
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

HOW FAR CAN UNSUPERVISED RLVR SCALE LLM
TRAINING?

Anonymous authors
Paper under double-blind review

ABSTRACT

Unsupervised Reinforcement Learning with Verifiable Rewards (URLVR) offers
a pathway for Large Language Models (LLMs) to improve without human super-
vision. Particularly, many works use model intrinsic information as rewards for
URLVR, showing promising improvements, yet their potential and limitations re-
main unclear. In this work, we revisit URLVR through the lens of intrinsic rewards.
We present a unified theoretical framework showing that intrinsic reward methods
share a core mechanism: they trade uncertainty for performance by leveraging
the model’s prior knowledge to sharpen output distributions. Empirical analysis
confirms this tradeoff, revealing distinct failure modes and showing that collapse is
not inevitable in small, domain-specific regimes such as test-time training. Beyond
these findings, early intrinsic reward dynamics also provide a lightweight indi-
cator of model-task priors, complementing pass@k in assessing RL trainability.
These insights highlight both the promise and pitfalls of URLVR, motivating future
directions such as external rewards and hybrid supervision strategies.

1 INTRODUCTION

Reinforcement Learning with Verifiable Rewards (RLVR) has been central to recent breakthroughs
in enhancing reasoning capability in large language models (LLMs). In RLVR, models learn from
rewards that can be verified against ground truth, such as correctness in mathematics or successful code
execution. Recent leading models including OpenAI’s o1 and o3 (Jaech et al., 2024; OpenAI, 2025),
DeepSeek-R1 (Guo et al., 2025), Gemini 2.5 (Comanici et al., 2025), and the Qwen3 series (Yang
et al., 2025; Team, 2025) have achieved remarkable performance on mathematics, coding, and
science benchmarks by scaling supervised RLVR. However, on the path toward superintelligence,
this approach faces a crucial limitation: scaling supervision requires prohibitively high human costs,
and as models reach or surpass human expertise in specialized domains, obtaining reliable ground
truth supervision becomes increasingly infeasible (Burns et al., 2023; Silver & Sutton, 2025).

This supervision bottleneck has spurred growing interest in Unsupervised RLVR (URLVR) (Zuo
et al., 2025), which derives rewards without ground truth labels for LLM training. This transition
from supervised to unsupervised training parallels the success of pretraining scaling laws (Brown
et al., 2020; Raffel et al., 2020), which effectively transform large-scale computation into intelligence
on vast amounts of unlabeled data. From this perspective, URLVR represents a critical step toward
scaling AI systems beyond reliance on human-provided labels.

It is worth noting that recent URLVR methods have primarily relied on leveraging a model’s internal
signals as training rewards. Common approaches include majority voting across multiple rollouts (Zuo
et al., 2025) or the adoption of entropy-based metrics (Agarwal et al., 2025). These forms of intrinsic
reward have shown notable performance gains. Yet, such seemingly unequivocal successes come
with concerns, as several works highlight critical failure modes such as reward hacking and model
collapse (Shafayat et al., 2025; Agarwal et al., 2025; Zhang et al., 2025c). Moreover, diverse
methodologies have been applied across different model families, tasks, and evaluation settings, yet
there remains neither a systematic comparison nor a consensus regarding what constitutes reliable
unsupervised rewards. So behind the flourishing progress of such methods, might there lie certain
hidden risks and uncertainties?

To this end, it is timely to revisit the development of this area. We mainly focus on methods that
derive rewards from the model’s intrinsic information, in contrast to other URLVR approaches such

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

as RPT (Dong et al., 2025), which rely on external data. To gain a deeper understanding of the current
state and future potential of RL with intrinsic rewards, we conduct a comprehensive study. We begin
by reviewing existing work and classify intrinsic reward methods into two categories based on the
source of rewards: ensemble-based and certainty-based. Then we establish a unified theoretical
perspective of these methods, and subsequently validate and deepen it through empirical analysis.

Theoretical Perspective. We introduce a unified framework that formalizes diverse intrinsic reward
mechanisms and analyzes their induced optimal policies. Despite design differences, these rewards
share a common objective: sharpening output distributions by reinforcing the model’s initially
confident solutions. This geometric convergence enables prior amplification and efficient adaptation
in low-data or test-time settings, but also risks bias lock-in, reduced exploration, and reward hacking
when confidence misaligns with correctness. Intrinsic rewards thus offer a context-dependent tool
that trades uncertainty for decisiveness, providing shortcuts for local adaptation while underscoring
the need for external signals to ensure scalable reliability.

Empirical Analysis. To validate our theoretical findings, we implement several widely used intrinsic
reward methods and design experiments around three progressively layered research questions. First,
we ask why these methods work, showing that by enforcing self-consistency they trade uncertainty
for performance and amplify prior knowledge. However, this same process also risks overfitting
biases, potentially accelerating model collapse. Second, we ask how different methods fail, revealing
that each induces distinct pathology, some collapse to brevity, others to verbosity, clarifying the
structured limits to scaling. Finally, we ask whether collapse is inevitable, and find that in small,
domain-specific regimes such as test-time training, intrinsic rewards drive stable adaptation without
collapse. Together, these results show that intrinsic rewards set clear limits on scaling, yet within
those limits they offer a principled path to self-improvement without supervision.

Our findings reveal that intrinsic rewards operate within well-defined boundaries determined by
confidence-correctness correlation, enabling efficient gains in test-time and low-data regimes while
risking reward hacking when confidence misaligns with correctness. These limitations motivate
exploration of extrinsic approaches that leverage external verification mechanisms, from generation-
verification asymmetries in structured domains to self-supervised signals from vast unlabeled corpora,
which offer pathways toward more robust and scalable improvement. Beyond training itself, we also
uncover a practical diagnostic: early intrinsic reward dynamics serve as a fast indicator of model-task
priors, offering a lightweight alternative to pass@k for assessing RL trainability.

2 RELATED WORK

Reinforcement Learning with Verifiable Rewards. Recent advances in language model reasoning
leverage Reinforcement Learning with Verifiable Rewards (RLVR) (Lambert et al., 2024), where
models receive binary rewards based on answer correctness verified against ground truth. Leading
systems including OpenAI’s o1 and o3 (Jaech et al., 2024; OpenAI, 2025), DeepSeek-R1 (Guo
et al., 2025), Gemini 2.0 (Comanici et al., 2025), and Qwen3 (Yang et al., 2025; Team, 2025) have
achieved remarkable performance through scaling supervised RLVR. However, this approach faces
a fundamental bottleneck: as models approach human expertise in specialized domains, obtaining
reliable ground-truth supervision becomes prohibitively expensive (Burns et al., 2023).

URLVR with Intrinsic Rewards. To address this supervision bottleneck, an emerging line of
research investigates Unsupervised RLVR (URLVR), which aims to extend the scalability of RL
beyond labeled data. One promising direction within URLVR is the use of self-generated proxy
intrinsic rewards, thereby eliminating the reliance on ground-truth labels for RL. We distinguish two
intrinsic paradigms by how rewards are constructed from the model:

Certainty-based methods derive rewards from a single policy’s confidence (e.g., logits) along a
trajectory, encouraging low-entropy, high-confidence predictions. Approaches include Self-Certainty
in RLIF (Zhao et al., 2025b) via KL divergence from uniform distributions, negative token-level
entropy in EM-RL (Agarwal et al., 2025) and RENT (Prabhudesai et al., 2025), trajectory-level
entropy in EM-RL (Agarwal et al., 2025), raw probability in RLSC (Li et al., 2025), probability
disparity between top tokens (van Niekerk et al., 2025), and cross-attention patterns (Kiruluta et al.,
2025b;a). These methods essentially “sharpen” the model’s existing preferences by reinforcing
high-confidence outputs.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Ensemble-based methods derive a reward from agreement across multiple rollouts (e.g., majority
voting), assuming that cross-sample consistency correlates with correctness. TTRL (Zuo et al.,
2025) pioneered majority voting across rollouts to create pseudo-labels. Building on this foundation,
SRT (Shafayat et al., 2025) analyzes limitations including reward hacking, ETTRL (Liu et al., 2025a)
improves efficiency through entropy-based tree search, Co-Reward (Zhang et al., 2025d) enhances
robustness via question paraphrasing, and RLCCF (Yuan et al., 2025) incorporates multi-model
collectives. More nuanced approaches include EMPO (Zhang et al., 2025b) using semantic clustering
for soft majority voting and CoVo (Zhang et al., 2025a) deriving rewards from intermediate reasoning
consistency. These methods assume that agreement among diverse outputs indicates correctness.

3 THEORETICAL PERSPECTIVE: THE TRADE-OFF OF SHARPENING

While several studies have empirically explored intrinsic rewards (Zhang et al., 2025b; Zuo et al.,
2025; Agarwal et al., 2025; Shafayat et al., 2025), their underlying theoretical mechanisms remain
poorly understood. Despite diverse design choices, we show that these methods share a fundamental
commonality: they systematically encourage sharper, more decisive probability distributions through
unified mathematical operations.

3.1 UNIFIED REWARD FRAMEWORK

Despite varied implementations, intrinsic rewards can be understood through a single lens: manipu-
lating cross-entropy between carefully chosen distributions:

Unified Reward Framework

Most intrinsic rewards can be expressed as:

runi(x, y) = ψ

(
σ

|I|
∑
i∈I

H(qi, πiθ)

)
, σ ∈ {+1,−1}, (1)

where rewards derive from cross-entropy H between anchor distributions qi and model
distributions πiθ, aggregated over granularity I, with sign σ and monotonic transformation ψ.

Key Components:

• Given a question x and generated response y (a sequence of tokens y1, . . . , y|y|), we can derive
rewards from the model’s internal distributions at different levels of granularity.

• Aggregation granularity I: Determines the level to compute distributions. For token-level
methods, I = {1, . . . , |y|} where each element corresponds to a position in the sequence. For
answer-level methods, I = {A} represents a single distribution over complete semantic answers.

• Model distribution πiθ at granularity i: For token-level granularity at position t, this is πtθ(·) =
πθ(· | x, y<t), the distribution over the next token given the context. For answer-level granularity,
this is πA

θ = πθ(· | x), the distribution over complete answers.

• Anchor distribution qi at granularity i: Serves as a reference point. Different reward estimators
use different anchors: uniform distribution UV for Self-Certainty or one-hot distribution δt
centered on the generated token for Trajectory-Level Entropy.

• Cross-entropy H(qi, πiθ): Cross-entropy between anchor distribution qi and model distribution
πiθ at granularity i, defined as H(qi, πiθ) = −

∑
v∈Vi qi(v) log πiθ(v). For token-level granularity

(i = t), Vi is the token vocabulary, and the cross-entropy measures divergence between distribu-
tions over next tokens. For answer-level granularity (i = A), Vi is the set of distinct semantic
answers, and the cross-entropy measures divergence between distributions over complete answers.

• Sign factor σ ∈ {+1,−1}: Determines the optimization direction. When the anchor q is uniform,
we set σ = +1 to reward divergence from uniformity (encouraging peaked distributions). When
the anchor q is sharp (e.g., one-hot or the model’s own distribution), we set σ = −1 to reward
alignment (reinforcing confident predictions).

• Monotonic transformation ψ: Reshapes the reward signal while preserving ordering. Common
choices are identity (ψ(z) = z) or exponential (ψ(z) = exp(z)), with exponential transformations
amplifying the sharpening effect.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Table 1: Instantiations for the unified reward framework of representative intrinsic rewards. Each
method is specified by its estimator, anchor and model distributions, and a monotonic transformation
of the cross-entropy between them. Token-level (t) and answer-level (A) variants capture different
granularities of aggregation.

Method Estimator Formula Monotonic
transformation ψ

Anchor
distribution q

Model
distribution πθ

RLIF
(Zhao et al., 2025b) Self-Certainty rSC =

1

|y|

|y|∑
t=1

H
(
UV , π

t
θ

)
+ log |V | z + log |V | {UV }|y|

t=1 {πt
θ}

|y|
t=1

EM-RL, RENT
(Agarwal et al., 2025)
(Prabhudesai et al., 2025)

Token-Level
Entropy rH = −

1

|y|

|y|∑
t=1

H
(
π
t
θ

)
z {πt

θ}
|y|
t=1 {πt

θ}
|y|
t=1

EM-RL
(Agarwal et al., 2025)

Trajectory-Level
Entropy rTraj = −

1

|y|

|y|∑
t=1

H
(
δ
t
, π

t
θ

)
z {δt}|y|

t=1 {πt
θ}

|y|
t=1

RLSC
(Li et al., 2025) Probability rProb = exp

(
−

|y|∑
t=1

H
(
δ
t
, π

t
θ

))
exp

(
|y| · z

)
{δt}|y|

t=1 {πt
θ}

|y|
t=1

EMPO
(Zhang et al., 2025b) Semantic Entropy rSE = exp

(
−H(δ

A
, π

A
θ)

)
exp(z) δA πA

θ

TTRL, SRT, ETTRL
(Zuo et al., 2025)
(Shafayat et al., 2025)
(Liu et al., 2025a)

Majority Voting rMV = lim
τ→0+

exp
(
−H(δ

A
, π̃

A
θ)

)
exp(z) δA π̃A

θ

Instantiations of the Framework. We next demonstrate how most intrinsic rewards instantiate
this framework. Each method’s distinctive characteristics emerge from specific choices of I, q, σ,
and ψ, as shown in Table 1. Token-level methods (Self-Certainty, Token/Trajectory-Level Entropy,
Probability) set I = {1, . . . , |y|} to aggregate across sequence positions, while answer-level methods
(Semantic Entropy, Majority Voting) use I = {A} for global consistency. The sign follows the
anchor type: σ = +1 with uniform q (rewarding departure from randomness) and σ = −1 with
sharp q (rewarding peaked predictions). For Majority Voting, π̃Aθ denotes the tempered distribution
π̃Aθ (a) = exp(πAθ (a)/τ)/

∑
b exp(π

A
θ (b)/τ) that converges to the majority answer as τ → 0+.

Despite surface-level differences, all methods manipulate cross-entropy to achieve distribution
sharpening. Further analysis of the framework refer to Appendix A.1.

3.2 OPTIMAL POLICY ANALYSIS

After establishing the unified reward framework, we now examine the optimal policies induced by
these rewards. We focus on Majority Voting as a representative example, then generalize to other
methods using the unified framework (Appendix A.4).

Consider the standard KL-regularized RL objective:

max
πθ

Ey∼πθ(·|x) [r(x, y)]− βDKL [πθ(·|x)∥πref(·|x)] , (2)

where πref is the reference policy (typically the SFT model) and β controls the strength of reg-
ularization. The optimal policy for this objective has the well-known closed form π∗

θ(y|x) =
1

Z(x)πref(y|x) exp
(

1
β r(x, y)

)
, where Z(x) =

∑
y πref(y|x) exp(1β r(x, y)) is the partition function.

Majority Voting Reward. We define the majority voting reward at iteration k as rk(x, y) =

1[ans(y) = majk(Yk)], where Yk = {y(1), . . . , y(N)} denotes N rollouts sampled from π
(k)
θ , and

majk(Yk) = argmaxa |{i ∈ [N] : ans(y(i)) = a}| is the most frequent answer among the rollouts.

