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ABSTRACT

Unsupervised Reinforcement Learning with Verifiable Rewards (URLVR) offers
a pathway for Large Language Models (LLMs) to improve without human super-
vision. Particularly, many works use model intrinsic information as rewards for
URLVR, showing promising improvements, yet their potential and limitations re-
main unclear. In this work, we revisit URLVR through the lens of intrinsic rewards.
We present a unified theoretical framework showing that intrinsic reward methods
share a core mechanism: they trade uncertainty for performance by leveraging
the model’s prior knowledge to sharpen output distributions. Empirical analysis
confirms this tradeoff, revealing distinct failure modes and showing that collapse is
not inevitable in small, domain-specific regimes such as test-time training. Beyond
these findings, early intrinsic reward dynamics also provide a lightweight indi-
cator of model-task priors, complementing pass@k in assessing RL trainability.
These insights highlight both the promise and pitfalls of URLVR, motivating future
directions such as external rewards and hybrid supervision strategies.

1 INTRODUCTION

Reinforcement Learning with Verifiable Rewards (RLVR) has been central to recent breakthroughs
in enhancing reasoning capability in large language models (LLMs). In RLVR, models learn from
rewards that can be verified against ground truth, such as correctness in mathematics or successful code
execution. Recent leading models including OpenAI’s o1 and o3 (Jaech et al., 2024; OpenAI, 2025),
DeepSeek-R1 (Guo et al., 2025), Gemini 2.5 (Comanici et al., 2025), and the Qwen3 series (Yang
et al., 2025; Team, 2025) have achieved remarkable performance on mathematics, coding, and
science benchmarks by scaling supervised RLVR. However, on the path toward superintelligence,
this approach faces a crucial limitation: scaling supervision requires prohibitively high human costs,
and as models reach or surpass human expertise in specialized domains, obtaining reliable ground
truth supervision becomes increasingly infeasible (Burns et al., 2023; Silver & Sutton, 2025).

This supervision bottleneck has spurred growing interest in Unsupervised RLVR (URLVR) (Zuo
et al., 2025), which derives rewards without ground truth labels for LLM training. This transition
from supervised to unsupervised training parallels the success of pretraining scaling laws (Brown
et al., 2020; Raffel et al., 2020), which effectively transform large-scale computation into intelligence
on vast amounts of unlabeled data. From this perspective, URLVR represents a critical step toward
scaling AI systems beyond reliance on human-provided labels.

It is worth noting that recent URLVR methods have primarily relied on leveraging a model’s internal
signals as training rewards. Common approaches include majority voting across multiple rollouts (Zuo
et al., 2025) or the adoption of entropy-based metrics (Agarwal et al., 2025). These forms of intrinsic
reward have shown notable performance gains. Yet, such seemingly unequivocal successes come
with concerns, as several works highlight critical failure modes such as reward hacking and model
collapse (Shafayat et al., 2025; Agarwal et al., 2025; Zhang et al., 2025c). Moreover, diverse
methodologies have been applied across different model families, tasks, and evaluation settings, yet
there remains neither a systematic comparison nor a consensus regarding what constitutes reliable
unsupervised rewards. So behind the flourishing progress of such methods, might there lie certain
hidden risks and uncertainties?

To this end, it is timely to revisit the development of this area. We mainly focus on methods that
derive rewards from the model’s intrinsic information, in contrast to other URLVR approaches such
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as RPT (Dong et al., 2025), which rely on external data. To gain a deeper understanding of the current
state and future potential of RL with intrinsic rewards, we conduct a comprehensive study. We begin
by reviewing existing work and classify intrinsic reward methods into two categories based on the
source of rewards: ensemble-based and certainty-based. Then we establish a unified theoretical
perspective of these methods, and subsequently validate and deepen it through empirical analysis.

Theoretical Perspective. We introduce a unified framework that formalizes diverse intrinsic reward
mechanisms and analyzes their induced optimal policies. Despite design differences, these rewards
share a common objective: sharpening output distributions by reinforcing the model’s initially
confident solutions. This geometric convergence enables prior amplification and efficient adaptation
in low-data or test-time settings, but also risks bias lock-in, reduced exploration, and reward hacking
when confidence misaligns with correctness. Intrinsic rewards thus offer a context-dependent tool
that trades uncertainty for decisiveness, providing shortcuts for local adaptation while underscoring
the need for external signals to ensure scalable reliability.

