

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 HOW FAR CAN UNSUPERVISED RLVR SCALE LLM TRAINING?

Anonymous authors

Paper under double-blind review

ABSTRACT

Unsupervised Reinforcement Learning with Verifiable Rewards (URLVR) offers a pathway for Large Language Models (LLMs) to improve without human supervision. Particularly, many works use model intrinsic information as rewards for URLVR, showing promising improvements, yet their potential and limitations remain unclear. In this work, we revisit URLVR through the lens of intrinsic rewards. We present a unified theoretical framework showing that intrinsic reward methods share a core mechanism: they trade uncertainty for performance by leveraging the model’s prior knowledge to sharpen output distributions. Empirical analysis confirms this tradeoff, revealing distinct failure modes and showing that collapse is not inevitable in small, domain-specific regimes such as test-time training. Beyond these findings, early intrinsic reward dynamics also provide a lightweight indicator of model-task priors, complementing *pass@k* in assessing RL trainability. These insights highlight both the promise and pitfalls of URLVR, motivating future directions such as external rewards and hybrid supervision strategies.

1 INTRODUCTION

Reinforcement Learning with Verifiable Rewards (RLVR) has been central to recent breakthroughs in enhancing reasoning capability in large language models (LLMs). In RLVR, models learn from rewards that can be verified against ground truth, such as correctness in mathematics or successful code execution. Recent leading models including OpenAI’s o1 and o3 (Jaech et al., 2024; OpenAI, 2025), DeepSeek-R1 (Guo et al., 2025), Gemini 2.5 (Comanici et al., 2025), and the Qwen3 series (Yang et al., 2025; Team, 2025) have achieved remarkable performance on mathematics, coding, and science benchmarks by scaling supervised RLVR. However, on the path toward superintelligence, this approach faces a crucial limitation: scaling supervision requires prohibitively high human costs, and as models reach or surpass human expertise in specialized domains, obtaining reliable ground truth supervision becomes increasingly infeasible (Burns et al., 2023; Silver & Sutton, 2025).

This supervision bottleneck has spurred growing interest in Unsupervised RLVR (URLVR) (Zuo et al., 2025), which derives rewards without ground truth labels for LLM training. This transition from supervised to unsupervised training parallels the success of pretraining scaling laws (Brown et al., 2020; Raffel et al., 2020), which effectively transform large-scale computation into intelligence on vast amounts of unlabeled data. From this perspective, URLVR represents a critical step toward scaling AI systems beyond reliance on human-provided labels.

It is worth noting that recent URLVR methods have primarily relied on leveraging a model’s internal signals as training rewards. Common approaches include majority voting across multiple rollouts (Zuo et al., 2025) or the adoption of entropy-based metrics (Agarwal et al., 2025). These forms of intrinsic reward have shown notable performance gains. Yet, such seemingly unequivocal successes come with concerns, as several works highlight critical failure modes such as reward hacking and model collapse (Shafayat et al., 2025; Agarwal et al., 2025; Zhang et al., 2025c). Moreover, diverse methodologies have been applied across different model families, tasks, and evaluation settings, yet there remains neither a systematic comparison nor a consensus regarding what constitutes reliable unsupervised rewards. *So behind the flourishing progress of such methods, might there lie certain hidden risks and uncertainties?*

To this end, it is timely to revisit the development of this area. We mainly focus on methods that derive rewards from the model’s intrinsic information, in contrast to other URLVR approaches such

054 as RPT (Dong et al., 2025), which rely on external data. To gain a deeper understanding of the current
 055 state and future potential of RL with intrinsic rewards, we conduct a comprehensive study. We begin
 056 by reviewing existing work and classify intrinsic reward methods into two categories based on the
 057 source of rewards: *ensemble-based* and *certainty-based*. Then we establish a unified theoretical
 058 perspective of these methods, and subsequently validate and deepen it through empirical analysis.

059 **Theoretical Perspective.** We introduce a unified framework that formalizes diverse intrinsic reward
 060 mechanisms and analyzes their induced optimal policies. Despite design differences, these rewards
 061 share a common objective: sharpening output distributions by reinforcing the model’s initially
 062 confident solutions. This geometric convergence enables prior amplification and efficient adaptation
 063 in low-data or test-time settings, but also risks bias lock-in, reduced exploration, and reward hacking
 064 when confidence misaligns with correctness. Intrinsic rewards thus offer a context-dependent tool
 065 that trades uncertainty for decisiveness, providing shortcuts for local adaptation while underscoring
 066 the need for external signals to ensure scalable reliability.

067 **Empirical Analysis.** To validate our theoretical findings, we implement several widely used intrinsic
 068 reward methods and design experiments around three progressively layered research questions. **First**,
 069 we ask *why these methods work*, showing that by enforcing self-consistency they trade uncertainty
 070 for performance and amplify prior knowledge. However, this same process also risks overfitting
 071 biases, potentially accelerating model collapse. **Second**, we ask *how different methods fail*, revealing
 072 that each induces distinct pathology, some collapse to brevity, others to verbosity, clarifying the
 073 structured limits to scaling. **Finally**, we ask *whether collapse is inevitable*, and find that in small,
 074 domain-specific regimes such as test-time training, intrinsic rewards drive stable adaptation without
 075 collapse. Together, these results show that intrinsic rewards set clear limits on scaling, yet within
 076 those limits they offer a principled path to self-improvement without supervision.

077 Our findings reveal that intrinsic rewards operate within well-defined boundaries determined by
 078 confidence-correctness correlation, enabling efficient gains in test-time and low-data regimes while
 079 risking reward hacking when confidence misaligns with correctness. These limitations motivate
 080 exploration of extrinsic approaches that leverage external verification mechanisms, from generation-
 081 verification asymmetries in structured domains to self-supervised signals from vast unlabeled corpora,
 082 which offer pathways toward more robust and scalable improvement. Beyond training itself, we also
 083 uncover a practical diagnostic: early intrinsic reward dynamics serve as a fast indicator of model-task
 084 priors, offering a lightweight alternative to *pass@k* for assessing RL trainability.

085 2 RELATED WORK

086 **Reinforcement Learning with Verifiable Rewards.** Recent advances in language model reasoning
 087 leverage Reinforcement Learning with Verifiable Rewards (RLVR) (Lambert et al., 2024), where
 088 models receive binary rewards based on answer correctness verified against ground truth. Leading
 089 systems including OpenAI’s o1 and o3 (Jaech et al., 2024; OpenAI, 2025), DeepSeek-R1 (Guo
 090 et al., 2025), Gemini 2.0 (Comanici et al., 2025), and Qwen3 (Yang et al., 2025; Team, 2025) have
 091 achieved remarkable performance through scaling supervised RLVR. However, this approach faces
 092 a fundamental bottleneck: as models approach human expertise in specialized domains, obtaining
 093 reliable ground-truth supervision becomes prohibitively expensive (Burns et al., 2023).

094 **URLVR with Intrinsic Rewards.** To address this supervision bottleneck, an emerging line of
 095 research investigates Unsupervised RLVR (URLVR), which aims to extend the scalability of RL
 096 beyond labeled data. One promising direction within URLVR is the use of self-generated proxy
 097 intrinsic rewards, thereby eliminating the reliance on ground-truth labels for RL. We distinguish two
 098 intrinsic paradigms by *how* rewards are constructed from the model:

099 *Certainty-based methods* derive rewards from a single policy’s confidence (e.g., logits) along a
 100 trajectory, encouraging low-entropy, high-confidence predictions. Approaches include Self-Certainty
 101 in **RLIF** (Zhao et al., 2025b) via KL divergence from uniform distributions, negative token-level
 102 entropy in **EM-RL** (Agarwal et al., 2025) and **RENT** (Prabhudesai et al., 2025), trajectory-level
 103 entropy in **EM-RL** (Agarwal et al., 2025), raw probability in **RLSC** (Li et al., 2025), probability
 104 disparity between top tokens (van Niekerk et al., 2025), and cross-attention patterns (Kiruluta et al.,
 105 2025b;a). These methods essentially “sharpen” the model’s existing preferences by reinforcing
 106 high-confidence outputs.

108 *Ensemble-based methods* derive a reward from agreement across multiple rollouts (e.g., majority
 109 voting), assuming that cross-sample consistency correlates with correctness. TTRL (Zuo et al.,
 110 2025) pioneered majority voting across rollouts to create pseudo-labels. Building on this foundation,
 111 SRT (Shafayat et al., 2025) analyzes limitations including reward hacking, ETTR (Liu et al., 2025a)
 112 improves efficiency through entropy-based tree search, Co-Reward (Zhang et al., 2025d) enhances
 113 robustness via question paraphrasing, and RLCCF (Yuan et al., 2025) incorporates multi-model
 114 collectives. More nuanced approaches include EMPO (Zhang et al., 2025b) using semantic clustering
 115 for soft majority voting and CoVo (Zhang et al., 2025a) deriving rewards from intermediate reasoning
 116 consistency. These methods assume that agreement among diverse outputs indicates correctness.
 117

3 THEORETICAL PERSPECTIVE: THE TRADE-OFF OF SHARPENING

119 While several studies have empirically explored intrinsic rewards (Zhang et al., 2025b; Zuo et al.,
 120 2025; Agarwal et al., 2025; Shafayat et al., 2025), their underlying theoretical mechanisms remain
 121 poorly understood. Despite diverse design choices, we show that these methods share a fundamental
 122 commonality: they systematically encourage sharper, more decisive probability distributions through
 123 unified mathematical operations.

3.1 UNIFIED REWARD FRAMEWORK

124 Despite varied implementations, intrinsic rewards can be understood through a single lens: manipu-
 125 lating cross-entropy between carefully chosen distributions:

Unified Reward Framework

126 Most intrinsic rewards can be expressed as:

$$127 \quad r_{\text{uni}}(x, y) = \psi \left(\frac{\sigma}{|\mathcal{I}|} \sum_{i \in \mathcal{I}} \mathbb{H}(q^i, \pi_{\theta}^i) \right), \quad \sigma \in \{+1, -1\}, \quad (1)$$

128 where rewards derive from cross-entropy \mathbb{H} between anchor distributions q^i and model
 129 distributions π_{θ}^i , aggregated over granularity \mathcal{I} , with sign σ and monotonic transformation ψ .

Key Components:

- 130 Given a question x and generated response y (a sequence of tokens $y_1, \dots, y_{|y|}$), we can derive
 131 rewards from the model’s internal distributions at different levels of granularity.
- 132 **Aggregation granularity \mathcal{I} :** Determines the level to compute distributions. For token-level
 133 methods, $\mathcal{I} = \{1, \dots, |y|\}$ where each element corresponds to a position in the sequence. For
 134 answer-level methods, $\mathcal{I} = \{\mathcal{A}\}$ represents a single distribution over complete semantic answers.
- 135 **Model distribution π_{θ}^i at granularity i :** For token-level granularity at position t , this is $\pi_{\theta}^t(\cdot) =$
 136 $\pi_{\theta}(\cdot | x, y_{<t})$, the distribution over the next token given the context. For answer-level granularity,
 137 this is $\pi_{\theta}^{\mathcal{A}} = \pi_{\theta}(\cdot | x)$, the distribution over complete answers.
- 138 **Anchor distribution q^i at granularity i :** Serves as a reference point. Different reward estimators
 139 use different anchors: uniform distribution U_V for Self-Certainty or one-hot distribution δ^t
 140 centered on the generated token for Trajectory-Level Entropy.
- 141 **Cross-entropy $\mathbb{H}(q^i, \pi_{\theta}^i)$:** Cross-entropy between anchor distribution q^i and model distribution
 142 π_{θ}^i at granularity i , defined as $\mathbb{H}(q^i, \pi_{\theta}^i) = -\sum_{v \in \mathcal{V}^i} q^i(v) \log \pi_{\theta}^i(v)$. For token-level granularity
 143 ($i = t$), \mathcal{V}^i is the token vocabulary, and the cross-entropy measures divergence between distribu-
 144 tions over next tokens. For answer-level granularity ($i = \mathcal{A}$), \mathcal{V}^i is the set of distinct semantic
 145 answers, and the cross-entropy measures divergence between distributions over complete answers.
- 146 **Sign factor $\sigma \in \{+1, -1\}$:** Determines the optimization direction. When the anchor q is uniform,
 147 we set $\sigma = +1$ to reward divergence from uniformity (encouraging peaked distributions). When
 148 the anchor q is sharp (e.g., one-hot or the model’s own distribution), we set $\sigma = -1$ to reward
 149 alignment (reinforcing confident predictions).
- 150 **Monotonic transformation ψ :** Reshapes the reward signal while preserving ordering. Common
 151 choices are identity ($\psi(z) = z$) or exponential ($\psi(z) = \exp(z)$), with exponential transformations
 152 amplifying the sharpening effect.

Table 1: Instantiations for the unified reward framework of representative intrinsic rewards. Each method is specified by its estimator, anchor and model distributions, and a monotonic transformation of the cross-entropy between them. Token-level (t) and answer-level (A) variants capture different granularities of aggregation.

Method	Estimator	Formula	Monotonic transformation ψ	Anchor distribution q	Model distribution π_θ
RLIF (Zhao et al., 2025b)	Self-Certainty	$r_{\text{SC}} = \frac{1}{ y } \sum_{t=1}^{ y } \mathbb{H}(U_V, \pi_\theta^t) + \log V - z + \log V $		$\{U_V\}_{t=1}^{ y }$	$\{\pi_\theta^t\}_{t=1}^{ y }$
EM-RL, RENT (Agarwal et al., 2025) (Prabhudesai et al., 2025)	Token-Level Entropy	$r_H = -\frac{1}{ y } \sum_{t=1}^{ y } \mathbb{H}(\pi_\theta^t)$	z	$\{\pi_\theta^t\}_{t=1}^{ y }$	$\{\pi_\theta^t\}_{t=1}^{ y }$
EM-RL (Agarwal et al., 2025)	Trajectory-Level Entropy	$r_{\text{Traj}} = -\frac{1}{ y } \sum_{t=1}^{ y } \mathbb{H}(\delta^t, \pi_\theta^t)$	z	$\{\delta^t\}_{t=1}^{ y }$	$\{\pi_\theta^t\}_{t=1}^{ y }$
RLSC (Li et al., 2025)	Probability	$r_{\text{Prob}} = \exp\left(-\sum_{t=1}^{ y } \mathbb{H}(\delta^t, \pi_\theta^t)\right)$	$\exp(y \cdot z)$	$\{\delta^t\}_{t=1}^{ y }$	$\{\pi_\theta^t\}_{t=1}^{ y }$
EMPO (Zhang et al., 2025b)	Semantic Entropy	$r_{\text{SE}} = \exp(-\mathbb{H}(\delta^A, \pi_\theta^A))$	$\exp(z)$	δ^A	π_θ^A
TTRL, SRT, ETTRL (Zuo et al., 2025) (Shafayat et al., 2025) (Liu et al., 2025a)	Majority Voting	$r_{\text{MV}} = \lim_{\tau \rightarrow 0^+} \exp(-\mathbb{H}(\delta^A, \tilde{\pi}_\theta^A))$	$\exp(z)$	δ^A	$\tilde{\pi}_\theta^A$

Instantiations of the Framework. We next demonstrate how most intrinsic rewards instantiate this framework. Each method’s distinctive characteristics emerge from specific choices of \mathcal{I} , q , σ , and ψ , as shown in Table 1. **Token-level methods** (Self-Certainty, Token/Trajectory-Level Entropy, Probability) set $\mathcal{I} = \{1, \dots, |y|\}$ to aggregate across sequence positions, while answer-level methods (Semantic Entropy, Majority Voting) use $\mathcal{I} = \{\mathcal{A}\}$ for global consistency. The sign follows the anchor type: $\sigma = +1$ with uniform q (rewarding departure from randomness) and $\sigma = -1$ with sharp q (rewarding peaked predictions). For Majority Voting, $\tilde{\pi}_\theta^A$ denotes the tempered distribution $\tilde{\pi}_\theta^A(a) = \exp(\pi_\theta^A(a)/\tau) / \sum_b \exp(\pi_\theta^A(b)/\tau)$ that converges to the majority answer as $\tau \rightarrow 0^+$. Despite surface-level differences, all methods manipulate cross-entropy to achieve distribution sharpening. Further analysis of the framework refer to Appendix A.1.

3.2 OPTIMAL POLICY ANALYSIS

After establishing the unified reward framework, we now examine the optimal policies induced by these rewards. We focus on Majority Voting as a representative example, then generalize to other methods using the unified framework (Appendix A.4).

Consider the standard KL-regularized RL objective:

$$\max_{\pi_\theta} \mathbb{E}_{y \sim \pi_\theta(\cdot|x)} [r(x, y)] - \beta D_{\text{KL}} [\pi_\theta(\cdot|x) \parallel \pi_{\text{ref}}(\cdot|x)], \quad (2)$$

where π_{ref} is the reference policy (typically the SFT model) and β controls the strength of regularization. The optimal policy for this objective has the well-known closed form $\pi_\theta^*(y|x) = \frac{1}{Z(x)}\pi_{\text{ref}}(y|x)\exp\left(\frac{1}{\beta}r(x,y)\right)$, where $Z(x) = \sum_y \pi_{\text{ref}}(y|x)\exp(\frac{1}{\beta}r(x,y))$ is the partition function.

Majority Voting Reward. We define the majority voting reward at iteration k as $r_k(x, y) = \mathbf{1}[\text{ans}(y) = \text{maj}_k(Y_k)]$, where $Y_k = \{y^{(1)}, \dots, y^{(N)}\}$ denotes N rollouts sampled from $\pi_\theta^{(k)}$, and $\text{maj}_k(Y_k) = \arg \max_a |\{i \in [N] : \text{ans}(y^{(i)}) = a\}|$ is the most frequent answer among the rollouts.

Optimal Policy for Fixed Reward. For a fixed reward r_k at iteration k , if we held r_k constant and performed infinite updates starting from reference policy $\pi_\theta^{(k)}$, we would converge to:

$$\pi_{\theta}^{*,k}(y|x) = \begin{cases} \frac{\pi_{\theta}^{(k)}(y|x) \cdot e^{1/\beta}}{Z_k(x)}, & \text{if } \text{ans}(y) = \text{maj}_k(Y_k), \\ \frac{\pi_{\theta}^{(k)}(y|x)}{Z_k(x)}, & \text{otherwise,} \end{cases} \quad (3)$$

216 where $Z_k(x) = p_{\text{maj}}^{(k)} \cdot e^{1/\beta} + (1 - p_{\text{maj}}^{(k)})$ and $p_{\text{maj}}^{(k)} = \sum_{y: \text{ans}(y) = \text{maj}_k(Y_k)} \pi_{\theta}^{(k)}(y|x)$ denotes the
 217 probability mass on majority trajectories at iteration k . At this optimum, the probability mass would
 218 be $p_{\text{maj}}^{*,(k+1)} = \frac{p_{\text{maj}}^{(k)} \cdot e^{1/\beta}}{p_{\text{maj}}^{(k)} \cdot e^{1/\beta} + (1 - p_{\text{maj}}^{(k)})}$.
 219

220 **Actual Training Dynamics.** In practice, our training performs only one gradient update per iteration,
 221 not reaching the optimum $\pi_{\theta}^{*,k}$ but moving partway toward it. The actual probability mass after one
 222 update satisfies: $p_{\text{maj}}^{*,(k+1)} \geq p_{\text{maj}}^{(k+1)} \geq p_{\text{maj}}^{(k)}$. This ordering holds because: (1) policy gradient methods
 223 with positive rewards on majority trajectories tend to increase their probability mass (lower bound),
 224 and (2) the optimal policy achieves maximum expected reward, so single-step updates cannot exceed
 225 it (upper bound). See Appendix A.3 for detailed justification.