Optimal Policy for Fixed Reward. For a fixed reward rk at iteration k, if we held rk constant and
performed infinite updates starting from reference policy π(k)

θ , we would converge to:

π∗,k
θ (y|x) =


π
(k)
θ (y|x)·e1/β

Zk(x)
, if ans(y) = majk(Yk),

π
(k)
θ (y|x)
Zk(x)

, otherwise,
(3)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

where Zk(x) = p
(k)
maj · e1/β + (1 − p

(k)
maj) and p

(k)
maj =

∑
y:ans(y)=majk(Yk)

π
(k)
θ (y|x) denotes the

probability mass on majority trajectories at iteration k. At this optimum, the probability mass would

be p∗,(k+1)
maj =

p
(k)
maj ·e

1/β

p
(k)
maj ·e1/β+(1−p(k)

maj)
.

Actual Training Dynamics. In practice, our training performs only one gradient update per iteration,
not reaching the optimum π∗,k

θ but moving partway toward it. The actual probability mass after one
update satisfies: p∗,(k+1)

maj ≥ p
(k+1)
maj ≥ p

(k)
maj. This ordering holds because: (1) policy gradient methods

with positive rewards on majority trajectories tend to increase their probability mass (lower bound),
and (2) the optimal policy achieves maximum expected reward, so single-step updates cannot exceed
it (upper bound). See Appendix A.3 for detailed justification.

This creates a “rich-get-richer” dynamic: the probability of trajectories leading to the majority answer
consistently increased, while others are proportionally diminished. Iterating this process, the policy
converges geometrically toward a deterministic policy concentrated on the initial majority answer:
Theorem 1. Geometric Convergence to Deterministic Policy. Consider the training procedure
where at each iteration k, we: (1) sample N rollouts Yk from π

(k)
θ , (2) compute majority majk(Yk),

(3) perform one gradient update with reward rk(x, y) = 1[ans(y) = majk(Yk)] to obtain π(k+1)
θ .

Let p(k)maj =
∑
y:ans(y)=majk(Yk)

π
(k)
θ (y|x) denote the probability mass on majority trajectories.

Assumptions: (A1) Majority remains stable: majk(Yk) = maj0(Y0) for all k (holds with high
probability for sufficiently large N); (A2) Gradient updates achieve non-trivial progress with ηk ≥
ηmin > 0 (standard assumption). We validate these empirically in Appendix A.5.

Conclusion: Under (A1)-(A2), p(k)maj converges geometrically to 1. As k → ∞:

lim
k→∞

π
(k)
θ (y|x) =

{
πref(y|x)∑

y′:ans(y′)=maj0(Y0) πref(y′|x) , if ans(y) = maj0(Y0),

0, otherwise
(4)

Complete proof is in Appendix A.3. Generalization to other methods using the unified reward
framework is in Appendix A.4. This convergence behavior has profound implications depending
on the model’s initial knowledge. When the model’s confidence (reflected in maj0) aligns with
correctness, convergence reinforces good solutions. Conversely, if confidence is poorly aligned, the
same mechanism amplifies errors, leading to model collapse.

4 EMPIRICAL ANALYSIS: THE PROMISE AND PITFALLS

The prospect of LLM scaling through unsupervised RL hinges on whether models can reliably
improve themselves without ground truth labels. Our theoretical analysis suggests that intrinsic
rewards enable such self-improvement by exploiting existing knowledge, yet their convergence to
deterministic policies raises concerns about when this process succeeds versus fails. To clarify these
boundaries, we empirically examine the practical limits and opportunities of intrinsic reward-driven
scaling through three key research questions:

Research Questions and Takeaways

• Why do these methods work? They trade uncertainty for performance, leveraging the
model’s prior knowledge to improve sample efficiency.

• How do different methods fail? Each exhibits distinct pathology: Self-Certainty and
Majority Voting are most stable, Probability collapses to brevity, while entropy-based
methods promote repetitive verbosity.

• Do these methods always cause collapse in prolonged RL? No. With small, domain-
specific data, they avoid collapse, making test-time training an ideal application.

Experimental Setup. We train Qwen3-1.7B-Base on DAPO-17k using GRPO and evaluate on
AIME24/25 and AMC23 benchmarks. We track specialized metrics to detect reward hacking:

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Training Step

0.12

0.16

0.20

0.24
Label Accuracy

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Training Step

0.48

0.56

0.64

0.72

0.80

Reward Accuracy

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Training Step

0.2

0.3

0.4

0.5

Majority Voting Reward

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Training Step

0.25

0.50

0.75

1.00

1.25
Actor Entropy

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Training Step

0.02

0.04

0.06

0.08

0.10
AIME 2024 Accuracy (avg@32)

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Training Step

0.000

0.015

0.030

0.045

AIME 2025 Accuracy (avg@32)

Trained with Majority Voting Reward Trained with Ground Truth Reward

Figure 1: Comparison between training with Majority Voting reward and ground truth reward.

Majority Voting Reward (intrinsic reward), Ground Truth Reward (true performance), Label Accuracy
(correctness of pseudo-label), and validation accuracy. Complete setup details refer to Appendix B.1.

4.1 WHY DO THESE METHODS WORK? TRADING UNCERTAINTY FOR PERFORMANCE

This section shows that intrinsic-reward methods boost performance by reducing uncertainty. Early
in training, they match or even surpass supervised RLVR with ground-truth rewards while consuming
entropy faster. A fine-grained per-sample analysis links uncertainty reduction to performance gains,
revealing a sampling-efficiency shortcut when confidence aligns with correctness. We also observe
late-stage reward hacking, highlighting the need to balance the uncertainty-performance trade-off.

4.1.1 COMPARISON WITH TRAINED WITH GROUND TRUTH REWARD

Setup. We trained Qwen3-1.7B-Base on DAPO-17k with the Majority Voting reward as a representa-
tive example, using the default hyperparameters from Table 5. For comparison, we also train with
ground truth labels.

Results. As shown in Figure 1, trained with Majority Voting reward attains comparable or even
superior performance to ground-truth training on two validation benchmarks at early stage, while
reducing model uncertainty faster (rapid Actor Entropy decay) and increasing Majority Voting Reward.
This establishes a negative correlation between uncertainty and performance in the early phase.

4.1.2 FINE-GRAINED TRAINING DYNAMIC ANALYSIS

ID 262

ID 146

ID 258

ID 420

ID 76

ID 131

ID 222

ID 422

0 10050

Epoch

True Certain True Uncertain False Uncertain False Certain

Figure 2: Representative per-problem training dynamics.

Setup. To probe the mechanism at
the instance level, we train Qwen3-
1.7B-Base per problem individually
from MATH500 using REINFORCE
with a baseline and a Trajectory-Level
Entropy reward estimator (global
batch size = 1, 100 epochs). For each
problem, we track greedy-decoding
validation accuracy and intrinsic re-
ward over time, drawing a heatmap
indicating greedy correctness (blue
= correct, red = wrong) and a bi-
nary square-wave indicating whether
the highest-reward sample is correct.
Due to the large amount of experi-
ments, we only randomly tested 25
data points and selected 8 representa-
tive ones for display; others can refer
to Figure 7.

Results. Figure 2 shows training dynamics on these problems. The results reveal distinct patterns
based on initial confidence-correctness correlation:

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Training Step

0.00

0.06

0.12

0.18

0.24
Label Accuracy

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Training Step

0.0

0.5

1.0

1.5

2.0
Actor Entropy

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Training Step

0

2000

4000

6000

Mean Response Length

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Training Step

0.00

0.02

0.04

0.06

AIME 2024 (avg@32)

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Training Step

0.000

0.015

0.030

0.045

AIME 2025 (avg@32)

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Training Step

0.00

0.08

0.16

0.24

0.32

AMC 2023 (avg@32)

Majority Voting Self-Certainty Token-Level Entropy Trajectory-Level Entropy Probability

Figure 3: Comparison of intrinsic rewards under tuned settings.

• High initial correlation (ID 262/146/258): greedy sampling is correct initially; intrinsic rewards
primarily increase confidence and sharpen distribution around already-correct solutions.

• Moderate initial correlation (ID 76/131): greedy sampling initially fails, yet rollout sampling
frequently yields high-reward correct answers; intrinsic rewards reliably guide the policy from
wrong greedy outputs toward correct solutions, showing effective error correction.

• Low initial correlation (ID 420): persistent emergence of incorrect samples during training
causes policy degradation, driving greedy accuracy from correct to incorrect. This demonstrates
misalignment between confidence and correctness leading to systematic bias amplification.

• Consistently poor correlation (ID 222/422): high-reward samples remain predominantly incor-
rect; intrinsic rewards amplify wrong beliefs, driving greedy accuracy deeper into error territory.

This directly validates our theoretical prediction that success depends on the model’s initial knowledge
quality, where confidence correlates well with correctness.

4.1.3 SAMPLING-EFFICIENCY SHORTCUTS

The analysis reveals why intrinsic rewards work: they operate as sampling-efficiency shortcuts by
rapidly concentrating probability mass on high-confidence trajectories, amplifying gradient signals
toward promising directions, and pruning uncertain paths early in training. This reduces the effective
search space and accelerates convergence compared to sparse ground-truth rewards, explaining both
the efficiency gains and the computational advantages observed in Figure 1.

However, this efficiency comes with a critical trade-off. As Figure 1 demonstrates, prolonged training
drives the intrinsic reward signal toward higher values while true accuracy drops, a clear instance
of reward hacking where optimization of the proxy reward (confidence) diverges from the true
objective (correctness). The method’s strength as a shortcut becomes its weakness when the initial
confidence-correctness correlation is insufficient or when training proceeds beyond the point where
this correlation remains reliable.

4.2 HOW DO DIFFERENT METHODS FAIL? UNDERSTANDING PATHOLOGY PATTERNS

Having established that intrinsic rewards work through uncertainty-performance shortcuts but in-
evitably face reward hacking, a critical question emerges: do all methods fail in the same way? Our
unified framework suggests that while all methods drive distribution sharpening, their different instan-
tiations, including certainty-based or ensemble-based, different anchor distributions, and token-level
or answer-level aggregation, should lead to distinct failure modes. Understanding these pathology
patterns is essential for both method selection and recognizing when intervention is needed.

Setup. We systematically compare five intrinsic methods using Qwen3-1.7B-Base on DAPO-17k,
each optimally tuned (hyperparameter details in Appendix B.3), evaluating across three validation
benchmarks to reveal how theoretical differences manifest as distinct failure behaviors in practice.

Distinct Pathology Patterns. As predicted by our unified framework, all methods drive toward
higher-confidence regions but fail differently (Figure 3):

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560 600
Training Step

0.00

0.06

0.12

0.18

0.24

Ground Truth Reward

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560 600
Training Step

0.2

0.4

0.6

0.8

1.0

Majority Voting Reward

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560 600
Training Step

0.0

0.2

0.4

0.6

0.8

Reward Accuracy
DAPO-32 DAPO-128 DAPO-512 DAPO-2048 DAPO-8192 DAPO-16384

Figure 4: Effect of training dataset size.

• Stable Methods: Self-Certainty and Majority Voting maintain useful training windows longest,
with tapering smoothly rather than sudden collapse. The first balances sharpening with its uniform
anchor distribution; the second skips token-level artifacts by aggregating at the answer level.

• Length Collapse: Probability rewards brevity because multiplying token probabilities favors short
sequences. The model learns confident but overly brief answers, creating a distinct reward hacking
pattern focused on length rather than content quality. Length normalization (using geometric mean
or average log-probability) would likely mitigate this bias.

• Repetition Pathology: Entropy-based estimators (Token-Level Entropy, Trajectory-Level Entropy)
show complementary failure: their sequence averaging prevents length collapse but encourages
repetitive, predictable patterns as the model exploits low-entropy sequences.

These distinct failure modes directly reflect the theoretical differences in our unified framework,
influencing not just convergence rate but failure mode. Recognizing these patterns provides early
warning signals for intervention.

4.3 DO THESE METHODS ALWAYS CAUSE MODEL COLLAPSE? NO, SAFE AT TEST TIME

The previous sections established that intrinsic rewards drive convergence toward deterministic
policies and may result in model collapse. This raises a fundamental question: do intrinsic methods
always lead to model collapse, or can they be safely applied under specific conditions? Here,
we demonstrate that model collapse can be prevented when training data is sufficiently small and
domain-specific, making intrinsic rewards particularly suitable for test-time training scenarios.

4.3.1 SMALL DATASETS PREVENT MODEL COLLAPSE

Setup. We trained Qwen3-1.7B-Base on randomly sampled training subsets from DAPO-17k with
sizes {32, 128, 512, 2048, 8192, 16384}. To ensure fair comparison, we fix the global batch size to
32 and adjust training epochs so all settings complete exactly 600 optimization steps.

Results. Figure 4 reveals a clear threshold effect: training with 32 or 128 samples maintains stable
performance without model collapse. Critically, while DAPO-32 achieves rapid consensus (Majority
Voting Reward → 1), but it preserves high Ground Truth Reward. In contrast, larger datasets (≥ 512
samples) consistently exhibit model collapse. This threshold suggests that intrinsic rewards become
dangerous when training data provides sufficient statistical power to reinforce systematic biases that
could mislead the majority voting mechanism.

4.3.2 TEST-TIME TRAINING AS OPTIMAL APPLICATION DOMAIN

Setup. Building on the small dataset insights, we examine test-time training where models are
adapted directly on the target evaluation domains. We trained Qwen3-1.7B-Base separately on
AMC23 (40 samples) and DAPO-17k (∼17,000 samples), using a global batch size of 40 for both.
For AMC23, we performed multi-epoch training.

Results. Figure 5 demonstrates that test-time training successfully prevents model collapse, shown
with a higher and stable Ground Truth Reward with early complete consensus (Majority Voting
Reward), and followed with increase then stable performance among in-distribution AMC23 and
out-of-distribution AIME24. The key insight is that domain-specific, small-scale training creates
conditions where the model’s confidence genuinely correlates with correctness within the narrow
problem distribution. This makes intrinsic rewards a reliable proxy for true performance rather than a
source of bias.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560 600
Training Step

0.00

0.15

0.30

0.45

Ground Truth Reward

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560 600
Training Step

0.2

0.4

0.6

0.8

1.0
Majority Voting Reward

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560 600
Training Step

0.00

0.02

0.04

0.06

AIME 2024 Accuracy (avg@32)

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560 600
Training Step

0.00

0.15

0.30

0.45

AMC 2023 Accuracy (avg@32)
AMC23 DAPO

Figure 5: Comparison between training and test-time.

5 DISCUSSION

5.1 DOES INTRINSIC REWARD METHODS TRULY IMPROVE CAPABILITIES?

Table 2: Comparisons before and after TTRL. The results
show that TTRL-trained models significantly surpass the
base models’ majority-vote performance in accuracy.

Metric Qwen2.5-Math-1.5B Qwen2.5-Math-7B
maj@2 28.09 33.23
maj@4 33.68 41.20
maj@8 37.23 45.73
maj@16 38.10 47.98
maj@32 38.43 49.19
maj@64 38.17 49.87
maj@128 37.86 50.14
maj@256 37.55 50.40
maj@512 37.41 50.60
maj@1024 37.30 50.79

avg@32 (w/ TTRL) 48.90 68.10
∆ +11.60 +17.31

Section 4 demonstrates that prevailing in-
trinsic reward approaches predominantly
leverage uncertainty reduction as a mech-
anism for enhancing performance. This
observation motivates a critical ques-
tion: do such approaches truly enhance
a model’s capability, or do they merely
improve the self-consistency of its out-
puts? Take the TTRL method as an
example. TTRL explicitly models the
self-consistency across m model outputs
through majority voting and leverages
it as a supervisory signal. This design
seems to suggest that TTRL may simply
push the model toward the performance
upper bound implied by the base model
under majority voting. In other words,
while TTRL might steadily improve the pass@1 metric, it would be unlikely to surpass the base
model’s maj@m performance, thereby failing to deliver substantive gains beyond consistency
alignment.

However, our experiments reveal the opposite, as shown in Table 2. Specifically, we applied TTRL to
Qwen2.5-Math-1.5B and Qwen2.5-Math-7B on AIME 2024 (30 samples) with a train batch size of
30 for 100 epochs, and directly compared the base models’ maj@1024 with the pass@1 (avg@32)
of the TTRL-trained models. Since the majority voting performance converges rapidly once the
sample size reaches 32, maj@1024 can be reasonably regarded as a close approximation to maj@∞.
Strikingly, our results show that even the pass@1 metric of the TTRL-trained models significantly
exceeds the maj@∞ performance of the base models. This finding demonstrates that TTRL does far
more than enforce internal self-consistency: it genuinely enhances the model’s ability to generate
accurate predictions. Put differently, TTRL enables the model to solve a broader range of problems
than the base model, thereby delivering meaningful improvements in real-world performance.

5.2 AN UNEXPECTED APPLICATION: MODEL-TASK PRIOR INDICATOR BEYOND PASS@K

The ongoing debate about whether RLVR enables genuine discovery or merely sharpening has
intensified focus on understanding model capabilities before expensive training (Yue et al., 2025; Liu
et al., 2025b). Current approaches rely on pass@k metrics (Wu et al., 2025a), but these are limited to
tasks with objective answers and fail in subjective domains. We propose an alternative diagnostic:
since intrinsic reward training dynamics directly reflect confidence-correctness correlation quality
(the model-task prior), early training behavior serves as a rapid indicator of RL trainability within
tens of steps rather than full training evaluation.

Experimental Validation. We test this diagnostic by varying both models (8 models across Qwen/L-
lama families at different training stages) and datasets of varying difficulty. Since model-task prior
depends on both model capabilities and task characteristics, we examine training dynamics across
these dimensions. In the main text, each model trains on DAPO-17k for one epoch. Complete
experimental details and dataset variation results appear in Appendix B.4 and B.5.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

Training Step

0.0

0.1

0.2

0.3

0.4

0.5
Ground Truth Reward

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

Training Step

0.2

0.4

0.6

0.8

1.0
Majority Voting Reward

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

Training Step

0.00

0.05

0.10

0.15

0.20

0.25

AIME 2024 Accuracy (avg@32)

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

Training Step

0.00

0.15

0.30

0.45

0.60

AMC 2023 Accuracy (avg@32)

Q2.5-1.5B (Qwen Base)
Q2.5-Math-1.5B (Qwen Math Base)

DS-R1-1.5B (Qwen SFT)
Q2.5-1.5B-Inst (Qwen Inst)

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

Training Step

0.00

0.02

0.04

0.06

0.08

Ground Truth Reward

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

Training Step

0.2

0.4

0.6

0.8

1.0
Majority Voting Reward

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

Training Step

0.000

0.015

0.030

0.045

0.060

0.075
AIME 2024 Accuracy (avg@32)

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

Training Step

0.00

0.06

0.12

0.18

0.24

0.30
AMC 2023 Accuracy (avg@32)

L3.1-8B (Llama Base)
Octo-8B (Llama Math Base)

L3.1-8B-Tulu-SFT (Llama SFT)
L3.1-8B-Inst (Llama Inst)

Figure 6: Training dynamics across different training stages in Qwen (Left), LLaMA (Right) family.

Results and Diagnostic Value. The results in Figure 6 reveal striking architectural differences:
Qwen models demonstrate superior priors with math-specialized and SFT variants maintaining stable
training (Majority Voting Reward 0.3-0.6), while Llama models systematically collapse earlier with
base variants failing by step 40. This diagnostic offers key advantages over pass@k: rapid assessment
within 50 steps, applicability to subjective tasks, and direct connection to RL trainability rather than
just performance metrics. The minimal diagnostic cost provides actionable insights about whether
models can benefit from reinforcement learning approaches.

5.3 HOW TO SCALE RL WITH URLVR METHODS AT TRAIN-TIME?

While we focus on intrinsic rewards derived from model confidence and consistency, the fundamental
challenge that removing human supervision from RL training extends beyond these approaches. We
discuss two promising alternatives that use external data or computational asymmetries to generate
verifiable rewards without ground truth labels.

Leveraging Unlabeled Data for Reward Generation. Large-scale unlabeled corpora offer natural
sources of verifiable signals that can replace human supervision. RPT (Dong et al., 2025) exemplifies
this approach by transforming next-token prediction into an RL task, where models receive binary
rewards for correctly predicting tokens from unlabeled text. This converts trillions of tokens into
scalable reward signals, enabling reasoning improvement through the standard pretraining objective.
Similarly, SEAL (Zweiger et al., 2025) employs a meta-learning approach where models generate
their own fine-tuning data by producing QA pairs from unlabeled contexts. The model receives
rewards based on downstream performance after self-supervised adaptation, creating an autonomous
improvement loop without external supervision.

Exploiting Generation-Verification Asymmetries. Many problem domains exhibit computational
asymmetries where verifying solutions is substantially easier than generating them (Burns et al.,
2023). This creates opportunities for autonomous ground truth generation without human labels. For
example, LADDER (Simonds & Yoshiyama, 2025) demonstrates this for math integration, using
numerical verification to provide reward signals. Absolute Zero (Zhao et al., 2025a) applies similar
principles to coding tasks, where Python execution provides automatic correctness verification. These
methods generate truly verifiable rewards that align with task correctness rather than proxy signals.

These approaches offer significant scalability advantages over intrinsic methods by exploiting vast un-
labeled corpora rather than relying on model-internal signals that may misalign with task objectives.

6 CONCLUSION

This work explores how Unsupervised RLVR scales LLMs via a unified framework for intrinsic
reward methods. We show that these rewards sharpen outputs around confident predictions, enabling
efficient gains when confidence aligns with correctness but amplifying errors when it does not.
Empirical results reveal distinct failure modes yet also show that collapse can be avoided in small,
domain-specific settings, making test-time training a natural application. Beyond these findings, early
training dynamics emerge as a lightweight diagnostic of model-task priors, offering a fast alternative
to pass@k for assessing RL trainability. Together, these results outline the limits of intrinsic rewards
and highlight the need for external signals and hybrid paradigms for robust, scalable gains.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work investigates intrinsic reward mechanisms for unsupervised reinforcement learning in large
language models. While our work advances understanding of AI self-improvement, we acknowledge
key ethical considerations. Our findings about reward hacking highlight risks if these methods were
deployed without safeguards, so that systems might become overconfident in incorrect solutions,
potentially causing harmful outputs in critical applications. Our identification of “safe” conditions
should not be interpreted as universal guarantees, as model behavior can be unpredictable in novel
contexts. We emphasize that our findings aim to improve understanding of limitations and appropriate
use cases rather than encourage unconstrained deployment. Practitioners should carefully assess the
confidence-correctness correlation in their applications and implement monitoring systems.

REPRODUCIBILITY STATEMENT

We provide complete materials for reproducing our theoretical and empirical findings. Theoreti-
cal contributions include mathematical derivations of the unified framework and formal proofs in
Appendix A.3. Experimental implementations use standardized frameworks (veRL/GRPO) with
hyperparameters in Table 5 and tuning procedures in Appendix B.3. Code for all five intrinsic reward
methods is provided in the supplementary materials. Experiments use publicly available models
(Qwen series) and datasets (DAPO-17k, AIME, AMC) are shown in the supplementary materials.
All evaluation metrics are defined in Appendix B.2, and our codebase enables reproduction of results
in all figures and tables.

REFERENCES

Shivam Agarwal, Zimin Zhang, Lifan Yuan, Jiawei Han, and Hao Peng. The unreasonable effective-
ness of entropy minimization in llm reasoning. arXiv preprint arXiv:2505.15134, 2025.

Mislav Balunović, Jasper Dekoninck, Ivo Petrov, Nikola Jovanović, and Martin Vechev. Matharena:
Evaluating llms on uncontaminated math competitions. arXiv preprint arXiv:2505.23281, 2025.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Collin Burns, Pavel Izmailov, Jan Hendrik Kirchner, Bowen Baker, Leo Gao, Leopold Aschenbrenner,
Yining Chen, Adrien Ecoffet, Manas Joglekar, Jan Leike, et al. Weak-to-strong generalization:
Eliciting strong capabilities with weak supervision. arXiv preprint arXiv:2312.09390, 2023.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the frontier
with advanced reasoning, multimodality, long context, and next generation agentic capabilities.
arxiv preprint arXiv: 2507.06261, 2025.

Qingxiu Dong, Li Dong, Yao Tang, Tianzhu Ye, Yutao Sun, Zhifang Sui, and Furu Wei. Reinforcement
pre-training. arXiv preprint arXiv:2506.08007, 2025.

Kanishk Gandhi, Ayush Chakravarthy, Anikait Singh, Nathan Lile, and Noah D Goodman. Cognitive
behaviors that enable self-improving reasoners, or, four habits of highly effective stars. arXiv
preprint arXiv:2503.01307, 2025.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jingcheng Hu, Yinmin Zhang, Qi Han, Daxin Jiang, Xiangyu Zhang, and Heung-Yeung Shum.
Open-reasoner-zero: An open source approach to scaling up reinforcement learning on the base
model. arXiv preprint arXiv:2503.24290, 2025.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv preprint
arXiv:2412.16720, 2024.

Andrew Kiruluta, Andreas Lemos, and Priscilla Burity. History-aware cross-attention reinforce-
ment: Self-supervised multi turn and chain-of-thought fine-tuning with vllm. arXiv preprint
arXiv:2506.11108, 2025a.

Andrew Kiruluta, Andreas Lemos, and Priscilla Burity. A self-supervised reinforcement learning
approach for fine-tuning large language models using cross-attention signals. arXiv preprint
arXiv:2502.10482, 2025b.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brahman,
Lester James V Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, et al. Tulu 3: Pushing frontiers in
open language model post-training. arXiv preprint arXiv:2411.15124, 2024.

Jia Li, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Huang, Kashif
Rasul, Longhui Yu, Albert Q Jiang, Ziju Shen, et al. Numinamath: The largest public dataset in
ai4maths with 860k pairs of competition math problems and solutions. Hugging Face repository,
13:9, 2024.

Pengyi Li, Matvey Skripkin, Alexander Zubrey, Andrey Kuznetsov, and Ivan Oseledets. Confidence
is all you need: Few-shot rl fine-tuning of language models. arXiv preprint arXiv:2506.06395,
2025.

Jia Liu, ChangYi He, YingQiao Lin, MingMin Yang, FeiYang Shen, ShaoGuo Liu, and TingTing Gao.
Ettrl: Balancing exploration and exploitation in llm test-time reinforcement learning via entropy
mechanism. arXiv preprint arXiv:2508.11356, 2025a.

Mingjie Liu, Shizhe Diao, Ximing Lu, Jian Hu, Xin Dong, Yejin Choi, Jan Kautz, and Yi Dong.
Prorl: Prolonged reinforcement learning expands reasoning boundaries in large language models.
arXiv preprint arXiv:2505.24864, 2025b.

Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y Tang, Manan Roongta, Colin Cai,
Jeffrey Luo, Tianjun Zhang, Li Erran Li, et al. Deepscaler: Surpassing o1-preview with a 1.5 b
model by scaling rl. Notion Blog, 2025.

OpenAI. Openai o3 and o4-mini system card. Blog, 2025.

Mihir Prabhudesai, Lili Chen, Alex Ippoliti, Katerina Fragkiadaki, Hao Liu, and Deepak Pathak.
Maximizing confidence alone improves reasoning. arXiv preprint arXiv:2505.22660, 2025.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Sheikh Shafayat, Fahim Tajwar, Ruslan Salakhutdinov, Jeff Schneider, and Andrea Zanette. Can
large reasoning models self-train? arXiv preprint arXiv:2505.21444, 2025.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. In Proceedings
of the Twentieth European Conference on Computer Systems, pp. 1279–1297, 2025.

David Silver and Richard S Sutton. Welcome to the era of experience. Google AI, 1, 2025.

Toby Simonds and Akira Yoshiyama. Ladder: Self-improving llms through recursive problem
decomposition. arXiv preprint arXiv:2503.00735, 2025.

Qwen Team. Qwq-32b: Embracing the power of reinforcement learning, March 2025. URL
https://qwenlm.github.io/blog/qwq-32b/.

12

https://qwenlm.github.io/blog/qwq-32b/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Carel van Niekerk, Renato Vukovic, Benjamin Matthias Ruppik, Hsien-chin Lin, and Milica Gašić.
Post-training large language models via reinforcement learning from self-feedback. arXiv preprint
arXiv:2507.21931, 2025.

Haoze Wu, Cheng Wang, Wenshuo Zhao, and Junxian He. Mirage or method? how model-task
alignment induces divergent rl conclusions, 2025a. URL https://arxiv.org/abs/2508
.21188.

Mingqi Wu, Zhihao Zhang, Qiaole Dong, Zhiheng Xi, Jun Zhao, Senjie Jin, Xiaoran Fan, Yuhao
Zhou, Yanwei Fu, Qin Liu, et al. Reasoning or memorization? unreliable results of reinforcement
learning due to data contamination. arXiv preprint arXiv:2507.10532, 2025b.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arxiv preprint arXiv: 2505.09388,
2025.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system at
scale. arXiv preprint arXiv:2503.14476, 2025.

Wenzhen Yuan, Shengji Tang, Weihao Lin, Jiacheng Ruan, Ganqu Cui, Bo Zhang, Tao Chen, Ting
Liu, Yuzhuo Fu, Peng Ye, et al. Wisdom of the crowd: Reinforcement learning from coevolutionary
collective feedback. arXiv preprint arXiv:2508.12338, 2025.

Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does
reinforcement learning really incentivize reasoning capacity in llms beyond the base model? arXiv
preprint arXiv:2504.13837, 2025.

Kongcheng Zhang, Qi Yao, Shunyu Liu, Yingjie Wang, Baisheng Lai, Jieping Ye, Mingli Song,
and Dacheng Tao. Consistent paths lead to truth: Self-rewarding reinforcement learning for llm
reasoning. arXiv preprint arXiv:2506.08745, 2025a.

Qingyang Zhang, Haitao Wu, Changqing Zhang, Peilin Zhao, and Yatao Bian. Right question
is already half the answer: Fully unsupervised llm reasoning incentivization. arXiv preprint
arXiv:2504.05812, 2025b.

Yanzhi Zhang, Zhaoxi Zhang, Haoxiang Guan, Yilin Cheng, Yitong Duan, Chen Wang, Yue Wang,
Shuxin Zheng, and Jiyan He. No free lunch: Rethinking internal feedback for llm reasoning. arXiv
preprint arXiv:2506.17219, 2025c.

Zizhuo Zhang, Jianing Zhu, Xinmu Ge, Zihua Zhao, Zhanke Zhou, Xuan Li, Xiao Feng, Jiangchao
Yao, and Bo Han. Co-reward: Self-supervised reinforcement learning for large language model
reasoning via contrastive agreement. arXiv preprint arXiv:2508.00410, 2025d.

