unlikable characters may even have a self-conscious hipness
Unlikable characters may even have a self-conscious sense of their own quirky hip
Unlikable characters may even have self-conscious hipness
Unlikable characters may even have a self-conscious sense of their own hip
Unlikable characters might even have an self-conscious hip hop habit
Unlikable characters might even have a self-conscious hip hop attitude
Unlikable characters might even have a self-conscious sense of their own quirky hip

Sampling, trained

Unlikable characters may even have self-conscious hip-ness
it suffers from unlikable characters and a self-conscious sense of its own quirky hipness.
suffers from unlikable characters and a self-conscious sense of its own quirky hip-hop.
suffers from unlikable characters and a self-conscious sense of its own quirky hip-ness.
suffers from unlikable characters and self-conscious sense of its own quirky hipness.
he suffers from unlikable characters and a self-conscious sense of his own quirky hipness.
suffers from unlikable characters and a sense of self-consciousness of its own quirky hipness..
suffers from unlikable characters and a self-conscious sense of quirky hipness..

Beam search, untrained

suffers from unremarkable characters and a self-conscious sense of its own quirky hipness.
It suffers from unlikable characters and a self-conscious sense of its own quirky hipness but there is something
It suffers from unlovable characters and a sense of its own quirky hipness but there is something
It suffers from unlikable characters and an unconscious sense of its own quirky hipness but there is something
It suffers from unlikable characters and an inner sense of its own quirky hipness but there is something
It suffers from unlikable characters that have a sense of their own quirky hipness but there is something
It suffers from an unlikable character and a sense of its own quirky hipness but there is something
It suffers from unlikable characters and a feeling of its own quirky hipness but there is something

Beam search, trained

It suffers from unlikable characters and a sense of its own quirky hipness but there is some
suffers from unlikable characters and a self-conscious sense of its own quirky hipness.
suffers from unlikable characters and a self-conscious sense of its own quirky hipness. ”
suffers from unlikable characters and a self-conscious sense of its own quirky hipness.
” suffers from unlikable characters and a self-conscious sense of its own quirky hipness
a character that suffers from an unlikable character and a self-conscious sense of its own quirky hipness
there is a lack of likeable characters and a fear of its own eccentricity.
there is a lack of likeable characters and a fear of its own quirky hips.

Low-diversity beam search, untrained

there is a lack of likeable characters and a sense of its own quirky hipness..
It suffers from unlikable characters but uses a sense of its own quirky hipness
It suffers from unlikable characters but includes a sense of its own quirky hip
It suffers from unlikable characters but often displays its own quirky hip
It comes from unlikable characters but uses a sense of its own quirky hipness
It comes from unlikable characters but includes a sense of its own quirky hipness
It struggles with unlikable characters but often displays its own quirky hip
It also has unlikable characters but is intended for its own quirky hip

Low-diversity beam search, trained

It struggles with unlikable characters but often displays its own quirky hipness but uses some hip
has unlikable characters and a sense of its own quirky hipness.
it has unlikable characters and a self-conscious sense of its own quirky hipness.
suffers from unlikable characters and an uncanny sense of its own quirky hipness.
it has unlikable characters and a sense of its own quirky hipness.
the characters are not likable but the sense of their own quirky hipness is a problem.
the characters are not likable but the sense of their own quirky hipness is a problem.
has unlikable characters and a self-conscious sense of its own quirky hipness....

High-diversity beam search, untrained

shows an unlikely character with an unrequited feeling of hipster...
The unlikable characters should have a self-conscious sense of hipness
Sometimes it should suffer from unlikable characters but sometimes self-conscious senses of hipness
Unlikable characters should have a self-conscious sense of hipness
This can involve unlikable characters but sometimes self-conscious hipness.
It must suffer from unlikeable characters but a self-conscious sense of hipness
The unlikeable characters must have a self-conscious sense of hipness
The unlikeable character should have a self-conscious sense of its own hipness

High-diversity beam search, trained

it will have to suffer from unlikable characters but often quirky hipness

Table 7: Examples of generated adversarial candidates for the various approaches for an original example from
the Rotten Tomatoes dataset. The original example is in black and has negative sentiment. We use light grey for
unsuccessful candidates and green for a successful adversarial example that changes sentiment to positive.
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Approach Generated Text
Original example In addition , the company will reduce a maximum of ten jobs .
Token-modification In addition , the company will reduce a maximum requirement of ten jobs .