Empirical Analysis. To validate our theoretical findings, we implement several widely used intrinsic
reward methods and design experiments around three progressively layered research questions. First,
we ask why these methods work, showing that by enforcing self-consistency they trade uncertainty
for performance and amplify prior knowledge. However, this same process also risks overfitting
biases, potentially accelerating model collapse. Second, we ask how different methods fail, revealing
that each induces distinct pathology, some collapse to brevity, others to verbosity, clarifying the
structured limits to scaling. Finally, we ask whether collapse is inevitable, and find that in small,
domain-specific regimes such as test-time training, intrinsic rewards drive stable adaptation without
collapse. Together, these results show that intrinsic rewards set clear limits on scaling, yet within
those limits they offer a principled path to self-improvement without supervision.

Our findings reveal that intrinsic rewards operate within well-defined boundaries determined by
confidence-correctness correlation, enabling efficient gains in test-time and low-data regimes while
risking reward hacking when confidence misaligns with correctness. These limitations motivate
exploration of extrinsic approaches that leverage external verification mechanisms, from generation-
verification asymmetries in structured domains to self-supervised signals from vast unlabeled corpora,
which offer pathways toward more robust and scalable improvement. Beyond training itself, we also
uncover a practical diagnostic: early intrinsic reward dynamics serve as a fast indicator of model-task
priors, offering a lightweight alternative to pass@k for assessing RL trainability.

2 RELATED WORK

Reinforcement Learning with Verifiable Rewards. Recent advances in language model reasoning
leverage Reinforcement Learning with Verifiable Rewards (RLVR) (Lambert et al., 2024), where
models receive binary rewards based on answer correctness verified against ground truth. Leading
systems including OpenAI’s o1 and o3 (Jaech et al., 2024; OpenAI, 2025), DeepSeek-R1 (Guo
et al., 2025), Gemini 2.0 (Comanici et al., 2025), and Qwen3 (Yang et al., 2025; Team, 2025) have
achieved remarkable performance through scaling supervised RLVR. However, this approach faces
a fundamental bottleneck: as models approach human expertise in specialized domains, obtaining
reliable ground-truth supervision becomes prohibitively expensive (Burns et al., 2023).

URLVR with Intrinsic Rewards. To address this supervision bottleneck, an emerging line of
research investigates Unsupervised RLVR (URLVR), which aims to extend the scalability of RL
beyond labeled data. One promising direction within URLVR is the use of self-generated proxy
intrinsic rewards, thereby eliminating the reliance on ground-truth labels for RL. We distinguish two
intrinsic paradigms by how rewards are constructed from the model:

Certainty-based methods derive rewards from a single policy’s confidence (e.g., logits) along a
trajectory, encouraging low-entropy, high-confidence predictions. Approaches include Self-Certainty
in RLIF (Zhao et al., 2025b) via KL divergence from uniform distributions, negative token-level
entropy in EM-RL (Agarwal et al., 2025) and RENT (Prabhudesai et al., 2025), trajectory-level
entropy in EM-RL (Agarwal et al., 2025), raw probability in RLSC (Li et al., 2025), probability
disparity between top tokens (van Niekerk et al., 2025), and cross-attention patterns (Kiruluta et al.,
2025b;a). These methods essentially “sharpen” the model’s existing preferences by reinforcing
high-confidence outputs.
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Ensemble-based methods derive a reward from agreement across multiple rollouts (e.g., majority
voting), assuming that cross-sample consistency correlates with correctness. TTRL (Zuo et al.,
2025) pioneered majority voting across rollouts to create pseudo-labels. Building on this foundation,
SRT (Shafayat et al., 2025) analyzes limitations including reward hacking, ETTRL (Liu et al., 2025a)
improves efficiency through entropy-based tree search, Co-Reward (Zhang et al., 2025d) enhances
robustness via question paraphrasing, and RLCCF (Yuan et al., 2025) incorporates multi-model
collectives. More nuanced approaches include EMPO (Zhang et al., 2025b) using semantic clustering
for soft majority voting and CoVo (Zhang et al., 2025a) deriving rewards from intermediate reasoning
consistency. These methods assume that agreement among diverse outputs indicates correctness.

3 THEORETICAL PERSPECTIVE: THE TRADE-OFF OF SHARPENING

While several studies have empirically explored intrinsic rewards (Zhang et al., 2025b; Zuo et al.,
2025; Agarwal et al., 2025; Shafayat et al., 2025), their underlying theoretical mechanisms remain
poorly understood. Despite diverse design choices, we show that these methods share a fundamental
commonality: they systematically encourage sharper, more decisive probability distributions through
unified mathematical operations.

3.1 UNIFIED REWARD FRAMEWORK

Despite varied implementations, intrinsic rewards can be understood through a single lens: manipu-
lating cross-entropy between carefully chosen distributions:

Unified Reward Framework

Most intrinsic rewards can be expressed as:

runi(x, y) = ψ

(
σ

|I|
∑
i∈I

H(qi, πiθ)

)
, σ ∈ {+1,−1}, (1)

where rewards derive from cross-entropy H between anchor distributions qi and model
distributions πiθ, aggregated over granularity I, with sign σ and monotonic transformation ψ.

Key Components:

• Given a question x and generated response y (a sequence of tokens y1, . . . , y|y|), we can derive
rewards from the model’s internal distributions at different levels of granularity.

• Aggregation granularity I: Determines the level to compute distributions. For token-level
methods, I = {1, . . . , |y|} where each element corresponds to a position in the sequence. For
answer-level methods, I = {A} represents a single distribution over complete semantic answers.

• Model distribution πiθ at granularity i: For token-level granularity at position t, this is πtθ(·) =
πθ(· | x, y<t), the distribution over the next token given the context. For answer-level granularity,
this is πA

θ = πθ(· | x), the distribution over complete answers.

• Anchor distribution qi at granularity i: Serves as a reference point. Different reward estimators
use different anchors: uniform distribution UV for Self-Certainty or one-hot distribution δt
centered on the generated token for Trajectory-Level Entropy.

• Cross-entropy H(qi, πiθ): Cross-entropy between anchor distribution qi and model distribution
πiθ at granularity i, defined as H(qi, πiθ) = −

∑
v∈Vi qi(v) log πiθ(v). For token-level granularity

(i = t), Vi is the token vocabulary, and the cross-entropy measures divergence between distribu-
tions over next tokens. For answer-level granularity (i = A), Vi is the set of distinct semantic
answers, and the cross-entropy measures divergence between distributions over complete answers.

• Sign factor σ ∈ {+1,−1}: Determines the optimization direction. When the anchor q is uniform,
we set σ = +1 to reward divergence from uniformity (encouraging peaked distributions). When
the anchor q is sharp (e.g., one-hot or the model’s own distribution), we set σ = −1 to reward
alignment (reinforcing confident predictions).

• Monotonic transformation ψ: Reshapes the reward signal while preserving ordering. Common
choices are identity (ψ(z) = z) or exponential (ψ(z) = exp(z)), with exponential transformations
amplifying the sharpening effect.
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Table 1: Instantiations for the unified reward framework of representative intrinsic rewards. Each
method is specified by its estimator, anchor and model distributions, and a monotonic transformation
of the cross-entropy between them. Token-level (t) and answer-level (A) variants capture different
granularities of aggregation.

Method Estimator Formula Monotonic
transformation ψ

Anchor
distribution q

Model
distribution πθ

RLIF
(Zhao et al., 2025b) Self-Certainty rSC =

1

|y|

|y|∑
t=1

H
(
UV , π

t
θ

)
+ log |V | z + log |V | {UV }|y|

t=1 {πt
θ}

|y|
t=1

EM-RL, RENT
(Agarwal et al., 2025)
(Prabhudesai et al., 2025)

Token-Level
Entropy rH = −

1

|y|

|y|∑
t=1

H
(
π
t
θ

)
z {πt

θ}
|y|
t=1 {πt

θ}
|y|
t=1

EM-RL
(Agarwal et al., 2025)

Trajectory-Level
Entropy rTraj = −

1

|y|

|y|∑
t=1

H
(
δ
t
, π

t
θ

)
z {δt}|y|

t=1 {πt
θ}

|y|
t=1

RLSC
(Li et al., 2025) Probability rProb = exp

(
−

|y|∑
t=1

H
(
δ
t
, π

t
θ

))
exp

(
|y| · z

)
{δt}|y|

t=1 {πt
θ}

|y|
t=1

EMPO
(Zhang et al., 2025b) Semantic Entropy rSE = exp

(
−H(δ

A
, π

A
θ )

)
exp(z) δA πA

θ

TTRL, SRT, ETTRL
(Zuo et al., 2025)
(Shafayat et al., 2025)
(Liu et al., 2025a)

Majority Voting rMV = lim
τ→0+

exp
(
−H(δ

A
, π̃

A
θ )

)
exp(z) δA π̃A

θ

Instantiations of the Framework. We next demonstrate how most intrinsic rewards instantiate
this framework. Each method’s distinctive characteristics emerge from specific choices of I, q, σ,
and ψ, as shown in Table 1. Token-level methods (Self-Certainty, Token/Trajectory-Level Entropy,
Probability) set I = {1, . . . , |y|} to aggregate across sequence positions, while answer-level methods
(Semantic Entropy, Majority Voting) use I = {A} for global consistency. The sign follows the
anchor type: σ = +1 with uniform q (rewarding departure from randomness) and σ = −1 with
sharp q (rewarding peaked predictions). For Majority Voting, π̃Aθ denotes the tempered distribution
π̃Aθ (a) = exp(πAθ (a)/τ)/

∑
b exp(π

A
θ (b)/τ) that converges to the majority answer as τ → 0+.

Despite surface-level differences, all methods manipulate cross-entropy to achieve distribution
sharpening. Further analysis of the framework refer to Appendix A.1.

3.2 OPTIMAL POLICY ANALYSIS

After establishing the unified reward framework, we now examine the optimal policies induced by
these rewards. We focus on Majority Voting as a representative example, then generalize to other
methods using the unified framework (Appendix A.4).

Consider the standard KL-regularized RL objective:

max
πθ

Ey∼πθ(·|x) [r(x, y)]− βDKL [πθ(·|x)∥πref(·|x)] , (2)

where πref is the reference policy (typically the SFT model) and β controls the strength of reg-
ularization. The optimal policy for this objective has the well-known closed form π∗

θ(y|x) =
1

Z(x)πref(y|x) exp
(

1
β r(x, y)

)
, where Z(x) =

∑
y πref(y|x) exp( 1β r(x, y)) is the partition function.

Majority Voting Reward. We define the majority voting reward at iteration k as rk(x, y) =

1[ans(y) = majk(Yk)], where Yk = {y(1), . . . , y(N)} denotes N rollouts sampled from π
(k)
θ , and

majk(Yk) = argmaxa |{i ∈ [N ] : ans(y(i)) = a}| is the most frequent answer among the rollouts.

Optimal Policy for Fixed Reward. For a fixed reward rk at iteration k, if we held rk constant and
performed infinite updates starting from reference policy π(k)

θ , we would converge to:

π∗,k
θ (y|x) =


π
(k)
θ (y|x)·e1/β

Zk(x)
, if ans(y) = majk(Yk),

π
(k)
θ (y|x)
Zk(x)

, otherwise,
(3)
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where Zk(x) = p
(k)
maj · e1/β + (1 − p

(k)
maj) and p

(k)
maj =

∑
y:ans(y)=majk(Yk)

π
(k)
θ (y|x) denotes the

probability mass on majority trajectories at iteration k. At this optimum, the probability mass would

be p∗,(k+1)
maj =

p
(k)
maj ·e

1/β

p
(k)
maj ·e1/β+(1−p(k)

maj )
.

Actual Training Dynamics. In practice, our training performs only one gradient update per iteration,
not reaching the optimum π∗,k

θ but moving partway toward it. The actual probability mass after one
update satisfies: p∗,(k+1)

maj ≥ p
(k+1)
maj ≥ p

(k)
maj. This ordering holds because: (1) policy gradient methods

with positive rewards on majority trajectories tend to increase their probability mass (lower bound),
and (2) the optimal policy achieves maximum expected reward, so single-step updates cannot exceed
it (upper bound). See Appendix A.3 for detailed justification.

This creates a “rich-get-richer” dynamic: the probability of trajectories leading to the majority answer
consistently increased, while others are proportionally diminished. Iterating this process, the policy
converges geometrically toward a deterministic policy concentrated on the initial majority answer:
Theorem 1. Geometric Convergence to Deterministic Policy. Consider the training procedure
where at each iteration k, we: (1) sample N rollouts Yk from π

(k)
θ , (2) compute majority majk(Yk),

(3) perform one gradient update with reward rk(x, y) = 1[ans(y) = majk(Yk)] to obtain π(k+1)
θ .

Let p(k)maj =
∑
y:ans(y)=majk(Yk)

π
(k)
θ (y|x) denote the probability mass on majority trajectories.

Assumptions: (A1) Majority remains stable: majk(Yk) = maj0(Y0) for all k (holds with high
probability for sufficiently large N ); (A2) Gradient updates achieve non-trivial progress with ηk ≥
ηmin > 0 (standard assumption). We validate these empirically in Appendix A.5.

Conclusion: Under (A1)-(A2), p(k)maj converges geometrically to 1. As k → ∞:

lim
k→∞

π
(k)
θ (y|x) =

{
πref(y|x)∑

y′:ans(y′)=maj0(Y0) πref(y′|x) , if ans(y) = maj0(Y0),

0, otherwise
(4)

Complete proof is in Appendix A.3. Generalization to other methods using the unified reward
framework is in Appendix A.4. This convergence behavior has profound implications depending
on the model’s initial knowledge. When the model’s confidence (reflected in maj0) aligns with
correctness, convergence reinforces good solutions. Conversely, if confidence is poorly aligned, the
same mechanism amplifies errors, leading to model collapse.

4 EMPIRICAL ANALYSIS: THE PROMISE AND PITFALLS

The prospect of LLM scaling through unsupervised RL hinges on whether models can reliably
improve themselves without ground truth labels. Our theoretical analysis suggests that intrinsic
rewards enable such self-improvement by exploiting existing knowledge, yet their convergence to
deterministic policies raises concerns about when this process succeeds versus fails. To clarify these
boundaries, we empirically examine the practical limits and opportunities of intrinsic reward-driven
scaling through three key research questions:

Research Questions and Takeaways

• Why do these methods work? They trade uncertainty for performance, leveraging the
model’s prior knowledge to improve sample efficiency.

• How do different methods fail? Each exhibits distinct pathology: Self-Certainty and
Majority Voting are most stable, Probability collapses to brevity, while entropy-based
methods promote repetitive verbosity.

• Do these methods always cause collapse in prolonged RL? No. With small, domain-
specific data, they avoid collapse, making test-time training an ideal application.

Experimental Setup. We train Qwen3-1.7B-Base on DAPO-17k using GRPO and evaluate on
AIME24/25 and AMC23 benchmarks. We track specialized metrics to detect reward hacking:

5
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Trained with Majority Voting Reward Trained with Ground Truth Reward

Figure 1: Comparison between training with Majority Voting reward and ground truth reward.

Majority Voting Reward (intrinsic reward), Ground Truth Reward (true performance), Label Accuracy
(correctness of pseudo-label), and validation accuracy. Complete setup details refer to Appendix B.1.

4.1 WHY DO THESE METHODS WORK? TRADING UNCERTAINTY FOR PERFORMANCE

This section shows that intrinsic-reward methods boost performance by reducing uncertainty. Early
in training, they match or even surpass supervised RLVR with ground-truth rewards while consuming
entropy faster. A fine-grained per-sample analysis links uncertainty reduction to performance gains,
revealing a sampling-efficiency shortcut when confidence aligns with correctness. We also observe
late-stage reward hacking, highlighting the need to balance the uncertainty-performance trade-off.

4.1.1 COMPARISON WITH TRAINED WITH GROUND TRUTH REWARD

Setup. We trained Qwen3-1.7B-Base on DAPO-17k with the Majority Voting reward as a representa-
tive example, using the default hyperparameters from Table 5. For comparison, we also train with
ground truth labels.

Results. As shown in Figure 1, trained with Majority Voting reward attains comparable or even
superior performance to ground-truth training on two validation benchmarks at early stage, while
reducing model uncertainty faster (rapid Actor Entropy decay) and increasing Majority Voting Reward.
This establishes a negative correlation between uncertainty and performance in the early phase.

4.1.2 FINE-GRAINED TRAINING DYNAMIC ANALYSIS

ID 262

ID 146

ID 258

ID 420

ID 76

ID 131

ID 222

ID 422

0 10050

Epoch

True Certain True Uncertain False Uncertain False Certain

Figure 2: Representative per-problem training dynamics.

Setup. To probe the mechanism at
the instance level, we train Qwen3-
1.7B-Base per problem individually
from MATH500 using REINFORCE
with a baseline and a Trajectory-Level
Entropy reward estimator (global
batch size = 1, 100 epochs). For each
problem, we track greedy-decoding
validation accuracy and intrinsic re-
ward over time, drawing a heatmap
indicating greedy correctness (blue
= correct, red = wrong) and a bi-
nary square-wave indicating whether
the highest-reward sample is correct.
Due to the large amount of experi-
ments, we only randomly tested 25
data points and selected 8 representa-
tive ones for display; others can refer
to Figure 7.

Results. Figure 2 shows training dynamics on these problems. The results reveal distinct patterns
based on initial confidence-correctness correlation:
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Figure 3: Comparison of intrinsic rewards under tuned settings.

• High initial correlation (ID 262/146/258): greedy sampling is correct initially; intrinsic rewards
primarily increase confidence and sharpen distribution around already-correct solutions.

• Moderate initial correlation (ID 76/131): greedy sampling initially fails, yet rollout sampling
frequently yields high-reward correct answers; intrinsic rewards reliably guide the policy from
wrong greedy outputs toward correct solutions, showing effective error correction.

• Low initial correlation (ID 420): persistent emergence of incorrect samples during training
causes policy degradation, driving greedy accuracy from correct to incorrect. This demonstrates
misalignment between confidence and correctness leading to systematic bias amplification.

• Consistently poor correlation (ID 222/422): high-reward samples remain predominantly incor-
rect; intrinsic rewards amplify wrong beliefs, driving greedy accuracy deeper into error territory.

This directly validates our theoretical prediction that success depends on the model’s initial knowledge
quality, where confidence correlates well with correctness.

4.1.3 SAMPLING-EFFICIENCY SHORTCUTS

The analysis reveals why intrinsic rewards work: they operate as sampling-efficiency shortcuts by
rapidly concentrating probability mass on high-confidence trajectories, amplifying gradient signals
toward promising directions, and pruning uncertain paths early in training. This reduces the effective
search space and accelerates convergence compared to sparse ground-truth rewards, explaining both
the efficiency gains and the computational advantages observed in Figure 1.

However, this efficiency comes with a critical trade-off. As Figure 1 demonstrates, prolonged training
drives the intrinsic reward signal toward higher values while true accuracy drops, a clear instance
of reward hacking where optimization of the proxy reward (confidence) diverges from the true
objective (correctness). The method’s strength as a shortcut becomes its weakness when the initial
confidence-correctness correlation is insufficient or when training proceeds beyond the point where
this correlation remains reliable.

4.2 HOW DO DIFFERENT METHODS FAIL? UNDERSTANDING PATHOLOGY PATTERNS

Having established that intrinsic rewards work through uncertainty-performance shortcuts but in-
evitably face reward hacking, a critical question emerges: do all methods fail in the same way? Our
unified framework suggests that while all methods drive distribution sharpening, their different instan-
tiations, including certainty-based or ensemble-based, different anchor distributions, and token-level
or answer-level aggregation, should lead to distinct failure modes. Understanding these pathology
patterns is essential for both method selection and recognizing when intervention is needed.

Setup. We systematically compare five intrinsic methods using Qwen3-1.7B-Base on DAPO-17k,
each optimally tuned (hyperparameter details in Appendix B.3), evaluating across three validation
benchmarks to reveal how theoretical differences manifest as distinct failure behaviors in practice.

Distinct Pathology Patterns. As predicted by our unified framework, all methods drive toward
higher-confidence regions but fail differently (Figure 3):
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Figure 4: Effect of training dataset size.

• Stable Methods: Self-Certainty and Majority Voting maintain useful training windows longest,
with tapering smoothly rather than sudden collapse. The first balances sharpening with its uniform
anchor distribution; the second skips token-level artifacts by aggregating at the answer level.

• Length Collapse: Probability rewards brevity because multiplying token probabilities favors short
sequences. The model learns confident but overly brief answers, creating a distinct reward hacking
pattern focused on length rather than content quality. Length normalization (using geometric mean
or average log-probability) would likely mitigate this bias.

• Repetition Pathology: Entropy-based estimators (Token-Level Entropy, Trajectory-Level Entropy)
show complementary failure: their sequence averaging prevents length collapse but encourages
repetitive, predictable patterns as the model exploits low-entropy sequences.

These distinct failure modes directly reflect the theoretical differences in our unified framework,
influencing not just convergence rate but failure mode. Recognizing these patterns provides early
warning signals for intervention.

4.3 DO THESE METHODS ALWAYS CAUSE MODEL COLLAPSE? NO, SAFE AT TEST TIME

The previous sections established that intrinsic rewards drive convergence toward deterministic
policies and may result in model collapse. This raises a fundamental question: do intrinsic methods
always lead to model collapse, or can they be safely applied under specific conditions? Here,
we demonstrate that model collapse can be prevented when training data is sufficiently small and
domain-specific, making intrinsic rewards particularly suitable for test-time training scenarios.

4.3.1 SMALL DATASETS PREVENT MODEL COLLAPSE

Setup. We trained Qwen3-1.7B-Base on randomly sampled training subsets from DAPO-17k with
sizes {32, 128, 512, 2048, 8192, 16384}. To ensure fair comparison, we fix the global batch size to
32 and adjust training epochs so all settings complete exactly 600 optimization steps.

Results. Figure 4 reveals a clear threshold effect: training with 32 or 128 samples maintains stable
performance without model collapse. Critically, while DAPO-32 achieves rapid consensus (Majority
Voting Reward → 1), but it preserves high Ground Truth Reward. In contrast, larger datasets (≥ 512
samples) consistently exhibit model collapse. This threshold suggests that intrinsic rewards become
dangerous when training data provides sufficient statistical power to reinforce systematic biases that
could mislead the majority voting mechanism.

4.3.2 TEST-TIME TRAINING AS OPTIMAL APPLICATION DOMAIN

Setup. Building on the small dataset insights, we examine test-time training where models are
adapted directly on the target evaluation domains. We trained Qwen3-1.7B-Base separately on
AMC23 (40 samples) and DAPO-17k (∼17,000 samples), using a global batch size of 40 for both.
For AMC23, we performed multi-epoch training.

Results. Figure 5 demonstrates that test-time training successfully prevents model collapse, shown
with a higher and stable Ground Truth Reward with early complete consensus (Majority Voting
Reward), and followed with increase then stable performance among in-distribution AMC23 and
out-of-distribution AIME24. The key insight is that domain-specific, small-scale training creates
conditions where the model’s confidence genuinely correlates with correctness within the narrow
problem distribution. This makes intrinsic rewards a reliable proxy for true performance rather than a
source of bias.
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Figure 5: Comparison between training and test-time.

5 DISCUSSION

5.1 DOES INTRINSIC REWARD METHODS TRULY IMPROVE CAPABILITIES?

Table 2: Comparisons before and after TTRL. The results
show that TTRL-trained models significantly surpass the
base models’ majority-vote performance in accuracy.

Metric Qwen2.5-Math-1.5B Qwen2.5-Math-7B
maj@2 28.09 33.23
maj@4 33.68 41.20
maj@8 37.23 45.73
maj@16 38.10 47.98
maj@32 38.43 49.19
maj@64 38.17 49.87
maj@128 37.86 50.14
maj@256 37.55 50.40
maj@512 37.41 50.60
maj@1024 37.30 50.79

avg@32 (w/ TTRL) 48.90 68.10
∆ +11.60 +17.31

Section 4 demonstrates that prevailing in-
trinsic reward approaches predominantly
leverage uncertainty reduction as a mech-
anism for enhancing performance. This
observation motivates a critical ques-
tion: do such approaches truly enhance
a model’s capability, or do they merely
improve the self-consistency of its out-
puts? Take the TTRL method as an
example. TTRL explicitly models the
self-consistency across m model outputs
through majority voting and leverages
it as a supervisory signal. This design
seems to suggest that TTRL may simply
push the model toward the performance
upper bound implied by the base model
under majority voting. In other words,
while TTRL might steadily improve the pass@1 metric, it would be unlikely to surpass the base
model’s maj@m performance, thereby failing to deliver substantive gains beyond consistency
alignment.

However, our experiments reveal the opposite, as shown in Table 2. Specifically, we applied TTRL to
Qwen2.5-Math-1.5B and Qwen2.5-Math-7B on AIME 2024 (30 samples) with a train batch size of
30 for 100 epochs, and directly compared the base models’ maj@1024 with the pass@1 (avg@32)
of the TTRL-trained models. Since the majority voting performance converges rapidly once the
sample size reaches 32, maj@1024 can be reasonably regarded as a close approximation to maj@∞.
Strikingly, our results show that even the pass@1 metric of the TTRL-trained models significantly
exceeds the maj@∞ performance of the base models. This finding demonstrates that TTRL does far
more than enforce internal self-consistency: it genuinely enhances the model’s ability to generate
accurate predictions. Put differently, TTRL enables the model to solve a broader range of problems
than the base model, thereby delivering meaningful improvements in real-world performance.

5.2 AN UNEXPECTED APPLICATION: MODEL-TASK PRIOR INDICATOR BEYOND PASS@K

The ongoing debate about whether RLVR enables genuine discovery or merely sharpening has
intensified focus on understanding model capabilities before expensive training (Yue et al., 2025; Liu
et al., 2025b). Current approaches rely on pass@k metrics (Wu et al., 2025a), but these are limited to
tasks with objective answers and fail in subjective domains. We propose an alternative diagnostic:
since intrinsic reward training dynamics directly reflect confidence-correctness correlation quality
(the model-task prior), early training behavior serves as a rapid indicator of RL trainability within
tens of steps rather than full training evaluation.

Experimental Validation. We test this diagnostic by varying both models (8 models across Qwen/L-
lama families at different training stages) and datasets of varying difficulty. Since model-task prior
depends on both model capabilities and task characteristics, we examine training dynamics across
these dimensions. In the main text, each model trains on DAPO-17k for one epoch. Complete
experimental details and dataset variation results appear in Appendix B.4 and B.5.
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Figure 6: Training dynamics across different training stages in Qwen (Left), LLaMA (Right) family.

Results and Diagnostic Value. The results in Figure 6 reveal striking architectural differences:
Qwen models demonstrate superior priors with math-specialized and SFT variants maintaining stable
training (Majority Voting Reward 0.3-0.6), while Llama models systematically collapse earlier with
base variants failing by step 40. This diagnostic offers key advantages over pass@k: rapid assessment
within 50 steps, applicability to subjective tasks, and direct connection to RL trainability rather than
just performance metrics. The minimal diagnostic cost provides actionable insights about whether
models can benefit from reinforcement learning approaches.

5.3 HOW TO SCALE RL WITH URLVR METHODS AT TRAIN-TIME?

While we focus on intrinsic rewards derived from model confidence and consistency, the fundamental
challenge that removing human supervision from RL training extends beyond these approaches. We
discuss two promising alternatives that use external data or computational asymmetries to generate
verifiable rewards without ground truth labels.

Leveraging Unlabeled Data for Reward Generation. Large-scale unlabeled corpora offer natural
sources of verifiable signals that can replace human supervision. RPT (Dong et al., 2025) exemplifies
this approach by transforming next-token prediction into an RL task, where models receive binary
rewards for correctly predicting tokens from unlabeled text. This converts trillions of tokens into
scalable reward signals, enabling reasoning improvement through the standard pretraining objective.
Similarly, SEAL (Zweiger et al., 2025) employs a meta-learning approach where models generate
their own fine-tuning data by producing QA pairs from unlabeled contexts. The model receives
rewards based on downstream performance after self-supervised adaptation, creating an autonomous
improvement loop without external supervision.

Exploiting Generation-Verification Asymmetries. Many problem domains exhibit computational
asymmetries where verifying solutions is substantially easier than generating them (Burns et al.,
2023). This creates opportunities for autonomous ground truth generation without human labels. For
example, LADDER (Simonds & Yoshiyama, 2025) demonstrates this for math integration, using
numerical verification to provide reward signals. Absolute Zero (Zhao et al., 2025a) applies similar
principles to coding tasks, where Python execution provides automatic correctness verification. These
methods generate truly verifiable rewards that align with task correctness rather than proxy signals.

These approaches offer significant scalability advantages over intrinsic methods by exploiting vast un-
labeled corpora rather than relying on model-internal signals that may misalign with task objectives.

6 CONCLUSION

This work explores how Unsupervised RLVR scales LLMs via a unified framework for intrinsic
reward methods. We show that these rewards sharpen outputs around confident predictions, enabling
efficient gains when confidence aligns with correctness but amplifying errors when it does not.
Empirical results reveal distinct failure modes yet also show that collapse can be avoided in small,
domain-specific settings, making test-time training a natural application. Beyond these findings, early
training dynamics emerge as a lightweight diagnostic of model-task priors, offering a fast alternative
to pass@k for assessing RL trainability. