A Constraint—-Enforcing Reward
for Adversarial Attacks on Text Classifiers

Anonymous submission

Abstract

Text classifiers are vulnerable to adversarial
examples — correctly-classified examples that
are deliberately transformed to be misclassified
while satisfying acceptability constraints. The
conventional approach to finding adversarial
examples is to define and solve a combinatorial
optimisation problem over a space of allowable
transformations. While effective, this approach
is slow and limited by the choice of transfor-
mations. An alternate approach is to directly
generate adversarial examples by fine-tuning
a pre-trained language model, as is commonly
done for other text-to-text tasks. This approach
promises to be much quicker and more expres-
sive, but is relatively unexplored. For this rea-
son, in this work we train an encoder-decoder
paraphrase model to generate a diverse range
of adversarial examples. For training, we adopt
a simple policy gradient algorithm and propose
a constraint-enforcing reward that promotes
the generation of valid adversarial examples.
Experimental results over two text classifica-
tion datasets show that our model has achieved
a higher success rate than the untrained para-
phrase model, and overall has proved more ef-
fective than other competitive attacks. Finally,
we show how key design choices impact the
generated examples and discuss the strengths
and weaknesses of the proposed approach.

1 Introduction

Adversarial attacks cause a victim model — an
attacked machine learning model — to make a spe-
cific mistake. These attacks occur across domains,
pose a real-world security threat' and are increas-
ingly well-studied (Biggio and Roli, 2018; Zhang
et al., 2020). In this paper we study adversarial at-
tacks on text classifiers; where an adversary takes a
correctly-classified original example and perturbs

'For example, (Wallace et al., 2020) attacked Google
Translate with adversarial examples, causing vulgar outputs,
word flips, and dropped sentences.

it to create an incorrectly-classified adversarial ex-
ample. The adversarial example must typically
meet some acceptability constraints (e.g., a max-
imum edit distance from the original, preserving
semantic meaning, gramaticallity), although there
is no general consensus on these (Morris et al.,
2020b).

Elsewhere, the tendency is towards more developed packaging than befare.
Elsewhere the tendency is to favour more developed packaging than the previous.
Elsewhere the trend is toward more developed packaging than before.

Elsewhere the trend is towards more developed packaging than before.

The net sales decreased to EUR 49.8 million from EUR 59.9 million.
Net sales were limited to EUR 49.8 million from EUR 59.

Net sales were limited to EUR 49.8 million from EUR 59.9 million.

The Net sales were limited to EUR 49.8 million from EUR 59.

The net sales were limited to EUR 49.8 million from EUR 59.

The net sales were limited to EUR 49.8 million from EUR 59.9.

net sales were limited to EUR 49.8 million from EUR 59.9 million.

Figure 1: Examples of successful adversarial attacks
against a sentiment classifier obtained with the proposed
approach. On top, the adversarial examples flip the
sentiment from the original neutral (blue) to positive
(green), and on bottom, sentiment goes from the original
negative (red) to neutral (blue).

How are text adversarial examples found? The
predominant approach is to repeatedly modify to-
kens until the predicted label changes (Zhang et al.,
2020). Attacks taking this approach, known as
token-modification attacks (Roth et al., 2021), find
adversarial examples by solving a constrained com-
binatorial optimisation problem. First, they de-
fine the success condition, the constraints and
the allowed transformations, and then they use a
search algorithm to seek a solution (Morris et al.,
2020a). While effective, these attacks also have
major downsides. Firstly, they are slow: the com-
putational budget heavily impacts their success rate,
with high-performing search algorithms requiring
many victim model queries per example, particu-
larly for long texts (Yoo et al., 2020). Secondly,
their allowed token-level transformations limit their
search space, largely preventing complex transfor-
mations like paraphrasing or style change.

Alternatively, the adversarial example task can
be formulated as a text-to-text problem, with orig-
inal examples as input and adversarial examples
as output. It could then be straightforwardly ap-
proached with seq2seq models, as done for other
text-to-text tasks like summarisation or transla-
tion. This approach enjoys several principled ad-
vantages over token-modification attacks. Firstly,
once trained, finding adversarial examples is much
faster (in the order of a few milliseconds, rather
than minutes or even hours). Additionally, through
beam search or sampling, this approach can easily
generate multiple adversarial examples per given
input, while also controlling their diversity, tonal-
ity, or other characteristics. Finally, a seq2seq ap-
proach is also intrinsically more flexible as it is not
limited by a rigid set of allowed transformations.

On the other hand, the main challenge of this
approach is that it is notoriously difficult to train
a model to generate controlled text. The training
process can be unstable and time-consuming, and
the generated text can be ungrammatical, irrele-
vant, nonsensical, unnatural, bland, repetitive, or
incoherent (Holtzman et al., 2020; Hu et al., 2017,
Wong, 2017). For our task there is an additional
challenge: the generated text must change the vic-
tim model’s predicted label while not violating any
constraint.

For these reasons, in this paper we propose fine-
tuning a pre-trained encoder-decoder paraphrase
model so that it produces adversarial examples in-
stead of paraphrases. We fine-tune using a rein-
forcement learning (RL) policy-gradient algorithm
— REINFORCE with baseline (Williams, 1992) —
and attack a sentiment classifier. For training, we
propose an original reward function that both in-
centivises adversarial examples and penalises any
violation of the constraints. To improve gener-
ated text coherence, our loss function includes a
Kullback-Leibler (KL) divergence term (Kullback
and Leibler, 1951) that limits parameter drift from
the pre-trained paraphrase model. The attack re-
quires the victim model’s prediction confidence,
but no other information, which makes our attack
either a grey-box (Biggio and Roli, 2018) or a black-
box attack (Zhang et al., 2020), depending on the
definition.’

We have evaluated the proposed approach on
two sentiment analysis datasets, reporting the at-

*These assumptions are not unrealistic: for example, most

pre-trained models on the Hugging Face Model Hub report
both predictions and confidences.

tack success rates and the diversity of the generated
adversarial examples across four different decod-
ing methods and two training temperatures. The
results show that the the proposed approach has
been able to generate numerous and diverse adver-
sarial examples, with success rates much higher
than for the pre-trained paraphraser and compara-
ble token-modification attacks. In summary, this
paper makes the following key contributions:

1. an approach for the generation of adversar-
ial attacks to text classifiers based on a pre-
trained paraphraser and reinforcement learn-
ing;

2. a constraint-enforcing reward function that in-
centivises adversarial examples and penalises
constraint violations;

3. experimental results on two text classification
datasets showing the effectiveness of the pro-
posed approach, and a comprehensive analysis
and discussion.

2 Related Work

For ease of reference, we can divide the literature
on text classification adversarial attacks into token-
modification attacks and generative attacks.

Token-modification attacks. The vast major-
ity of existing text adversarial attacks are token-
modification attacks. They consist of four main
components: a goal function, a set of allowed
transformations, a set of constraints that must
be satisfied, and a search method (Morris et al.,
2020a). These approaches typically create adversar-
ial perturbations by applying repeated token-wise
transformations, such as character replacements
(Ebrahimi et al., 2014) or synonym swaps (Ren
et al., 2019)°. A detailed description of these at-
tacks is not relevant to our work, so the reader
can refer to a recent survey (Roth et al., 2021) for
further details.

Generative attacks. Some previous work has
attempted to train a variety of generative models
to produce adversarial examples. For example,
long short-term memory variants have been used
by Iyyer et al. (2018) to paraphrase a sentence in

3These approaches typically produce one adversarial ex-
ample per original. TextAttack (Morris et al., 2020b) — the
most popular library for token-modification attacks — has
been set up to only return at most one adversarial example per
original, so this is what we have used throughout this paper.

‘While more could be searched for, it has not been well studied
how they could be found efficiently in incremental time.

the form of a parse template, and by Vijayaragha-
van and Roy (2019) to perturb examples. A feed-
forward network was used by Lu et al. (2022) to
generate distracting answers in a multiple-choice
visual question answering task. Other work has
attempted to use GANs and autoencoders (Zhao
et al., 2018; Ren et al., 2020; Wong, 2017). How-
ever, this line of approach has not been widely
pursued, probably due to training difficulties. For
example, Wong (2017) has reported widespread is-
sues such as mode degeneracy, semantic divergence
and reward hacking.

Since their introduction, transformers have be-
come a ubiquitous encoder-decoder architecture in
contemporary natural language processing. They
are typically trained with transfer learning, first
solving a large-scale pre-training task (typically un-
supervised or self-supervised), and then fine-tuning
on the target task. Large transformers such as TS
(Raffel et al., 2020) currently achieve state-of-the-
art performance in many text-to-text tasks. Despite
this success, no previous work we are aware of
has attempted to fine-tune a pre-trained paraphrase
model for adversarial example generation, as the
proposed approach does. The closest works are
Gan and Ng (2019), who create a dataset of adver-
sarial paraphrases manually, and Qi et al. (2021),
who use a pre-trained text style transfer model, but
do not fine-tune it.