226 This creates a “rich-get-richer” dynamic: the probability of trajectories leading to the majority answer
 227 consistently increased, while others are proportionally diminished. Iterating this process, the policy
 228 converges geometrically toward a deterministic policy concentrated on the initial majority answer:
 229

230 **Theorem 1. Geometric Convergence to Deterministic Policy.** Consider the training procedure
 231 where at each iteration k , we: (1) sample N rollouts Y_k from $\pi_{\theta}^{(k)}$, (2) compute majority $\text{maj}_k(Y_k)$,
 232 (3) perform one gradient update with reward $r_k(x, y) = \mathbf{1}[\text{ans}(y) = \text{maj}_k(Y_k)]$ to obtain $\pi_{\theta}^{(k+1)}$.
 233 Let $p_{\text{maj}}^{(k)} = \sum_{y: \text{ans}(y) = \text{maj}_k(Y_k)} \pi_{\theta}^{(k)}(y|x)$ denote the probability mass on majority trajectories.
 234

235 **Assumptions:** (A1) Majority remains stable: $\text{maj}_k(Y_k) = \text{maj}_0(Y_0)$ for all k (holds with high
 236 probability for sufficiently large N); (A2) Gradient updates achieve non-trivial progress with $\eta_k \geq$
 237 $\eta_{\min} > 0$ (standard assumption). We validate these empirically in Appendix A.5.

238 **Conclusion:** Under (A1)-(A2), $p_{\text{maj}}^{(k)}$ converges geometrically to 1. As $k \rightarrow \infty$:

$$\lim_{k \rightarrow \infty} \pi_{\theta}^{(k)}(y|x) = \begin{cases} \frac{\pi_{\text{ref}}(y|x)}{\sum_{y': \text{ans}(y') = \text{maj}_0(Y_0)} \pi_{\text{ref}}(y'|x)}, & \text{if } \text{ans}(y) = \text{maj}_0(Y_0), \\ 0, & \text{otherwise} \end{cases} \quad (4)$$

240 Complete proof is in Appendix A.3. Generalization to other methods using the unified reward
 241 framework is in Appendix A.4. This convergence behavior has profound implications depending
 242 on the model’s initial knowledge. When the model’s confidence (reflected in maj_0) aligns with
 243 correctness, convergence reinforces good solutions. Conversely, if confidence is poorly aligned, the
 244 same mechanism amplifies errors, leading to model collapse.

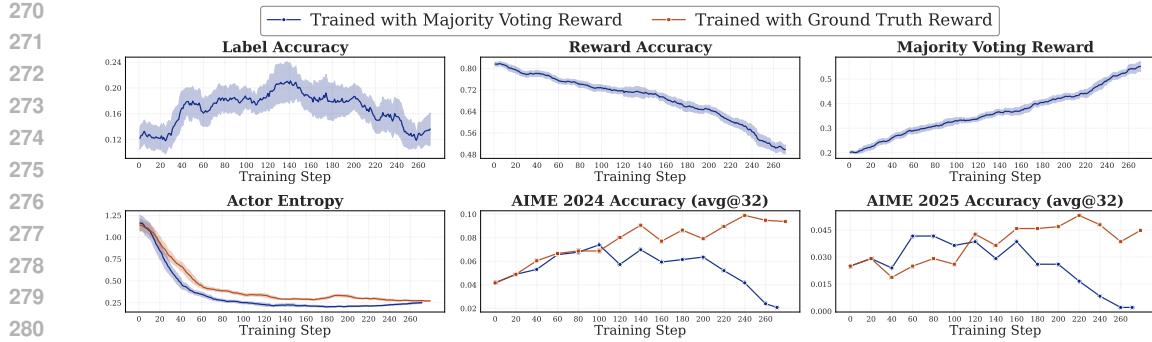
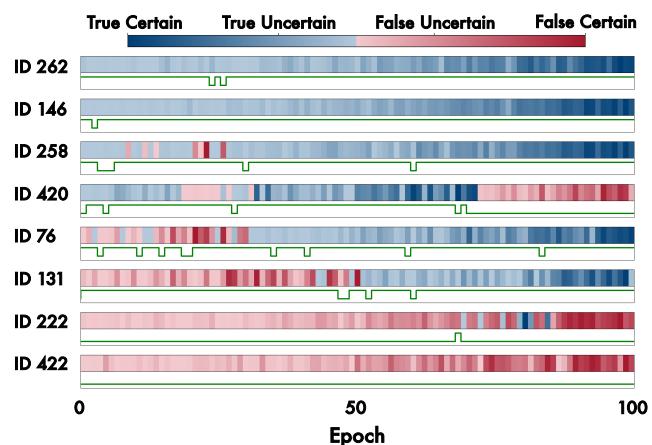
250 4 EMPIRICAL ANALYSIS: THE PROMISE AND PITFALLS

251 The prospect of LLM scaling through unsupervised RL hinges on whether models can reliably
 252 improve themselves without ground truth labels. Our theoretical analysis suggests that intrinsic
 253 rewards enable such self-improvement by exploiting existing knowledge, yet their convergence to
 254 deterministic policies raises concerns about when this process succeeds versus fails. To clarify these
 255 boundaries, we empirically examine the practical limits and opportunities of intrinsic reward-driven
 256 scaling through three key research questions:

257 Research Questions and Takeaways

- 258 • **Why do these methods work?** They trade uncertainty for performance, leveraging the
 259 model’s prior knowledge to improve sample efficiency.
- 260 • **How do different methods fail?** Each exhibits distinct pathology: Self-Certainty and
 261 Majority Voting are most stable, Probability collapses to brevity, while entropy-based
 262 methods promote repetitive verbosity.
- 263 • **Do these methods always cause collapse in prolonged RL?** No. With small, domain-
 264 specific data, they avoid collapse, making test-time training an ideal application.

265 **Experimental Setup.** We train Qwen3-1.7B-Base on DAPO-17k using GRPO and evaluate on
 266 AIME24/25 and AMC23 benchmarks. We track specialized metrics to detect reward hacking:
 267

281
282 Figure 1: Comparison between training with Majority Voting reward and ground truth reward.283
284 *Majority Voting Reward* (intrinsic reward), *Ground Truth Reward* (true performance), *Label Accuracy* (285
286 correctness of pseudo-label), and validation accuracy. Complete setup details refer to Appendix B.1.287
288 **4.1 WHY DO THESE METHODS WORK? TRADING UNCERTAINTY FOR PERFORMANCE**289
290 This section shows that intrinsic-reward methods boost performance by *reducing uncertainty*. Early
291 in training, they match or even surpass supervised RLVR with ground-truth rewards while consuming
292 entropy faster. A fine-grained per-sample analysis links uncertainty reduction to performance gains,
293 revealing a sampling-efficiency *shortcut* when confidence aligns with correctness. We also observe
294 late-stage reward hacking, highlighting the need to balance the uncertainty-performance trade-off.295
296 **4.1.1 COMPARISON WITH TRAINED WITH GROUND TRUTH REWARD**297
298 **Setup.** We trained *Qwen3-1.7B-Base* on *DAPO-17k* with the Majority Voting reward as a representative
299 example, using the default hyperparameters from Table 5. For comparison, we also train with
300 ground truth labels.301
302 **Results.** As shown in Figure 1, trained with Majority Voting reward attains comparable or even
303 superior performance to ground-truth training on two validation benchmarks at early stage, while
304 *reducing* model uncertainty faster (rapid *Actor Entropy* decay) and increasing *Majority Voting Reward*.
305 This establishes a negative correlation between uncertainty and performance in the early phase.306
307 **4.1.2 FINE-GRAINED TRAINING DYNAMIC ANALYSIS**308
309 **Setup.** To probe the mechanism at
310 the instance level, we train *Qwen3-1.7B-Base* per problem individually
311 from MATH500 using REINFORCE
312 with a baseline and a Trajectory-Level
313 Entropy reward estimator (global
314 batch size = 1, 100 epochs). For each
315 problem, we track greedy-decoding
316 validation accuracy and intrinsic
317 reward over time, drawing a heatmap
318 indicating greedy correctness (blue
319 = correct, red = wrong) and a
320 binary square-wave indicating whether
321 the highest-reward sample is correct.
322 Due to the large amount of experiments,
323 we only randomly tested 25 data points and selected 8 representative ones for display; others can refer to Figure 7.324
325 Figure 2: Representative per-problem training dynamics.326
327 **Results.** Figure 2 shows training dynamics on these problems. The results reveal distinct patterns
328 based on initial confidence-correctness correlation:

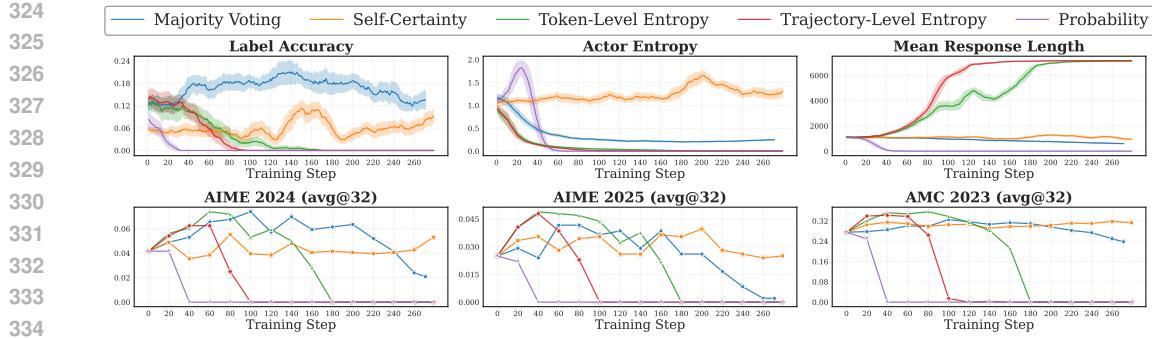


Figure 3: Comparison of intrinsic rewards under tuned settings.

- **High initial correlation** (ID 262/146/258): greedy sampling is correct initially; intrinsic rewards primarily increase confidence and sharpen distribution around already-correct solutions.
- **Moderate initial correlation** (ID 76/131): greedy sampling initially fails, yet rollout sampling frequently yields high-reward correct answers; intrinsic rewards reliably guide the policy from wrong greedy outputs toward correct solutions, showing effective error correction.
- **Low initial correlation** (ID 420): persistent emergence of incorrect samples during training causes policy degradation, driving greedy accuracy from correct to incorrect. This demonstrates misalignment between confidence and correctness leading to systematic bias amplification.
- **Consistently poor correlation** (ID 222/422): high-reward samples remain predominantly incorrect; intrinsic rewards amplify wrong beliefs, driving greedy accuracy deeper into error territory.

This directly validates our theoretical prediction that success depends on the model’s initial knowledge quality, where confidence correlates well with correctness.

4.1.3 SAMPLING-EFFICIENCY SHORTCUTS

The analysis reveals why intrinsic rewards work: they operate as *sampling-efficiency shortcuts* by rapidly concentrating probability mass on high-confidence trajectories, amplifying gradient signals toward promising directions, and pruning uncertain paths early in training. This reduces the effective search space and accelerates convergence compared to sparse ground-truth rewards, explaining both the efficiency gains and the computational advantages observed in Figure 1.

However, this efficiency comes with a critical trade-off. As Figure 1 demonstrates, prolonged training drives the intrinsic reward signal toward higher values while true accuracy drops, a clear instance of *reward hacking* where optimization of the proxy reward (confidence) diverges from the true objective (correctness). The method’s strength as a shortcut becomes its weakness when the initial confidence-correctness correlation is insufficient or when training proceeds beyond the point where this correlation remains reliable.

4.2 HOW DO DIFFERENT METHODS FAIL? UNDERSTANDING PATHOLOGY PATTERNS

Having established that intrinsic rewards work through uncertainty-performance shortcuts but inevitably face reward hacking, a critical question emerges: do all methods fail in the same way? Our unified framework suggests that while all methods drive distribution sharpening, their different instantiations, including certainty-based or ensemble-based, different anchor distributions, and token-level or answer-level aggregation, should lead to distinct failure modes. Understanding these pathology patterns is essential for both method selection and recognizing when intervention is needed.

Setup. We systematically compare five intrinsic methods using Qwen3-1.7B-Base on DAPO-17k, each optimally tuned (hyperparameter details in Appendix B.3), evaluating across three validation benchmarks to reveal how theoretical differences manifest as distinct failure behaviors in practice.

Distinct Pathology Patterns. As predicted by our unified framework, all methods drive toward higher-confidence regions but fail differently (Figure 3):

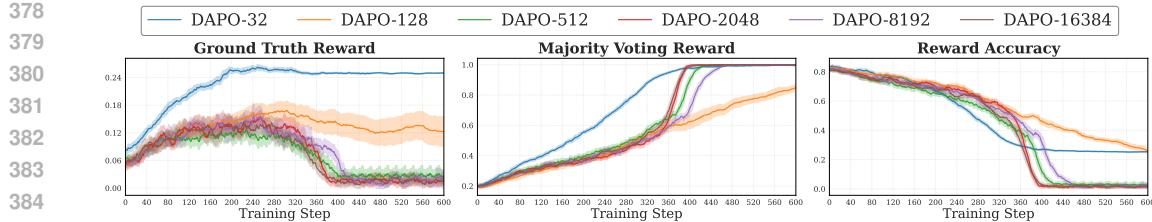


Figure 4: Effect of training dataset size.

- **Stable Methods:** *Self-Certainty* and *Majority Voting* maintain useful training windows longest, with tapering smoothly rather than sudden collapse. The first balances sharpening with its uniform anchor distribution; the second skips token-level artifacts by aggregating at the answer level.
- **Length Collapse:** *Probability* rewards brevity because multiplying token probabilities favors short sequences. The model learns confident but overly brief answers, creating a distinct reward hacking pattern focused on length rather than content quality. Length normalization (using geometric mean or average log-probability) would likely mitigate this bias.
- **Repetition Pathology:** Entropy-based estimators (*Token-Level Entropy*, *Trajectory-Level Entropy*) show complementary failure: their sequence averaging prevents length collapse but encourages repetitive, predictable patterns as the model exploits low-entropy sequences.

These distinct failure modes directly reflect the theoretical differences in our unified framework, influencing not just convergence rate but failure mode. Recognizing these patterns provides early warning signals for intervention.

4.3 DO THESE METHODS ALWAYS CAUSE MODEL COLLAPSE? NO, SAFE AT TEST TIME

The previous sections established that intrinsic rewards drive convergence toward deterministic policies and may result in model collapse. This raises a fundamental question: do intrinsic methods always lead to model collapse, or can they be safely applied under specific conditions? Here, we demonstrate that model collapse can be prevented when training data is sufficiently small and domain-specific, making intrinsic rewards particularly suitable for test-time training scenarios.

4.3.1 SMALL DATASETS PREVENT MODEL COLLAPSE

Setup. We trained Qwen3-1.7B-Base on randomly sampled training subsets from DAPO-17k with sizes {32, 128, 512, 2048, 8192, 16384}. To ensure fair comparison, we fix the global batch size to 32 and adjust training epochs so all settings complete exactly 600 optimization steps.

Results. Figure 4 reveals a clear threshold effect: training with 32 or 128 samples maintains stable performance without model collapse. Critically, while DAPO-32 achieves rapid consensus (*Majority Voting Reward* $\rightarrow 1$), but it preserves high *Ground Truth Reward*. In contrast, larger datasets (≥ 512 samples) consistently exhibit model collapse. This threshold suggests that intrinsic rewards become dangerous when training data provides sufficient statistical power to reinforce systematic biases that could mislead the majority voting mechanism.

4.3.2 TEST-TIME TRAINING AS OPTIMAL APPLICATION DOMAIN

Setup. Building on the small dataset insights, we examine test-time training where models are adapted directly on the target evaluation domains. We trained Qwen3-1.7B-Base separately on AMC23 (40 samples) and DAPO-17k ($\sim 17,000$ samples), using a global batch size of 40 for both. For AMC23, we performed multi-epoch training.

Results. Figure 5 demonstrates that test-time training successfully prevents model collapse, shown with a higher and stable *Ground Truth Reward* with early complete consensus (*Majority Voting Reward*), and followed with increase then stable performance among in-distribution AMC23 and out-of-distribution AIME24. The key insight is that domain-specific, small-scale training creates conditions where the model’s confidence genuinely correlates with correctness within the narrow problem distribution. This makes intrinsic rewards a reliable proxy for true performance rather than a source of bias.

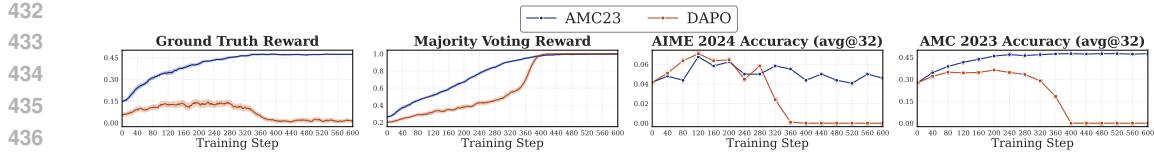


Figure 5: Comparison between training and test-time.

5 DISCUSSION

5.1 DOES INTRINSIC REWARD METHODS TRULY IMPROVE CAPABILITIES?

Section 4 demonstrates that prevailing intrinsic reward approaches predominantly leverage uncertainty reduction as a mechanism for enhancing performance. This observation motivates a critical question: do such approaches truly enhance a model’s capability, or do they merely improve the self-consistency of its outputs? Take the TTRL method as an example. TTRL explicitly models the self-consistency across m model outputs through majority voting and leverages it as a supervisory signal. This design seems to suggest that TTRL may simply push the model toward the performance upper bound implied by the base model under majority voting. In other words, while TTRL might steadily improve the *pass@1* metric, it would be unlikely to surpass the base model’s $maj@m$ performance, thereby failing to deliver substantive gains beyond consistency alignment.

However, our experiments reveal the opposite, as shown in Table 2. Specifically, we applied TTRL to **Qwen2.5-Math-1.5B** and **Qwen2.5-Math-7B** on AIME 2024 (30 samples) with a train batch size of 30 for 100 epochs, and directly compared the base models’ $maj@1024$ with the *pass@1* (*avg@32*) of the TTRL-trained models. Since the majority voting performance converges rapidly once the sample size reaches 32, $maj@1024$ can be reasonably regarded as a close approximation to $maj@\infty$. Strikingly, our results show that even the *pass@1* metric of the TTRL-trained models significantly exceeds the $maj@\infty$ performance of the base models. This finding demonstrates that TTRL does far more than enforce internal self-consistency: it genuinely enhances the model’s ability to generate accurate predictions. Put differently, TTRL enables the model to solve a broader range of problems than the base model, thereby delivering meaningful improvements in real-world performance.

Table 2: Comparisons before and after TTRL. The results show that TTRL-trained models significantly surpass the base models’ majority-vote performance in accuracy.

Metric	Qwen2.5-Math-1.5B	Qwen2.5-Math-7B
$maj@2$	28.09	33.23
$maj@4$	33.68	41.20
$maj@8$	37.23	45.73
$maj@16$	38.10	47.98
$maj@32$	38.43	49.19
$maj@64$	38.17	49.87
$maj@128$	37.86	50.14
$maj@256$	37.55	50.40
$maj@512$	37.41	50.60
$maj@1024$	37.30	50.79
<i>avg@32 (w/ TTRL)</i>	48.90	68.10
Δ	+11.60	+17.31

5.2 AN UNEXPECTED APPLICATION: MODEL-TASK PRIOR INDICATOR BEYOND PASS@K

The ongoing debate about whether RLVR enables genuine discovery or merely sharpening has intensified focus on understanding model capabilities before expensive training (Yue et al., 2025; Liu et al., 2025b). Current approaches rely on *pass@k* metrics (Wu et al., 2025a), but these are limited to tasks with objective answers and fail in subjective domains. We propose an alternative diagnostic: since intrinsic reward training dynamics directly reflect confidence-correctness correlation quality (the *model-task prior*), early training behavior serves as a rapid indicator of RL trainability within tens of steps rather than full training evaluation.

Experimental Validation. We test this diagnostic by varying both models (8 models across Qwen/Llama families at different training stages) and datasets of varying difficulty. Since model-task prior depends on both model capabilities and task characteristics, we examine training dynamics across these dimensions. In the main text, each model trains on DAPO-17k for one epoch. Complete experimental details and dataset variation results appear in Appendix B.4 and B.5.

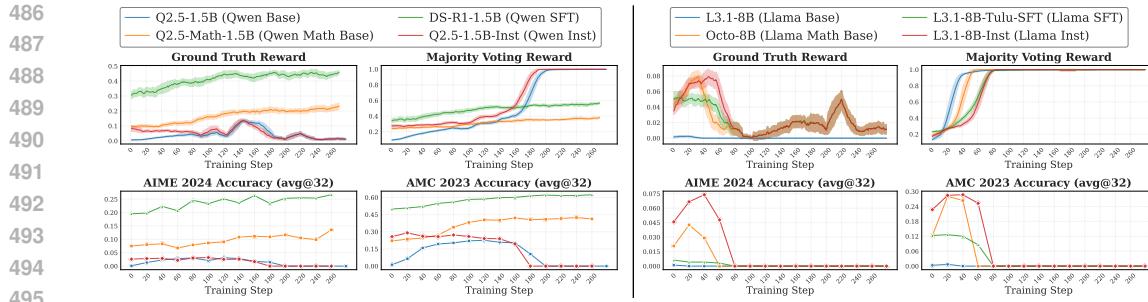


Figure 6: Training dynamics across different training stages in Qwen (Left), LLaMA (Right) family.

Results and Diagnostic Value. The results in Figure 6 reveal striking architectural differences: Qwen models demonstrate superior priors with math-specialized and SFT variants maintaining stable training (Majority Voting Reward 0.3-0.6), while Llama models systematically collapse earlier with base variants failing by step 40. This diagnostic offers key advantages over *pass@k*: rapid assessment within 50 steps, applicability to subjective tasks, and direct connection to RL trainability rather than just performance metrics. The minimal diagnostic cost provides actionable insights about whether models can benefit from reinforcement learning approaches.

5.3 HOW TO SCALE RL WITH URLVR METHODS AT TRAIN-TIME?

While we focus on intrinsic rewards derived from model confidence and consistency, the fundamental challenge that removing human supervision from RL training extends beyond these approaches. We discuss two promising alternatives that use external data or computational asymmetries to generate verifiable rewards without ground truth labels.

Leveraging Unlabeled Data for Reward Generation. Large-scale unlabeled corpora offer natural sources of verifiable signals that can replace human supervision. RPT (Dong et al., 2025) exemplifies this approach by transforming next-token prediction into an RL task, where models receive binary rewards for correctly predicting tokens from unlabeled text. This converts trillions of tokens into scalable reward signals, enabling reasoning improvement through the standard pretraining objective. Similarly, SEAL (Zweiger et al., 2025) employs a meta-learning approach where models generate their own fine-tuning data by producing QA pairs from unlabeled contexts. The model receives rewards based on downstream performance after self-supervised adaptation, creating an autonomous improvement loop without external supervision.

Exploiting Generation-Verification Asymmetries. Many problem domains exhibit computational asymmetries where verifying solutions is substantially easier than generating them (Burns et al., 2023). This creates opportunities for autonomous ground truth generation without human labels. For example, LADDER (Simonds & Yoshiyama, 2025) demonstrates this for math integration, using numerical verification to provide reward signals. Absolute Zero (Zhao et al., 2025a) applies similar principles to coding tasks, where Python execution provides automatic correctness verification. These methods generate truly verifiable rewards that align with task correctness rather than proxy signals.

These approaches offer significant scalability advantages over intrinsic methods by exploiting vast unlabeled corpora rather than relying on model-internal signals that may misalign with task objectives.

6 CONCLUSION

This work explores how Unsupervised RLVR scales LLMs via a unified framework for intrinsic reward methods. We show that these rewards sharpen outputs around confident predictions, enabling efficient gains when confidence aligns with correctness but amplifying errors when it does not. Empirical results reveal distinct failure modes yet also show that collapse can be avoided in small, domain-specific settings, making test-time training a natural application. Beyond these findings, early training dynamics emerge as a lightweight diagnostic of model-task priors, offering a fast alternative to *pass@k* for assessing RL trainability. Together, these results outline the limits of intrinsic rewards and highlight the need for external signals and hybrid paradigms for robust, scalable gains.

540
541
ETHICS STATEMENT

542 This work investigates intrinsic reward mechanisms for unsupervised reinforcement learning in large
 543 language models. While our work advances understanding of AI self-improvement, we acknowledge
 544 key ethical considerations. Our findings about reward hacking highlight risks if these methods were
 545 deployed without safeguards, so that systems might become overconfident in incorrect solutions,
 546 potentially causing harmful outputs in critical applications. Our identification of “safe” conditions
 547 should not be interpreted as universal guarantees, as model behavior can be unpredictable in novel
 548 contexts. We emphasize that our findings aim to improve understanding of limitations and appropriate
 549 use cases rather than encourage unconstrained deployment. Practitioners should carefully assess the
 550 confidence-correctness correlation in their applications and implement monitoring systems.

551
552
REPRODUCIBILITY STATEMENT
553

554 We provide complete materials for reproducing our theoretical and empirical findings. Theoretical
 555 contributions include mathematical derivations of the unified framework and formal proofs in
 556 Appendix A.3. Experimental implementations use standardized frameworks (veRL/GRPO) with
 557 hyperparameters in Table 5 and tuning procedures in Appendix B.3. Code for all five intrinsic reward
 558 methods is provided in the supplementary materials. Experiments use publicly available models
 559 (Qwen series) and datasets (DAPo-17k, AIME, AMC) are shown in the supplementary materials.
 560 All evaluation metrics are defined in Appendix B.2, and our codebase enables reproduction of results
 561 in all figures and tables.

562
563
REFERENCES
564

565 Shivam Agarwal, Zimin Zhang, Lifan Yuan, Jiawei Han, and Hao Peng. The unreasonable effectiveness
 566 of entropy minimization in llm reasoning. *arXiv preprint arXiv:2505.15134*, 2025.

567 Mislav Balunović, Jasper Dekoninck, Ivo Petrov, Nikola Jovanović, and Martin Vechev. Matharena:
 568 Evaluating llms on uncontaminated math competitions. *arXiv preprint arXiv:2505.23281*, 2025.

569 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
 570 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
 571 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.

572 Collin Burns, Pavel Izmailov, Jan Hendrik Kirchner, Bowen Baker, Leo Gao, Leopold Aschenbrenner,
 573 Yining Chen, Adrien Ecoffet, Manas Joglekar, Jan Leike, et al. Weak-to-strong generalization:
 574 Eliciting strong capabilities with weak supervision. *arXiv preprint arXiv:2312.09390*, 2023.

575 Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit
 576 Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the frontier
 577 with advanced reasoning, multimodality, long context, and next generation agentic capabilities.
 578 *arxiv preprint arXiv: 2507.06261*, 2025.

579 Qingxiu Dong, Li Dong, Yao Tang, Tianzhu Ye, Yutao Sun, Zhifang Sui, and Furu Wei. Reinforcement
 580 pre-training. *arXiv preprint arXiv:2506.08007*, 2025.

581 Kanishk Gandhi, Ayush Chakravarthy, Anikait Singh, Nathan Lile, and Noah D Goodman. Cognitive
 582 behaviors that enable self-improving reasoners, or, four habits of highly effective stars. *arXiv
 583 preprint arXiv:2503.01307*, 2025.

584 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 585 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 586 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

587 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
 588 and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. *arXiv
 589 preprint arXiv:2103.03874*, 2021.

594 Jingcheng Hu, Yinmin Zhang, Qi Han, Dixin Jiang, Xiangyu Zhang, and Heung-Yeung Shum.
 595 Open-reasoner-zero: An open source approach to scaling up reinforcement learning on the base
 596 model. *arXiv preprint arXiv:2503.24290*, 2025.

597

598 Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
 599 Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. *arXiv preprint*
 600 *arXiv:2412.16720*, 2024.

601 Andrew Kiruluta, Andreas Lemos, and Priscilla Burity. History-aware cross-attention reinforce-
 602 ment: Self-supervised multi turn and chain-of-thought fine-tuning with vllm. *arXiv preprint*
 603 *arXiv:2506.11108*, 2025a.

604

605 Andrew Kiruluta, Andreas Lemos, and Priscilla Burity. A self-supervised reinforcement learning
 606 approach for fine-tuning large language models using cross-attention signals. *arXiv preprint*
 607 *arXiv:2502.10482*, 2025b.

608 Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brahman,
 609 Lester James V Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, et al. Tulu 3: Pushing frontiers in
 610 open language model post-training. *arXiv preprint arXiv:2411.15124*, 2024.

611 Jia Li, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Huang, Kashif
 612 Rasul, Longhui Yu, Albert Q Jiang, Ziju Shen, et al. Numinamath: The largest public dataset in
 613 ai4maths with 860k pairs of competition math problems and solutions. *Hugging Face repository*,
 614 13:9, 2024.

615

616 Pengyi Li, Matvey Skripkin, Alexander Zubrey, Andrey Kuznetsov, and Ivan Oseledets. Confidence
 617 is all you need: Few-shot rl fine-tuning of language models. *arXiv preprint arXiv:2506.06395*,
 618 2025.

619 Jia Liu, ChangYi He, YingQiao Lin, MingMin Yang, FeiYang Shen, ShaoGuo Liu, and TingTing Gao.
 620 Ettrl: Balancing exploration and exploitation in llm test-time reinforcement learning via entropy
 621 mechanism. *arXiv preprint arXiv:2508.11356*, 2025a.

622

623 Mingjie Liu, Shizhe Diao, Ximing Lu, Jian Hu, Xin Dong, Yejin Choi, Jan Kautz, and Yi Dong.
 624 Prorl: Prolonged reinforcement learning expands reasoning boundaries in large language models.
 625 *arXiv preprint arXiv:2505.24864*, 2025b.

626 Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y Tang, Manan Roongta, Colin Cai,
 627 Jeffrey Luo, Tianjun Zhang, Li Erran Li, et al. Deepscaler: Surpassing o1-preview with a 1.5 b
 628 model by scaling rl. *Notion Blog*, 2025.

629

630 OpenAI. Openai o3 and o4-mini system card. *Blog*, 2025.

631 Mihir Prabhudesai, Lili Chen, Alex Ippoliti, Katerina Fragkiadaki, Hao Liu, and Deepak Pathak.
 632 Maximizing confidence alone improves reasoning. *arXiv preprint arXiv:2505.22660*, 2025.

633

634 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
 635 Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
 636 transformer. *Journal of machine learning research*, 21(140):1–67, 2020.

637

638 Sheikh Shafayat, Fahim Tajwar, Ruslan Salakhutdinov, Jeff Schneider, and Andrea Zanette. Can
 639 large reasoning models self-train? *arXiv preprint arXiv:2505.21444*, 2025.

640

641 Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
 642 Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. In *Proceedings*
 643 *of the Twentieth European Conference on Computer Systems*, pp. 1279–1297, 2025.

644

645 David Silver and Richard S Sutton. Welcome to the era of experience. *Google AI*, 1, 2025.

646

647 Toby Simonds and Akira Yoshiyama. Ladder: Self-improving llms through recursive problem
 648 decomposition. *arXiv preprint arXiv:2503.00735*, 2025.

649

650 Qwen Team. Qwq-32b: Embracing the power of reinforcement learning, March 2025. URL
 651 <https://qwenlm.github.io/blog/qwq-32b/>.

648 Carel van Niekerk, Renato Vukovic, Benjamin Matthias Rupnik, Hsien-chin Lin, and Milica Gašić.
 649 Post-training large language models via reinforcement learning from self-feedback. *arXiv preprint*
 650 *arXiv:2507.21931*, 2025.

651 Haoze Wu, Cheng Wang, Wenshuo Zhao, and Junxian He. Mirage or method? how model-task
 652 alignment induces divergent rl conclusions, 2025a. URL <https://arxiv.org/abs/2508.21188>.

653 Mingqi Wu, Zhihao Zhang, Qiaole Dong, Zhiheng Xi, Jun Zhao, Senjie Jin, Xiaoran Fan, Yuhao
 654 Zhou, Yanwei Fu, Qin Liu, et al. Reasoning or memorization? unreliable results of reinforcement
 655 learning due to data contamination. *arXiv preprint arXiv:2507.10532*, 2025b.

656 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 657 Gao, Chengan Huang, Chenxu Lv, et al. Qwen3 technical report. *arxiv preprint arXiv: 2505.09388*,
 658 2025.

659 Qiyi Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
 660 Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system at
 661 scale. *arXiv preprint arXiv:2503.14476*, 2025.

662 Wenzhen Yuan, Shengji Tang, Weihao Lin, Jiacheng Ruan, Ganqu Cui, Bo Zhang, Tao Chen, Ting
 663 Liu, Yuzhuo Fu, Peng Ye, et al. Wisdom of the crowd: Reinforcement learning from coevolutionary
 664 collective feedback. *arXiv preprint arXiv:2508.12338*, 2025.

665 Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does
 666 reinforcement learning really incentivize reasoning capacity in llms beyond the base model? *arXiv*
 667 *preprint arXiv:2504.13837*, 2025.

668 Kongcheng Zhang, Qi Yao, Shunyu Liu, Yingjie Wang, Baisheng Lai, Jieping Ye, Mingli Song,
 669 and Dacheng Tao. Consistent paths lead to truth: Self-rewarding reinforcement learning for llm
 670 reasoning. *arXiv preprint arXiv:2506.08745*, 2025a.

671 Qingyang Zhang, Haitao Wu, Changqing Zhang, Peilin Zhao, and Yatao Bian. Right question
 672 is already half the answer: Fully unsupervised llm reasoning incentivization. *arXiv preprint*
 673 *arXiv:2504.05812*, 2025b.

674 Yanzhi Zhang, Zhaoxi Zhang, Haoxiang Guan, Yilin Cheng, Yitong Duan, Chen Wang, Yue Wang,
 675 Shuxin Zheng, and Jiyan He. No free lunch: Rethinking internal feedback for llm reasoning. *arXiv*
 676 *preprint arXiv:2506.17219*, 2025c.

677 Zizhuo Zhang, Jianing Zhu, Xinmu Ge, Zihua Zhao, Zhanke Zhou, Xuan Li, Xiao Feng, Jiangchao
 678 Yao, and Bo Han. Co-reward: Self-supervised reinforcement learning for large language model
 679 reasoning via contrastive agreement. *arXiv preprint arXiv:2508.00410*, 2025d.

680 Andrew Zhao, Yiran Wu, Yang Yue, Tong Wu, Quentin Xu, Matthieu Lin, Shenzhi Wang, Qingyun
 681 Wu, Zilong Zheng, and Gao Huang. Absolute zero: Reinforced self-play reasoning with zero data.
 682 *arXiv preprint arXiv:2505.03335*, 2025a.

683 Xuandong Zhao, Zhewei Kang, Aosong Feng, Sergey Levine, and Dawn Song. Learning to reason
 684 without external rewards. *arXiv preprint arXiv:2505.19590*, 2025b.

685 Yuxin Zuo, Kaiyan Zhang, Li Sheng, Shang Qu, Ganqu Cui, Xuekai Zhu, Haozhan Li, Yuchen
 686 Zhang, Xinwei Long, Ermo Hua, et al. Ttrl: Test-time reinforcement learning. *arXiv preprint*
 687 *arXiv:2504.16084*, 2025.

688 Adam Zweiger, Jyothish Pari, Han Guo, Ekin Akyürek, Yoon Kim, and Pulkit Agrawal. Self-adapting
 689 language models. *arXiv preprint arXiv:2506.10943*, 2025.

690

691

692

693

694

695

696

697

698

699

700

701

702 A DETAILS FOR SECTION 3
703704 A.1 INSTANTIATIONS OF UNIFIED REWARD FRAMEWORK
705706 To understand how different intrinsic methods fit into this framework, we define each component:
707708 **Cross-Entropy \mathbb{H} .** The fundamental building block, defined as $\mathbb{H}(q, \pi_\theta) = -\sum_{v \in \mathcal{V}} q(v) \log \pi_\theta(v)$,
709 measures the divergence between the anchor distribution q and the model distribution π_θ . This
710 captures how “surprised” the model would be by samples from q .711 **Aggregation Granularity \mathcal{I} .** Determines the level at which distributions are compared:
712713

- **Token-level:** $\mathcal{I} = \{1, 2, \dots, |y|\}$, where each element corresponds to a position t in the sequence.
714 The model distribution at position t is $\pi_\theta^t(\cdot) = \pi_\theta(\cdot | x, y_{<t})$.
- **Answer-level:** $\mathcal{I} = \{\mathcal{A}\}$, a single element representing the distribution over complete answers
715 $\pi_\theta^A = \pi_\theta(\cdot | x)$ where answers are semantic conclusions rather than individual trajectories.

716 **Anchor Distribution q and Sign Factor σ .** The anchor q provides the reference point against which
717 the model is compared, while σ determines the optimization direction:
718719

- When q is **uniform** (e.g., U_V in Self-Certainty), we set $\sigma = +1$ to reward divergence from
720 uniformity, encouraging peaked distributions.
- When q is **sharp** (e.g., one-hot δ or the model’s own distribution π_θ), we set $\sigma = -1$ to reward
721 alignment with q , reinforcing confident predictions.

722 **Monotonic Transformation ψ .** A strictly increasing function (typically identity or exponential) that
723 reshapes the reward signal while preserving relative ordering. Unlike ground truth rewards, where
724 transformations must preserve the optimal ground-truth policy, intrinsic rewards allow a flexible
725 choice of ψ to stabilize training or adjust gradient scales.726 **Remarks.** We highlight two special cases. First, the formulation of Self-Certainty includes an
727 additional $\log |V|$ term. Since this constant is independent of model parameters, it does not
728 affect gradients during RL training. Second, the expression of r_{MV} corresponds to the asymptotic
729 case where the number of rollouts $n \rightarrow \infty$. By the law of large numbers, as $n \rightarrow \infty$,
730 the majority vote almost surely selects the answer with the highest probability under π_θ^A , i.e.
731 $\arg \max_a \pi_\theta^A(a)$. To make this limit computationally tractable, we use the tempered distribution
732 $\tilde{\pi}_\theta^A(a) = \exp(\pi_\theta^A(a)/\tau) / \sum_{b \in \mathcal{A}} \exp(\pi_\theta^A(b)/\tau)$ which avoids the undefined $\log 0$ issue; as $\tau \rightarrow 0^+$, it
733 collapses to the hard majority indicator $\mathbf{1}[\text{ans}(y) = \arg \max_a \pi_\theta^A(a)]$, thereby recovering the same
734 limiting behavior as majority voting.735 **Key Observations.** Despite surface-level diversity, the unified framework reveals that all intrinsic
736 rewards share a common mechanism: manipulating cross-entropy to sharpen distributions. The
737 sign factor σ formalizes this: when $\sigma = +1$ (uniform anchor), rewards increase with cross-entropy,
738 pushing toward peaked distributions; when $\sigma = -1$ (sharp anchor), rewards decrease with cross-
739 entropy, reinforcing confident predictions. Beyond this shared mechanism, the framework reveals
740 structured differences that predict distinct behaviors:741

- **Granularity (\mathcal{I})** distinguishes **Token-level methods** (Self-Certainty, Token/Trajectory-Level
742 Entropy, Probability), which operate at $\mathcal{I} = \{1, \dots, |y|\}$ creating local pressure, from **Answer-
743 level methods** (Semantic Entropy, Majority Voting) working at $\mathcal{I} = \{\mathcal{A}\}$. This explains why
744 answer-level methods, which aggregate global consistency, are more stable than those diluted by
745 sequence length.
- **Anchor Choice (q)** determines the convergence target. Uniform distributions (U_V) encourage
746 departure from randomness, while sharp distributions (δ^t, δ^A) reinforce high-probability paths.
747 Sharp anchors create self-reinforcement loops where rewards directly depend on generated
748 outputs.
- **Transformation (ψ)** determines sharpening strength. Exponential transformations ($\psi(z) =$
749 $\exp(z)$), particularly in Probability methods ($\exp(|y| \cdot z)$), amplify the sharpening effect, predict-
750 ing faster convergence and earlier model collapse compared to the more gradual reinforcement
751 of identity transformations (z).