Andrew Zhao, Yiran Wu, Yang Yue, Tong Wu, Quentin Xu, Matthieu Lin, Shenzhi Wang, Qingyun
Wu, Zilong Zheng, and Gao Huang. Absolute zero: Reinforced self-play reasoning with zero data.
arXiv preprint arXiv:2505.03335, 2025a.

Xuandong Zhao, Zhewei Kang, Aosong Feng, Sergey Levine, and Dawn Song. Learning to reason
without external rewards. arXiv preprint arXiv:2505.19590, 2025b.

Yuxin Zuo, Kaiyan Zhang, Li Sheng, Shang Qu, Ganqu Cui, Xuekai Zhu, Haozhan Li, Yuchen
Zhang, Xinwei Long, Ermo Hua, et al. Ttrl: Test-time reinforcement learning. arXiv preprint
arXiv:2504.16084, 2025.

Adam Zweiger, Jyothish Pari, Han Guo, Ekin Akyürek, Yoon Kim, and Pulkit Agrawal. Self-adapting
language models. arXiv preprint arXiv:2506.10943, 2025.

13

https://arxiv.org/abs/2508.21188
https://arxiv.org/abs/2508.21188

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A DETAILS FOR SECTION 3

A.1 INSTANTIATIONS OF UNIFIED REWARD FRAMEWORK

To understand how different intrinsic methods fit into this framework, we define each component:

Cross-Entropy H. The fundamental building block, defined as H(q, πθ) = −
∑
v∈V q(v) log πθ(v),

measures the divergence between the anchor distribution q and the model distribution πθ. This
captures how “surprised” the model would be by samples from q.

Aggregation Granularity I. Determines the level at which distributions are compared:

• Token-level: I = {1, 2, . . . , |y|}, where each element corresponds to a position t in the sequence.
The model distribution at position t is πtθ(·) = πθ(· | x, y<t).

• Answer-level: I = {A}, a single element representing the distribution over complete answers
πA
θ = πθ(· | x) where answers are semantic conclusions rather than individual trajectories.

Anchor Distribution q and Sign Factor σ. The anchor q provides the reference point against which
the model is compared, while σ determines the optimization direction:

• When q is uniform (e.g., UV in Self-Certainty), we set σ = +1 to reward divergence from
uniformity, encouraging peaked distributions.

• When q is sharp (e.g., one-hot δ or the model’s own distribution πθ), we set σ = −1 to reward
alignment with q, reinforcing confident predictions.

Monotonic Transformation ψ. A strictly increasing function (typically identity or exponential) that
reshapes the reward signal while preserving relative ordering. Unlike ground truth rewards, where
transformations must preserve the optimal ground-truth policy, intrinsic rewards allow a flexible
choice of ψ to stabilize training or adjust gradient scales.

Remarks. We highlight two special cases. First, the formulation of Self-Certainty includes an
additional log |V | term. Since this constant is independent of model parameters, it does not
affect gradients during RL training. Second, the expression of rMV corresponds to the asymp-
totic case where the number of rollouts n → ∞. By the law of large numbers, as n → ∞,
the majority vote almost surely selects the answer with the highest probability under πAθ , i.e.
argmaxa π

A
θ (a). To make this limit computationally tractable, we use the tempered distribution

π̃Aθ (a)=exp
(
πAθ (a)/τ

)
/
∑
b∈A exp

(
πAθ (b)/τ

)
which avoids the undefined log 0 issue; as τ→0+, it

collapses to the hard majority indicator 1
[
ans(y) = argmaxa π

A
θ (a)

]
, thereby recovering the same

limiting behavior as majority voting.

Key Observations. Despite surface-level diversity, the unified framework reveals that all intrinsic
rewards share a common mechanism: manipulating cross-entropy to sharpen distributions. The
sign factor σ formalizes this: when σ = +1 (uniform anchor), rewards increase with cross-entropy,
pushing toward peaked distributions; when σ = −1 (sharp anchor), rewards decrease with cross-
entropy, reinforcing confident predictions. Beyond this shared mechanism, the framework reveals
structured differences that predict distinct behaviors:

• Granularity (I) distinguishes Token-level methods (Self-Certainty, Token/Trajectory-Level
Entropy, Probability), which operate at I = {1, . . . , |y|} creating local pressure, from Answer-
level methods (Semantic Entropy, Majority Voting) working at I = {A}. This explains why
answer-level methods, which aggregate global consistency, are more stable than those diluted by
sequence length.

• Anchor Choice (q) determines the convergence target. Uniform distributions (UV) encourage
departure from randomness, while sharp distributions (δt, δA) reinforce high-probability paths.
Sharp anchors create self-reinforcement loops where rewards directly depend on generated
outputs.

• Transformation (ψ) determines sharpening strength. Exponential transformations (ψ(z) =
exp(z)), particularly in Probability methods (exp(|y| · z)), amplify the sharpening effect, predict-
ing faster convergence and earlier model collapse compared to the more gradual reinforcement
of identity transformations (z).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.2 MONOTONICITY ANALYSIS OF GENERAL OPTIMAL POLICY

The key insight comes from analyzing the monotonicity of the exponent in Equation (1). Since ψ is
strictly increasing by design, the behavior depends entirely on σ:

• Case σ = +1: The reward increases with cross-entropy. Sequences where πθ diverges from q
(typically uniform) receive higher rewards, pushing the policy toward more peaked distributions.

• Case σ = −1: The reward decreases with cross-entropy. Sequences where πθ aligns with q
(typically sharp) receive higher rewards, reinforcing existing confident predictions.

Both cases lead to the same outcome: progressive sharpening of the model’s distribution, either by
moving away from uniformity or by reinforcing peaked predictions.

A.3 PROOF OF THEOREM 1

Geometric Convergence to Deterministic Policy

Consider the training procedure where at each iteration k: (1) sampleN rollouts Yk from π
(k)
θ ,

(2) compute majority majk(Yk), (3) perform one gradient update with reward rk(x, y) =
1[ans(y) = majk(Yk)].
Under assumptions (A1) stable majority majk = maj0 and (A2) ηk ≥ ηmin > 0, the
probability mass p(k)maj converges geometrically to 1. As k → ∞:

lim
k→∞

π
(k)
θ (y|x) =

{
πref(y|x)∑

y′:ans(y′)=maj0(Y0) πref(y′|x) if ans(y) = maj0(Y0),

0 otherwise
(5)

Proof.

Step 0: Justifying the Ordering p∗,(k+1)
maj ≥ p

(k+1)
maj ≥ p

(k)
maj.

From the optimal policy of the standard KL-regularized RL objective, if we held reward rk fixed and
performed infinite updates starting from π

(k)
θ , we would reach the optimal policy with probability

mass:

p
∗,(k+1)
maj =

α · p(k)maj

1 + (α− 1)p
(k)
maj

, α := e1/β > 1 (6)

Lower bound (p(k+1)
maj ≥ p

(k)
maj): The policy gradient is ∇θJ = Eπθ

[rk(x, y)∇θ log πθ(y|x)]. Since
rk(x, y) = 1 for majority trajectories and rk(x, y) = 0 for non-majority trajectories, the gradient
increases log πθ(y|x) only for majority trajectories. Under standard policy gradient convergence
(positive rewards increase trajectory probabilities), this tends to increase p(k)maj. We validate this
empirically in Appendix A.5.

Upper bound (p(k+1)
maj ≤ p

∗,(k+1)
maj): Since π∗,k

θ maximizes the KL-regularized objective for fixed rk,
our single-step update cannot exceed this optimal value.

Step 1: Effective Update Rule.

We model the actual update with step efficiency ηk ∈ (0, 1]:

p
(k+1)
maj = p

(k)
maj + ηk · (p∗,(k+1)

maj − p
(k)
maj) (7)

Substituting Equation (6):

p
(k+1)
maj = p

(k)
maj + ηk

(
α · p(k)maj

1 + (α− 1)p
(k)
maj

− p
(k)
maj

)

= p
(k)
maj + ηk ·

(α− 1)(1− p
(k)
maj)p

(k)
maj

1 + (α− 1)p
(k)
maj

(8)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Step 2: Error Dynamics.

Define the error from the fixed point 1 as:

ϵ(k) := 1− p
(k)
maj ∈ (0, 1) (9)

Substituting into Equation (8):

ϵ(k+1)= 1− p
(k+1)
maj

= ϵ(k) − ηk ·
(α− 1)(1− ϵ(k))ϵ(k)

1 + (α− 1)(1− ϵ(k))

= ϵ(k)
(
1− ηk ·

(α− 1)(1− ϵ(k))

α− (α− 1)ϵ(k)

)
(10)

Step 3: Monotonic Decrease.

Since α > 1, ϵ(k) ∈ (0, 1), and ηk ∈ (0, 1], we have:

0 <
(α− 1)(1− ϵ(k))

α− (α− 1)ϵ(k)
< 1 (11)

Therefore:

0 < 1− ηk ·
(α− 1)(1− ϵ(k))

α− (α− 1)ϵ(k)
< 1 (12)

This implies ϵ(k+1) < ϵ(k), proving the sequence {ϵ(k)} is strictly decreasing and bounded below by
0.

Step 4: Convergence to Zero.

Let ℓ = limk→∞ ϵ(k) ≥ 0. Under assumption (A2), ηk ≥ ηmin > 0. If ℓ > 0, then for large k, the
multiplier in Equation (10):

1− ηk ·
(α− 1)(1− ϵ(k))

α− (α− 1)ϵ(k)
≤ 1− ηmin · α− 1

α
< 1 (13)

is bounded away from 1, causing continued decay. The only consistent limit is ℓ = 0. Therefore:

ϵ(k) → 0 equivalently p
(k)
maj → 1 (14)

Step 5: Geometric Convergence Rate.

From Equation (10), for large k when ϵ(k) is small:

ϵ(k+1) ≈ ϵ(k)
(
1− ηk ·

α− 1

α

)
(15)

Under assumption (A2):

ϵ(k+1) ≤
(
1− ηmin · α− 1

α

)
ϵ(k) (16)

This establishes geometric convergence with rate depending on ηmin and α = e1/β . In the ideal case
where ηk = 1 for all k (each update reaches the optimum), the convergence rate is exactly ρ = e−1/β .

Step 6: Limiting Policy.

Given assumption (A1) that the majority remains stable at maj0(Y0), as p(k)maj → 1, all probability
mass concentrates on trajectories with ans(y) = maj0(Y0). The limiting distribution is:

lim
k→∞

π
(k)
θ (y|x) =

{
πref(y|x)∑

y′:ans(y′)=maj0(Y0) πref(y′|x) if ans(y) = maj0(Y0),

0 otherwise
(17)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

This completes the proof. □

Remark on Assumptions.

• (A1) Majority stability: By the Law of Large Numbers, with N rollouts, the empirical majority
majk(Yk) converges to argmaxa π

(k)
θ (a|x) as N → ∞. Since p(k)maj increases monotonically, the

argmax remains maj0 throughout training. We validate this empirically with N = 1024 rollouts
in Appendix A.5, where the majority never flipped across 200 iterations.

• (A2) Non-trivial progress: We assume ηk ≥ ηmin > 0, meaning each gradient update makes
non-trivial progress. We validate this empirically: our experiments show consistent monotonic
increase in pmaj and convergence to 1.0 under extreme off-policy settings (Appendix A.5).

A.4 GENERALIZED SHARPENING ANALYSIS VIA UNIFIED REWARD FRAMEWORK

To address the concern that Theorem 1 applies only to Majority Voting, and to demonstrate the
analytical utility of our unified framework, we provide a generalized sharpening analysis. We show
that methods with σ = −1 share a critical structural property, Reward-Confidence Monotonicity,
which creates a persistent pressure toward distribution sharpening.

Note: The following is a proof sketch demonstrating the key convergence mechanism shared by
σ = −1 methods. A fully rigorous treatment requires additional technical conditions that we validate
empirically. Methods with σ = +1 (Self-Certainty) require separate analysis as they reward away
from uniform distribution.
Proposition 1 (Sharpening Dynamics for σ = −1 Methods). Consider any intrinsic reward with
σ = −1 in the unified framework (runi = ψ(−H(q, π))) where ψ is strictly increasing and q is a
sharp anchor. These methods satisfy Reward-Confidence Monotonicity:

πθ(ya|x) > πθ(yb|x) =⇒ runi(x, ya) > runi(x, yb) (18)

For a dominant trajectory y∗ (e.g., majority) and a non-dominant competitor y′, this inequality is
strict: r(y∗) > r(y′). Under iterative KL-regularized updates, this property creates a self-reinforcing
feedback loop that drives geometric concentration.

Proof Sketch:

We analyze the dynamics for a dominant trajectory y∗ and a competitor y′ (for ensemble methods,
not in the same class as y∗) where the model initially prefers y∗ (i.e., πk(y∗) > πk(y

′)) and assigns
it strictly higher reward (rk(y∗) > rk(y

′)).

Step 1: Existence of a Positive Reward Gap

Using the unified formula, we justify why the gap is positive for σ = −1:

• Self-Reinforcing Anchors (e.g., Probability): r(y) = ψ(log π(y)). Since πk(y∗) > πk(y
′) and

ψ is strictly increasing, rk(y∗) > rk(y
′).

• Answer-Level Anchors (e.g., Majority Voting): y∗ belongs to the dominant answer class a∗,
while y′ does not. By construction, r(y∗) = 1 and r(y′) = 0.

In both cases, the intrinsic reward gap is strictly positive: ∆(k)
r = rk(y

∗)− rk(y
′) > 0.

Step 2: The Optimization Target

We consider the optimal policy π∗ for the current fixed reward landscape rk. The optimal solution
implies a target ratio:

π∗(y∗)

π∗(y′)
=
πk(y

∗)

πk(y′)
· exp

(
∆

(k)
r

β

)
(19)

Since ∆
(k)
r > 0, the target ratio is strictly larger than the current ratio.

Gradient Assumption: The gradient ∇θJ = Eπk
[rk(y)∇θ log πθ(y)] assigns positive weight

to high-reward trajectories. We assume that policy gradient updates with positive learning rate

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

η satisfy: if r(y∗) > r(y′) and both have positive probability, then the updated policy satisfies
πk+1(y

∗)
πk+1(y′)

≥ πk(y
∗)

πk(y′)
. This aligns with standard policy gradient convergence properties.

Step 3: The Reinforcement Loop

The unified framework reveals why this process spirals into determinism. As the policy updates to
increase the probability mass on the dominant trajectory:

• For Self-Reinforcing Anchors (e.g., Probability), because r(y) = ψ(log π(y)), increasing π(y∗)
directly increases its reward r(y∗).

• For Answer-Level Anchors (e.g., Majority Voting), increasing the total probability mass on
the dominant answer class a∗ increases the reward for all trajectories in that class (since r ∝
log p(a∗)).

This creates a positive feedback loop: the update increases the probability of the dominant path,
which maintains or widens the reward gap ∆r, ensuring the pressure to sharpen (∆r > 0) persists.

Utility of the Framework:

This derivation demonstrates that the “rich-get-richer” dynamic is a structural inevitability for any
method where the reward function is monotonically aligned with the model’s own confidence
(σ = −1). The framework allows us to identify this shared property and predict that all such methods
will drive the policy toward deterministic outputs, regardless of whether this leads to success (when
aligned with correctness) or failure (when misaligned).

Remark on σ = +1 Methods:

Self-Certainty (σ = +1) rewards higher when away from uniform distribution. Therefore, π(ya) >
π(yb) does not imply r(ya) > r(yb). A high-probability output and a very low-probability output
could both have high KL-divergence from uniform, violating direct Reward-Confidence Monotonicity.
Its sharpening mechanism requires separate analysis.

While methods with σ = +1 do not strictly align reward with raw confidence, they still induce
sharpening by penalizing high-entropy distributions. By maximizing the distance from a uniform
anchor, the optimization landscape naturally favors peaked, low-entropy policies, effectively driving
the model toward determinism.

Empirical Validation:

To substantiate the assumptions in this proof sketch, we provide empirical validation for differ-
ent intrinsic reward methods in Figure 3 and Appendix B.3, confirming that Reward-Confidence
Monotonicity is not just a theoretical construct but the actual driver of the observed training dynamics.

A.5 EMPIRICAL VALIDATION OF THEORETICAL ASSUMPTIONS

We empirically validate the key assumptions in Theorem 1 through three targeted experiments.

Experiment 1: Validation of Ordering and Majority Stability

Setup: We trained on a single problem from MATH-500 with N = 1024 rollouts (reducing majority
vote randomness) for 50 steps. We randomly selected 4 problems and monitored whether the majority
answer majk(Yk) remains stable and whether p(k)maj increases monotonically.

Step 1 2 3 4 5 6 7 8 9 10

level3_id146 12.70 15.53 15.92 16.21 18.46 22.07 22.56 24.80 31.35 39.36
level1_id187 6.64 6.69 6.84 7.42 10.45 11.04 11.43 11.82 15.82 18.46
level1_id262 15.14 17.19 17.48 18.85 20.02 22.07 24.12 25.20 34.67 39.84
level3_id122 11.33 12.01 12.40 14.06 17.87 18.46 20.31 21.29 33.59 33.89

Table 3: Monotonic increase of pmaj (%) in early training steps.

Results for monotonic increase of pmaj. Table 3 shows pmaj values for the first 10 steps. All
4 problems exhibit strict monotonic increase at every single step, confirming the lower bound

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

p
(k+1)
maj ≥ p

(k)
maj of the ordering. We also found that the majority answer remained stable across all

iterations. This confirms both the ordering and assumption (A1) on majority stability.

Step 5 10 15 20 25 30 35 40 45 50

level3_id146 18.46 39.36 48.93 91.11 95.41 98.14 98.54 99.02 99.61 99.80
level1_id187 11.04 18.46 26.37 79.88 89.84 93.07 96.09 97.66 98.54 99.02
level1_id262 22.07 39.84 51.37 90.14 95.90 96.80 97.46 98.05 98.63 99.41
level3_id122 17.87 33.59 43.55 84.28 92.19 93.26 95.80 96.09 98.34 98.54

Table 4: Geometric convergence of pmaj (%) to 1.0 over 50 training steps.

Results for convergence of pmaj. Table 4 shows the same 4 problems trained for 50 steps. All
problems converge from initial values toward near-complete concentration (98.54%-99.80% at step
50), demonstrating the convergence predicted by Theorem 1. This validates assumption (A2) on
non-trivial progress and confirms that the iterative training procedure with policy-dependent rewards
does indeed converge to deterministic policies.

Experiment 2: Batch Training Validation

Setup. Our main experiments (Figure 1) train on batches with N = 8 rollouts per problem.

Results. Majority Voting Reward (batch-averaged pmaj) shows a consistent increasing trend across all
methods, confirming the lower bound p(k+1)

maj ≥ p
(k)
maj holds in practical batch training settings. Small

fluctuations occur due to finite rollouts (N = 8) and batch variance, but the monotonic trend is clear.

Experiment 3: Fixed Reward Convergence Validation

Setup. To validate that the closed-form optimal policy in Equation (3) is achievable when reward is
held fixed, we conducted an extreme off-policy experiment. We used global batch size 1024 with
mini-batch size 1, generated one-time rollout (with N = 8 for each of 1024 prompts), and performed
1024 gradient updates using rewards computed solely from the initial rollout majority. This setup
tests whether solving a single KL-regularized RL objective can converge to the theoretical optimum
when the reward signal remains constant.

Results. After 1024 mini-updates using the same fixed reward signal, the Majority Voting Reward
reached 1.0 (complete convergence), while validation performance on AIME24, AIME25, and
AMC23 dropped to zero. This confirms that the convergence point predicted by Equation (3) is
achievable with sufficient updates.

A.6 OPTIMAL POLICIES INDUCED BY OTHER INTRINSIC REWARDS

Optimal Policy of the Reward Function rSC. For the Self-Certainty reward function rSC, it
instantiates our unified framework with token-level granularity I = {1, 2, ..., |y|}, anchor distribution
q = {UV }|y|t=1 (uniform distribution over vocabulary), model distribution π = {πtθ}

|y|
t=1, sign factor

σ = +1, and transformation ψ(z) = z. As established previously, for any input x, the token-level
predictive distribution of the model is evaluated against the current policy π. Due to σ = +1,
the farther this distribution deviates from the uniform distribution (i.e., the higher the model’s
confidence), the larger the reward rSC(x, y). Consequently, after a single step of policy update, the
optimal probability πθ(y|x) increases for such high-confidence sequences, whereas it decreases when
the per-token distribution is close to uniform (low confidence). Thus, rSC encourages the model to
generate answers that are already preferred by the prior policy.

A detailed derivation is provided below. The Self-Certainty based reward is defined as:

rSC(x, y) =
1

|y|

|y|∑
t=1

DKL
(
U ∥ πθ(· | x, y<t)

)
= − log |V | − 1

|y| |V |

|y|∑
t=1

|V |∑
v=1

log πtθ(yt = v). (20)

Within the KL-regularized RL framework, dropping the constant term − log |V |, the one-step optimal
policy becomes:

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

πθ(y|x) ∝ πref(y|x) exp

− 1

β |y| |V |

|y|∑
t=1

|V |∑
v=1

log πtθ(yt = v)

 . (21)

Therefore, whenever the model assigns concentrated probabilities to every token of y (high confi-
dence), the exponent grows, thus increasing the probability of the sequence πθ(y|x). In summary, the
Self-Certainty based reward systematically enhances the model’s “self-confidence” with respect to its
prior policy.

Optimal Policy of the Reward Function rH . For the token-level entropy-based reward rH , it
instantiates our unified framework with token-level granularity I = {1, 2, ..., |y|}, anchor distribution
q = {πtθ}

|y|
t=1, model distribution π = {πtθ}

|y|
t=1, sign factor σ = −1, and transformation ψ(z) =

z. Maximizing rH is equivalent to minimizing the predictive entropy at every position, thereby
discouraging the model from spreading its probability mass across multiple candidate tokens and
hence increasing its decisiveness.

A detailed derivation is provided below. The entropy-based reward is defined as:

rH(x, y) = − 1

|y|

|y|∑
t=1

H
(
πθ(· | x, y<t)

)
= − 1

|y|

|y|∑
t=1

|V |∑
v=1

πtθ(yt = v) log πtθ(yt = v). (22)

Within the KL-regularized RL framework, the one-step optimal policy becomes:

πθ(y|x) ∝ πref(y|x) exp

− 1

β |y|

|y|∑
t=1

|V |∑
v=1

πtθ(yt = v) log πtθ(yt = v)

 . (23)

Consequently, if the predictive distribution of an output sequence y exhibits high entropy (i.e., the
per-token distributions are close to uniform), the negative-entropy reward rH is strongly negative,
which suppresses the exponential weight and reduces πθ(y|x). Conversely, low entropy (highly
peaked per-token distributions) yields rH ≈ 0, thus the sequence probability is enhanced after
normalization. Therefore, the entropy-based reward rH encourages the model to generate answers
whose token-level distributions are sharply concentrated, effectively boosting its "self-confidence"
under the prior policy.

Optimal Policy of the Reward Function rTraj. For the trajectory-level entropy-based reward rTraj, it
instantiates our unified framework with token-level granularity I = {1, 2, ..., |y|}, anchor distribution
q = {δt}|y|t=1, model distribution π = {πtθ}

|y|
t=1, sign factor σ = −1, and transformation ψ(z) = z.

For a given input x, the model’s predictive distribution is evaluated at every token. With σ = −1,
the closer the distribution is to the one-hot reference δt (i.e., the higher the model’s confidence in
each ground-truth token), the larger the reward rTraj(x, y). Hence, after one policy-update step, the
optimal probability πθ(y|x) increases for such high-confidence trajectories, and decreases otherwise.
Thus, rTraj encourages the model to generate sequences that already enjoy high probability under the
prior policy.

The trajectory-level reward is defined as:

rTraj(x, y) =
1

|y|

|y|∑
t=1

log πθ(yt | x, y<t) =
1

|y|
log πθ(y | x). (24)

Within the KL-regularized RL framework, the one-step optimal policy becomes:

πθ(y|x) ∝ πref(y|x) exp
(

1

β |y|
log πθ(y | x)

)
= πref(y|x)·

[
πθ(y | x)

] 1
β|y| . (25)

Consequently, whenever the model assigns a higher prior probability to a sequence y, the weighted
product term is amplified, thereby increasing its normalized probability πθ(y|x). Therefore, the

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

trajectory-level entropy reward boosts the probability of sequences that are already likely under the
current policy πθ.

Optimal Policy of the Reward Function rProb. For the probability-based reward function rProb, it
instantiates our unified framework with token-level granularity I = {1, 2, ..., |y|}, anchor distribution
q = {δt}|y|t=1, model distribution π = {πtθ}

|y|
t=1, sign factor σ = −1, and transformation ψ(z) =

exp(z). For a given input x, the model’s predictive distribution is evaluated at every token. With
σ = −1, the closer the distribution is to the one-hot reference δt (i.e., the higher the model’s
confidence in each ground-truth token), the larger the reward rProb(x, y) will be. Hence, after one
policy-update step, the optimal probability πθ(y|x) increases for such high-confidence trajectories,
and decreases otherwise. Thus, rProb encourages the model to generate sequences that already enjoy
high probability under the prior policy.

The probability-based reward is defined as:

rProb(x, y) =

|y|∏
t=1

πθ(yt | x, y<t) = πθ(y | x). (26)

Within the KL-regularized RL framework, the one-step optimal policy becomes:

πθ(y|x) ∝ πref(y|x) exp
(
1

β
πθ(y | x)

)
. (27)

Consequently, whenever the model assigns a high joint probability to a sequence y, the exponential
weight is amplified, thereby increasing its normalized probability πθ(y|x). The probability-product
reward thus directly reinforces sequences that are already likely under the current policy, enhancing
the model’s preference for "high-likelihood" trajectories.

Optimal Policy of the Reward Function rEMPO. For the answer-space probability-distribution
reward rEMPO employed by the EMPO algorithm, it instantiates our unified framework with answer-
level granularity I = {A}, anchor distribution q = δA, model distribution π = πAθ , σ = −1, and
transformation ψ(z) = exp(z). For a given input x, multiple roll-outs are used to estimate the current
policy’s distribution over the answer space. With σ = −1, the closer this distribution is to the one-hot
reference δA (i.e., the more probability mass is assigned to the extracted answer), the larger the
reward rEMPO(x, y) will be. Hence, after one policy-update step, the optimal probability πθ(y|x)
increases for sequences that endorse the high-probability answer, while it decreases for all others.
Maximizing rEMPO is therefore equivalent to driving the model to become more decisive at the answer
level, thereby improving the consistency and determinism of the generated outputs.

Formally, the reward is defined as:

rEMPO(x, y) = πθ(ans(y) | x), where πθ(ans(y) | x) =
∑

ans(y′)=ans(y)

πθ(y
′ | x). (28)

Within the KL-regularised RL framework, the one-step optimal policy is:

πθ(y | x) ∝ πref(y | x) exp
(
πθ(ans(y) | x)

β

)
. (29)

As evidenced by Equation (29), a single EMPO update re-weights each sequence by a factor of
exp
(
πθ(ans(y) | x)/β

)
that depends on the current answer-level probability. After normalization,

answers that already enjoy high probability under the prior policy gain additional mass, whereas low-
probability answers suffer a decrease. Consequently, the optimal policy at each step systematically
shifts the overall probability mass toward the high-probability region of the prior policy.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

0 10050

Epoch

True Certain True Uncertain False Uncertain False Certain

Figure 7: Examples of per-problem training dynamics from MATH-500.

Table 5: Default hyperparameters for training.

Model Dataset Training
Temperature

Global
Batch Size

Mini
Batch Size

Rollout
Number Regularization Max Context

Length
Learning

Rate Epoch

Qwen3-1.7B-Base DAPO-17k 1.0 64 64 8 w/o KL
w/o Entropy 8192 1e-6 1

B DETAILS FOR SECTION 4

B.1 EXPERIMENTAL SETUP

Implementation Details. All experiments are conducted using the VeRL framework (Sheng et al.,
2025) with the GRPO algorithm. Unless stated otherwise, we utilize the default configuration outlined
in Table 5. We implement five representative intrinsic rewards by customizing the RewardManager
module of VeRL, following the reward formulations in Table 6 and Table 7:

• Ensemble-Based Reward Estimators: Majority Voting

• Certainty-Based Reward Estimators: Self-Certainty, Token-Level Entropy, Trajectory-Level
Entropy, and Probability

Evaluation Protocol. We evaluate on three challenging mathematics benchmarks: AIME 2024 (Li
et al., 2024), AIME 2025 (Balunović et al., 2025), and AMC 2023 (Li et al., 2024). Following
standard practice, we generate 32 solutions per problem using a temperature of 0.6 and a top-p value
of 0.95, and report the mean accuracy at 32 solutions (mean@32).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 6: Overview of certainty-based rewards, estimators and their formulas.

Method Estimator Formula

RLIF Self-Certainty r(x, y) = 1
|y|

∑|y|
t=1DKL(U∥πθ(·|x, y<t))

EM-RL Trajectory-Level
Entropy r(x, y) = 1

|y|
∑|y|

t=1 log πθ(yt|x, y<t)

EM-RL, RENT Token-Level Entropy r(x, y) = − 1
|y|

∑|y|
t=1H(πθ(·|x, y<t))

RLSC Probability r(x, y) =
∏|y|

t=1 πθ(yt|x, y<t)

RLSF Probability Disparity
r(x, y) =

1

M

|a|∑
t=1

[
max
at

πθ(at|x, c, a<t)

− max
at ̸=arg maxπθ

πθ(at|x, c, a<t)
]

Training Dynamics Monitoring. To monitor reward hacking and validate our theoretical predictions
from Section 3, we implement specialized metrics to track the evolution of pseudo-rewards and their
alignment with ground truth. These metrics help identify when and how these intrinsic methods
transition from beneficial sharpening to pathological collapse.

• Ensemble-Based Metrics: For methods using majority voting, we separately track the accuracy
of the chosen label and the accuracy of the rewards it generates.

– Label Accuracy: Prompt-level accuracy of majority-voted answers against ground truth,
measuring ensemble quality

– Reward Accuracy: Sample-level agreement between pseudo rewards and oracle rewards,
capturing “lucky hits” (Zuo et al., 2025) where individual rewards align despite incorrect
majority votes

– Ground Truth Reward: Average oracle reward (supervised baseline), computed using actual
correctness

– Majority Voting Reward: Average pseudo reward from majority voting, the divergence from
Ground Truth Reward indicates reward hacking

• Certainty-Based Metrics: For certainty-based methods, we measure the correlation between this
proxy reward and the actual correctness.