3 Proposed Approach

3.1 Overview

Our overall goal is to fine-tune a pre-trained para-
phrase model with a reinforcement learning ob-
jective so that it can learn to generate adversarial
examples. We use a T5 transformer as the base
pre-trained model.

During each training epoch, we generate one
paraphrase per original example and collate them
into batches of training data. The batches are used
to compute a loss function (Section 3.2), which in-
corporates both a reward function (Section 3.3) and
a baseline (Section 3.4). We use a set of constraints
(Section 3.5) to determine if the generated text is
valid, and examples that fail receive zero reward.
Figure 3 shows the overall setup.

During validation, we generate a set of adversar-
ial example candidates for each original example,
using one of four decoding methods (Section 4.2).
We call these paraphrases the set of adversarial
example candidates, and consider the attack suc-

cessful if at least one meets the given constraints.
The attack success rate is simply computed as the
ratio between the number of successful attacks and
the number of original examples. Generating more
paraphrases can obviously improve the attack suc-
cess rate, but the generation takes longer and the
memory requirements increase. As an effective
trade-off between these factors, we have chosen to
generate n = 48 paraphrases per original example.
The same procedure is used at test time. During
validation, we also update the reward baseline with
the average per-example reward across the candi-
date set. Training is stopped once the validation set
performance improvement drops below a threshold,
or after a maximum number of epochs (full details
are available in Appendix A).

3.2 Loss function

Let us have an input data distribution D, an origi-
nal example x € D, and a pre-trained paraphrase
model with parameters 6. Given x, the model gen-
erates a paraphrase x’ with T tokens with proba-
bility pg(zy|a), ..., z;_y,x),t =1...T. We note
this predictive distribution as p for simplicity. Our
agent attempts to learn a policy , still parametric
in 6 and initially equal to p, that can create adversar-
ial examples, for which we have a reward function
r that scores success and failure. Training aims to
optimise 7 to maximise the expected value of 7:

Ex (T) = E:va,x’ww(x)T(xa xl)

To optimise using gradient descent, the gradient
AgE,(r) is required, for which an estimator is pro-
vided by the policy gradient theorem (Sutton et al.,
1999):

AQE ,ZE:«/,l,CU)

_ —TZ
(1)

where ' is a sampled sequence (using any of a
number of sampling methods). The above is the
REINFORCE estimator (Williams, 1992). Using
an automatic differentiation framework we can con-
vert this into a loss function:

log7r (zh]x), . ..

"/E;fl?x)

T
L, = —rz log 7(z}|2), . .. 5
= 2)

= —rlogm(a2'|z)

This estimator is unbiased, but it typically exhibits
a large variance, which causes slow and unstable

adversarial example

3 Check for an
H
'

Original ISy Set of paraphrases - ---i
paraphrase model :
Original a.raFll[ll:a_st:lll'sgdel Paraphrase "This movie is great {"A great movie!." :.. > Compute paraphrase
parap "I love this movie." reward baseline
"This movie is great." "It's great, this movie." The movie - superb!"}
(a) (b)

Figure 2: Sample generation during training and validation. (a) During training, we generate one paraphrase per
original example, decoding with nucleus sampling. (b) During validation, we generate a set of paraphrases per
original example, decoding with one of four methods (Section 4.2). We then check if any paraphrase in the set is a
successful adversarial example, and also use the set (for the training split) to update the reward baseline (Section

3.4).

Paraphrase reward

Original &

) Final reward —>» Loss function
paraphrase

Reward baseline

Reference
paraphrase model
logprobs
Pre-trained T5

N logprobs
Fine-tuned |
paraphrase model

Figure 3: A diagram of the training approach. As input, training uses batches of (original, paraphrase) pairs. The
parameters are updated using a REINFORCE with baseline algorithm. The overall loss function depends on the
reward function, the baseline, the constraints, and the KL divergence penalty, which compares the probabilities
computed by the fine-tuned and pre-trained paraphrase models.

KL penalty

logprobs:

Optimise parameters

learning. The variance can be reduced by subtract-
ing a baseline, b, from 7:

L,=—(r—b)logm(2|) 3)

provided b is highly correlated with r. This esti-
mator is biased in the case that b depends on z’
(Williams, 1992), but typically delivers improved
training speed and stability.

We also would like to prevent the trained distri-
bution, 7, from diverging too much from the origi-
nal predictive distribution, p, since that is likely to
affect the coherence and paraphrase quality of the
generated text. Following previous work (Jaques
etal., 2017; Ziegler et al., 2019) we add a KL diver-
gence penalty, D, to discourage this behaviour.
The modified reward function, after the baseline
and the KL divergence term are incorporated, be-
comes:

R(xvx/) - r(m,x') - b(x) - BDKL (4)

where [is a scaling constant, and:

Dkr1, = Epp gimn(a)log 7(2'|z) — log p(a'[2)]
)

This leads to the overall loss function:
L =—R(z,2')logm(2|z) (6)

Finally, to prevent longer sequences from being
unfairly penalised, we normalise the log probability
terms log 7(2’|z) and log p(z’|x) in (5) and (6) by
dividing each by the generated sequence length, 7.

3.3 Paraphrase reward

Let f be the probability output by the victim classi-
fier, x be the original example with label y, and z’
be a paraphrase. Let V (z,2) = f(z),— f(2'), be
the degradation in confidence in y that 2’ induces
in f. Then the paraphrase reward to use in (4) is:

r(z,2’) = max(0, min(a, nd(z, 2")V (z,2")))

(N

where « is an upper bound, 1 a scalar multiplier,
and 0(z, 2’) a Dirac delta function that is 1 if the
constraints (Section 3.5) are met, and 0 otherwise.

3.4 Reward baseline

As shown in Equation 4, the gradient estimator
requires a baseline b for the reward. We use a per-
example baseline, b(z), and define it as the average
reward of the set of adversarial example candidates
generated for each z in the training set. The base-
line is updated in each validation phase (see Figure
2b). Intuitively, the b(x) baseline is high when the
model can easily generate adversarial examples for
x, and low when it cannot.

3.5 Adversarial example constraints

In addition to switching the predicted label, an ad-
versarial example should both preserve meaning
(Michel et al., 2019) and be linguistically accept-
able. We enforce these principles by using the
following constraints:

Retains the true label. The original and para-
phrase must have the same ground-truth label.
Since the ground-truth label of the paraphrase is
latent, this constraint is failed if the paraphrase
contradicts the original with a probability > 0.2 ac-
cording to a natural language inference pre-trained
model.

Is semantically consistent. The original and
paraphrase must have (broadly) the same seman-
tic content. To assess this, we extract sentence
embeddings of both using a pre-trained Siamese-
BERT model (Reimers and Gurevych, 2019), com-
pute their cosine similarity, and impose a minimum
threshold of 0.8.

Is linguistically acceptable. Paraphrases should
be acceptable sentences. This constraint is met only
if the generated sentence is deemed linguistically
acceptable with a probability > 0.5, according to a
pre-trained language model.

Through trial and error, we decided to also in-
troduce two additional constraints to prevent the
generation of undesirable solutions:

The sentence length is similar. To prevent the
generation of very short sentences, we require the
original and paraphrase to have sentence length
within 30 characters of each other.

Avoids linking contrast phrases. Regardless of
the true class, the model can “soften” the generated
paraphrase by starting or ending it with a linking
contrast phrase, such as “however” or “nonetheless”
(see Table 3). To encourage the generation of more

interesting solutions, we disallow this behaviour,
unless the original example itself starts or ends with
that phrase.

4 Experimental setup

4.1 Datasets

The experiments have been carried out on two En-
glish sentiment analysis datasets, each consisting
of sentences or short text fragments. The first is
the Rotten Tomatoes dataset (Pang and Lee, 2005)
which contains extracts of movie reviews with sen-
timent labelled as either positive or negative. We
have used the predefined training, test and valida-
tion splits. The second is the Financial PhraseBank
dataset (Malo et al., 2014) which contains financial
news fragments with sentiment labelled as posi-
tive, neutral or negative. We have used the dataset
version with at least 50% annotator label agree-
ment, and randomly selected 10% of the data as the
validation set and 10% as the test set.

For both datasets, we have excluded the training
examples that the victim model classified incor-
rectly, as they could be said to be already “adver-
sarial”. We have also only included examples with
32 tokens or fewer, since the pre-trained paraphrase
model had been trained on sequences in that range.