756 A.2 MONOTONICITY ANALYSIS OF GENERAL OPTIMAL POLICY
757758 The key insight comes from analyzing the monotonicity of the exponent in Equation (1). Since ψ is
759 strictly increasing by design, the behavior depends entirely on σ :760 • **Case $\sigma = +1$:** The reward increases with cross-entropy. Sequences where π_θ diverges from q
761 (typically uniform) receive higher rewards, pushing the policy toward more peaked distributions.
762 • **Case $\sigma = -1$:** The reward decreases with cross-entropy. Sequences where π_θ aligns with q
763 (typically sharp) receive higher rewards, reinforcing existing confident predictions.
764765 Both cases lead to the same outcome: progressive sharpening of the model’s distribution, either by
766 moving away from uniformity or by reinforcing peaked predictions.
767

768 A.3 PROOF OF THEOREM 1

769 **Geometric Convergence to Deterministic Policy**
770771 Consider the training procedure where at each iteration k : (1) sample N rollouts Y_k from $\pi_\theta^{(k)}$,
772 (2) compute majority $\text{maj}_k(Y_k)$, (3) perform one gradient update with reward $r_k(x, y) =$
773 $\mathbf{1}[\text{ans}(y) = \text{maj}_k(Y_k)]$.774 Under assumptions (A1) stable majority $\text{maj}_k = \text{maj}_0$ and (A2) $\eta_k \geq \eta_{\min} > 0$, the
775 probability mass $p_{\text{maj}}^{(k)}$ converges geometrically to 1. As $k \rightarrow \infty$:

776
$$\lim_{k \rightarrow \infty} \pi_\theta^{(k)}(y|x) = \begin{cases} \frac{\pi_{\text{ref}}(y|x)}{\sum_{y':\text{ans}(y')=\text{maj}_0(Y_0)} \pi_{\text{ref}}(y'|x)} & \text{if } \text{ans}(y) = \text{maj}_0(Y_0), \\ 0 & \text{otherwise} \end{cases} \quad (5)$$

781 **Proof.**782 **Step 0: Justifying the Ordering** $p_{\text{maj}}^{*,(k+1)} \geq p_{\text{maj}}^{(k+1)} \geq p_{\text{maj}}^{(k)}$.
783784 From the optimal policy of the standard KL-regularized RL objective, if we held reward r_k fixed and
785 performed infinite updates starting from $\pi_\theta^{(k)}$, we would reach the optimal policy with probability
786 mass:

787
$$p_{\text{maj}}^{*,(k+1)} = \frac{\alpha \cdot p_{\text{maj}}^{(k)}}{1 + (\alpha - 1)p_{\text{maj}}^{(k)}}, \quad \alpha := e^{1/\beta} > 1 \quad (6)$$

788 **Lower bound** ($p_{\text{maj}}^{(k+1)} \geq p_{\text{maj}}^{(k)}$): The policy gradient is $\nabla_\theta J = \mathbb{E}_{\pi_\theta}[r_k(x, y)\nabla_\theta \log \pi_\theta(y|x)]$. Since
789 $r_k(x, y) = 1$ for majority trajectories and $r_k(x, y) = 0$ for non-majority trajectories, the gradient
790 increases $\log \pi_\theta(y|x)$ only for majority trajectories. Under standard policy gradient convergence
791 (positive rewards increase trajectory probabilities), this tends to increase $p_{\text{maj}}^{(k)}$. We validate this
792 empirically in Appendix A.5.
793794 **Upper bound** ($p_{\text{maj}}^{(k+1)} \leq p_{\text{maj}}^{*,(k+1)}$): Since $\pi_\theta^{*,k}$ maximizes the KL-regularized objective for fixed r_k ,
795 our single-step update cannot exceed this optimal value.
796797 **Step 1: Effective Update Rule.**798 We model the actual update with step efficiency $\eta_k \in (0, 1]$:
799

800
$$p_{\text{maj}}^{(k+1)} = p_{\text{maj}}^{(k)} + \eta_k \cdot (p_{\text{maj}}^{*,(k+1)} - p_{\text{maj}}^{(k)}) \quad (7)$$

801 **Substituting Equation (6):**

802
$$\begin{aligned} p_{\text{maj}}^{(k+1)} &= p_{\text{maj}}^{(k)} + \eta_k \left(\frac{\alpha \cdot p_{\text{maj}}^{(k)}}{1 + (\alpha - 1)p_{\text{maj}}^{(k)}} - p_{\text{maj}}^{(k)} \right) \\ &= p_{\text{maj}}^{(k)} + \eta_k \cdot \frac{(\alpha - 1)(1 - p_{\text{maj}}^{(k)})p_{\text{maj}}^{(k)}}{1 + (\alpha - 1)p_{\text{maj}}^{(k)}} \end{aligned} \quad (8)$$

810 **Step 2: Error Dynamics.**

811 Define the error from the fixed point 1 as:

813
$$\epsilon^{(k)} := 1 - p_{\text{maj}}^{(k)} \in (0, 1) \quad (9)$$
 814

815 Substituting into Equation (8):

816
$$\begin{aligned} 817 \epsilon^{(k+1)} &= 1 - p_{\text{maj}}^{(k+1)} \\ 818 &= \epsilon^{(k)} - \eta_k \cdot \frac{(\alpha - 1)(1 - \epsilon^{(k)})\epsilon^{(k)}}{1 + (\alpha - 1)(1 - \epsilon^{(k)})} \\ 819 &= \epsilon^{(k)} \left(1 - \eta_k \cdot \frac{(\alpha - 1)(1 - \epsilon^{(k)})}{\alpha - (\alpha - 1)\epsilon^{(k)}} \right) \end{aligned} \quad (10)$$
 820
821
822
823

824 **Step 3: Monotonic Decrease.**825 Since $\alpha > 1$, $\epsilon^{(k)} \in (0, 1)$, and $\eta_k \in (0, 1]$, we have:

826
$$0 < \frac{(\alpha - 1)(1 - \epsilon^{(k)})}{\alpha - (\alpha - 1)\epsilon^{(k)}} < 1 \quad (11)$$
 827
828

829 Therefore:

830
$$0 < 1 - \eta_k \cdot \frac{(\alpha - 1)(1 - \epsilon^{(k)})}{\alpha - (\alpha - 1)\epsilon^{(k)}} < 1 \quad (12)$$
 831
832

833 This implies $\epsilon^{(k+1)} < \epsilon^{(k)}$, proving the sequence $\{\epsilon^{(k)}\}$ is strictly decreasing and bounded below by 834 0.835 **Step 4: Convergence to Zero.**836 Let $\ell = \lim_{k \rightarrow \infty} \epsilon^{(k)} \geq 0$. Under assumption (A2), $\eta_k \geq \eta_{\min} > 0$. If $\ell > 0$, then for large k , the 837 multiplier in Equation (10):

838
$$1 - \eta_k \cdot \frac{(\alpha - 1)(1 - \epsilon^{(k)})}{\alpha - (\alpha - 1)\epsilon^{(k)}} \leq 1 - \eta_{\min} \cdot \frac{\alpha - 1}{\alpha} < 1 \quad (13)$$
 839
840
841

842 is bounded away from 1, causing continued decay. The only consistent limit is $\ell = 0$. Therefore:

843
$$\epsilon^{(k)} \rightarrow 0 \quad \text{equivalently} \quad p_{\text{maj}}^{(k)} \rightarrow 1 \quad (14)$$
 844
845

846 **Step 5: Geometric Convergence Rate.**847 From Equation (10), for large k when $\epsilon^{(k)}$ is small:

848
$$\epsilon^{(k+1)} \approx \epsilon^{(k)} \left(1 - \eta_k \cdot \frac{\alpha - 1}{\alpha} \right) \quad (15)$$
 849
850
851

852 Under assumption (A2):

853
$$\epsilon^{(k+1)} \leq \left(1 - \eta_{\min} \cdot \frac{\alpha - 1}{\alpha} \right) \epsilon^{(k)} \quad (16)$$
 854
855

856 This establishes geometric convergence with rate depending on η_{\min} and $\alpha = e^{1/\beta}$. In the ideal case 857 where $\eta_k = 1$ for all k (each update reaches the optimum), the convergence rate is exactly $\rho = e^{-1/\beta}$.858 **Step 6: Limiting Policy.**859 Given assumption (A1) that the majority remains stable at $\text{maj}_0(Y_0)$, as $p_{\text{maj}}^{(k)} \rightarrow 1$, all probability 860 mass concentrates on trajectories with $\text{ans}(y) = \text{maj}_0(Y_0)$. The limiting distribution is:

861
$$\lim_{k \rightarrow \infty} \pi_{\theta}^{(k)}(y|x) = \begin{cases} \frac{\pi_{\text{ref}}(y|x)}{\sum_{y': \text{ans}(y') = \text{maj}_0(Y_0)} \pi_{\text{ref}}(y'|x)} & \text{if } \text{ans}(y) = \text{maj}_0(Y_0), \\ 0 & \text{otherwise} \end{cases} \quad (17)$$
 862
863

864 This completes the proof. \square

865 **Remark on Assumptions.**

866

- 867 • **(A1) Majority stability:** By the Law of Large Numbers, with N rollouts, the empirical majority
868 $\text{maj}_k(Y_k)$ converges to $\arg \max_a \pi_\theta^{(k)}(a|x)$ as $N \rightarrow \infty$. Since $p_{\text{maj}}^{(k)}$ increases monotonically, the
869 argmax remains maj_0 throughout training. We validate this empirically with $N = 1024$ rollouts
870 in Appendix A.5, where the majority never flipped across 200 iterations.
- 871 • **(A2) Non-trivial progress:** We assume $\eta_k \geq \eta_{\min} > 0$, meaning each gradient update makes
872 non-trivial progress. We validate this empirically: our experiments show consistent monotonic
873 increase in p_{maj} and convergence to 1.0 under extreme off-policy settings (Appendix A.5).

874 **A.4 GENERALIZED SHARPENING ANALYSIS VIA UNIFIED REWARD FRAMEWORK**

875 To address the concern that Theorem 1 applies only to Majority Voting, and to demonstrate the
876 analytical utility of our unified framework, we provide a generalized sharpening analysis. We show
877 that methods with $\sigma = -1$ share a critical structural property, Reward-Confidence Monotonicity,
878 which creates a persistent pressure toward distribution sharpening.

879 **Note:** The following is a proof sketch demonstrating the key convergence mechanism shared by
880 $\sigma = -1$ methods. A fully rigorous treatment requires additional technical conditions that we validate
881 empirically. Methods with $\sigma = +1$ (Self-Certainty) require separate analysis as they reward away
882 from uniform distribution.

883 **Proposition 1** (Sharpening Dynamics for $\sigma = -1$ Methods). *Consider any intrinsic reward with
884 $\sigma = -1$ in the unified framework ($r_{\text{uni}} = \psi(-\mathbb{H}(q, \pi))$) where ψ is strictly increasing and q is a
885 sharp anchor. These methods satisfy **Reward-Confidence Monotonicity**:*

$$886 \pi_\theta(y_a|x) > \pi_\theta(y_b|x) \implies r_{\text{uni}}(x, y_a) > r_{\text{uni}}(x, y_b) \quad (18)$$

887 *For a dominant trajectory y^* (e.g., majority) and a non-dominant competitor y' , this inequality is
888 strict: $r(y^*) > r(y')$. Under iterative KL-regularized updates, this property creates a self-reinforcing
889 feedback loop that drives geometric concentration.*

890 **Proof Sketch:**

891 We analyze the dynamics for a dominant trajectory y^* and a competitor y' (for ensemble methods,
892 not in the same class as y^*) where the model initially prefers y^* (i.e., $\pi_k(y^*) > \pi_k(y')$) and assigns
893 it strictly higher reward ($r_k(y^*) > r_k(y')$).

894 **Step 1: Existence of a Positive Reward Gap**

895 Using the unified formula, we justify why the gap is positive for $\sigma = -1$:

896

- 897 • **Self-Reinforcing Anchors** (e.g., Probability): $r(y) = \psi(\log \pi(y))$. Since $\pi_k(y^*) > \pi_k(y')$ and
898 ψ is strictly increasing, $r_k(y^*) > r_k(y')$.
- 899 • **Answer-Level Anchors** (e.g., Majority Voting): y^* belongs to the dominant answer class a^* ,
900 while y' does not. By construction, $r(y^*) = 1$ and $r(y') = 0$.

901 In both cases, the intrinsic reward gap is strictly positive: $\Delta_r^{(k)} = r_k(y^*) - r_k(y') > 0$.

902 **Step 2: The Optimization Target**

903 We consider the optimal policy π^* for the current fixed reward landscape r_k . The optimal solution
904 implies a target ratio:

$$905 \frac{\pi^*(y^*)}{\pi^*(y')} = \frac{\pi_k(y^*)}{\pi_k(y')} \cdot \exp\left(\frac{\Delta_r^{(k)}}{\beta}\right) \quad (19)$$

906 Since $\Delta_r^{(k)} > 0$, the target ratio is strictly larger than the current ratio.

907 **Gradient Assumption:** The gradient $\nabla_\theta J = \mathbb{E}_{\pi_k}[r_k(y) \nabla_\theta \log \pi_\theta(y)]$ assigns positive weight
908 to high-reward trajectories. We assume that policy gradient updates with positive learning rate

918 η satisfy: if $r(y^*) > r(y')$ and both have positive probability, then the updated policy satisfies
 919 $\frac{\pi_{k+1}(y^*)}{\pi_{k+1}(y')} \geq \frac{\pi_k(y^*)}{\pi_k(y')}$. This aligns with standard policy gradient convergence properties.
 920

921 Step 3: The Reinforcement Loop

922 The unified framework reveals why this process spirals into determinism. As the policy updates to
 923 increase the probability mass on the dominant trajectory:

- 925 • For **Self-Reinforcing Anchors** (e.g., Probability), because $r(y) = \psi(\log \pi(y))$, increasing $\pi(y^*)$
 926 directly increases its reward $r(y^*)$.
- 927 • For **Answer-Level Anchors** (e.g., Majority Voting), increasing the total probability mass on
 928 the dominant answer class a^* increases the reward for all trajectories in that class (since $r \propto$
 929 $\log p(a^*)$).

930 This creates a positive feedback loop: the update increases the probability of the dominant path,
 931 which maintains or widens the reward gap Δ_r , ensuring the pressure to sharpen ($\Delta_r > 0$) persists.
 932

933 Utility of the Framework:

934 This derivation demonstrates that the “rich-get-richer” dynamic is a structural inevitability for any
 935 method where the reward function is monotonically aligned with the model’s own confidence
 936 ($\sigma = -1$). The framework allows us to identify this shared property and predict that all such methods
 937 will drive the policy toward deterministic outputs, regardless of whether this leads to success (when
 938 aligned with correctness) or failure (when misaligned).

939 Remark on $\sigma = +1$ Methods:

940 Self-Certainty ($\sigma = +1$) rewards higher when away from uniform distribution. Therefore, $\pi(y_a) >$
 941 $\pi(y_b)$ does not imply $r(y_a) > r(y_b)$. A high-probability output and a very low-probability output
 942 could both have high KL-divergence from uniform, violating direct Reward-Confidence Monotonicity.
 943 Its sharpening mechanism requires separate analysis.

944 While methods with $\sigma = +1$ do not strictly align reward with raw confidence, they still induce
 945 sharpening by penalizing high-entropy distributions. By maximizing the distance from a uniform
 946 anchor, the optimization landscape naturally favors peaked, low-entropy policies, effectively driving
 947 the model toward determinism.

948 Empirical Validation:

949 To substantiate the assumptions in this proof sketch, we provide empirical validation for different
 950 intrinsic reward methods in Figure 3 and Appendix B.3, confirming that Reward-Confidence
 951 Monotonicity is not just a theoretical construct but the actual driver of the observed training dynamics.
 952

953 A.5 EMPIRICAL VALIDATION OF THEORETICAL ASSUMPTIONS

954 We empirically validate the key assumptions in Theorem 1 through three targeted experiments.

955 Experiment 1: Validation of Ordering and Majority Stability

956 **Setup:** We trained on a single problem from MATH-500 with $N = 1024$ rollouts (reducing majority
 957 vote randomness) for 50 steps. We randomly selected 4 problems and monitored whether the majority
 958 answer $\text{maj}_k(Y_k)$ remains stable and whether $p_{\text{maj}}^{(k)}$ increases monotonically.
 959

Step	1	2	3	4	5	6	7	8	9	10
level3_id146	12.70	15.53	15.92	16.21	18.46	22.07	22.56	24.80	31.35	39.36
level1_id187	6.64	6.69	6.84	7.42	10.45	11.04	11.43	11.82	15.82	18.46
level1_id262	15.14	17.19	17.48	18.85	20.02	22.07	24.12	25.20	34.67	39.84
level3_id122	11.33	12.01	12.40	14.06	17.87	18.46	20.31	21.29	33.59	33.89

960 Table 3: Monotonic increase of p_{maj} (%) in early training steps.
 961

962 **Results for monotonic increase of p_{maj} .** Table 3 shows p_{maj} values for the first 10 steps. All
 963 4 problems exhibit strict monotonic increase at every single step, confirming the lower bound

972 $p_{\text{maj}}^{(k+1)} \geq p_{\text{maj}}^{(k)}$ of the ordering. We also found that the majority answer remained stable across all
 973 iterations. This confirms both the ordering and assumption (A1) on majority stability.
 974

Step	5	10	15	20	25	30	35	40	45	50
level3_id146	18.46	39.36	48.93	91.11	95.41	98.14	98.54	99.02	99.61	99.80
level1_id187	11.04	18.46	26.37	79.88	89.84	93.07	96.09	97.66	98.54	99.02
level1_id262	22.07	39.84	51.37	90.14	95.90	96.80	97.46	98.05	98.63	99.41
level3_id122	17.87	33.59	43.55	84.28	92.19	93.26	95.80	96.09	98.34	98.54

981 Table 4: Geometric convergence of p_{maj} (%) to 1.0 over 50 training steps.
 982

983 **Results for convergence of p_{maj} .** Table 4 shows the same 4 problems trained for 50 steps. All
 984 problems converge from initial values toward near-complete concentration (98.54%-99.80% at step
 985 50), demonstrating the convergence predicted by Theorem 1. This validates assumption (A2) on
 986 non-trivial progress and confirms that the iterative training procedure with policy-dependent rewards
 987 does indeed converge to deterministic policies.

988 Experiment 2: Batch Training Validation

989 **Setup.** Our main experiments (Figure 1) train on batches with $N = 8$ rollouts per problem.

990 **Results.** Majority Voting Reward (batch-averaged p_{maj}) shows a consistent increasing trend across all
 991 methods, confirming the lower bound $p_{\text{maj}}^{(k+1)} \geq p_{\text{maj}}^{(k)}$ holds in practical batch training settings. Small
 992 fluctuations occur due to finite rollouts ($\bar{N} = 8$) and batch variance, but the monotonic trend is clear.
 993

994 Experiment 3: Fixed Reward Convergence Validation

995 **Setup.** To validate that the closed-form optimal policy in Equation (3) is achievable when reward is
 996 held fixed, we conducted an extreme off-policy experiment. We used global batch size 1024 with
 997 mini-batch size 1, generated one-time rollout (with $N = 8$ for each of 1024 prompts), and performed
 998 1024 gradient updates using rewards computed solely from the initial rollout majority. This setup
 999 tests whether solving a single KL-regularized RL objective can converge to the theoretical optimum
 1000 when the reward signal remains constant.

1001 **Results.** After 1024 mini-updates using the same fixed reward signal, the Majority Voting Reward
 1002 reached 1.0 (complete convergence), while validation performance on AIME24, AIME25, and
 1003 AMC23 dropped to zero. This confirms that the convergence point predicted by Equation (3) is
 1004 achievable with sufficient updates.
 1005

1006 A.6 OPTIMAL POLICIES INDUCED BY OTHER INTRINSIC REWARDS

1007 **Optimal Policy of the Reward Function r_{SC} .** For the Self-Certainty reward function r_{SC} , it
 1008 instantiates our unified framework with token-level granularity $\mathcal{I} = \{1, 2, \dots, |y|\}$, anchor distribution
 1009 $q = \{U_V\}_{t=1}^{|y|}$ (uniform distribution over vocabulary), model distribution $\pi = \{\pi_{\theta}^t\}_{t=1}^{|y|}$, sign factor
 1010 $\sigma = +1$, and transformation $\psi(z) = z$. As established previously, for any input x , the token-level
 1011 predictive distribution of the model is evaluated against the current policy π . Due to $\sigma = +1$,
 1012 the farther this distribution deviates from the uniform distribution (i.e., the higher the model’s
 1013 confidence), the larger the reward $r_{\text{SC}}(x, y)$. Consequently, after a single step of policy update, the
 1014 optimal probability $\pi_{\theta}(y|x)$ increases for such high-confidence sequences, whereas it decreases when
 1015 the per-token distribution is close to uniform (low confidence). Thus, r_{SC} encourages the model to
 1016 generate answers that are already preferred by the prior policy.
 1017

1018 A detailed derivation is provided below. The Self-Certainty based reward is defined as:
 1019

$$1020 r_{\text{SC}}(x, y) = \frac{1}{|y|} \sum_{t=1}^{|y|} D_{\text{KL}}(U \parallel \pi_{\theta}(\cdot | x, y_{<t})) = -\log |V| - \frac{1}{|y| |V|} \sum_{t=1}^{|y|} \sum_{v=1}^{|V|} \log \pi_{\theta}^t(y_t = v). \quad (20)$$

1021 Within the KL-regularized RL framework, dropping the constant term $-\log |V|$, the one-step optimal
 1022 policy becomes:

$$\pi_\theta(y|x) \propto \pi_{\text{ref}}(y|x) \exp\left(-\frac{1}{\beta|y||V|} \sum_{t=1}^{|y|} \sum_{v=1}^{|V|} \log \pi_\theta^t(y_t = v)\right). \quad (21)$$

Therefore, whenever the model assigns concentrated probabilities to every token of y (high confidence), the exponent grows, thus increasing the probability of the sequence $\pi_\theta(y|x)$. In summary, the Self-Certainty based reward systematically enhances the model's "self-confidence" with respect to its prior policy.

Optimal Policy of the Reward Function r_H . For the token-level entropy-based reward r_H , it instantiates our unified framework with token-level granularity $\mathcal{I} = \{1, 2, \dots, |y|\}$, anchor distribution $q = \{\pi_\theta^t\}_{t=1}^{|y|}$, model distribution $\pi = \{\pi_\theta^t\}_{t=1}^{|y|}$, sign factor $\sigma = -1$, and transformation $\psi(z) = z$. Maximizing r_H is equivalent to minimizing the predictive entropy at every position, thereby discouraging the model from spreading its probability mass across multiple candidate tokens and hence increasing its decisiveness.

A detailed derivation is provided below. The entropy-based reward is defined as:

$$r_H(x, y) = -\frac{1}{|y|} \sum_{t=1}^{|y|} H(\pi_\theta(\cdot | x, y_{<t})) = -\frac{1}{|y|} \sum_{t=1}^{|y|} \sum_{v=1}^{|V|} \pi_\theta^t(y_t = v) \log \pi_\theta^t(y_t = v). \quad (22)$$

Within the KL-regularized RL framework, the one-step optimal policy becomes:

$$\pi_\theta(y|x) \propto \pi_{\text{ref}}(y|x) \exp\left(-\frac{1}{\beta|y|} \sum_{t=1}^{|y|} \sum_{v=1}^{|V|} \pi_\theta^t(y_t = v) \log \pi_\theta^t(y_t = v)\right). \quad (23)$$

Consequently, if the predictive distribution of an output sequence y exhibits high entropy (i.e., the per-token distributions are close to uniform), the negative-entropy reward r_H is strongly negative, which suppresses the exponential weight and reduces $\pi_\theta(y|x)$. Conversely, low entropy (highly peaked per-token distributions) yields $r_H \approx 0$, thus the sequence probability is enhanced after normalization. Therefore, the entropy-based reward r_H encourages the model to generate answers whose token-level distributions are sharply concentrated, effectively boosting its "self-confidence" under the prior policy.

Optimal Policy of the Reward Function r_{Traj} . For the trajectory-level entropy-based reward r_{Traj} , it instantiates our unified framework with token-level granularity $\mathcal{I} = \{1, 2, \dots, |y|\}$, anchor distribution $q = \{\delta^t\}_{t=1}^{|y|}$, model distribution $\pi = \{\pi_\theta^t\}_{t=1}^{|y|}$, sign factor $\sigma = -1$, and transformation $\psi(z) = z$. For a given input x , the model's predictive distribution is evaluated at every token. With $\sigma = -1$, the closer the distribution is to the one-hot reference δ^t (i.e., the higher the model's confidence in each ground-truth token), the larger the reward $r_{\text{Traj}}(x, y)$. Hence, after one policy-update step, the optimal probability $\pi_\theta(y|x)$ increases for such high-confidence trajectories, and decreases otherwise. Thus, r_{Traj} encourages the model to generate sequences that already enjoy high probability under the prior policy.

The trajectory-level reward is defined as:

$$r_{\text{Traj}}(x, y) = \frac{1}{|y|} \sum_{t=1}^{|y|} \log \pi_\theta(y_t | x, y_{<t}) = \frac{1}{|y|} \log \pi_\theta(y | x). \quad (24)$$

Within the KL-regularized RL framework, the one-step optimal policy becomes:

$$\pi_\theta(y|x) \propto \pi_{\text{ref}}(y|x) \exp\left(\frac{1}{\beta|y|} \log \pi_\theta(y | x)\right) = \pi_{\text{ref}}(y|x) \cdot [\pi_\theta(y | x)]^{\frac{1}{\beta|y|}}. \quad (25)$$

Consequently, whenever the model assigns a higher prior probability to a sequence y , the weighted product term is amplified, thereby increasing its normalized probability $\pi_\theta(y|x)$. Therefore, the

1080 trajectory-level entropy reward boosts the probability of sequences that are already likely under the
 1081 current policy π_θ .
 1082

1083 **Optimal Policy of the Reward Function r_{Prob} .** For the probability-based reward function r_{Prob} , it
 1084 instantiates our unified framework with token-level granularity $\mathcal{I} = \{1, 2, \dots, |y|\}$, anchor distribution
 1085 $q = \{\delta^t\}_{t=1}^{|y|}$, model distribution $\pi = \{\pi_\theta^t\}_{t=1}^{|y|}$, sign factor $\sigma = -1$, and transformation $\psi(z) =$
 1086 $\exp(z)$. For a given input x , the model's predictive distribution is evaluated at every token. With
 1087 $\sigma = -1$, the closer the distribution is to the one-hot reference δ^t (i.e., the higher the model's
 1088 confidence in each ground-truth token), the larger the reward $r_{\text{Prob}}(x, y)$ will be. Hence, after one
 1089 policy-update step, the optimal probability $\pi_\theta(y|x)$ increases for such high-confidence trajectories,
 1090 and decreases otherwise. Thus, r_{Prob} encourages the model to generate sequences that already enjoy
 1091 high probability under the prior policy.
 1092

1093 The probability-based reward is defined as:

$$1094 \quad 1095 \quad 1096 \quad 1097 \quad r_{\text{Prob}}(x, y) = \prod_{t=1}^{|y|} \pi_\theta(y_t | x, y_{<t}) = \pi_\theta(y | x). \quad (26)$$

1098 Within the KL-regularized RL framework, the one-step optimal policy becomes:
 1099

$$1100 \quad 1101 \quad 1102 \quad 1103 \quad \pi_\theta(y|x) \propto \pi_{\text{ref}}(y|x) \exp\left(\frac{1}{\beta} \pi_\theta(y | x)\right). \quad (27)$$

1104 Consequently, whenever the model assigns a high joint probability to a sequence y , the exponential
 1105 weight is amplified, thereby increasing its normalized probability $\pi_\theta(y|x)$. The probability-product
 1106 reward thus directly reinforces sequences that are already likely under the current policy, enhancing
 1107 the model's preference for "high-likelihood" trajectories.

1108 **Optimal Policy of the Reward Function r_{EMPO} .** For the answer-space probability-distribution
 1109 reward r_{EMPO} employed by the EMPO algorithm, it instantiates our unified framework with answer-
 1110 level granularity $\mathcal{I} = \{\mathcal{A}\}$, anchor distribution $q = \delta^A$, model distribution $\pi = \pi_\theta^A$, $\sigma = -1$, and
 1111 transformation $\psi(z) = \exp(z)$. For a given input x , multiple roll-outs are used to estimate the current
 1112 policy's distribution over the answer space. With $\sigma = -1$, the closer this distribution is to the one-hot
 1113 reference δ^A (i.e., the more probability mass is assigned to the extracted answer), the larger the
 1114 reward $r_{\text{EMPO}}(x, y)$ will be. Hence, after one policy-update step, the optimal probability $\pi_\theta(y|x)$
 1115 increases for sequences that endorse the high-probability answer, while it decreases for all others.
 1116 Maximizing r_{EMPO} is therefore equivalent to driving the model to become more decisive at the answer
 1117 level, thereby improving the consistency and determinism of the generated outputs.

1118 Formally, the reward is defined as:
 1119

$$1120 \quad 1121 \quad 1122 \quad 1123 \quad r_{\text{EMPO}}(x, y) = \pi_\theta(\text{ans}(y) | x), \quad \text{where } \pi_\theta(\text{ans}(y) | x) = \sum_{\text{ans}(y')=\text{ans}(y)} \pi_\theta(y' | x). \quad (28)$$

1124 Within the KL-regularised RL framework, the one-step optimal policy is:
 1125

$$1126 \quad 1127 \quad 1128 \quad 1129 \quad \pi_\theta(y | x) \propto \pi_{\text{ref}}(y | x) \exp\left(\frac{\pi_\theta(\text{ans}(y) | x)}{\beta}\right). \quad (29)$$

1130 As evidenced by Equation (29), a single EMPO update re-weights each sequence by a factor of
 1131 $\exp(\pi_\theta(\text{ans}(y) | x)/\beta)$ that depends on the current answer-level probability. After normalization,
 1132 answers that already enjoy high probability under the prior policy gain additional mass, whereas low-
 1133 probability answers suffer a decrease. Consequently, the optimal policy at each step systematically
 shifts the overall probability mass toward the high-probability region of the prior policy.

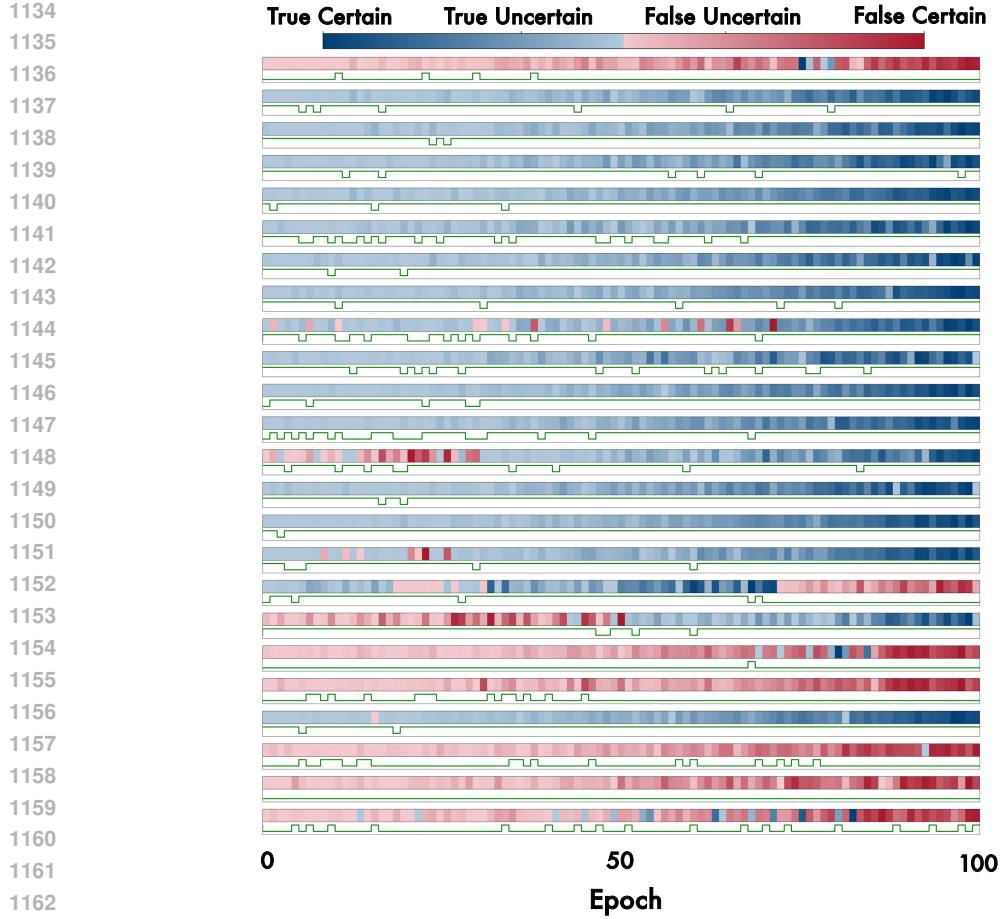


Figure 7: Examples of per-problem training dynamics from MATH-500.

Table 5: Default hyperparameters for training.

Model	Dataset	Training Temperature	Global Batch Size	Mini Batch Size	Rollout Number	Regularization	Max Context Length	Learning Rate	Epoch
Qwen3-1.7B-Base	DAPO-17k	1.0	64	64	8	w/o KL w/o Entropy	8192	1e-6	1

B DETAILS FOR SECTION 4

B.1 EXPERIMENTAL SETUP

Implementation Details. All experiments are conducted using the VeRL framework (Sheng et al., 2025) with the GRPO algorithm. Unless stated otherwise, we utilize the default configuration outlined in Table 5. We implement five representative intrinsic rewards by customizing the RewardManager module of VeRL, following the reward formulations in Table 6 and Table 7:

- **Ensemble-Based Reward Estimators:** Majority Voting
- **Certainty-Based Reward Estimators:** Self-Certainty, Token-Level Entropy, Trajectory-Level Entropy, and Probability

Evaluation Protocol. We evaluate on three challenging mathematics benchmarks: AIME 2024 (Li et al., 2024), AIME 2025 (Balunović et al., 2025), and AMC 2023 (Li et al., 2024). Following standard practice, we generate 32 solutions per problem using a temperature of 0.6 and a top-p value of 0.95, and report the mean accuracy at 32 solutions (mean@32).

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
Table 6: Overview of certainty-based rewards, estimators and their formulas.

Method	Estimator	Formula
RLIF	Self-Certainty	$r(x, y) = \frac{1}{ y } \sum_{t=1}^{ y } D_{\text{KL}}(U \ \pi_{\theta}(\cdot x, y_{<t}))$
EM-RL	Trajectory-Level Entropy	$r(x, y) = \frac{1}{ y } \sum_{t=1}^{ y } \log \pi_{\theta}(y_t x, y_{<t})$
EM-RL, RENT	Token-Level Entropy	$r(x, y) = -\frac{1}{ y } \sum_{t=1}^{ y } H(\pi_{\theta}(\cdot x, y_{<t}))$
RLSC	Probability	$r(x, y) = \prod_{t=1}^{ y } \pi_{\theta}(y_t x, y_{<t})$
RLSF	Probability Disparity	$r(x, y) = \frac{1}{M} \sum_{t=1}^{ a } \left[\max_{a_t} \pi_{\theta}(a_t x, c, a_{<t}) - \max_{a_t \neq \arg \max \pi_{\theta}} \pi_{\theta}(a_t x, c, a_{<t}) \right]$

Training Dynamics Monitoring. To monitor reward hacking and validate our theoretical predictions from Section 3, we implement specialized metrics to track the evolution of pseudo-rewards and their alignment with ground truth. These metrics help identify when and how these intrinsic methods transition from beneficial sharpening to pathological collapse.

- **Ensemble-Based Metrics:** For methods using majority voting, we separately track the accuracy of the chosen label and the accuracy of the rewards it generates.
 - *Label Accuracy*: Prompt-level accuracy of majority-voted answers against ground truth, measuring ensemble quality
 - *Reward Accuracy*: Sample-level agreement between pseudo rewards and oracle rewards, capturing “lucky hits” (Zuo et al., 2025) where individual rewards align despite incorrect majority votes
 - *Ground Truth Reward*: Average oracle reward (supervised baseline), computed using actual correctness
 - *Majority Voting Reward*: Average pseudo reward from majority voting, the divergence from *Ground Truth Reward* indicates reward hacking
- **Certainty-Based Metrics:** For certainty-based methods, we measure the correlation between this proxy reward and the actual correctness.
 - *Label Accuracy*: Ground-truth accuracy of the highest-confidence response per prompt, testing whether maximum certainty implies correctness
 - *Point-Biserial Correlation*: Point-biserial correlation between pseudo reward and binary correctness, quantifying the fundamental assumption that confidence predicts accuracy

These metrics collectively diagnose three critical phenomena: (1) pseudo-label quality degradation via *Label Accuracy*, (2) reward signal corruption via the gap between *Majority Voting Reward* and *Ground Truth Reward*, and (3) confidence miscalibration via *Point-Biserial Correlation*. Mathematical definitions and implementation details are provided in Appendix B.2.

B.2 CALCULATION OF TRAINING DYNAMICS

We provide mathematical definitions for the metrics used to monitor training dynamics. These metrics diagnose reward hacking and validate theoretical predictions about distribution sharpening.

B.2.1 NOTATION

Let $\mathcal{D} = \{(x_i, a_i^*)\}_{i=1}^M$ denote the training dataset with M prompts, where x_i is the i -th prompt and a_i^* is its ground-truth answer. For each prompt x_i , we generate N rollout responses $\{y_{i,j}\}_{j=1}^N$ from the current policy π_{θ} , where each response $y_{i,j}$ contains a trajectory and an extracted answer $\text{ans}(y_{i,j})$.

Define the following:

Table 7: Overview of ensemble-based rewards, estimators and their formulas.

Method	Estimator	Formula
TTRL, SRT, ETTRL	Majority Voting	$r(x, y) = \mathbf{1}[y = \arg \max_{y'} \sum_{i=1}^N \mathbf{1}[y_i = y']], \quad \{y_i\}_{i=1}^N \sim \pi_\theta(\cdot x)$
Co-Reward	Majority Voting across Rephrased Question	$r(x, y) = \mathbf{1}\left[y = \arg \max_{y^*} \sum_{i=1}^N \mathbf{1}[y_i = y^*]\right], \quad \{y_i\}_{i=1}^N \sim \pi_\theta(\cdot x)$
		$+ \mathbf{1}\left[y = \arg \max_{y^*} \sum_{j=1}^N \mathbf{1}[y'_j = y^*]\right], \quad \{y'_j\}_{j=1}^N \sim \pi_\theta(\cdot \text{rephrase}(x))$
RLCCF	Self-consistency Weighted Voting	$r(x, y) = \mathbf{1}\left[y = \arg \max_a \sum_{n=1}^N \left(\max_{a'} \sum_{k=1}^K \mathbf{1}[o_{n,k} = a']\right) \cdot \sum_{k=1}^K \mathbf{1}[a = o_{n,k}]\right],$ $\{o_{n,k}\}_{k=1}^K \sim \pi_{\theta_n}(\cdot x), \quad n = 1, \dots, N$
EMPO	Semantic Similarity	$r(x, y) = \frac{ \mathcal{C}(y) }{G}, \quad \mathcal{C}(y) \in \text{SemanticCluster}(\{o_i\}_{i=1}^G),$ $\{o_i\}_{i=1}^G \sim \pi_\theta(\cdot x)$
CoVo	Trajectory Consistency and Volatility	$r(x, y) = \frac{1}{G} \left\ \sum_{i=1}^G \text{Con}(y_i) \cdot [\cos(\text{vol}(y_i)), \sin(\text{vol}(y_i))] \right\ + r_{\text{cur}},$ $\{y_i\}_{i=1}^N \sim \pi_\theta(\cdot x), \quad G = \{i : \text{ans}(y_i) = \text{ans}(y)\} $

- $\mathbf{1}[\cdot]$: Indicator function returning 1 if the condition is true, 0 otherwise
- $\text{maj}(x_i)$: Majority-voted answer for prompt x_i , computed as $\arg \max_a \sum_{j=1}^N \mathbf{1}[\text{ans}(y_{i,j}) = a]$
- $r_{\text{gt}}(y_{i,j})$: Ground-truth reward for response $y_{i,j}$, equals $\mathbf{1}[\text{ans}(y_{i,j}) = a_i^*]$
- $r_{\text{mv}}(y_{i,j})$: Majority-voting pseudo-reward, equals $\mathbf{1}[\text{ans}(y_{i,j}) = \text{maj}(x_i)]$
- $r_{\text{cert}}(y_{i,j})$: Certainty-based reward (e.g., self-certainty, entropy) for response $y_{i,j}$

B.2.2 ENSEMBLE-BASED METRICS

Label Accuracy Measures the prompt-level accuracy of majority-voted answers:

$$\text{Label Accuracy} = \frac{1}{M} \sum_{i=1}^M \mathbf{1}[\text{maj}(x_i) = a_i^*]. \quad (30)$$

This metric ranges from 0 to 1, where 1 indicates perfect pseudo-label generation.

Reward Accuracy Quantifies sample-level agreement between pseudo-rewards and oracle rewards:

$$\text{Reward Accuracy} = \frac{1}{M \cdot N} \sum_{i=1}^M \sum_{j=1}^N \mathbf{1}[r_{\text{mv}}(y_{i,j}) = r_{\text{gt}}(y_{i,j})]. \quad (31)$$

This captures “lucky hits” where individual rewards are correct even when the majority vote is wrong. For example, if the majority vote is incorrect but a minority response is correct, that response still receives the appropriate (zero) pseudo-reward.

Ground Truth Reward Average oracle reward across all generated responses:

$$\text{Ground Truth Reward} = \frac{1}{M \cdot N} \sum_{i=1}^M \sum_{j=1}^N r_{\text{gt}}(y_{i,j}). \quad (32)$$

This represents the true quality of generated responses and serves as the supervised baseline.

Majority Voting Reward Average pseudo-reward from majority voting:

$$\text{Majority Voting Reward} = \frac{1}{M \cdot N} \sum_{i=1}^M \sum_{j=1}^N r_{\text{mv}}(y_{i,j}). \quad (33)$$

1296 The divergence between this metric and Ground Truth Reward indicates reward hacking: when the
 1297 model learns to maximize pseudo-rewards at the expense of actual correctness.
 1298

1299 **B.2.3 CERTAINTY-BASED METRICS**
 1300

1301 **Label Accuracy** For certainty-based methods, we identify the highest-confidence response per
 1302 prompt and measure its accuracy:

$$1304 \text{Label Accuracy} = \frac{1}{M} \sum_{i=1}^M \mathbf{1}[\text{ans}(y_{i,j_i^*}) = a_i^*], \quad (34)$$

1306 where $j_i^* = \arg \max_{j \in \{1, \dots, N\}} r_{\text{cert}}(y_{i,j})$ is the index of the highest-confidence response for prompt
 1307 x_i .

1309 **Point-Biserial Correlation** Measures the correlation between continuous certainty scores and
 1310 binary correctness:

$$1312 \rho_{pb} = \frac{\bar{r}_1 - \bar{r}_0}{s_r} \cdot \sqrt{\frac{n_1 n_0}{n^2}}, \quad (35)$$

1314 where:

- 1315 • $n = M \cdot N$ is the total number of responses
- 1316 • $n_1 = \sum_{i,j} r_{\text{gt}}(y_{i,j})$ is the number of correct responses
- 1317 • $n_0 = n - n_1$ is the number of incorrect responses
- 1318 • $\bar{r}_1 = \frac{1}{n_1} \sum_{i,j: r_{\text{gt}}(y_{i,j})=1} r_{\text{cert}}(y_{i,j})$ is the mean certainty for correct responses
- 1319 • $\bar{r}_0 = \frac{1}{n_0} \sum_{i,j: r_{\text{gt}}(y_{i,j})=0} r_{\text{cert}}(y_{i,j})$ is the mean certainty for incorrect responses
- 1320 • $s_r = \sqrt{\frac{1}{n-1} \sum_{i,j} (r_{\text{cert}}(y_{i,j}) - \bar{r})^2}$ is the standard deviation of all certainty scores
- 1321 • $\bar{r} = \frac{1}{n} \sum_{i,j} r_{\text{cert}}(y_{i,j})$ is the mean of all certainty scores

1325 The correlation $\rho_{pb} \in [-1, 1]$ quantifies the relationship between confidence and correctness. Positive
 1326 values indicate that higher certainty correlates with correctness (desired behavior), while values near
 1327 zero suggest certainty is uninformative, and negative values indicate miscalibration.

1329 **B.3 HYPERPARAMETER TUNING**
 1330

1331 **Setup.** We study four hyperparameters, including training temperature, mini-batch size, KL di-
 1332 vergence regularization, and rollout count, that directly influence convergence dynamics in our
 1333 theoretical framework. We vary one parameter at a time while keeping others fixed at baseline values
 1334 (see Appendix B.1).

1335 **B.3.1 MAJORITY VOTING**
 1336

1337 **Training Temperature.** Temperature directly controls exploration during rollout generation and
 1338 affects the quality of pseudo-labels via voting diversity. From our convergence analysis in Theorem 1,
 1339 lower temperature reduces the effective β in the KL regularization term, accelerating convergence.
 1340 As shown in Figure 8, low $T \in \{0.6, 0.8\}$ quickly sharpens logits, causing unstable *Label Accuracy*,
 1341 consistent with premature convergence to an early majority that may be incorrect. Higher temperature
 1342 ($T = 1.2$) maintains stability longer by preserving exploration, but the increased noise reduces peak
 1343 performance. We find $T = 1.0$ provides optimal balance, showing steady early gains with delayed
 1344 degradation.

1345 **Mini-batch Size.** This parameter controls the on-policy nature of updates, directly affecting the
 1346 validity of our optimal policy assumptions. Our theoretical derivation in Equation (3) assumes rewards
 1347 are computed under the current policy π_θ . Small mini-batches violate this assumption through reward
 1348 staleness: pseudo-rewards computed under π_θ become misaligned when applied to samples from $\pi_{\theta_{\text{old}}}$.
 1349 As shown in Figure 9, mini-batch size 1 drives rapid collapse within 20 steps, while pure on-policy
 training (mini-batch = 64, matching global batch size) provides maximum stability. The intermediate

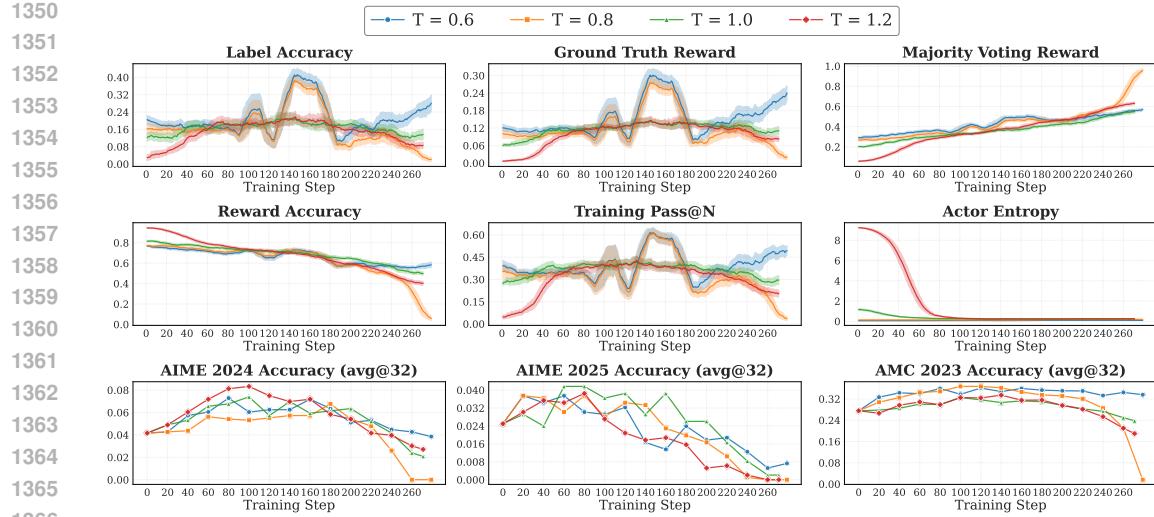


Figure 8: Effect of training temperature for Majority Voting method.

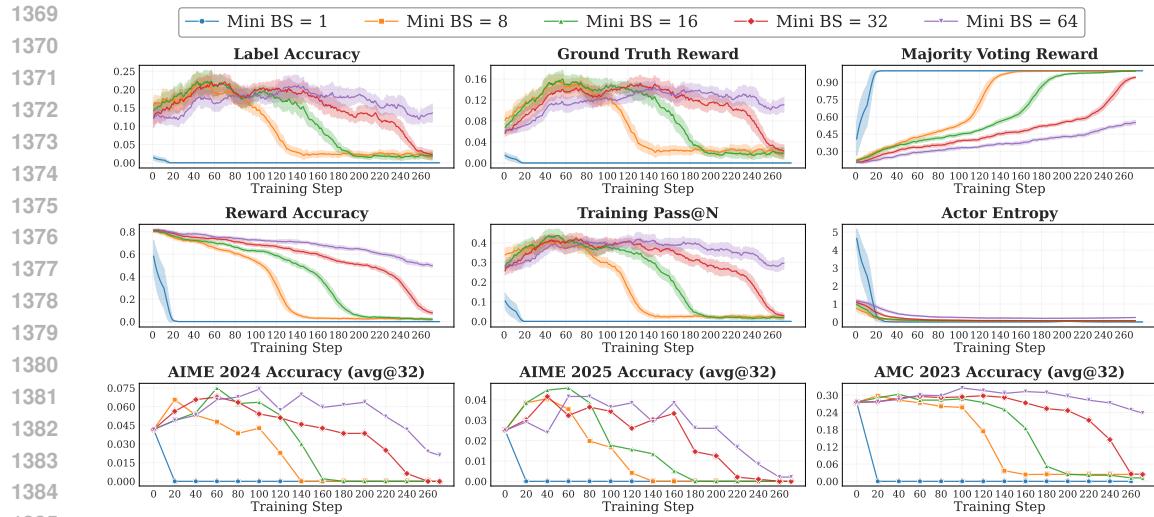


Figure 9: Effect of mini-batch size for Majority Voting method.

1389 sizes (16–32) show gradual improvement, confirming that maintaining policy-reward alignment is
1390 crucial for stable convergence.

1391 **KL Regularization.** Our theoretical analysis suggests that KL regularization should slow convergence
1392 by increasing the effective β parameter in ???. However, empirical results in Figure 10 show that
1393 adding KL regularization ($\beta = 0.005$) yields only marginal benefits: small early gains but increased
1394 training variance and minimal delay in collapse (~ 40 steps). This discrepancy arises because intrinsic
1395 rewards create competing optimization pressures, where the intrinsic signal drives sharpening while
1396 KL pulls toward the reference policy. Rather than smoothly balancing these forces, the optimization
1397 oscillates between them, increasing variance without providing durable stability. The marginal gains
1398 do not justify the additional memory overhead and training instability.

1399 **Number of Rollouts.** The rollout count N affects both vote reliability and signal strength. While
1400 more rollouts improve statistical reliability of the majority vote, they also amplify the majority signal
1401 strength. From Equation (3), each update amplifies majority probability by factor $e^{1/\beta}$. With more
1402 rollouts, this majority becomes more confident, accelerating convergence. Figure 11 shows this effect:
1403 $N = 32$ collapses within 180 steps, $N = 16$ within 220 steps, while $N \leq 8$ remains stable over the
full epoch. Although $N = 4$ shows competitive performance in some metrics, we recommend $N = 8$

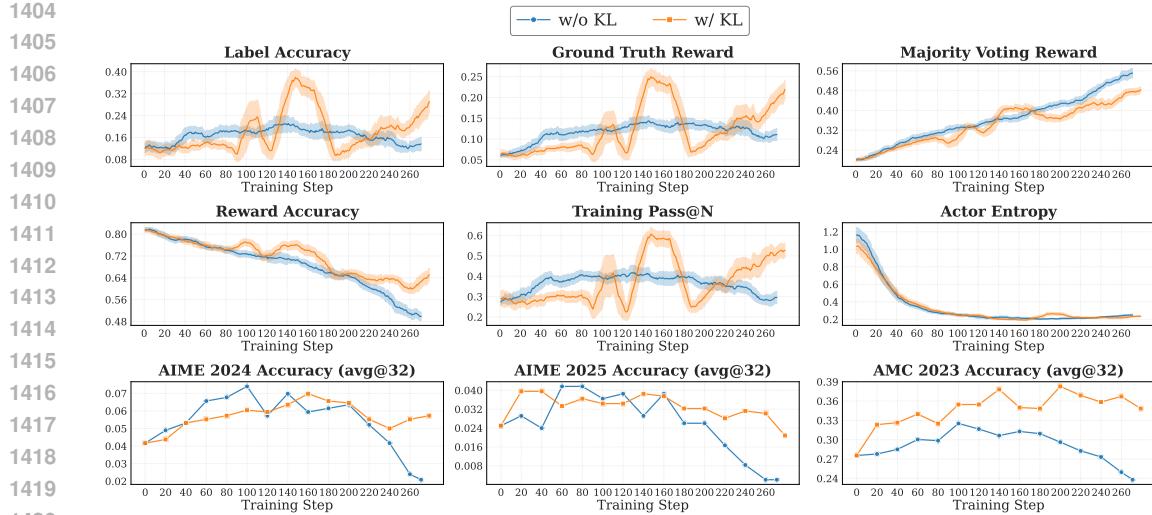


Figure 10: Effect of KL divergence regularization for Majority Voting method.

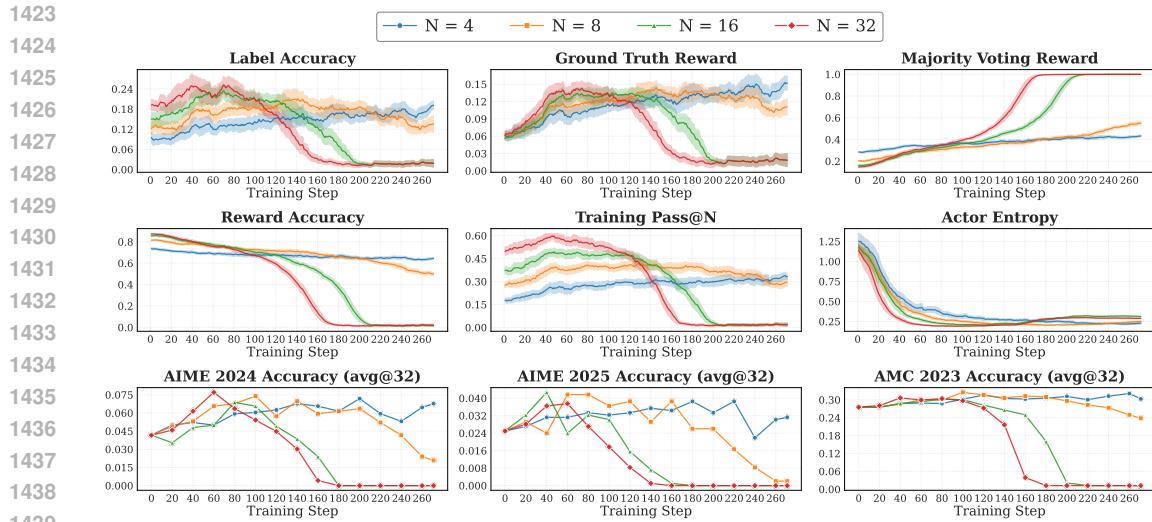


Figure 11: Effect of rollout number for Majority Voting method.

as it provides better statistical reliability for the voting mechanism while maintaining reasonable convergence control. The slight performance difference suggests that for this specific experimental setup, the trade-off between reliability and stability favors slightly smaller N , but $N = 8$ offers more robust behavior across diverse problem types.

B.3.2 CERTAINTY-BASED METHODS

Training Temperature. Temperature effects on certainty-based methods reveal distinct behavioral patterns compared to ensemble-based approaches. Unlike Majority Voting, certainty-based methods generally benefit from higher exploration temperatures, with notable method-specific variations in optimal configurations and convergence characteristics.

Results in Figures 13 to 15 demonstrate that higher temperature ($T = 1.2$) significantly delays model collapse across Token-Level Entropy, Trajectory-Level Entropy, and Probability methods. Higher temperatures initially maintain elevated **Actor Entropy**, facilitating extended exploration phases with gradual improvements across validation benchmarks. Importantly, these methods also exhibit relatively higher **Point-Biserial Correlation** values at $T = 1.2$, indicating stronger alignment

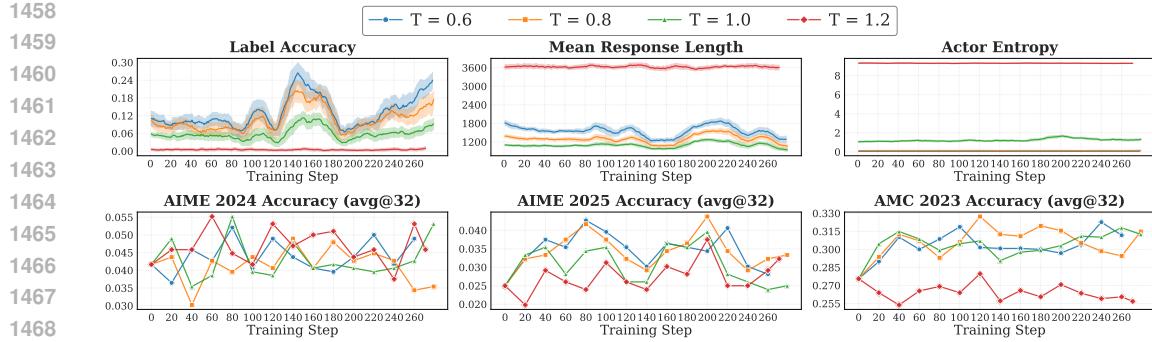


Figure 12: Effect of training temperature on Self-Certainty performance. Note that Point-Biserial Correlation is replaced with Mean Response Length due to Self-Certainty’s scoring characteristics.

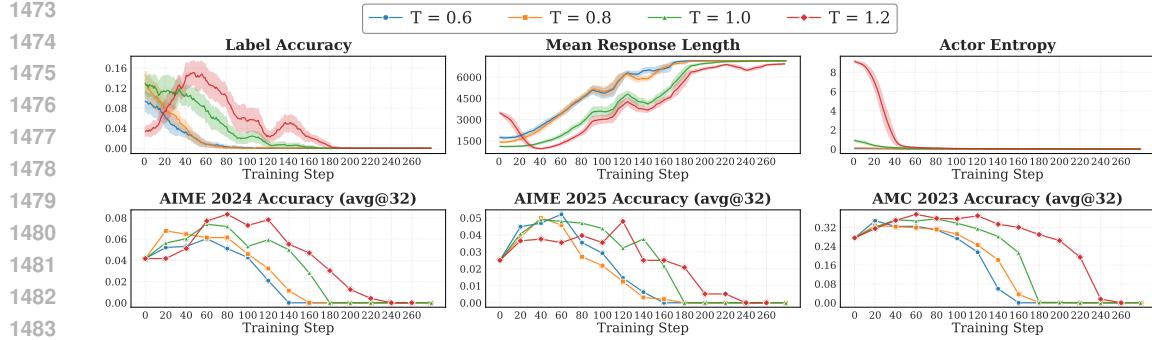


Figure 13: Effect of training temperature on Token-Level Entropy performance.

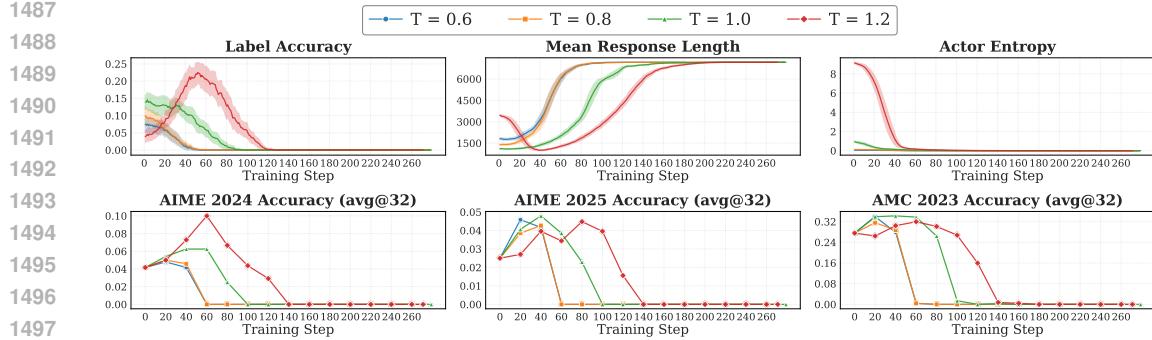


Figure 14: Effect of training temperature on Trajectory-Level Entropy performance.

1502 between certainty estimates and actual correctness—a crucial property for effective uncertainty-based
1503 reward assignment.

1504 However, Figure 12 reveals that Self-Certainty exhibits contrasting behavior. Higher temperature
1505 ($T = 1.2$) leads to excessive exploration without convergence, maintaining persistently high **Actor**
1506 **Entropy** while achieving lower validation scores and **Label Accuracy**. The moderate temperature
1507 $T = 1.0$ provides more stable and superior performance for Self-Certainty. This divergence suggests
1508 that while different certainty-based methods converge toward similar sharp distributions, they exhibit
1509 distinct convergence rates requiring method-specific temperature tuning. Among all certainty-based
1510 approaches, Token-Level and Trajectory-Level Entropy methods demonstrate the greatest benefits
1511 from higher temperature exploration, likely due to their more robust entropy-based uncertainty
estimation mechanisms.

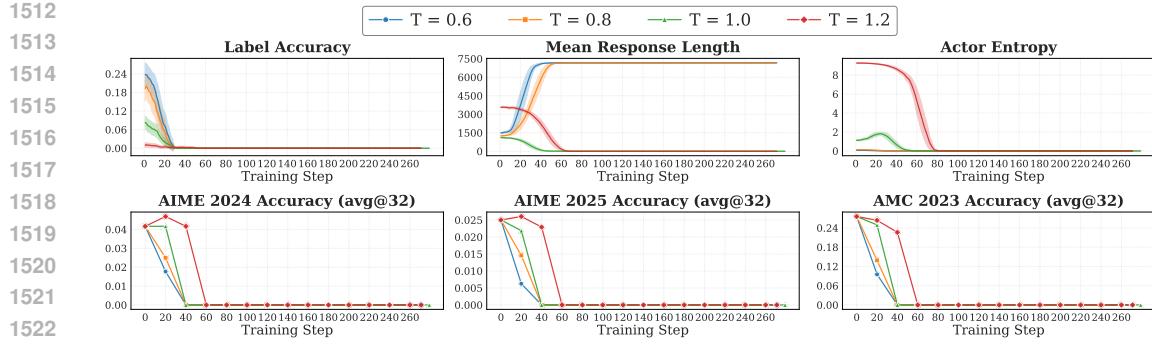


Figure 15: Effect of training temperature on Probability-based certainty performance.

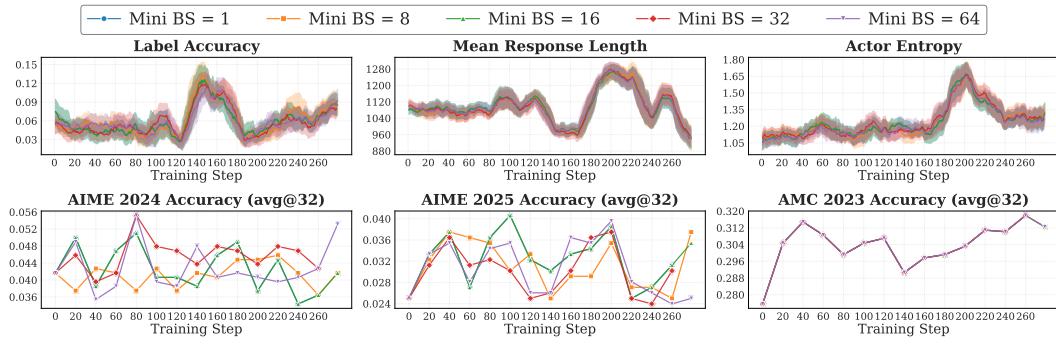


Figure 16: Effect of mini-batch size on Self-Certainty performance.

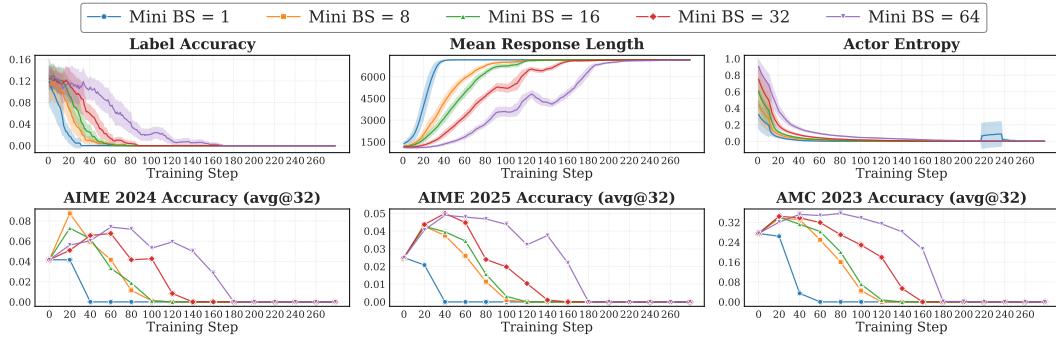


Figure 17: Effect of mini-batch size on Token-Level Entropy performance.

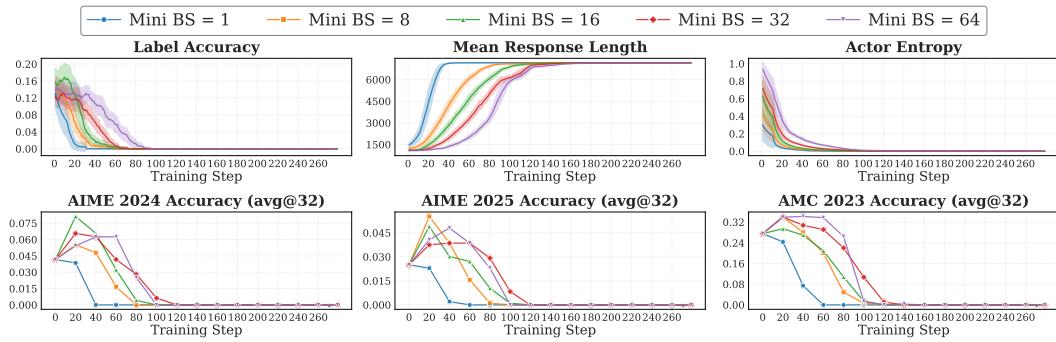


Figure 18: Effect of mini-batch size on Trajectory-Level Entropy performance.

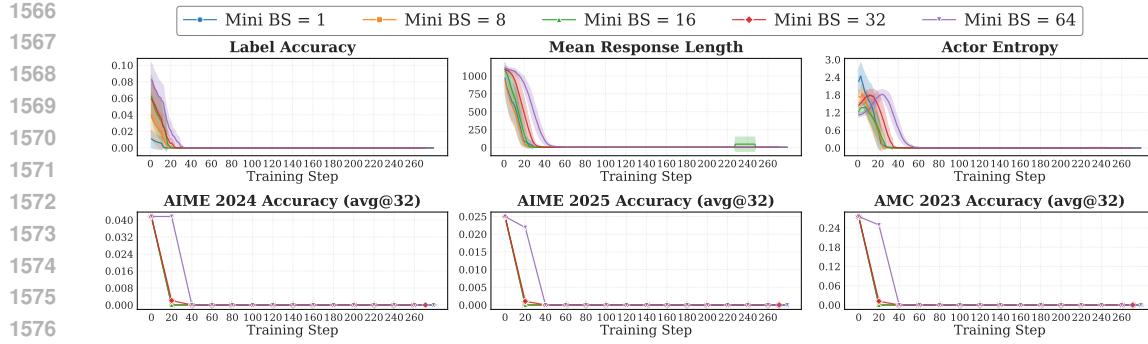


Figure 19: Effect of mini-batch size on Probability performance.

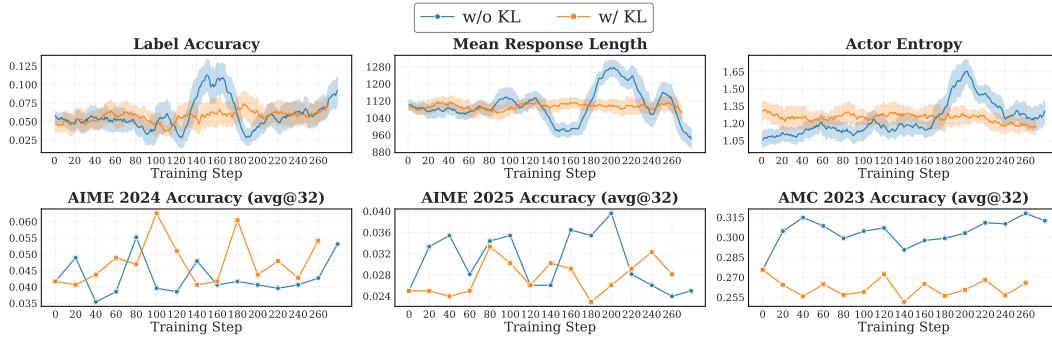


Figure 20: Effect of KL divergence regularization on Self-Certainty performance.

Mini-Batch Size. Mini-batch size effects on certainty-based methods largely parallel those observed in Majority Voting, confirming that on-policy ratio critically affects training stability regardless of the underlying reward computation mechanism. However, method-specific sensitivities reveal important distinctions in robustness to off-policy learning.

Figures 17 to 19 consistently demonstrate that larger mini-batch sizes prevent premature model collapse across Token-Level Entropy, Trajectory-Level Entropy, and Probability methods. This pattern mirrors Majority Voting behavior, where pure on-policy training (mini-batch size = 64) maintains optimal coupling between samples and their corresponding certainty-based rewards. The underlying mechanism remains consistent: certainty estimates computed from current policy states become unreliable when applied to samples generated from earlier policy iterations.

Notably, Self-Certainty exhibits exceptional robustness to mini-batch size variations, as shown in Figure 16. This method demonstrates minimal sensitivity to on-policy ratio changes, suggesting that KL divergence-based certainty computation may be inherently more stable across different temporal policy alignments. This robustness likely stems from Self-Certainty’s reliance on logit distribution comparisons rather than explicit probability estimates, making it less susceptible to the temporal inconsistencies that destabilize other certainty-based approaches. Among the certainty-based methods, Self-Certainty thus offers superior stability but at the cost of lower overall performance improvements.

KL Divergence Regularization. KL regularization effects on certainty-based methods mirror the limited impact observed in Majority Voting, confirming that this regularization technique fails to address the fundamental instabilities inherent in training. However, subtle differences in method responses provide insights into the interaction between regularization and different uncertainty estimation approaches.

Results across all certainty-based methods (Figures 20 to 23) show minimal impact on both training dynamics and downstream performance. KL regularization neither prevents eventual model collapse (except for Self-Certainty) nor significantly improves validation scores, consistent with our findings for Majority Voting. The underlying issue persists: regularization techniques designed for fixed

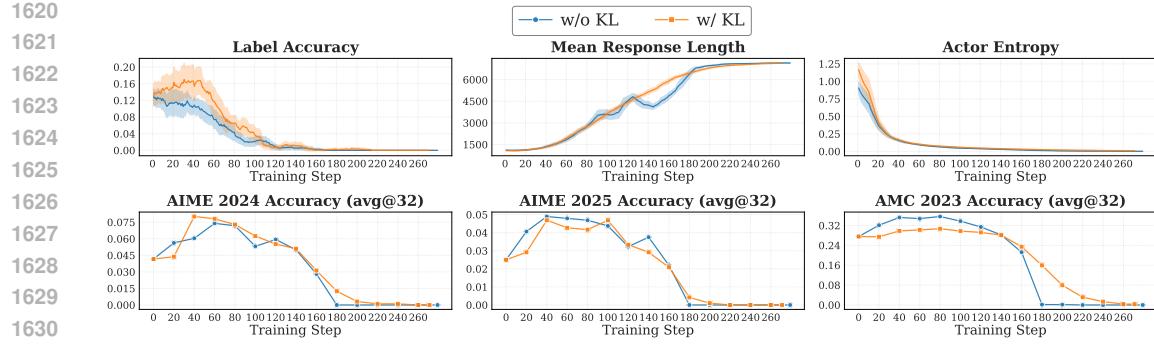


Figure 21: Effect of KL divergence regularization on Token-Level Entropy performance.



Figure 22: Effect of KL divergence regularization on Trajectory-Level Entropy performance.

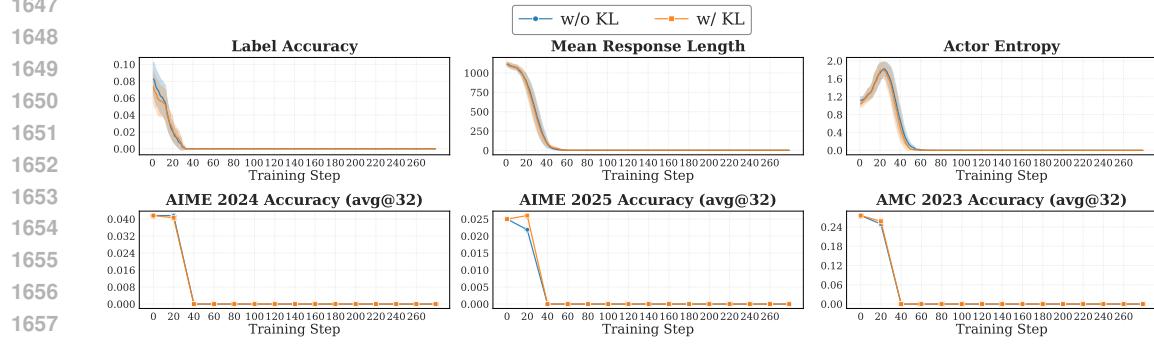


Figure 23: Effect of KL divergence regularization on Probability performance.

1661 reward signals cannot effectively stabilize systems where rewards themselves evolve with policy
 1662 changes.

1664 Interestingly, Token-Level and Trajectory-Level Entropy methods exhibit slightly more pronounced
 1665 benefits from KL regularization, as evidenced by modest improvements in **Label Accuracy** curves.
 1666 While these improvements remain insufficient to prevent collapse, they suggest that entropy-based
 1667 certainty estimation may have marginally better compatibility with KL-based stabilization approaches.
 1668 This observation aligns with the superior temperature robustness of these methods, indicating that
 1669 entropy-based uncertainty measures may be inherently more amenable to regularization techniques
 1670 than probability-based or KL-based certainty estimates.

1671 **Number of Rollouts.** Rollout count effects reveal consistent patterns across most certainty-based
 1672 methods, with one notable exception that highlights fundamental differences in underlying reward
 1673 computation mechanisms. These findings provide crucial insights into the sample size requirements
 for reliable uncertainty estimation.

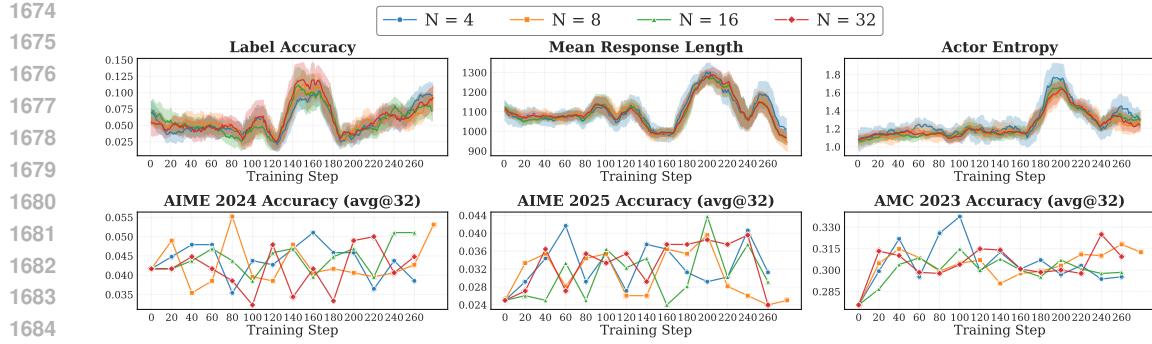


Figure 24: Effect of rollout number on Self-Certainty performance.

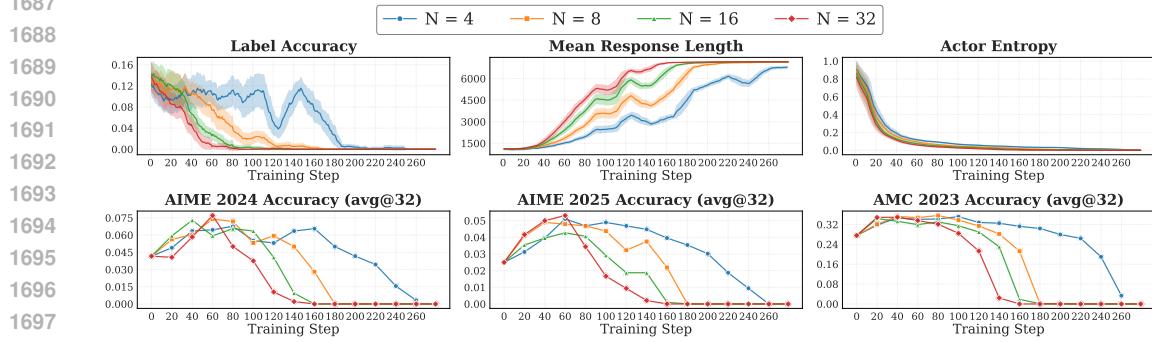


Figure 25: Effect of rollout number on Token-Level Entropy performance.

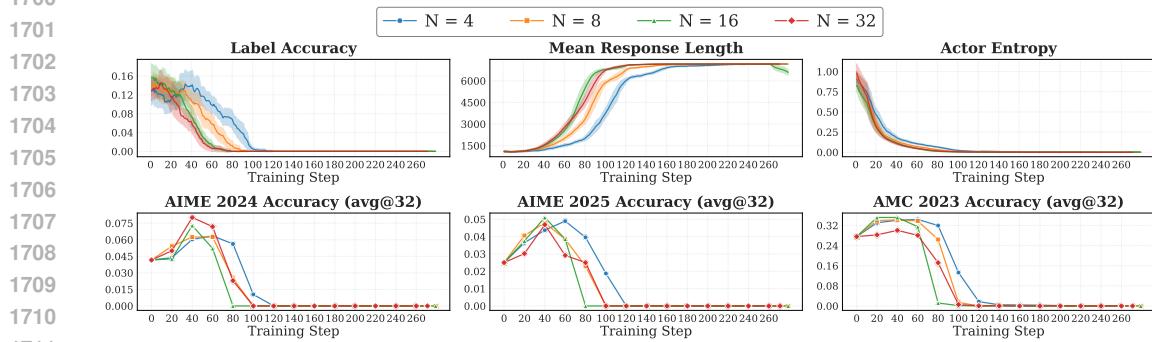


Figure 26: Effect of rollout number on Trajectory-Level Entropy performance.

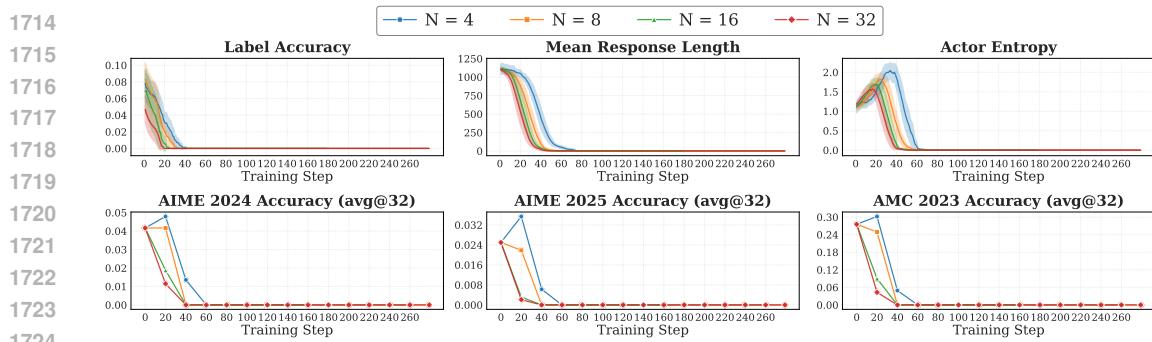


Figure 27: Effect of rollout number on Probability performance.

1728
1729 Table 8: Model configurations for backbone experiments. Models are categorized by family, training
1730 stage, and size.
1731

Family	Model	Abbrev.	Stage	Size
Qwen	Qwen2.5-1.5B	Q2.5-1.5B	Base	1.5B
	Qwen2.5-Math-1.5B	Q2.5-Math-1.5B	Math Base	1.5B
	DeepSeek-R1-Distill-Qwen-1.5B	DS-R1-1.5B	SFT	1.5B
	Qwen2.5-1.5B-Instruct	Q2.5-1.5B-Inst	Instruct	1.5B
	Qwen3-1.7B-Base	Q3-1.7B	Base	1.7B
	Qwen3-4B-Base	Q3-4B	Base	4B
Llama	Meta-Llama-3.1-8B	L3.1-8B	Base	8B
	OctoThinker-8B-Short-Base	Octo-8B	Math Base	8B
	OctoThinker-3B-Short-Base	Octo-3B	Math Base	3B
	Llama-3.1-Tulu-3-8B-SFT	L3.1-8B-Tulu-SFT	SFT	8B
	Meta-Llama-3.1-8B-Instruct	L3.1-8B-Inst	Instruct	8B

1742
1743 Figures 25 to 27 demonstrate behavior parallel to Majority Voting: larger rollout counts ($N \geq$
1744 16) accelerate model convergence and premature collapse, as evidenced by rapid degradation in
1745 validation benchmarks and **Label Accuracy**. This pattern suggests that the self-reinforcing dynamics
1746 observed in ensemble voting also manifest in certainty-based reward assignment, where higher sample
1747 sizes amplify confidence in potentially incorrect assessments, leading to faster convergence toward
1748 suboptimal solutions.

1749 However, Self-Certainty exhibits markedly different behavior, as shown in Figure 24. This method
1750 demonstrates remarkable stability across all rollout configurations, maintaining consistent perfor-
1751 mance without collapse or significant improvement. This unique characteristic stems from Self-
1752 Certainty’s reliance on KL divergence between uniform and logit distribution. This fundamental
1753 difference in reward computation makes Self-Certainty inherently more robust to sample size varia-
1754 tions, though at the cost of limited performance improvements throughout training.

1756 B.4 IMPACT OF BACKBONE MODEL

1757 We investigate how backbone models influence training stability and performance across three key
1758 dimensions: training stage, model size, and architectural generation. Our analysis employs 11
1759 models from Qwen and Llama families (detailed configurations in Table 8), selected to provide
1760 systematic coverage of these factors. This selection is motivated by recent findings showing distinct
1761 architectural behaviors (Gandhi et al., 2025) and potential data contamination concerns (Wu et al.,
1762 2025b), making cross-architecture comparison essential. All models are trained on DAPO-17k using
1763 optimal hyperparameters from Appendix B.3 with Majority Voting as the representative intrinsic
1764 reward.

1766 B.4.1 HORIZONTAL ANALYSIS: TRAINING STAGE IMPACT

1767 Training stage progression reveals distinct stability patterns between architectures. For the **Qwen**
1768 **family** (Figure 28), math-specialized and SFT models demonstrate superior stability, maintaining
1769 **Majority Voting Reward** within 0.3-0.6 while base and instruct variants reach saturation (1.0)
1770 by step 180. Math specialization and strong supervised fine-tuning (DS-R1-1.5B) create robust
1771 foundations for optimization compared to raw base models or non-math aligned instruct variants.

1772 The **Llama family** exhibits contrasting behavior: all variants eventually succumb to reward hacking
1773 with different collapse timing, where base models fail earliest (step 40), followed by math-specialized,
1774 SFT, then instruct versions (detailed analysis in Figure 29). This architectural difference highlights
1775 Qwen’s fundamental advantage in providing genuine stability.

1778 B.4.2 VERTICAL ANALYSIS: SCALE AND GENERATION EFFECTS

1779 **Model size analysis** (Figure 30) reveals counterintuitive scaling effects: smaller models consistently
1780 outperform larger variants. Q3-1.7B maintains stability significantly longer than Q3-4B, while
1781 Octo-3B outlasts Octo-8B by about 40 steps. This suggests larger models’ increased capacity

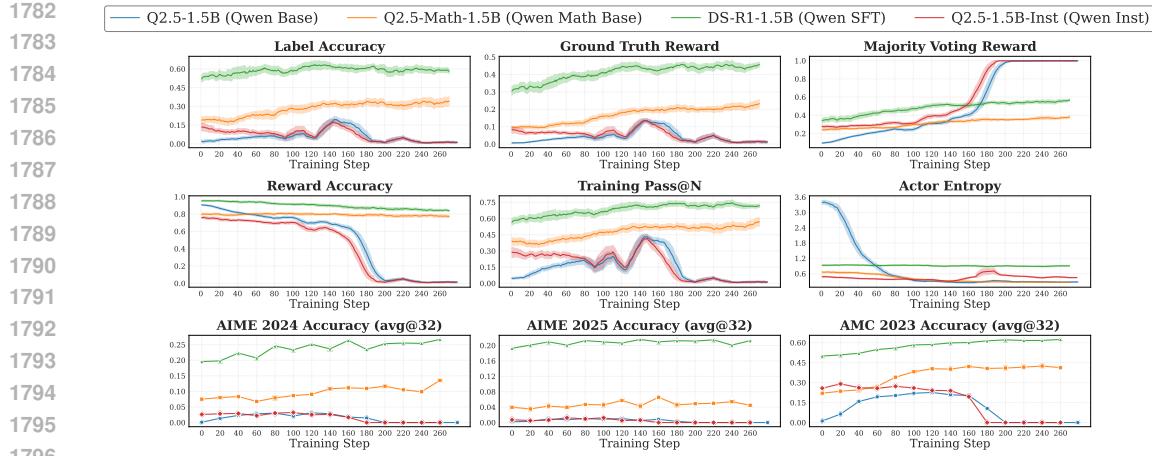


Figure 28: Training dynamics across different training stages in Qwen family models.

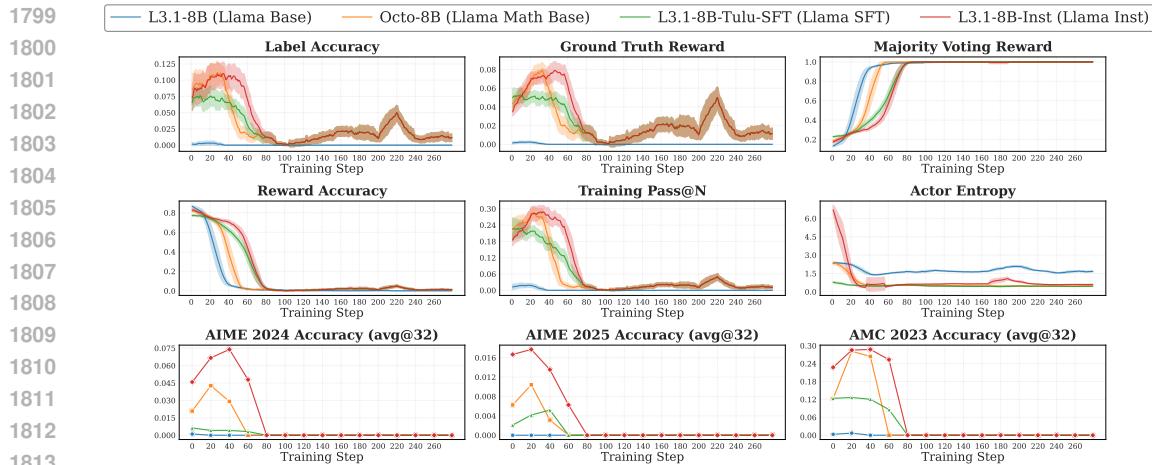


Figure 29: Training dynamics across different training stages in Llama family models.

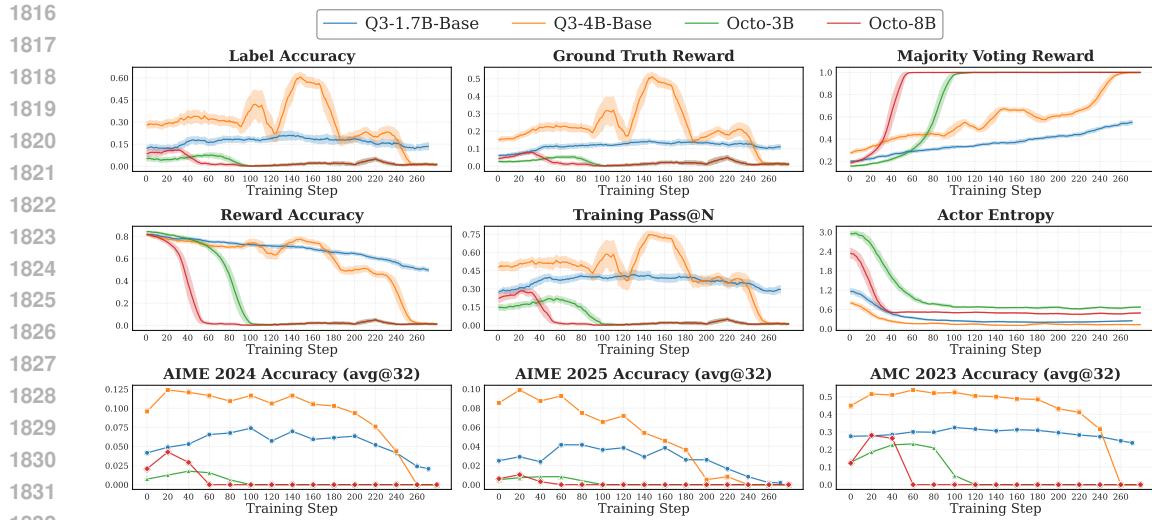


Figure 30: Effect of model size on stability across both Qwen and Llama families.

1833
1834
1835

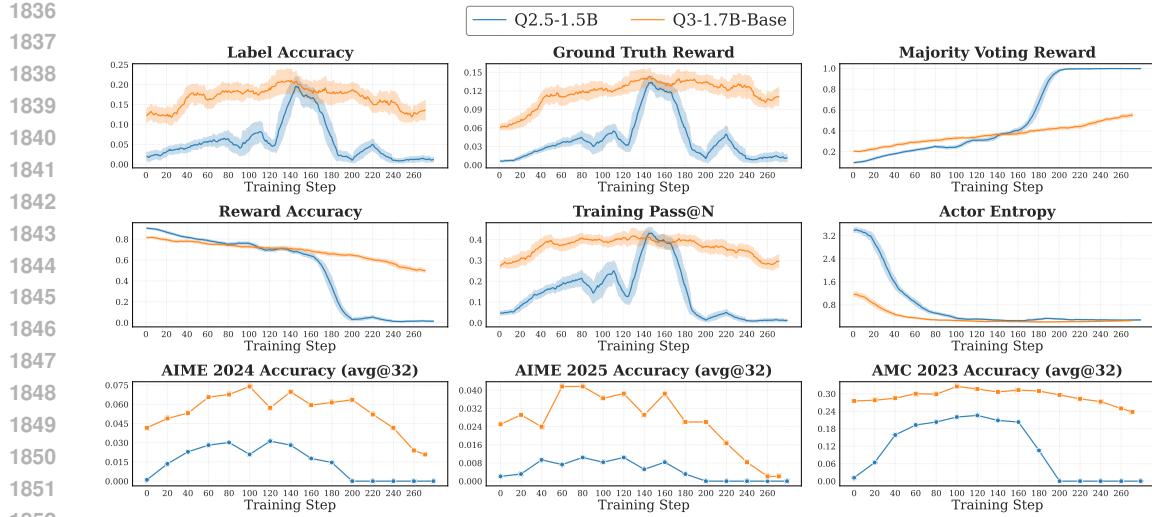


Figure 31: Comparison of Qwen 2.5 and Qwen 3 generations across comprehensive training metrics. Results reveal improved stability in the newer generation, with Qwen3 models demonstrating more gradual and controlled training dynamics compared to Qwen2.5 counterparts.

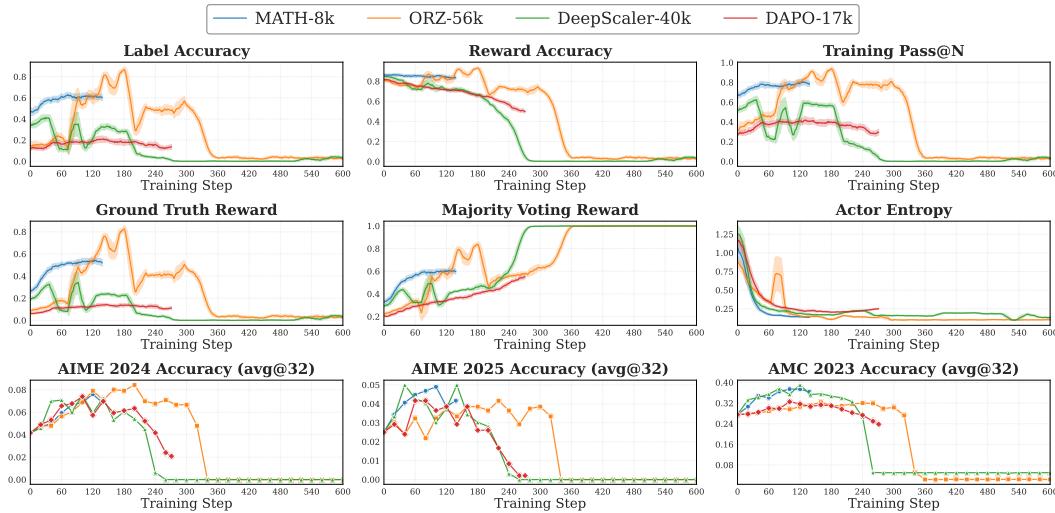


Figure 32: Comparison of different training data sources.

amplifies sensitivity to noisy pseudo-rewards, accelerating convergence toward degenerate solutions and challenging conventional scaling assumptions.

Architectural generation comparison shows clear improvements in newer versions. Qwen3 models exhibit superior stability compared to Qwen2.5 counterparts, with Q3-1.7B-Base demonstrating more controlled **Majority Voting Reward** progression (comprehensive comparison in Figure 31). These improvements likely stem from better-calibrated uncertainty estimates and enhanced representation learning supporting more reliable pseudo-reward computation.

B.5 IMPACT OF TRAINING DATASET

Setup. We investigate how different training dataset influence training stability and performance, focusing on math reasoning, utilizing MATH-8k (Hendrycks et al., 2021), DeepScaleR-40k (Luo et al., 2025), DAPO-17k (Yu et al., 2025) and ORZ-56k (Hu et al., 2025), all settings are trained

1890 on Qwen3-1.7B-Base with 1 epoch using optimal hyperparameters from Appendix B.3, and also
1891 evaluated on three validation benchmarks.
1892

1893 **Results.** We can see from Figure 32, much larger datasets (DeepScaler-40k and ORZ-56k) exhibits
1894 clear reward hacking trend, while smaller datasets settings are on its steady or rise stage, indicating
1895 that current intrinsic methods may see its short-sighted incremental improvements at the early stage,
1896 while extending it much larger training corpora, it inevitably encounter the reward hacking.
1897

1898 C THE USE OF LARGE LANGUAGE MODELS

1900 We use large language models to refine our writing. In particular, we use ChatGPT (GPT-5 Thinking)
1901 to revise the manuscript. The prompt provided to the model is: “I am writing an academic paper in
1902 English. Please polish the following draft so that it adheres to the conventions of academic writing.”
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943