In addition, the company can reduce the jobs of up to ten people.
In addition the company will cut a maximum of ten jobs.
In addition he says the company will close a maximum of ten jobs.
In addition, the company will eliminate up to ten jobs.
In addition the company will reduce up to ten jobs.
In addition the company has cut a maximum of ten jobs.
In addition ” the company will cut 10 jobs in 10 months.

Sampling, untrained

In addition to the job cuts the company will limit itself to ten jobs.
In addition, the company has succeeded in reducing a maximum of ten jobs.
In addition, the company has succeeded in decreasing a maximum of ten jobs.
In addition, the company has succeeded in cutting a maximum of ten jobs.Sampling, trained

In addition, the company has succeeded inreducing a maximum of ten jobs.
In addition, the company will reduce a maximum of ten jobs.
In addition he will reduce a maximum of ten jobs.
In addition, the company will reduce a maximum of ten jobs.
The company will also reduce a maximum of ten jobs.
In addition, the company will cut a maximum of ten jobs. ”
In addition the company will cut up to ten jobs.
In addition, the company will eliminate a maximum of ten jobs.

Beam search, untrained

In addition the company will cut a maximum of ten jobs..
In addition, the company will also be successful in reducing a maximum of 10 jobs
In addition, the company will also see success in reducing a maximum of 10 jobs
In addition, the company will also see success in reducing a maximum of 10 jobs.
In addition, the company will also see success in reducing ten jobs.
In addition, the company will also see success at reducing a maximum of 10 jobs.
In addition, the company will also have success in cutting a maximum of 10 jobs.
In addition, the company will also find success in reducing a maximum of 10 jobs

Beam search, trained

In addition, the company will also find success in reducing a maximum of 10 jobs.
In addition, the company will reduce a maximum of ten jobs.
In addition, the company will reduce a maximum of ten jobs..
In addition, the company will reduce a maximum of ten jobs. ”
In addition the company will cut a maximum of ten jobs. ”
In addition, the company will reduce a maximum of ten jobs...
In addition, the company will reduce a maximum of ten jobs in the region.
He said: In addition he would reduce the company’s total number of jobs to 10.

Low-diversity beam search, untrained

In addition, the company will reduce a maximum of ten job cuts.
In addition, the company will benefit from reducere ten jobs.
This is good for decreasing a maximum of 10 jobs.
Along with this reduction of 10 jobs, the company will benefit from reductions.
The company will benefit from r√©duiing a maximum of 10-jobs.
In addition, the company will benefit from reductions for ten jobs.
In addition the company will benefit from reductions for the maximum of 10 jobs.
As a result the company will benefit from reductions of up to 10 jobs.

Low-diversity beam search, trained

The company will benefit from reducing ten jobs.
The company will also reduce a maximum of ten jobs.
A further reduction of ten jobs is planned. ”
A maximum of ten jobs will be lost in the company.
Furthermore, the company will reduce up to ten jobs..
The company will reduce its workforce by up to 10 percent. ”
It also plans to eliminate at least ten jobs in the company..
Further the company will reduce a maximum of 10 jobs.

High-diversity beam search, untrained

Additionally the company will lose up to ten jobs.
The company also reduced the reduction of a maximum of ten jobs.
Furthermore the company will reduce the reduction of ten jobs.
This also improved reduction of up to ten jobs.
The company also reduced the reduction of ten jobs..
the company will also improve reductions for up to ten jobs.
Also the company would reduce a maximum of ten jobs.
The company also reduced the reduction of ten jobs...

High-diversity beam search, trained

Additionally the firm would also improve the reduction of the maximum of 10 jobs.

Table 8: Examples of generated adversarial candidates for the various approaches for an original example from
the Financial PhraseBank dataset. The original example is in black and has negative sentiment. We use light grey
for unsuccessful candidates, and green and blue for successful adversarial examples that changed the sentiment to
positive and neutral, respectively. (NB: the “Sampling, trained” approach only produced four unique candidates for
this example.)
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Figure 6: Screenshot of the instructions provided to the annotators for the human validation.
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