4.2 Hyperparameters and design choices

Since design choices significantly impact the at-
tack success rate of the trained model, in the ex-
periments we have explored the impact of two: the
decoding sampling temperature used during train-
ing, which controls the exploration of the agent;
and the decoding method used for inference and
evaluation, which affects the diversity and quality
of the generated candidate set. All other hyper-
parameters have been kept constant. Appendix A
provides a complete list of the hyperparameters and
more training details.

4.2.1 Decoding temperature during training

During training, we generate the paraphrases using
nucleus sampling, with the probabilities returned
by a softmax operator. The temperature parameter
used in the softmax, which we denote as 7, visi-
bly affects the generated text: higher temperatures
produce more randomness and more diverse train-
ing examples, but also a lower percentage of valid
English sentences. We have therefore investigated
two values of 7: a low-temperature condition of
7 =0.85, and a high-temperature condition of 7 =

Rotten Tomatoes

Financial PhraseBank

Decoding method Untrained 7 =0.85
Sampling 29.3 38.1
Beam search 14.5 61.9
Low-diversity beam search 20.6 399
High-diversity beam search 24.5 52.9

T=1.15 Untrained T=0.85 7=1.15
38.3 19.1 66.0 62.7
60.8 11.3 82.0 67.7
52.6 13.2 79.2 79.0
374 214 43.4 59.1

Table 1: Attack success rate (as a percentage) of the untrained and trained models on the test set, averaged across
three different random seeds. We use 7 to refer to the decoding temperature during training. The best results for
each dataset are in bold. Training has improved the attack success rate for all conditions (p < 0.01 according to a
bootstrap hypothesis test (Dror et al., 2018)). Among the evaluation decoding methods, beam search had the highest

success rates, followed by low-diversity beam search.

Rotten Tomatoes

Financial PhraseBank

Attack method Success % Avg Queries Success % Avg Queries
Adversarial attacks (see Appendix C)
LM-WR-BS-m5bw2 39.6 42 39.0 58
TextFooler (Jin et al., 2019) 67.7 52 50.9 72
BAE-R (Garg and Ramakrishnan, 2020) 65.2 53 60.4 76
LM-WR-BS-m25bw5 69.4 282 69.2 290
CF-WR-BS-m25bw5 79.4 327 64.8 498
LM-WR-GA-p60mi20mr5 69.1 425 69.2 463
LM-WR-BS-m50bw10 772 790 75.5 697
IGA (Wang et al., 2021) 86.9 512 76.1 860
LM-WADR-BS-m25bw5 93.9 976 91.2 1331
Trained model Queries (Avg Successes) Queries (Avg Successes)
Eval: beam search, train: 7 = 1.15, best run 85.5 48 (19.6) 88.1 48 (27.6)

Table 2: Comparison of the best-performing trained models against a range of other adversarial attacks. For these
attacks we show the average number of victim model queries needed to find a single adversarial example. In contrast,
the trained model performs a fixed number of victim model’s queries (48) and generates multiple adversarial
examples. The rows are sorted by increasing Avg Queries value for the Rotten Tomatoes dataset.

1.15. We found both these values retain sentence
semantics and give somewhat diverse examples,
while also being fittingly different from each other.

4.2.2 Decoding method during evaluation

During evaluation, i.e. both validation and test, we
generate a set of n = 48 paraphrases per original
example, and then check if any are valid adversarial
examples based on the constraints. The decoding
method used influences the characteristics of the
generated text — and consequently, the attack suc-
cess rate. This is a key design choice and we have
therefore investigated four different methods:

Sampling. We have used nucleus sampling, with
top-p at 0.95 and the temperature at 1.

Beam search. We have set the number of beams
to 48, one per generated example.

Low-diversity beam search. Diverse beam
search (Vijayakumar et al., 2018) is a beam-search
variant that increases diversity of generated se-
quences by dividing the beams into groups and
encouraging diversity between them. For this con-
dition we have used six beam groups, set the diver-

sity penalty to 1, and again used 48 beams, one per
generated example.

High-diversity beam search. As above, but
with 48 beam groups instead of six.

5 Results

5.1 Attack success rate

First, we have investigated if the proposed approach
improved the attack success rate. As mentioned in
Section 3.1, an attack is counted as successful if
at least one example in the candidate set is a true
adversarial example, in that it meets the validity
constraints while also inducing a misclassification
(NB: typically, many more than one are). The at-
tack success rate is then computed as the percent-
age of successful attacks. In this section, we report
the attack success rate for the trained and untrained
paraphrase models, averaged across three seeds, on
the test split of the two datasets, across the two tem-
perature settings and the four decoding methods.
Results. The results are reported in Table 1,
showing that the proposed approach has improved
the attack success rate across all training condi-

tions. All improvements have been statistically
significant (p < 0.01) according to a bootstrap test,
as recommended by Dror et al. (2018). We have
found no clear best between the two temperature
values (7 = 0.85 and 7 = 1.15), but beam search
as the decoding method has reported the highest
success rates on both datasets (61.9% on Rotten
Tomatoes and 82.0% on Financial PhraseBank).

5.2 Comparison with established adversarial
attacks

Next, we have compared the proposed approach to
results from a range of adversarial attacks. We have
created six different attacks with the TextAttack
library (Morris et al., 2020b), varying the trans-
formations and the search method, and we also
compared against three established adversarial at-
tack schemes: TextFooler (Jin et al., 2020), BAE-R
(Garg and Ramakrishnan, 2020) and IGA (Wang
et al., 2021). These attacks span a range of query
budgets (i.e., the number of victim model queries
per example attacked) and have a corresponding
range of attack success rates (Yoo et al., 2020). To
ensure a fair comparison, each attack abides by the
same constraints as the trained model, while during
the iterations the search is not allowed to modify
the same word twice or stopwords. (more details
are provided in Appendix C). For performance com-
parison, we have used the best-performing trained
model from Table 1 for each dataset and across
seeds, and we have compared it with these attacks
in terms of both attack success rate and number of
victim model queries.

Results. The results in Table 2 show that the
trained model has achieved a much higher attack
success rate than the corresponding adversarial at-
tacks for a comparable average number of queries
(e.g., 85.5% with 48 queries vs 67.7% with 52 for
Rotten Tomatoes). In fact, its attack success rate
has been similar to that of the most query-expensive
attack tested, despite requiring a fraction of its
queries (48 vs 976 on average for Rotten Toma-
toes and 1331 for Financial PhraseBank). More
so, the trained model has been able to generate
not one, but many successful adversarial examples
per original, averaging 19.6 out of 48 for Rotten
Tomatoes and 27.6 for Financial PhraseBank. This
staggering difference directly stems from the inher-
ent design advantages of the seq2seq approach over
the token-modification approach (which all these
attacks use).

5.3 Human validation of label invariance

We have also performed a small-scale human val-
idation of the label invariance. The assessment
has been performed using samples from the Finan-
cial PhraseBank test set and comparing adversarial
examples from the trained model, the untrained
model, and the most successful adversarial attack
we compared against. The results have showed that
the trained model and the compared attack have
been able to retain the same ground-truth label as
the original example at approximately similar rates
(59% and 50%, respectively). The untrained model
has been able to retain the ground-truth label in all
cases, yet at the price of a drastically lower success
rate. Note that, even if discounted by these empir-
ical label-invariance rates, the success rate of the
trained model would still remain more than double
that of the untrained model. Appendix D presents
the full details of this validation.

6 Discussion

6.1 Impact of the decoding method

We have compared the different decoding methods
used during evaluation/inference in terms of attack
success rates and a diversity score. To this aim,
we have defined an ad-hoc diversity score as the
number of clusters returned by a clustering algo-
rithm (HDBSCAN (Mclnnes et al., 2017)) over the
generated candidate sets (full details are available
in Appendix E).

Figure 4a shows that in terms of attack success
rate, beam search has been the best, followed by
low-diversity beam search, although we observed
significant variation between runs for all methods.
In turn, Figure 4b shows that in terms of the diver-
sity score, low-diversity beam search has generated
the most diverse examples, while sampling has gen-
erated the least. Appendix E also shows a compari-
son of fluency and diversity of generated bi-grams.
Overall, it could be argued that low-diversity beam
search has proved the best decoding method for
this task in terms of success attack rate/diversity
trade-off.

6.2 Learned strategies

During training, the model has displayed a wide
range of different generating behaviours, such as
phrase shuffling, synonym swapping and double
negatives, a selection of which is shown in Table 3.
Some behaviours have proved compatible with our
validity constraints, others have violated them. In

O sampling B Beam search [Low-diversity beam search
[High-diversity beam search
100

o gég

60

.

20

Attack Success %

RT FP

(a)

O Sampling B Beam search [Low-diversity beam search
[High-diversity beam search

Clusters

[N}

RT FP

(b)

Figure 4: Attack success rate and diversity of decoding methods. For each graph: RT = Rotten Tomatoes, FP =
Financial PhraseBank. (a) Attack success rate by decoding evaluation method. Beam search and low-diversity beam
search perform best. (b) Candidate set diversity of each decoding method, which we measure using a cluster-based
score (see Appendix E). More clusters means a more diverse candidate set.