– Label Accuracy: Ground-truth accuracy of the highest-confidence response per prompt,
testing whether maximum certainty implies correctness

– Point-Biserial Correlation: Point-biserial correlation between pseudo reward and binary
correctness, quantifying the fundamental assumption that confidence predicts accuracy

These metrics collectively diagnose three critical phenomena: (1) pseudo-label quality degradation
via Label Accuracy, (2) reward signal corruption via the gap between Majority Voting Reward and
Ground Truth Reward, and (3) confidence miscalibration via Point-Biserial Correlation. Mathematical
definitions and implementation details are provided in Appendix B.2.

B.2 CALCULATION OF TRAINING DYNAMICS

We provide mathematical definitions for the metrics used to monitor training dynamics. These metrics
diagnose reward hacking and validate theoretical predictions about distribution sharpening.

B.2.1 NOTATION

Let D = {(xi, a∗i)}Mi=1 denote the training dataset with M prompts, where xi is the i-th prompt
and a∗i is its ground-truth answer. For each prompt xi, we generate N rollout responses {yi,j}Nj=1
from the current policy πθ, where each response yi,j contains a trajectory and an extracted answer
ans(yi,j).

Define the following:

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 7: Overview of ensemble-based rewards, estimators and their formulas.

Method Estimator Formula

TTRL, SRT, ETTRL Majority Voting r(x, y) = 1
[
y = argmaxy′

∑N
i=1 1[yi = y′]

]
, {yi}N

i=1 ∼ πθ(·|x)

Co-Reward Majority Voting
across Rephrased
Question

r(x, y) = 1

[
y = argmax

y∗

N∑
i=1

1[yi = y
∗
]

]
, {yi}N

i=1 ∼ πθ(·|x)

+ 1

y = argmax
y∗

N∑
j=1

1[y
′
j = y

∗
]

 , {y′j}
N
j=1 ∼ πθ(·|rephrase(x))

RLCCF Self-consistency
Weighted Voting

r(x, y) = 1

[
y = argmax

a

N∑
n=1

(
max
a′

K∑
k=1

1[on,k = a
′
]
)
·

K∑
k=1

1[a = on,k]

]
,

{on,k}K
k=1 ∼ πθn (·|x), n = 1, . . . , N

EMPO Semantic Similarity
r(x, y) =

|C(y)|
G , C(y) ∈ SemanticCluster({oi}G

i=1),

{oi}G
i=1 ∼ πθ(·|x)

CoVo Trajectory Consistency
and Volatility

r(x, y) = 1
G

∥∥∥∥∥
G∑

i=1

Con(yi) · [cos(Vol(yi)), sin(Vol(yi))]

∥∥∥∥∥ + rcur,

{yi}N
i=1 ∼ πθ(·|x), G = |{i : ans(yi) = ans(y)}|

• 1[·]: Indicator function returning 1 if the condition is true, 0 otherwise

• maj(xi): Majority-voted answer for prompt xi, computed as argmaxa
∑N
j=1 1[ans(yi,j) = a]

• rgt(yi,j): Ground-truth reward for response yi,j , equals 1[ans(yi,j) = a∗i]

• rmv(yi,j): Majority-voting pseudo-reward, equals 1[ans(yi,j) = maj(xi)]
• rcert(yi,j): Certainty-based reward (e.g., self-certainty, entropy) for response yi,j

B.2.2 ENSEMBLE-BASED METRICS

Label Accuracy Measures the prompt-level accuracy of majority-voted answers:

Label Accuracy =
1

M

M∑
i=1

1[maj(xi) = a∗i]. (30)

This metric ranges from 0 to 1, where 1 indicates perfect pseudo-label generation.

Reward Accuracy Quantifies sample-level agreement between pseudo-rewards and oracle rewards:

Reward Accuracy =
1

M ·N

M∑
i=1

N∑
j=1

1[rmv(yi,j) = rgt(yi,j)]. (31)

This captures “lucky hits” where individual rewards are correct even when the majority vote is wrong.
For example, if the majority vote is incorrect but a minority response is correct, that response still
receives the appropriate (zero) pseudo-reward.

Ground Truth Reward Average oracle reward across all generated responses:

Ground Truth Reward =
1

M ·N

M∑
i=1

N∑
j=1

rgt(yi,j). (32)

This represents the true quality of generated responses and serves as the supervised baseline.

Majority Voting Reward Average pseudo-reward from majority voting:

Majority Voting Reward =
1

M ·N

M∑
i=1

N∑
j=1

rmv(yi,j). (33)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

The divergence between this metric and Ground Truth Reward indicates reward hacking: when the
model learns to maximize pseudo-rewards at the expense of actual correctness.

B.2.3 CERTAINTY-BASED METRICS

Label Accuracy For certainty-based methods, we identify the highest-confidence response per
prompt and measure its accuracy:

Label Accuracy =
1

M

M∑
i=1

1[ans(yi,j∗i) = a∗i], (34)

where j∗i = argmaxj∈{1,...,N} rcert(yi,j) is the index of the highest-confidence response for prompt
xi.

Point-Biserial Correlation Measures the correlation between continuous certainty scores and
binary correctness:

ρpb =
r̄1 − r̄0
sr

·
√
n1n0
n2

, (35)

where:

• n =M ·N is the total number of responses
• n1 =

∑
i,j rgt(yi,j) is the number of correct responses

• n0 = n− n1 is the number of incorrect responses
• r̄1 = 1

n1

∑
i,j:rgt(yi,j)=1 rcert(yi,j) is the mean certainty for correct responses

• r̄0 = 1
n0

∑
i,j:rgt(yi,j)=0 rcert(yi,j) is the mean certainty for incorrect responses

• sr =
√

1
n−1

∑
i,j(rcert(yi,j)− r̄)2 is the standard deviation of all certainty scores

• r̄ = 1
n

∑
i,j rcert(yi,j) is the mean of all certainty scores

The correlation ρpb ∈ [−1, 1] quantifies the relationship between confidence and correctness. Positive
values indicate that higher certainty correlates with correctness (desired behavior), while values near
zero suggest certainty is uninformative, and negative values indicate miscalibration.

B.3 HYPERPARAMETER TUNING

Setup. We study four hyperparameters, including training temperature, mini-batch size, KL di-
vergence regularization, and rollout count, that directly influence convergence dynamics in our
theoretical framework. We vary one parameter at a time while keeping others fixed at baseline values
(see Appendix B.1).

B.3.1 MAJORITY VOTING

Training Temperature. Temperature directly controls exploration during rollout generation and
affects the quality of pseudo-labels via voting diversity. From our convergence analysis in Theorem 1,
lower temperature reduces the effective β in the KL regularization term, accelerating convergence.
As shown in Figure 8, low T ∈{0.6, 0.8} quickly sharpens logits, causing unstable Label Accuracy,
consistent with premature convergence to an early majority that may be incorrect. Higher temperature
(T = 1.2) maintains stability longer by preserving exploration, but the increased noise reduces peak
performance. We find T = 1.0 provides optimal balance, showing steady early gains with delayed
degradation.

Mini-batch Size. This parameter controls the on-policy nature of updates, directly affecting the
validity of our optimal policy assumptions. Our theoretical derivation in Equation (3) assumes rewards
are computed under the current policy πθ. Small mini-batches violate this assumption through reward
staleness: pseudo-rewards computed under πθ become misaligned when applied to samples from πθold .
As shown in Figure 9, mini-batch size 1 drives rapid collapse within 20 steps, while pure on-policy
training (mini-batch = 64, matching global batch size) provides maximum stability. The intermediate

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

0 20 40 60 80 100120140160180200220240260
Training Step

0.00
0.08
0.16
0.24
0.32
0.40

Label Accuracy

0 20 40 60 80 100120140160180200220240260
Training Step

0.00
0.06
0.12
0.18
0.24
0.30

Ground Truth Reward

0 20 40 60 80 100120140160180200220240260
Training Step

0.2

0.4

0.6

0.8

1.0
Majority Voting Reward

0 20 40 60 80 100120140160180200220240260
Training Step

0.0

0.2

0.4

0.6

0.8

Reward Accuracy

0 20 40 60 80 100120140160180200220240260
Training Step

0.00

0.15

0.30

0.45

0.60

Training Pass@N

0 20 40 60 80 100120140160180200220240260
Training Step

0

2

4

6

8

Actor Entropy

0 20 40 60 80 100120140160180200220240260
Training Step

0.00

0.02

0.04

0.06

0.08

AIME 2024 Accuracy (avg@32)

0 20 40 60 80 100120140160180200220240260
Training Step

0.000
0.008
0.016
0.024
0.032
0.040

AIME 2025 Accuracy (avg@32)

0 20 40 60 80 100120140160180200220240260
Training Step

0.00

0.08

0.16

0.24

0.32

AMC 2023 Accuracy (avg@32)

T = 0.6 T = 0.8 T = 1.0 T = 1.2

Figure 8: Effect of training temperature for Majority Voting method.

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Training Step

0.00

0.05

0.10

0.15

0.20

0.25
Label Accuracy

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Training Step

0.00

0.04

0.08

0.12

0.16

Ground Truth Reward

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Training Step

0.30
0.45
0.60
0.75
0.90

Majority Voting Reward

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Training Step

0.0

0.2

0.4

0.6

0.8
Reward Accuracy

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Training Step

0.0

0.1

0.2

0.3

0.4

Training Pass@N

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Training Step

0
1
2
3
4
5

Actor Entropy

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Training Step

0.000

0.015

0.030

0.045

0.060

0.075
AIME 2024 Accuracy (avg@32)

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Training Step

0.00

0.01

0.02

0.03

0.04

AIME 2025 Accuracy (avg@32)

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Training Step

0.00
0.06
0.12
0.18
0.24
0.30

AMC 2023 Accuracy (avg@32)

Mini BS = 1 Mini BS = 8 Mini BS = 16 Mini BS = 32 Mini BS = 64

Figure 9: Effect of mini-batch size for Majority Voting method.

sizes (16–32) show gradual improvement, confirming that maintaining policy-reward alignment is
crucial for stable convergence.

KL Regularization. Our theoretical analysis suggests that KL regularization should slow convergence
by increasing the effective β parameter in ??. However, empirical results in Figure 10 show that
adding KL regularization (β = 0.005) yields only marginal benefits: small early gains but increased
training variance and minimal delay in collapse (∼ 40 steps). This discrepancy arises because intrinsic
rewards create competing optimization pressures, where the intrinsic signal drives sharpening while
KL pulls toward the reference policy. Rather than smoothly balancing these forces, the optimization
oscillates between them, increasing variance without providing durable stability. The marginal gains
do not justify the additional memory overhead and training instability.

Number of Rollouts. The rollout count N affects both vote reliability and signal strength. While
more rollouts improve statistical reliability of the majority vote, they also amplify the majority signal
strength. From Equation (3), each update amplifies majority probability by factor e1/β . With more
rollouts, this majority becomes more confident, accelerating convergence. Figure 11 shows this effect:
N = 32 collapses within 180 steps, N = 16 within 220 steps, while N ≤ 8 remains stable over the
full epoch. Although N = 4 shows competitive performance in some metrics, we recommend N = 8

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

0 20 40 60 80 100120140160180200220240260
Training Step

0.08

0.16

0.24

0.32

0.40
Label Accuracy

0 20 40 60 80 100120140160180200220240260
Training Step

0.05

0.10

0.15

0.20

0.25

Ground Truth Reward

0 20 40 60 80 100120140160180200220240260
Training Step

0.24

0.32

0.40

0.48

0.56
Majority Voting Reward

0 20 40 60 80 100120140160180200220240260
Training Step

0.48

0.56

0.64

0.72

0.80

Reward Accuracy

0 20 40 60 80 100120140160180200220240260
Training Step

0.2

0.3

0.4

0.5

0.6

Training Pass@N

0 20 40 60 80 100120140160180200220240260
Training Step

0.2
0.4
0.6
0.8
1.0
1.2

Actor Entropy

0 20 40 60 80 100120140160180200220240260
Training Step

0.02
0.03
0.04
0.05
0.06
0.07

AIME 2024 Accuracy (avg@32)

0 20 40 60 80 100120140160180200220240260
Training Step

0.008

0.016

0.024

0.032

0.040

AIME 2025 Accuracy (avg@32)

0 20 40 60 80 100120140160180200220240260
Training Step

0.24

0.27

0.30

0.33

0.36

0.39
AMC 2023 Accuracy (avg@32)

w/o KL w/ KL

Figure 10: Effect of KL divergence regularization for Majority Voting method.

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Training Step

0.00

0.06

0.12

0.18

0.24

Label Accuracy

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Training Step

0.00
0.03
0.06
0.09
0.12
0.15

Ground Truth Reward

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Training Step

0.2

0.4

0.6

0.8

1.0
Majority Voting Reward

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Training Step

0.0

0.2

0.4

0.6

0.8

Reward Accuracy

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Training Step

0.00

0.15

0.30

0.45

0.60
Training Pass@N

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Training Step

0.25

0.50

0.75

1.00

1.25

Actor Entropy

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Training Step

0.000

0.015

0.030

0.045

0.060

0.075
AIME 2024 Accuracy (avg@32)

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Training Step

0.000
0.008
0.016
0.024
0.032
0.040

AIME 2025 Accuracy (avg@32)

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Training Step

0.00
0.06
0.12
0.18
0.24
0.30

AMC 2023 Accuracy (avg@32)

N = 4 N = 8 N = 16 N = 32

Figure 11: Effect of rollout number for Majority Voting method.

as it provides better statistical reliability for the voting mechanism while maintaining reasonable
convergence control. The slight performance difference suggests that for this specific experimental
setup, the trade-off between reliability and stability favors slightly smaller N , but N = 8 offers more
robust behavior across diverse problem types.

B.3.2 CERTAINTY-BASED METHODS

Training Temperature. Temperature effects on certainty-based methods reveal distinct behavioral
patterns compared to ensemble-based approaches. Unlike Majority Voting, certainty-based methods
generally benefit from higher exploration temperatures, with notable method-specific variations in
optimal configurations and convergence characteristics.

Results in Figures 13 to 15 demonstrate that higher temperature (T = 1.2) significantly delays
model collapse across Token-Level Entropy, Trajectory-Level Entropy, and Probability methods.
Higher temperatures initially maintain elevated Actor Entropy, facilitating extended exploration
phases with gradual improvements across validation benchmarks. Importantly, these methods also
exhibit relatively higher Point-Biserial Correlation values at T = 1.2, indicating stronger alignment

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

0 20 40 60 80 100120140160180200220240260
Training Step

0.00
0.06
0.12
0.18
0.24
0.30

Label Accuracy

0 20 40 60 80 100120140160180200220240260
Training Step

1200

1800

2400

3000

3600

Mean Response Length

0 20 40 60 80 100120140160180200220240260
Training Step

0

2

4

6

8

Actor Entropy

0 20 40 60 80 100120140160180200220240260
Training Step

0.030
0.035
0.040
0.045
0.050
0.055

AIME 2024 Accuracy (avg@32)

0 20 40 60 80 100120140160180200220240260
Training Step

0.020

0.025

0.030

0.035

0.040

AIME 2025 Accuracy (avg@32)

0 20 40 60 80 100120140160180200220240260
Training Step

0.255
0.270
0.285
0.300
0.315
0.330

AMC 2023 Accuracy (avg@32)

T = 0.6 T = 0.8 T = 1.0 T = 1.2

Figure 12: Effect of training temperature on Self-Certainty performance. Note that Point-Biserial
Correlation is replaced with Mean Response Length due to Self-Certainty’s scoring characteristics.

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Training Step

0.00

0.04

0.08

0.12

0.16

Label Accuracy

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Training Step

1500

3000

4500

6000

Mean Response Length

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Training Step

0

2

4

6

8

Actor Entropy

0 20 40 60 80 100120140160180200220240260
Training Step

0.00

0.02

0.04

0.06

0.08
AIME 2024 Accuracy (avg@32)

0 20 40 60 80 100120140160180200220240260
Training Step

0.00
0.01
0.02
0.03
0.04
0.05

AIME 2025 Accuracy (avg@32)

0 20 40 60 80 100120140160180200220240260
Training Step

0.00

0.08

0.16

0.24

0.32

AMC 2023 Accuracy (avg@32)

T = 0.6 T = 0.8 T = 1.0 T = 1.2

Figure 13: Effect of training temperature on Token-Level Entropy performance.

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Training Step

0.00
0.05
0.10
0.15
0.20
0.25

Label Accuracy

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Training Step

1500

3000

4500

6000

Mean Response Length

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Training Step

0

2

4

6

8

Actor Entropy

0 20 40 60 80 100120140160180200220240260
Training Step

0.00
0.02
0.04
0.06
0.08
0.10

AIME 2024 Accuracy (avg@32)

0 20 40 60 80 100120140160180200220240260
Training Step

0.00

0.01

0.02

0.03

0.04

0.05
AIME 2025 Accuracy (avg@32)

0 20 40 60 80 100120140160180200220240260
Training Step

0.00

0.08

0.16

0.24

0.32

AMC 2023 Accuracy (avg@32)

T = 0.6 T = 0.8 T = 1.0 T = 1.2

Figure 14: Effect of training temperature on Trajectory-Level Entropy performance.

between certainty estimates and actual correctness—a crucial property for effective uncertainty-based
reward assignment.

However, Figure 12 reveals that Self-Certainty exhibits contrasting behavior. Higher temperature
(T = 1.2) leads to excessive exploration without convergence, maintaining persistently high Actor
Entropy while achieving lower validation scores and Label Accuracy. The moderate temperature
T = 1.0 provides more stable and superior performance for Self-Certainty. This divergence suggests
that while different certainty-based methods converge toward similar sharp distributions, they exhibit
distinct convergence rates requiring method-specific temperature tuning. Among all certainty-based
approaches, Token-Level and Trajectory-Level Entropy methods demonstrate the greatest benefits
from higher temperature exploration, likely due to their more robust entropy-based uncertainty
estimation mechanisms.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

0 20 40 60 80 100120140160180200220240260
Training Step

0.00

0.06

0.12

0.18

0.24

Label Accuracy

0 20 40 60 80 100120140160180200220240260
Training Step

0

1500

3000

4500

6000

7500
Mean Response Length

0 20 40 60 80 100120140160180200220240260
Training Step

0

2

4

6

8

Actor Entropy

0 20 40 60 80 100120140160180200220240260
Training Step

0.00

0.01

0.02

0.03

0.04

AIME 2024 Accuracy (avg@32)

0 20 40 60 80 100120140160180200220240260
Training Step

0.000
0.005
0.010
0.015
0.020
0.025

AIME 2025 Accuracy (avg@32)

0 20 40 60 80 100120140160180200220240260
Training Step

0.00

0.06

0.12

0.18

0.24

AMC 2023 Accuracy (avg@32)

T = 0.6 T = 0.8 T = 1.0 T = 1.2

Figure 15: Effect of training temperature on Probability-based certainty performance.

0 20 40 60 80 100120140160180200220240260
Training Step

0.03

0.06

0.09

0.12

0.15
Label Accuracy

0 20 40 60 80 100120140160180200220240260
Training Step

880
960

1040
1120
1200
1280

Mean Response Length

0 20 40 60 80 100120140160180200220240260
Training Step

1.05
1.20
1.35
1.50
1.65
1.80

Actor Entropy

0 20 40 60 80 100120140160180200220240260
Training Step

0.036
0.040
0.044
0.048
0.052
0.056

AIME 2024 Accuracy (avg@32)

0 20 40 60 80 100120140160180200220240260
Training Step

0.024

0.028

0.032

0.036

0.040
AIME 2025 Accuracy (avg@32)

0 20 40 60 80 100120140160180200220240260
Training Step

0.280
0.288
0.296
0.304
0.312
0.320

AMC 2023 Accuracy (avg@32)

Mini BS = 1 Mini BS = 8 Mini BS = 16 Mini BS = 32 Mini BS = 64

Figure 16: Effect of mini-batch size on Self-Certainty performance.

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Training Step

0.00

0.04

0.08

0.12

0.16
Label Accuracy

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Training Step

1500

3000

4500

6000

Mean Response Length

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Training Step

0.0
0.2
0.4
0.6
0.8
1.0

Actor Entropy

0 20 40 60 80 100120140160180200220240260
Training Step

0.00

0.02

0.04

0.06

0.08

AIME 2024 Accuracy (avg@32)

0 20 40 60 80 100120140160180200220240260
Training Step

0.00
0.01
0.02
0.03
0.04
0.05

AIME 2025 Accuracy (avg@32)

0 20 40 60 80 100120140160180200220240260
Training Step

0.00

0.08

0.16

0.24

0.32

AMC 2023 Accuracy (avg@32)

Mini BS = 1 Mini BS = 8 Mini BS = 16 Mini BS = 32 Mini BS = 64

Figure 17: Effect of mini-batch size on Token-Level Entropy performance.

0 20 40 60 80 100120140160180200220240260
Training Step

0.00
0.04
0.08
0.12
0.16
0.20

Label Accuracy

0 20 40 60 80 100120140160180200220240260
Training Step

1500

3000

4500

6000

Mean Response Length

0 20 40 60 80 100120140160180200220240260
Training Step

0.0
0.2
0.4
0.6
0.8
1.0

Actor Entropy

0 20 40 60 80 100120140160180200220240260
Training Step

0.000
0.015
0.030
0.045
0.060
0.075

AIME 2024 Accuracy (avg@32)

0 20 40 60 80 100120140160180200220240260
Training Step

0.000

0.015

0.030

0.045

AIME 2025 Accuracy (avg@32)

0 20 40 60 80 100120140160180200220240260
Training Step

0.00

0.08

0.16

0.24

0.32

AMC 2023 Accuracy (avg@32)

Mini BS = 1 Mini BS = 8 Mini BS = 16 Mini BS = 32 Mini BS = 64

Figure 18: Effect of mini-batch size on Trajectory-Level Entropy performance.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

0 20 40 60 80 100120140160180200220240260
Training Step

0.00
0.02
0.04
0.06
0.08
0.10

Label Accuracy

0 20 40 60 80 100120140160180200220240260
Training Step

0
250
500
750

1000

Mean Response Length

0 20 40 60 80 100120140160180200220240260
Training Step

0.0
0.6
1.2
1.8
2.4
3.0

Actor Entropy

0 20 40 60 80 100120140160180200220240260
Training Step

0.000
0.008
0.016
0.024
0.032
0.040

AIME 2024 Accuracy (avg@32)

0 20 40 60 80 100120140160180200220240260
Training Step

0.000
0.005
0.010
0.015
0.020
0.025

AIME 2025 Accuracy (avg@32)

0 20 40 60 80 100120140160180200220240260
Training Step

0.00

0.06

0.12

0.18

0.24

AMC 2023 Accuracy (avg@32)

Mini BS = 1 Mini BS = 8 Mini BS = 16 Mini BS = 32 Mini BS = 64

Figure 19: Effect of mini-batch size on Probability performance.

0 20 40 60 80 100120140160180200220240260
Training Step

0.025

0.050

0.075

0.100

0.125

Label Accuracy

0 20 40 60 80 100120140160180200220240260
Training Step

880
960

1040
1120
1200
1280

Mean Response Length

0 20 40 60 80 100120140160180200220240260
Training Step

1.05
1.20
1.35
1.50
1.65

Actor Entropy

0 20 40 60 80 100120140160180200220240260
Training Step

0.035
0.040
0.045
0.050
0.055
0.060

AIME 2024 Accuracy (avg@32)

0 20 40 60 80 100120140160180200220240260
Training Step

0.024

0.028

0.032

0.036

0.040
AIME 2025 Accuracy (avg@32)

0 20 40 60 80 100120140160180200220240260
Training Step

0.255

0.270

0.285

0.300

0.315

AMC 2023 Accuracy (avg@32)

w/o KL w/ KL

Figure 20: Effect of KL divergence regularization on Self-Certainty performance.

Mini-Batch Size. Mini-batch size effects on certainty-based methods largely parallel those observed
in Majority Voting, confirming that on-policy ratio critically affects training stability regardless of the
underlying reward computation mechanism. However, method-specific sensitivities reveal important
distinctions in robustness to off-policy learning.

Figures 17 to 19 consistently demonstrate that larger mini-batch sizes prevent premature model
collapse across Token-Level Entropy, Trajectory-Level Entropy, and Probability methods. This
pattern mirrors Majority Voting behavior, where pure on-policy training (mini-batch size = 64)
maintains optimal coupling between samples and their corresponding certainty-based rewards. The
underlying mechanism remains consistent: certainty estimates computed from current policy states
become unreliable when applied to samples generated from earlier policy iterations.

Notably, Self-Certainty exhibits exceptional robustness to mini-batch size variations, as shown in
Figure 16. This method demonstrates minimal sensitivity to on-policy ratio changes, suggesting that
KL divergence-based certainty computation may be inherently more stable across different temporal
policy alignments. This robustness likely stems from Self-Certainty’s reliance on logit distribution
comparisons rather than explicit probability estimates, making it less susceptible to the temporal
inconsistencies that destabilize other certainty-based approaches. Among the certainty-based methods,
Self-Certainty thus offers superior stability but at the cost of lower overall performance improvements.

KL Divergence Regularization. KL regularization effects on certainty-based methods mirror the
limited impact observed in Majority Voting, confirming that this regularization technique fails to
address the fundamental instabilities inherent in training. However, subtle differences in method
responses provide insights into the interaction between regularization and different uncertainty
estimation approaches.

Results across all certainty-based methods (Figures 20 to 23) show minimal impact on both training
dynamics and downstream performance. KL regularization neither prevents eventual model collapse
(except for Self-Certainty) nor significantly improves validation scores, consistent with our findings
for Majority Voting. The underlying issue persists: regularization techniques designed for fixed

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

0 20 40 60 80 100120140160180200220240260
Training Step

0.00
0.04
0.08
0.12
0.16
0.20

Label Accuracy

0 20 40 60 80 100120140160180200220240260
Training Step

1500

3000

4500

6000

Mean Response Length

0 20 40 60 80 100120140160180200220240260
Training Step

0.00
0.25
0.50
0.75
1.00
1.25

Actor Entropy

0 20 40 60 80 100120140160180200220240260
Training Step

0.000
0.015
0.030
0.045
0.060
0.075

AIME 2024 Accuracy (avg@32)

0 20 40 60 80 100120140160180200220240260
Training Step

0.00

0.01

0.02

0.03

0.04

0.05
AIME 2025 Accuracy (avg@32)

0 20 40 60 80 100120140160180200220240260
Training Step

0.00

0.08

0.16

0.24

0.32

AMC 2023 Accuracy (avg@32)

w/o KL w/ KL

Figure 21: Effect of KL divergence regularization on Token-Level Entropy performance.

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Training Step

0.00
0.04
0.08
0.12
0.16
0.20

Label Accuracy

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Training Step

1500

3000

4500

6000

Mean Response Length

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Training Step

0.00

0.25

0.50

0.75

1.00

1.25
Actor Entropy

0 20 40 60 80 100120140160180200220240260
Training Step

0.00

0.02

0.04

0.06

0.08

AIME 2024 Accuracy (avg@32)

0 20 40 60 80 100120140160180200220240260
Training Step

0.00

0.01

0.02

0.03

0.04

0.05
AIME 2025 Accuracy (avg@32)

0 20 40 60 80 100120140160180200220240260
Training Step

0.00

0.08

0.16

0.24

0.32

AMC 2023 Accuracy (avg@32)

w/o KL w/ KL

Figure 22: Effect of KL divergence regularization on Trajectory-Level Entropy performance.

0 20 40 60 80 100120140160180200220240260
Training Step

0.00
0.02
0.04
0.06
0.08
0.10

Label Accuracy

0 20 40 60 80 100120140160180200220240260
Training Step

0

250

500

750

1000

Mean Response Length

0 20 40 60 80 100120140160180200220240260
Training Step

0.0
0.4
0.8
1.2
1.6
2.0

Actor Entropy

0 20 40 60 80 100120140160180200220240260
Training Step

0.000
0.008
0.016
0.024
0.032
0.040

AIME 2024 Accuracy (avg@32)

0 20 40 60 80 100120140160180200220240260
Training Step

0.000
0.005
0.010
0.015
0.020
0.025

AIME 2025 Accuracy (avg@32)

0 20 40 60 80 100120140160180200220240260
Training Step

0.00

0.06

0.12

0.18

0.24

AMC 2023 Accuracy (avg@32)

w/o KL w/ KL

Figure 23: Effect of KL divergence regularization on Probability performance.

reward signals cannot effectively stabilize systems where rewards themselves evolve with policy
changes.

Interestingly, Token-Level and Trajectory-Level Entropy methods exhibit slightly more pronounced
benefits from KL regularization, as evidenced by modest improvements in Label Accuracy curves.
While these improvements remain insufficient to prevent collapse, they suggest that entropy-based
certainty estimation may have marginally better compatibility with KL-based stabilization approaches.
This observation aligns with the superior temperature robustness of these methods, indicating that
entropy-based uncertainty measures may be inherently more amenable to regularization techniques
than probability-based or KL-based certainty estimates.

Number of Rollouts. Rollout count effects reveal consistent patterns across most certainty-based
methods, with one notable exception that highlights fundamental differences in underlying reward
computation mechanisms. These findings provide crucial insights into the sample size requirements
for reliable uncertainty estimation.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

0 20 40 60 80 100120140160180200220240260
Training Step

0.025
0.050
0.075
0.100
0.125
0.150

Label Accuracy

0 20 40 60 80 100120140160180200220240260
Training Step

900

1000

1100

1200

1300

Mean Response Length

0 20 40 60 80 100120140160180200220240260
Training Step

1.0
1.2
1.4
1.6
1.8

Actor Entropy

0 20 40 60 80 100120140160180200220240260
Training Step

0.035

0.040

0.045

0.050

0.055
AIME 2024 Accuracy (avg@32)

0 20 40 60 80 100120140160180200220240260
Training Step

0.024
0.028
0.032
0.036
0.040
0.044

AIME 2025 Accuracy (avg@32)

0 20 40 60 80 100120140160180200220240260
Training Step

0.285

0.300

0.315

0.330

AMC 2023 Accuracy (avg@32)

N = 4 N = 8 N = 16 N = 32

Figure 24: Effect of rollout number on Self-Certainty performance.

0 20 40 60 80 100120140160180200220240260
Training Step

0.00

0.04

0.08

0.12

0.16
Label Accuracy

0 20 40 60 80 100120140160180200220240260
Training Step

1500

3000

4500

6000

Mean Response Length

0 20 40 60 80 100120140160180200220240260
Training Step

0.0
0.2
0.4
0.6
0.8
1.0

Actor Entropy

0 20 40 60 80 100120140160180200220240260
Training Step

0.000
0.015
0.030
0.045
0.060
0.075

AIME 2024 Accuracy (avg@32)

0 20 40 60 80 100120140160180200220240260
Training Step

0.00
0.01
0.02
0.03
0.04
0.05

AIME 2025 Accuracy (avg@32)

0 20 40 60 80 100120140160180200220240260
Training Step

0.00

0.08

0.16

0.24

0.32

AMC 2023 Accuracy (avg@32)

N = 4 N = 8 N = 16 N = 32

Figure 25: Effect of rollout number on Token-Level Entropy performance.

0 20 40 60 80 100120140160180200220240260
Training Step

0.00

0.04

0.08

0.12

0.16

Label Accuracy

0 20 40 60 80 100120140160180200220240260
Training Step

1500

3000

4500

6000

Mean Response Length

0 20 40 60 80 100120140160180200220240260
Training Step

0.00

0.25

0.50

0.75

1.00

Actor Entropy

0 20 40 60 80 100120140160180200220240260
Training Step

0.000
0.015
0.030
0.045
0.060
0.075

AIME 2024 Accuracy (avg@32)

0 20 40 60 80 100120140160180200220240260
Training Step

0.00
0.01
0.02
0.03
0.04
0.05

AIME 2025 Accuracy (avg@32)

0 20 40 60 80 100120140160180200220240260
Training Step

0.00

0.08

0.16

0.24

0.32

AMC 2023 Accuracy (avg@32)

N = 4 N = 8 N = 16 N = 32

Figure 26: Effect of rollout number on Trajectory-Level Entropy performance.

0 20 40 60 80 100120140160180200220240260
Training Step

0.00
0.02
0.04
0.06
0.08
0.10

Label Accuracy

0 20 40 60 80 100120140160180200220240260
Training Step

0

250

500

750

1000

1250
Mean Response Length

0 20 40 60 80 100120140160180200220240260
Training Step

0.0

0.5

1.0

1.5

2.0

Actor Entropy

0 20 40 60 80 100120140160180200220240260
Training Step

0.00

0.01

0.02

0.03

0.04

0.05
AIME 2024 Accuracy (avg@32)

0 20 40 60 80 100120140160180200220240260
Training Step

0.000

0.008

0.016

0.024

0.032

AIME 2025 Accuracy (avg@32)

0 20 40 60 80 100120140160180200220240260
Training Step

0.00
0.06
0.12
0.18
0.24
0.30

AMC 2023 Accuracy (avg@32)

N = 4 N = 8 N = 16 N = 32

Figure 27: Effect of rollout number on Probability performance.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Table 8: Model configurations for backbone experiments. Models are categorized by family, training
stage, and size.

Family Model Abbrev. Stage Size

Qwen

Qwen2.5-1.5B Q2.5-1.5B Base 1.5B
Qwen2.5-Math-1.5B Q2.5-Math-1.5B Math Base 1.5B
DeepSeek-R1-Distill-Qwen-1.5B DS-R1-1.5B SFT 1.5B
Qwen2.5-1.5B-Instruct Q2.5-1.5B-Inst Instruct 1.5B
Qwen3-1.7B-Base Q3-1.7B Base 1.7B
Qwen3-4B-Base Q3-4B Base 4B

Llama

Meta-Llama-3.1-8B L3.1-8B Base 8B
OctoThinker-8B-Short-Base Octo-8B Math Base 8B
OctoThinker-3B-Short-Base Octo-3B Math Base 3B
Llama-3.1-Tulu-3-8B-SFT L3.1-8B-Tulu-SFT SFT 8B
Meta-Llama-3.1-8B-Instruct L3.1-8B-Inst Instruct 8B

Figures 25 to 27 demonstrate behavior parallel to Majority Voting: larger rollout counts (N ≥
16) accelerate model convergence and premature collapse, as evidenced by rapid degradation in
validation benchmarks and Label Accuracy. This pattern suggests that the self-reinforcing dynamics
observed in ensemble voting also manifest in certainty-based reward assignment, where higher sample
sizes amplify confidence in potentially incorrect assessments, leading to faster convergence toward
suboptimal solutions.

However, Self-Certainty exhibits markedly different behavior, as shown in Figure 24. This method
demonstrates remarkable stability across all rollout configurations, maintaining consistent perfor-
mance without collapse or significant improvement. This unique characteristic stems from Self-
Certainty’s reliance on KL divergence between uniform and logit distribution. This fundamental
difference in reward computation makes Self-Certainty inherently more robust to sample size varia-
tions, though at the cost of limited performance improvements throughout training.

B.4 IMPACT OF BACKBONE MODEL

We investigate how backbone models influence training stability and performance across three key
dimensions: training stage, model size, and architectural generation. Our analysis employs 11
models from Qwen and Llama families (detailed configurations in Table 8), selected to provide
systematic coverage of these factors. This selection is motivated by recent findings showing distinct
architectural behaviors (Gandhi et al., 2025) and potential data contamination concerns (Wu et al.,
2025b), making cross-architecture comparison essential. All models are trained on DAPO-17k using
optimal hyperparameters from Appendix B.3 with Majority Voting as the representative intrinsic
reward.

B.4.1 HORIZONTAL ANALYSIS: TRAINING STAGE IMPACT

Training stage progression reveals distinct stability patterns between architectures. For the Qwen
family (Figure 28), math-specialized and SFT models demonstrate superior stability, maintaining
Majority Voting Reward within 0.3-0.6 while base and instruct variants reach saturation (1.0)
by step 180. Math specialization and strong supervised fine-tuning (DS-R1-1.5B) create robust
foundations for optimization compared to raw base models or non-math aligned instruct variants.

The Llama family exhibits contrasting behavior: all variants eventually succumb to reward hacking
with different collapse timing, where base models fail earliest (step 40), followed by math-specialized,
SFT, then instruct versions (detailed analysis in Figure 29). This architectural difference highlights
Qwen’s fundamental advantage in providing genuine stability.

B.4.2 VERTICAL ANALYSIS: SCALE AND GENERATION EFFECTS

Model size analysis (Figure 30) reveals counterintuitive scaling effects: smaller models consistently
outperform larger variants. Q3-1.7B maintains stability significantly longer than Q3-4B, while
Octo-3B outlasts Octo-8B by about 40 steps. This suggests larger models’ increased capacity

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Training Step

0.00

0.15

0.30

0.45

0.60

Label Accuracy

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Training Step

0.0

0.1

0.2

0.3

0.4

0.5
Ground Truth Reward

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Training Step

0.2

0.4

0.6

0.8

1.0
Majority Voting Reward

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Training Step

0.0

0.2

0.4

0.6

0.8

1.0
Reward Accuracy

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Training Step

0.00

0.15

0.30

0.45

0.60

0.75

Training Pass@N

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Training Step

0.6

1.2

1.8

2.4

3.0

3.6
Actor Entropy

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Training Step

0.00

0.05

0.10

0.15

0.20

0.25

AIME 2024 Accuracy (avg@32)

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Training Step

0.00

0.04

0.08

0.12

0.16

0.20

AIME 2025 Accuracy (avg@32)

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Training Step

0.00

0.15

0.30

0.45

0.60

AMC 2023 Accuracy (avg@32)

Q2.5-1.5B (Qwen Base) Q2.5-Math-1.5B (Qwen Math Base) DS-R1-1.5B (Qwen SFT) Q2.5-1.5B-Inst (Qwen Inst)

Figure 28: Training dynamics across different training stages in Qwen family models.

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Training Step

0.000

0.025

0.050

0.075

0.100

0.125

Label Accuracy

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Training Step

0.00

0.02

0.04

0.06

0.08

Ground Truth Reward

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Training Step

0.2

0.4

0.6

0.8

1.0
Majority Voting Reward

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Training Step

0.0

0.2

0.4

0.6

0.8

Reward Accuracy

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Training Step

0.00

0.06

0.12

0.18

0.24

0.30

Training Pass@N

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Training Step

0.0

1.5

3.0

4.5

6.0

Actor Entropy

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Training Step

0.000

0.015

0.030

0.045

0.060

0.075
AIME 2024 Accuracy (avg@32)

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Training Step

0.000

0.004

0.008

0.012

0.016

AIME 2025 Accuracy (avg@32)

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Training Step

0.00

0.06

0.12

0.18

0.24

0.30
AMC 2023 Accuracy (avg@32)

L3.1-8B (Llama Base) Octo-8B (Llama Math Base) L3.1-8B-Tulu-SFT (Llama SFT) L3.1-8B-Inst (Llama Inst)

Figure 29: Training dynamics across different training stages in Llama family models.

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Training Step

0.00

0.15

0.30

0.45

0.60

Label Accuracy

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Training Step

0.0

0.1

0.2

0.3

0.4

0.5

Ground Truth Reward

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Training Step

0.2

0.4

0.6

0.8

1.0
Majority Voting Reward

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Training Step

0.0

0.2

0.4

0.6

0.8

Reward Accuracy

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Training Step

0.00

0.15

0.30

0.45

0.60

0.75

Training Pass@N

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Training Step

0.0

0.6

1.2

1.8

2.4

3.0

Actor Entropy

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Training Step

0.000

0.025

0.050

0.075

0.100

0.125
AIME 2024 Accuracy (avg@32)

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Training Step

0.00

0.02

0.04

0.06

0.08

0.10
AIME 2025 Accuracy (avg@32)

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Training Step

0.0

0.1

0.2

0.3

0.4

0.5

AMC 2023 Accuracy (avg@32)

Q3-1.7B-Base Q3-4B-Base Octo-3B Octo-8B

Figure 30: Effect of model size on stability across both Qwen and Llama families.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Training Step

0.00

0.05

0.10

0.15

0.20

0.25
Label Accuracy

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Training Step

0.00

0.03

0.06

0.09

0.12

0.15

Ground Truth Reward

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Training Step

0.2

0.4

0.6

0.8

1.0
Majority Voting Reward

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Training Step

0.0

0.2

0.4

0.6

0.8

Reward Accuracy

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Training Step

0.0

0.1

0.2

0.3

0.4

Training Pass@N

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Training Step

0.8

1.6

2.4

3.2

Actor Entropy

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Training Step

0.000

0.015

0.030

0.045

0.060

0.075
AIME 2024 Accuracy (avg@32)

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Training Step

0.000

0.008

0.016

0.024

0.032

0.040

AIME 2025 Accuracy (avg@32)

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Training Step

0.00

0.06

0.12

0.18

0.24

0.30

AMC 2023 Accuracy (avg@32)

Q2.5-1.5B Q3-1.7B-Base

Figure 31: Comparison of Qwen 2.5 and Qwen 3 generations across comprehensive training metrics.
Results reveal improved stability in the newer generation, with Qwen3 models demonstrating more
gradual and controlled training dynamics compared to Qwen2.5 counterparts.

0 60 120 180 240 300 360 420 480 540 600
Training Step

0.0

0.2

0.4

0.6

0.8

Label Accuracy

0 60 120 180 240 300 360 420 480 540 600
Training Step

0.0

0.2

0.4

0.6

0.8

Reward Accuracy

0 60 120 180 240 300 360 420 480 540 600
Training Step

0.0

0.2

0.4

0.6

0.8

1.0
Training Pass@N

0 60 120 180 240 300 360 420 480 540 600
Training Step

0.0

0.2

0.4

0.6

0.8

Ground Truth Reward

0 60 120 180 240 300 360 420 480 540 600
Training Step

0.2

0.4

0.6

0.8

1.0
Majority Voting Reward

0 60 120 180 240 300 360 420 480 540 600
Training Step

0.25

0.50

0.75

1.00

1.25

Actor Entropy

0 60 120 180 240 300 360 420 480 540 600
Training Step

0.00

0.02

0.04

0.06

0.08

AIME 2024 Accuracy (avg@32)

0 60 120 180 240 300 360 420 480 540 600
Training Step

0.00

0.01

0.02

0.03

0.04

0.05
AIME 2025 Accuracy (avg@32)

0 60 120 180 240 300 360 420 480 540 600
Training Step

0.08

0.16

0.24

0.32

0.40
AMC 2023 Accuracy (avg@32)

MATH-8k ORZ-56k DeepScaler-40k DAPO-17k

Figure 32: Comparison of different training data sources.

amplifies sensitivity to noisy pseudo-rewards, accelerating convergence toward degenerate solutions
and challenging conventional scaling assumptions.

Architectural generation comparison shows clear improvements in newer versions. Qwen3 models
exhibit superior stability compared to Qwen2.5 counterparts, with Q3-1.7B-Base demonstrating more
controlled Majority Voting Reward progression (comprehensive comparison in Figure 31). These
improvements likely stem from better-calibrated uncertainty estimates and enhanced representation
learning supporting more reliable pseudo-reward computation.

B.5 IMPACT OF TRAINING DATASET

Setup. We investigate how different training dataset influence training stability and performance,
focusing on math reasoning, utilizing MATH-8k (Hendrycks et al., 2021), DeepScaleR-40k (Luo
et al., 2025), DAPO-17k (Yu et al., 2025) and ORZ-56k (Hu et al., 2025), all settings are trained

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

on Qwen3-1.7B-Base with 1 epoch using optimal hyperparameters from Appendix B.3, and also
evaluated on three validation benchmarks.

Results. We can see from Figure 32, much larger datasets (DeepScaler-40k and ORZ-56k) exhibits
clear reward hacking trend, while smaller datasets settings are on its steady or rise stage, indicating
that current intrinsic methods may see its short-sighted incremental improvements at the early stage,
while extending it much larger training corpora, it inevitably encounter the reward hacking.

C THE USE OF LARGE LANGUAGE MODELS

We use large language models to refine our writing. In particular, we use ChatGPT (GPT-5 Thinking)
to revise the manuscript. The prompt provided to the model is: “I am writing an academic paper in
English. Please polish the following draft so that it adheres to the conventions of academic writing.”

36

	Introduction
	Related Work
	Theoretical Perspective: The Trade-off of Sharpening
	Unified Reward Framework
	Optimal Policy Analysis

	Empirical Analysis: The Promise and Pitfalls
	Why Do These Methods Work? Trading Uncertainty for Performance
	Comparison with Trained with Ground Truth Reward
	Fine-Grained Training Dynamic Analysis
	Sampling-Efficiency Shortcuts

	How Do Different Methods Fail? Understanding Pathology Patterns
	Do These Methods Always Cause Model Collapse? No, Safe at Test Time
	Small Datasets Prevent Model Collapse
	Test-Time Training as Optimal Application Domain

	Discussion
	Does Intrinsic Reward Methods Truly Improve Capabilities?
	An Unexpected Application: Model-Task Prior Indicator Beyond Pass@k
	How to Scale RL with URLVR Methods at Train-Time?

	Conclusion
	Details for sec:theory
	Instantiations of Unified Reward Framework
	Monotonicity Analysis of General Optimal Policy
	Proof of theorem:mvconvergence
	Generalized Sharpening Analysis via Unified Reward Framework
	Empirical Validation of Theoretical Assumptions
	Optimal Policies Induced by other Intrinsic Rewards

	Details for sec:experiment
	Experimental Setup
	Calculation of Training Dynamics
	Notation
	Ensemble-Based Metrics
	Certainty-Based Metrics

	Hyperparameter Tuning
	Majority Voting
	Certainty-Based Methods

	Impact of Backbone Model
	Horizontal Analysis: Training Stage Impact
	Vertical Analysis: Scale and Generation Effects

	Impact of Training Dataset

	The Use of Large Language Models