Transformation Example

Original

Genuine paraphrase

Synonym swapping

Case changes
Adding/removing punctuation
Ignoring grammar

Phrase shuffling
Contradictions

Sentence truncation

Padding to max length

Very short sentences

Inserting phone-numbers
Using Unicode characters
Adding linking contrast phrases
Repeating phrases

Change language of fragment
Rhetorical question

Double negatives

safe conduct.

safe conduct, however ambitious and well-intentioned, fails to hit the entertainment bull’s-eye

safe conduct might be ambitious and well-intentioned, but it misses the entertainment bull’s-eye

safe conduct, however ambitious and well-intentioned, fails to strike the entertainment bull’s-eye

safe Conduct, however Ambitious And well-intentioned, fails to hit the entertainment bull’s-eye

safe conduct however ambitious and well-intentioned, fails to hit the entertainment bullseye..:;:

safe conduct ambitious well-intentioned bull’s-eye

safe conduct, fails to hit the entertainment bull’s-eye, however ambitious and well-intentioned

safe conduct, however ambitious and well-intentioned, hit the entertainment bull’s-eye

safe conduct, however ambitious and well-intentioned

safe conduct, however ambitious and well-intentioned, fails to hit the entertainment bull’s-eye and and and and and and

safe conduct, however ambitious and well-intentioned, fails to hit the entertainment bull’s-eye 888-739-5110 888-739-5110
safe cond©\/t, however ambitious and well-intentioned, fails to hit the entertainment bull’s-eye.

although safe conduct, however ambitious and well-intentioned, fails to hit the entertainment bull’s-eye, nonetheless

safe conduct, however ambitious and well-intentioned, fails to hit the entertainment bull’s-eye, entertainment bull’s-eye
safe conduct, however ambitieux et well-intentioned, fails to hit the entertainment bull’s-eye

safe conduct, however ambitious and well-intentioned, fails to hit the entertainment bull’s-eye - but why?

safe conduct, however ambitious and well-intentioned, fails to fail to hit the entertainment bull’s-eye

Table 3: Examples of the model’s generating behaviours during training. Rather than only paraphrasing, the model
has exhibited a variety of different behaviours. We have introduced two additional constraints to disallow the
behaviours of generating very short sentences and adding linking contrast phrases, but we have allowed the others.

the initial stages of our research, we had to adjust
the reward function repeatedly to disallow some
unwanted behaviours, leading to the additional con-
straints of Section 3.5.* Some behaviours, such
as ignoring grammar, can be considered exploita-
tions of the individual components of the reward
function (i.e., “reward hacking’). In addition, the
constraints have not been able to perfectly filter all
the actual adversarial examples. However, since the
components and the constraints are simply proxies
for human preferences, the reward can still be effec-
tive so long that these behaviours remain limited.

7 Conclusion

This paper has proposed an approach for generat-
ing adversarial attacks for a text classifier based on
fine-tuning a seq2seq paraphrase model. The pro-

“This analysis was carried out solely on the training set.

posed approach has trained the paraphrase model
with an original reward function that encourages
misclassifications in the victim model while simul-
taneously ensuring that the generated attacks abide
by a set of validity constraints. The experimen-
tal results over two datasets have shown that the
trained model has been able to produce many more
adversarial examples than the untrained model. It
has also proved much more efficient than compa-
rable token-modification attacks in terms of the
success rate/number of queries trade-off. Future
work could include exploring more efficient and sta-
ble training algorithms, incorporating actual human
preferences into the reward objective, and experi-
menting with different pre-trained seq2seq models,
such as those for style transfer or dialogue genera-
tion.

8 Ethical considerations

In this paper we have trained a model to attack text
classifiers. The obvious danger is that the proposed
approach could be used by an actual adversary to
attack real-world models. The general justification
for adversarial attack research is that the preven-
tative identification of effective attacks can help
identify vulnerabilities and develop defences. In
addition, research on adversarial attacks can con-
tribute to data augmentation for robust model train-
ing.

In terms of biases, the trained model will likely
reflect both the biases of the original examples used
for its input, and those of the baseline paraphraser it
was built upon. However, this seems to be in com-
mon with all other conditional text generators such
as machine translation and summarisation models.
No explicit mitigation has been put in place for
this.

References

Battista Biggio and Fabio Roli. 2018. Wild patterns:
Ten years after the rise of adversarial machine learn-
ing. Pattern Recognition, 84:317-331.

Minhao Cheng, Jinfeng Yi, Pin-Yu Chen, Huan Zhang,
and Cho-Jui Hsieh. 2020. Seq2sick: Evaluating the
robustness of sequence-to-sequence models with ad-

versarial examples. Proceedings of the AAAI Confer-
ence on Artificial Intelligence, 34(04):3601-3608.

Prithiviraj Damodaran. 2021. Parrot: Paraphrase gener-
ation for nlu.

Rotem Dror, Gili Baumer, Segev Shlomov, and Roi
Reichart. 2018. The hitchhiker’s guide to testing
statistical significance in natural language processing.
In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1383—1392. Association for
Computational Linguistics.

Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing
Dou. 2014. HotFlip: White-Box Adversarial Exam-
ples for Text Classification.

Wee Chung Gan and Hwee Tou Ng. 2019. Improv-
ing the robustness of question answering systems to
question paraphrasing. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 6065-6075, Florence, Italy. Asso-
ciation for Computational Linguistics.

Siddhant Garg and Goutham Ramakrishnan. 2020.
BAE: bert-based adversarial examples for text classi-
fication. In Proceedings of the 2020 Conference on

Empirical Methods in Natural Language Processing,
EMNLP 2020, Online, November 16-20, 2020, pages

6174-6181. Association for Computational Linguis-
tics.

Will Grathwohl, Dami Choi, Yuhuai Wu, Geoffrey
Roeder, and David Duvenaud. 2018. Backpropa-
gation through the void: Optimizing control variates
for black-box gradient estimation. In Proceedings of
the 6th International Conference on Learning Repre-
sentations, ICLR 2018.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle
Pineau, Doina Precup, and David Meger. 2018. Deep
reinforcement learning that matters. In Proceed-
ings of the Thirty-Second AAAI Conference on Ar-
tificial Intelligence and Thirtieth Innovative Appli-
cations of Artificial Intelligence Conference and
Eighth AAAI Symposium on Educational Advances in
Artificial Intelligence, AAAT’ 18/TAAT 18/EAAT’ 18.
AAAI Press.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2020. The curious case of neural text de-
generation. In International Conference on Learning
Representations.

Zhiting Hu, Zichao Yang, Xiaodan Liang, Ruslan
Salakhutdinov, and Eric P. Xing. 2017. Toward con-
trolled generation of text. In Proceedings of the
34th International Conference on Machine Learn-
ing, volume 70 of Proceedings of Machine Learning
Research, pages 1587-1596. PMLR.

Mohit Iyyer, John Wieting, Kevin Gimpel, and Luke
Zettlemoyer. 2018. Adversarial example generation
with syntactically controlled paraphrase networks. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pages 1875-1885, New Or-
leans, Louisiana. Association for Computational Lin-
guistics.

Natasha Jaques, Shixiang Gu, Dzmitry Bahdanau,
José Miguel Herndndez-Lobato, Richard E. Turner,
and Douglas Eck. 2017. Sequence tutor: Conserva-
tive fine-tuning of sequence generation models with
kl-control. In Proceedings of the 34th International
Conference on Machine Learning (ICML), volume 70
of Proceedings of Machine Learning Research, pages
1645-1654. PMLR.

Di Jin, Zhijing Jin, Joey Zhou, and Peter Szolovits. 2020.
Is bert really robust? a strong baseline for natural
language attack on text classification and entailment.
Proceedings of the AAAI Conference on Artificial
Intelligence, 34:8018-8025.

Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter
Szolovits. 2019. Is BERT Really Robust? A Strong
Baseline for Natural Language Attack on Text Classi-
fication and Entailment. The Thirty-Fourth AAAI
Conference on Artificial Intelligence, AAAI 2020,
pages 8018-8025.

https://doi.org/https://doi.org/10.1016/j.patcog.2018.07.023
https://doi.org/https://doi.org/10.1016/j.patcog.2018.07.023
https://doi.org/https://doi.org/10.1016/j.patcog.2018.07.023
https://doi.org/https://doi.org/10.1016/j.patcog.2018.07.023
https://doi.org/https://doi.org/10.1016/j.patcog.2018.07.023
https://doi.org/10.1609/aaai.v34i04.5767
https://doi.org/10.1609/aaai.v34i04.5767
https://doi.org/10.1609/aaai.v34i04.5767
https://doi.org/10.1609/aaai.v34i04.5767
https://doi.org/10.1609/aaai.v34i04.5767
http://aclweb.org/anthology/P18-1128
http://aclweb.org/anthology/P18-1128
http://aclweb.org/anthology/P18-1128
https://doi.org/10.18653/v1/P19-1610
https://doi.org/10.18653/v1/P19-1610
https://doi.org/10.18653/v1/P19-1610
https://doi.org/10.18653/v1/P19-1610
https://doi.org/10.18653/v1/P19-1610
https://doi.org/10.18653/v1/2020.emnlp-main.498
https://doi.org/10.18653/v1/2020.emnlp-main.498
https://doi.org/10.18653/v1/2020.emnlp-main.498
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://proceedings.mlr.press/v70/hu17e.html
https://proceedings.mlr.press/v70/hu17e.html
https://proceedings.mlr.press/v70/hu17e.html
https://doi.org/10.18653/v1/N18-1170
https://doi.org/10.18653/v1/N18-1170
https://doi.org/10.18653/v1/N18-1170
http://proceedings.mlr.press/v70/jaques17a.html
http://proceedings.mlr.press/v70/jaques17a.html
http://proceedings.mlr.press/v70/jaques17a.html
http://proceedings.mlr.press/v70/jaques17a.html
http://proceedings.mlr.press/v70/jaques17a.html
https://doi.org/10.1609/aaai.v34i05.6311
https://doi.org/10.1609/aaai.v34i05.6311
https://doi.org/10.1609/aaai.v34i05.6311
https://doi.org/10.1609/aaai.v34i05.6311
https://doi.org/10.1609/aaai.v34i05.6311
https://doi.org/10.1609/aaai.v34i05.6311
https://doi.org/10.1609/aaai.v34i05.6311
https://doi.org/10.1609/aaai.v34i05.6311

Solomon Kullback and R. A. Leibler. 1951. On in-
formation and sufficiency. Annals of Mathematical
Statistics, 22:79-86.

Jiaying Lu, Xin Ye, Yi Ren, and Yezhou Yang. 2022.
Good, better, best: Textual distractors generation for
multi-choice VQA via policy gradient. In CVPR
2022 Workshop on Open-Domain Retrieval Under a
Multi-Modal Setting, O-DRUM @ CVPR 2022.

P. Malo, A. Sinha, P. Korhonen, J. Wallenius, and
P. Takala. 2014. Good debt or bad debt: Detecting se-
mantic orientations in economic texts. Journal of the

Association for Information Science and Technology,
65.

Leland Mclnnes, John Healy, and Steve Astels. 2017.
hdbscan: Hierarchical density based clustering. The
Journal of Open Source Software, 2(11).

Leland Mclnnes, John Healy, Nathaniel Saul, and Lukas
GroBberger. 2018. Umap: Uniform manifold ap-
proximation and projection. Journal of Open Source
Software, 3(29):861.

Paul Michel, Xian Li, Graham Neubig, and Juan Pino.
2019. On evaluation of adversarial perturbations for
sequence-to-sequence models. In Proceedings of the
2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and
Short Papers), pages 3103-3114.

John Morris, Eli Lifland, Jack Lanchantin, Yangfeng Ji,
and Yanjun Qi. 2020a. Reevaluating adversarial ex-
amples in natural language. In Findings of the Asso-
ciation for Computational Linguistics: EMNLP 2020,
pages 3829-3839, Online. Association for Computa-
tional Linguistics.

John Morris, Eli Lifland, Jin Yong Yoo, Jake Grigsby,
Di Jin, and Yanjun Qi. 2020b. Textattack: A frame-
work for adversarial attacks, data augmentation, and
adversarial training in nlp. In Proceedings of the
2020 Conference on Empirical Methods in Natu-
ral Language Processing: System Demonstrations,

pages 119-126.

Nikola Mrksi¢, Diarmuid O Séaghdha, Blaise Thom-
son, Milica Gasi¢, Lina Rojas-Barahona, Pei-Hao Su,
David Vandyke, Tsung-Hsien Wen, and Steve Young.
2016. Counter-fitting Word Vectors to Linguistic
Constraints. In Proceedings of HLT-NAACL.

Bo Pang and Lillian Lee. 2005. Seeing stars: Exploiting
class relationships for sentiment categorization with
respect to rating scales. In Proceedings of the ACL.

Fanchao Qi, Yangyi Chen, Xurui Zhang, Mukai Li,
Zhiyuan Liu, and Maosong Sun. 2021. Mind the style
of text! adversarial and backdoor attacks based on
text style transfer. In Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 4569-4580, Online and Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text

transformer. Journal of Machine Learning Research,
21(140):1-67.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics.

Shuhuai Ren, Yihe Deng, Kun He, and Wanxiang Che.
2019. Generating Natural Language Adversarial Ex-
amples through Probability Weighted Word Saliency.
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1085—
1097.

Yankun Ren, Jianbin Lin, Siliang Tang, Jun Zhou,
Shuang Yang, Yuan Qi, and Xiang Ren. 2020.
Generating natural language adversarial examples
on a large scale with generative models. CoRR,
abs/2003.10388.

Tom Roth, Yansong Gao, Alsharif Abuadbba, Surya
Nepal, and Wei Liu. 2021. Token-modification ad-
versarial attacks for natural language processing: A
survey.

Richard S. Sutton, David McAllester, Satinder Singh,
and Yishay Mansour. 1999. Policy gradient methods
for reinforcement learning with function approxima-
tion. In Proceedings of the 12th International Con-
ference on Neural Information Processing Systems,
NIPS’99, page 1057-1063, Cambridge, MA, USA.
MIT Press.

Ashwin Vijayakumar, Michael Cogswell, Ramprasaath
Selvaraju, Qing Sun, Stefan Lee, David Crandall,
and Dhruv Batra. 2018. Diverse beam search for
improved description of complex scenes. Proceed-
ings of the AAAI Conference on Artificial Intelligence,
32(1).

Prashanth Vijayaraghavan and Deb Roy. 2019. Generat-
ing black-box adversarial examples for text classifiers
using a deep reinforced model. In Joint European
Conference on Machine Learning and Knowledge
Discovery in Databases, pages 711-726. Springer.

Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gard-
ner, and Sameer Singh. 2019. Universal adversarial
triggers for attacking and analyzing NLP. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-1JCNLP), pages 2153-2162, Hong
Kong, China. Association for Computational Linguis-
tics.

Eric Wallace, Mitchell Stern, and Dawn Song. 2020.
Imitation attacks and defenses for black-box machine
translation systems. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language

https://doi.org/10.21105/joss.00205
https://doi.org/10.21105/joss.00861
https://doi.org/10.21105/joss.00861
https://doi.org/10.21105/joss.00861
https://doi.org/10.18653/v1/2020.findings-emnlp.341
https://doi.org/10.18653/v1/2020.findings-emnlp.341
https://doi.org/10.18653/v1/2020.findings-emnlp.341
https://doi.org/10.18653/v1/2021.emnlp-main.374
https://doi.org/10.18653/v1/2021.emnlp-main.374
https://doi.org/10.18653/v1/2021.emnlp-main.374
https://doi.org/10.18653/v1/2021.emnlp-main.374
https://doi.org/10.18653/v1/2021.emnlp-main.374
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084
https://doi.org/10.18653/v1/p19-1103
https://doi.org/10.18653/v1/p19-1103
https://doi.org/10.18653/v1/p19-1103
http://arxiv.org/abs/2003.10388
http://arxiv.org/abs/2003.10388
http://arxiv.org/abs/2003.10388
https://doi.org/10.48550/ARXIV.2103.00676
https://doi.org/10.48550/ARXIV.2103.00676
https://doi.org/10.48550/ARXIV.2103.00676
https://doi.org/10.48550/ARXIV.2103.00676
https://doi.org/10.48550/ARXIV.2103.00676
https://doi.org/10.1609/aaai.v32i1.12340
https://doi.org/10.1609/aaai.v32i1.12340
https://doi.org/10.1609/aaai.v32i1.12340
https://doi.org/10.18653/v1/D19-1221
https://doi.org/10.18653/v1/D19-1221
https://doi.org/10.18653/v1/D19-1221
https://doi.org/10.18653/v1/2020.emnlp-main.446
https://doi.org/10.18653/v1/2020.emnlp-main.446
https://doi.org/10.18653/v1/2020.emnlp-main.446

Processing (EMNLP), pages 5531-5546, Online. As-
sociation for Computational Linguistics.

Ke Wang and Xiaojun Wan. 2018. Sentigan: Generating
sentimental texts via mixture adversarial networks.
pages 4446-4452.

Xiaosen Wang, Jin Hao, Yichen Yang, and Kun He.
2021. Natural language adversarial defense through
synonym encoding. In Proceedings of the Thirty-
Seventh Conference on Uncertainty in Artificial In-
telligence, UAI 2021, Virtual Event, 27-30 July 2021,
volume 161 of Proceedings of Machine Learning
Research, pages 823-833. AUAI Press.

Ronald J. Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforcement
learning. Mach. Learn., 8(3—4):229-256.

Catherine Wong. 2017. Dancin seq2seq: Fooling text
classifiers with adversarial text example generation.

Jin Yong Yoo, John Morris, Eli Lifland, and Yanjun Qi.
2020. Searching for a search method: Benchmarking
search algorithms for generating NLP adversarial ex-
amples. In Proceedings of the Third BlackboxNLP
Workshop on Analyzing and Interpreting Neural Net-
works for NLP, pages 323—332, Online. Association
for Computational Linguistics.

Wei Emma Zhang, Quan Z. Sheng, Ahoud Alhazmi,
and Chenliang Li. 2020. Adversarial Attacks on
Deep-learning Models in Natural Language Process-
ing. ACM Transactions on Intelligent Systems and
Technology, 11(3):1-41.

Zhengli Zhao, Dheeru Dua, and Sameer Singh. 2018.
Generating natural adversarial examples. In 6¢h In-
ternational Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May
3, 2018, Conference Track Proceedings. OpenRe-
view.net.

Daniel M. Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B.
Brown, Alec Radford, Dario Amodei, Paul Chris-
tiano, and Geoffrey Irving. 2019. Fine-tuning lan-
guage models from human preferences. arXiv
preprint arXiv:1909.08593.

11

https://doi.org/10.24963/ijcai.2018/618
https://doi.org/10.24963/ijcai.2018/618
https://doi.org/10.24963/ijcai.2018/618
https://proceedings.mlr.press/v161/wang21a.html
https://proceedings.mlr.press/v161/wang21a.html
https://proceedings.mlr.press/v161/wang21a.html
https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696
https://doi.org/10.48550/ARXIV.1712.05419
https://doi.org/10.48550/ARXIV.1712.05419
https://doi.org/10.48550/ARXIV.1712.05419
https://doi.org/10.18653/v1/2020.blackboxnlp-1.30
https://doi.org/10.18653/v1/2020.blackboxnlp-1.30
https://doi.org/10.18653/v1/2020.blackboxnlp-1.30
https://doi.org/10.18653/v1/2020.blackboxnlp-1.30
https://doi.org/10.18653/v1/2020.blackboxnlp-1.30
https://doi.org/10.1145/3374217
https://doi.org/10.1145/3374217
https://doi.org/10.1145/3374217
https://doi.org/10.1145/3374217
https://doi.org/10.1145/3374217
https://openreview.net/forum?id=H1BLjgZCb
https://arxiv.org/abs/1909.08593
https://arxiv.org/abs/1909.08593
https://arxiv.org/abs/1909.08593

A Training details

This section provides all the details of our training
setup.

We have used an AdamW optimiser with early
stopping, using the attack success rate of the val-
idation set as the metric, and stopping once the
metric dropped below the running median, or when
a maximum number of epochs was reached (100 for
Rotten Tomatoes, 200 for Financial PhraseBank).
We have not done any layer freezing during training
as we noticed that it tended to reduce performance.

After the sample selection from the datasets, the
splits contained the following number of examples:
Rotten Tomatoes — training: 2972, validation: 367,
test: 359; Financial PhraseBank — training: 1370,
validation: 167, test: 159. The hyperparameters
that have been kept constant across all experiments
are listed in Table 4. The details of the various
models — paraphrase model, victim models, and
reward component models — are given in Table 5.

Hyperparameter Value
General

LR 1x107*
Batch size 32
Gradient accumulation steps 2

Max paraphrase length 48

Min paraphrase length 3

Max original length 32
Padding multiple 8

Training generation

Generated sequences per original 1

Top-p 0.95
Eval generation

Generated sequences per original 48
Top-p (S) 0.95
Temperature (S) 1
Number of beams (BS, DBS) 48
Diversity penalty (DBS) 1
Reward function

Reward bounds [0, o =10]
Victim degradation multiplier () 35
Dk, scaling coefficient (3) 0.4
Character difference threshold +30
Cosine similarity threshold 0.8 (>)
NLI contradiction threshold 0.2 (<)
Linguistic acceptability threshold 0.5 (>)

Table 4: Hyperparameters used for training and evalu-
ation across all experiments. S refers to sampling, BS
to beam search, DBS to the two diverse beam search
conditions, and NLI to natural language inference. The
signs for the thresholds indicate the direction needed to
meet the condition.

12

The GPU model used for training has been an
NVIDIA Quadro RTX 6000 with 24GB RAM.
Each training run has used a single GPU and the
runtime varied from around 4 hours to around 64.
The runtime depended heavily on the decoding
method (sampling was the fastest) and the max-
imum number of epochs. The training could be
potentially sped up by reducing the number of the
generated paraphrases during validation. In addi-
tion, using a GPU with more memory would allow
increasing the batch size, which would also reduce
the training time considerably. Occasionally, for
some random seeds and conditions, we have run
out of memory on the GPU, most likely due to un-
usually long predictions; repeating the runs with
different seeds has always circumvented this issue.

B Limitations

The proposed approach is certainly not without
limitations. The training process is GPU-intensive,
and a training run can take from a few hours to a
few days on a single GPU. A contemporary GPU
with at least 16 GB of RAM is probably the min-
imum computing requirement, with more RAM
allowing larger batch sizes and training speed-ups.
In addition, during training the model must query
the victim model many times, which may not be
possible under many scenarios. We have also ob-
served a high variance in the results across random
seeds. This problem is well known in reinforce-
ment learning (Henderson et al., 2018) and may
be mitigated by more sophisticated baselines, such
as RELAX (Grathwohl et al., 2018). Lastly, the
proposed approach seems to work best for short
sentences, as the paraphrase quality starts to visibly
drop as the sentence length increases. However,
this may not be a major limitation for the gener-
ation of adversarial attacks since larger blocks of
text could always be subdivided.

As a final note, the experiments have only cov-
ered two datasets in English and have not investi-
gated other languages.

C Token-modification attacks

We have created a variety of attack types using the
TextAttack library of (Morris et al., 2020b). For
all attacks, we have set the goal function as un-
targeted classification (i.e., attacking the correct
label with any other class). We have varied the
transformation, the search method, and some hy-
perparameters of the algorithms, and used the sets

Purpose Size (MB) Identifier

Paraphraser 892 prithivida/parrot_paraphraser_on_T5 (Damodaran, 2021)

Victim model (RT) 268 textattack/distilbert-base-uncased-rotten-tomatoes

Victim model (FP) 329 mrm8488/distilroberta-fine-tuned-financial-news-sentiment-analysis
Acceptability 47 textattack/albert-base-v2-CoLA

STS 134 sentence-transformers/paraphrase-MiniL M-L12-v2

Contradiction 54 howey/electra-small-mnli

Table 5: The models used in this paper. We used small, distilled models to increase training speed and because of
our GPU memory requirements, but larger models would give better performance. As above, RT stands for Rotten
Tomatoes, FP for Financial PhraseBank. All identifiers refer to models on the Hugging Face Model Hub.

of constraints of Section 3.5. We have also used
two extra constraints commonly used to improve
the effectiveness of the search (e.g. (Cheng et al.,
2020; Jin et al., 2019)): the attacks have not been
allowed to modify the same word twice, nor modify
stopwords. Tables 5 and 6 provide full details.

D Human validation of the adversarial
examples

This section provides full details of the human val-
idation of the adversarial examples. The valida-
tion has used three annotators, one of which was
a native English speaker and two were proficient
English second-language speakers>.

D.1 Evaluated approaches

We have compared the untrained paraphrase model,
the trained model, and the best-performing token-
modification algorithm (LM-WADR-BS-bw5m25
from Table 2) based on the attack success rate.
For the trained model we have chosen a run us-
ing low-diversity beam search, since in Section
6.1 we have argued that this has proved the best
decoding method overall.

D.2 Evaluated examples

We have used 41 original examples from the Finan-
cial PhraseBank test set and generated adversarial
examples for them. The original examples were
split into two groups. The first is where all the
three methods were able to produce adversarial ex-
amples (18 examples). In the second, the trained
model and the token-modification algorithm were
able to produce adversarial examples, but the un-
trained paraphrase model was not (23 examples).
The original examples have been selected so as to
have a close-to-balanced class distribution.

> And, for full disclosure, co-authors of this submission.
For this reason, the validation has been carried out blindly,

without knowledge of the generating approach of the examples
under assessment.

13

D.3 Filtering adversarial candidates

Both the untrained paraphrase model and the
trained model can generate up to 48 adversarial ex-
amples per original example, which are too many
for a human annotator to easily evaluate. To amend
this, we have filtered the set of generated adver-
sarial examples to get a smaller, selected subset
that is less onerous to evaluate. The pseudocode
for the filtering is provided in Algorithm 1. The
goal is to end up with a set of roughly 6-12 can-
didates per original example that approximately
preserve the diversity of the larger set. In brief,
the algorithm computes sentence embeddings for
all candidates, applies a dimensionality reduction
algorithm, UMAP (Mclnnes et al., 2018), and then
applies a hierarchical clustering algorithm, HDB-
SCAN (Mclnnes et al., 2017). We have eventually
sampled a few candidates from each cluster, with
the actual number depending on the number of
clusters extracted by HDBSCAN.

Algorithm 1 Pseudocode for filtering the generated
adversarial examples.
Select all successes S from candidate set C € S
if |S| < 6 then
Return §' =S
else
Compute sentence embeddings E(s),Vs €

S
Reduce dimensionality to get E'(s),Vs € S
Cluster E'(s)
Create S’ by sampling from each cluster
Return §/

end if

D.4 Label invariance

The aim of the validation has been to assess
whether the adversarial examples generated by the
three approaches had retained the same ground-
truth label as the original, and this question was

https://huggingface.co/prithivida/parrot_paraphraser_on_T5
https://huggingface.co/textattack/distilbert-base-uncased-rotten-tomatoes
https://huggingface.co/mrm8488/distilroberta-fine-tuned-financial-news-sentiment-analysis
https://huggingface.co/textattack/albert-base-v2-CoLA
https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L12-v2
https://huggingface.co/howey/electra-small-mnli
https://huggingface.co/models

Attack identifier Transformations Search method Max candidates Parameters

LM-WR-BS-m5bw2 Word replacement using language model Beam search 5 bw =2
LM-WR-BS-m25bw5 ‘Word replacement using language model Beam search 25 bw =
CF-WR-BS-m25bw5 Word replacement using CF embedding Beam search 25 bw =
LM-WR-GA-p60mi20mr5 Word replacement using language model Genetic algorithm 25 p =60, mi =20,mr=>5
LM-WR-BS-m50bw10 ‘Word replacement using language model Beam search 50 bw = 10
LM-WADR-BS-m25bw5 Word replacement, addition, deletion using language model ~Beam search 25 bw =5

TextFooler Word replacement using CF embedding WIR (delete) 50 -

BAE-R Word replacement using language model WIR (delete) 50 -

IGA Word replacement using CF embedding Genetic algorithm 50 p=60,mi=20,mr =5

Table 6: Token modification attacks and their parameters. All attacks were generated using the TextAttack package.
We have used a DistilRoBERTa language model”. CF embedding refers to GloVE word embeddings that have been
counter-fitted, a procedure introduced in Mrksi¢ et al. (2016) and commonly used in finding word replacements.
WIR (delete) stands for Word Importance Ranking by deletion, a search method where the importance of each token
is estimated by deleting it and measuring the true-class confidence drop in the victim model. We use bw to mean
beam width, and for the genetic algorithm search parameters, p is the population size, ms the maximum number of
iterations, and mr the maximum number of replacements per index.
“https://huggingface.co/distilroberta-base

—— Sample = Beam search = Low-diversity beam search
—— High-diversity beam search

[sample [Beamsearch [Low-diversity beam search 15K

[High-diversity beam search 3
200 . . - 10k
s
o 0
s . £ 5k
i H °
. [5
150 i : & o
=] . s o s}
B * H £ 25k
= L 2
3] : s ! 9 0k
a 100 (] . #*
S :
© 15k n
3 o
o}
< mkh’\’\/\—y__—w—\,ﬂw
50
5k%
0
0 0 20 40 60 80 100
RT FP Epoch
(a) (b)

Figure 5: Fluency scores for the various decoding methods. RT = Rotten Tomatoes, FP = Financial PhraseBank.
(a) Median perplexity of the generated candidate sets, with examples combined from the top two runs of each
decoding method. Three of the methods have been approximately comparable, while high-diversity beam search
has consistently produced the least fluent candidates. (b) Average number of distinct bigrams generated per epoch
performing evaluation on the training set. High-diversity beam search (in purple) has consistently generated more
unique bigrams than the other methods. The sampling decoding method has displayed a marked decrease in diversity
along the epochs, while the others have remained approximately constant. These results confirm the expected
trade-off between fluency and diversity.

asked to the annotators (Figure 6 shows a screen- model has degraded paraphrasing capability com-
shot of the instructions). To determine the senti- pared to the original model, but it still has achieved
ment, we have used the same instructions as the higher label invariance than the token-modification
original annotation of the Financial PhraseBank approach. These results should be judged alongside
dataset (Malo et al., 2014). We have used majority the success rate, which has been approximately 4
voting among the annotators to determine the label ~ times higher for the trained model than the original
invariance. model on the Financial PhraseBank test set (Ta-
ble 1). It is also worth noting that label invariance
rates vary considerably in the literature, foremost
because there are no “standard settings” across pa-

The results of this assessment have been: 100%
of the adversarial examples generated by the orig-
inal paraphrase model have retained their label;
59% for the trained model; and 50% for the token- ~ P¢!S: The rates depend on many factors, such as the
modification algorithm. This shows that the trained instructions given to the evaluators, their harshness

14

https://huggingface.co/distilroberta-base

or lenience, the use of crowd-sourcing platforms,
the datasets used, etc. The most important require-
ment is that the evaluation is applied equally to all
baselines, which we do here.

E Analysis of the decoding methods

This section describes the analysis of the four de-
coding methods and shows further results on flu-
ency and diversity.

Preprocessing. To measure diversity and flu-
ency, we have selected the two runs with the highest
attack success rate per decoding condition across
both training temperatures.®

Diversity. To quantify the diversity, we have
built a score using the same procedure used for the
selection of the adversarial examples for the human
validation, described in full in Appendix D.3. The
score has been simply defined as the number of
distinct clusters returned by HDBSCAN, with the
individual examples not included in any cluster
counted as clusters themselves.

The results are shown in Figure 4 in the main pa-
per. We found that the high-diversity beam search
showed less diversity than the low-diversity beam
search. This was because it tended to generate
many “degenerate” examples that were clustered
together by our clustering procedure. The sampling
method showed low diversity as it generated fewer
unique examples on average than the other condi-
tions. We speculate that the token probability over
the vocabulary tends to become more concentrated
as training progresses, as supported by Figure 5b.

Fluency. As commonly done (e.g. (Wang and
Wan, 2018)), we have used the language model’s
perplexity as a proxy for fluency. We have also
used the number of unique generated bigrams per-
forming evaluation on the training set after every
epoch as a further measurement of diversity. The
results are shown in Figure 5.

F Examples of generated text

Tables 7 and 8 show examples of the generated
text. We present one example per dataset, including
all the decoding methods with the best untrained
and trained models, and the best-performing token-
modification attack. For reasons of space, the ex-
amples only show eight generated adversarial can-
didates for each approach.

®We select the best two because there is significant varia-
tion in runs between random seeds and it would not be benefi-
cial to compare models that have failed to train properly.

15

Each decoding method has exhibited specific
trends. Sampling and beam search have gener-
ated examples that are very similar to each other,
only differing slightly. Additionally, sampling has
generated fewer unique candidates than the other
methods. Both low and high-diversity beam search
have generated good quality candidates, but also
many that were ungrammatical or incoherent; and
more so for the high-diversity case. Overall, we
notice that the generated adversarial candidates
seem to frequently contain consistent phrases or
terms, which makes them universal adversarial ex-
amples (Wallace et al., 2019). The training proce-
dure clearly learns which phrases affect sentiment
across many examples, and the approach inserts
them into its generated solutions. This is less de-
sirable than a model that can generate “tailored”
paraphrases for each original example. The para-
phrasing capability of the trained model is still
remarkable, although at times visibly lower than
that of the untrained model. Overall, the trained
model seems to have been able to generate better
paraphrases on Financial PhraseBank than Rotten
Tomatoes, likely because of its simpler language.

Approach

Generated Text

Original example

suffers from unlikable characters and a self-conscious sense of its own quirky hipness.

Token-modification

suffers from unlikable characters and gains a self-conscious sense of its own quirky hipness .

Sampling, untrained

suffers from unlikable characters and has a sense of self-conscious hipness.

suffers from unlikable characters and a self-conscious sense of its own quirky hipness.
suffers from unlikable characters and a self-conscious sense of its own quirky hipness..
suffers from unlikable characters and an in-your-face sense of quirky hipness.

suffers from unlikable characters and a self-conscious sense of its own quirky hipness...
suffers from unlikable characters and an internal sense of eccentric hipness..

suffers from unlikeable characters and a self-conscious sense of its own quirky hipness.
suffers from unlikable characters and self-conscious sense of humour.

Sampling, trained

Unlikable characters may even have a self-conscious hipness

Unlikable characters may even have a self-conscious sense of their own quirky hip
Unlikable characters may even have self-conscious hipness

Unlikable characters may even have a self-conscious sense of their own hip
Unlikable characters might even have an self-conscious hip hop habit

Unlikable characters might even have a self-conscious hip hop attitude

Unlikable characters might even have a self-conscious sense of their own quirky hip
Unlikable characters may even have self-conscious hip-ness

Beam search, untrained

it suffers from unlikable characters and a self-conscious sense of its own quirky hipness.
suffers from unlikable characters and a self-conscious sense of its own quirky hip-hop.
suffers from unlikable characters and a self-conscious sense of its own quirky hip-ness.
suffers from unlikable characters and self-conscious sense of its own quirky hipness.

he suffers from unlikable characters and a self-conscious sense of his own quirky hipness.
suffers from unlikable characters and a sense of self-consciousness of its own quirky hipness..
suffers from unlikable characters and a self-conscious sense of quirky hipness..

suffers from unremarkable characters and a self-conscious sense of its own quirky hipness.

Beam search, trained

It suffers from unlikable characters and a self-conscious sense of its own quirky hipness but there is something
It suffers from unlovable characters and a sense of its own quirky hipness but there is something

It suffers from unlikable characters and an unconscious sense of its own quirky hipness but there is something
It suffers from unlikable characters and an inner sense of its own quirky hipness but there is something

It suffers from unlikable characters that have a sense of their own quirky hipness but there is something

It suffers from an unlikable character and a sense of its own quirky hipness but there is something

It suffers from unlikable characters and a feeling of its own quirky hipness but there is something

It suffers from unlikable characters and a sense of its own quirky hipness but there is some

Low-diversity beam search, untrained

suffers from unlikable characters and a self-conscious sense of its own quirky hipness.

suffers from unlikable characters and a self-conscious sense of its own quirky hipness. ”

suffers from unlikable characters and a self-conscious sense of its own quirky hipness.

” suffers from unlikable characters and a self-conscious sense of its own quirky hipness

a character that suffers from an unlikable character and a self-conscious sense of its own quirky hipness
there is a lack of likeable characters and a fear of its own eccentricity.

there is a lack of likeable characters and a fear of its own quirky hips.

there is a lack of likeable characters and a sense of its own quirky hipness..

Low-diversity beam search, trained

It suffers from unlikable characters but uses a sense of its own quirky hipness

It suffers from unlikable characters but includes a sense of its own quirky hip

It suffers from unlikable characters but often displays its own quirky hip

It comes from unlikable characters but uses a sense of its own quirky hipness

It comes from unlikable characters but includes a sense of its own quirky hipness

It struggles with unlikable characters but often displays its own quirky hip

It also has unlikable characters but is intended for its own quirky hip

It struggles with unlikable characters but often displays its own quirky hipness but uses some hip

High-diversity beam search, untrained

has unlikable characters and a sense of its own quirky hipness.

it has unlikable characters and a self-conscious sense of its own quirky hipness.
suffers from unlikable characters and an uncanny sense of its own quirky hipness.

it has unlikable characters and a sense of its own quirky hipness.

the characters are not likable but the sense of their own quirky hipness is a problem.
the characters are not likable but the sense of their own quirky hipness is a problem.
has unlikable characters and a self-conscious sense of its own quirky hipness....
shows an unlikely character with an unrequited feeling of hipster...

High-diversity beam search, trained

The unlikable characters should have a self-conscious sense of hipness

Sometimes it should suffer from unlikable characters but sometimes self-conscious senses of hipness
Unlikable characters should have a self-conscious sense of hipness

This can involve unlikable characters but sometimes self-conscious hipness.

It must suffer from unlikeable characters but a self-conscious sense of hipness

The unlikeable characters must have a self-conscious sense of hipness

The unlikeable character should have a self-conscious sense of its own hipness

it will have to suffer from unlikable characters but often quirky hipness

Table 7: Examples of generated adversarial candidates for the various approaches for an original example from
the Rotten Tomatoes dataset. The original example is in black and has negative sentiment. We use light grey for
unsuccessful candidates and green for a successful adversarial example that changes sentiment to positive.

16

Approach

Generated Text

Original example

In addition , the company will reduce a maximum of ten jobs .

Token-modification

In addition , the company will reduce a maximum requirement of ten jobs .

Sampling, untrained

In addition, the company can reduce the jobs of up to ten people.
In addition the company will cut a maximum of ten jobs.

In addition he says the company will close a maximum of ten jobs.
In addition, the company will eliminate up to ten jobs.

In addition the company will reduce up to ten jobs.

In addition the company has cut a maximum of ten jobs.

In addition ” the company will cut 10 jobs in 10 months.

In addition to the job cuts the company will limit itself to ten jobs.

Sampling, trained

In addition, the company has succeeded in reducing a maximum of ten jobs.
In addition, the company has succeeded in decreasing a maximum of ten jobs.
In addition, the company has succeeded in cutting a maximum of ten jobs.

In addition, the company has succeeded inreducing a maximum of ten jobs.

Beam search, untrained

In addition, the company will reduce a maximum of ten jobs.
In addition he will reduce a maximum of ten jobs.

In addition, the company will reduce a maximum of ten jobs.
The company will also reduce a maximum of ten jobs.

In addition, the company will cut a maximum of ten jobs. ”

In addition the company will cut up to ten jobs.

In addition, the company will eliminate a maximum of ten jobs.
In addition the company will cut a maximum of ten jobs..

Beam search, trained

In addition, the company will also be successful in reducing a maximum of 10 jobs
In addition, the company will also see success in reducing a maximum of 10 jobs
In addition, the company will also see success in reducing a maximum of 10 jobs.
In addition, the company will also see success in reducing ten jobs.

In addition, the company will also see success at reducing a maximum of 10 jobs.
In addition, the company will also have success in cutting a maximum of 10 jobs.
In addition, the company will also find success in reducing a maximum of 10 jobs
In addition, the company will also find success in reducing a maximum of 10 jobs.

Low-diversity beam search, untrained

In addition, the company will reduce a maximum of ten jobs.

In addition, the company will reduce a maximum of ten jobs..

In addition, the company will reduce a maximum of ten jobs. ”

In addition the company will cut a maximum of ten jobs. ”

In addition, the company will reduce a maximum of ten jobs...

In addition, the company will reduce a maximum of ten jobs in the region.

He said: In addition he would reduce the company’s total number of jobs to 10.
In addition, the company will reduce a maximum of ten job cuts.

Low-diversity beam search, trained

In addition, the company will benefit from reducere ten jobs.

This is good for decreasing a maximum of 10 jobs.

Along with this reduction of 10 jobs, the company will benefit from reductions.
The company will benefit from r, /©duiing a maximum of 10-jobs.

In addition, the company will benefit from reductions for ten jobs.

In addition the company will benefit from reductions for the maximum of 10 jobs.
As aresult the company will benefit from reductions of up to 10 jobs.

The company will benefit from reducing ten jobs.

High-diversity beam search, untrained

The company will also reduce a maximum of ten jobs.

A further reduction of ten jobs is planned. ”

A maximum of ten jobs will be lost in the company.
Furthermore, the company will reduce up to ten jobs..

The company will reduce its workforce by up to 10 percent. ”
It also plans to eliminate at least ten jobs in the company..
Further the company will reduce a maximum of 10 jobs.
Additionally the company will lose up to ten jobs.

High-diversity beam search, trained

The company also reduced the reduction of a maximum of ten jobs.

Furthermore the company will reduce the reduction of ten jobs.

This also improved reduction of up to ten jobs.

The company also reduced the reduction of ten jobs..

the company will also improve reductions for up to ten jobs.

Also the company would reduce a maximum of ten jobs.

The company also reduced the reduction of ten jobs...

Additionally the firm would also improve the reduction of the maximum of 10 jobs.

Table 8: Examples of generated adversarial candidates for the various approaches for an original example from
the Financial PhraseBank dataset. The original example is in black and has negative sentiment. We use light grey
for unsuccessful candidates, and green and blue for successful adversarial examples that changed the sentiment to
positive and neutral, respectively. (NB: the “Sampling, trained” approach only produced four unique candidates for

this example.)

17

In the first column, simply put 1 if the paraphraseis the same sentiment as the original and 0 if it is different.

The label 0 means negative, 1 means neutral, and 2 means positive.

Consider the sentences fram the view paint of an investor. Would the sentence have positive, negative, or
neutral influence on the stock price? Sentences which have a sentiment that is not relevant from an

economic or financial perspective are considered neutral.

Figure 6: Screenshot of the instructions provided to the annotators for the human validation.

18

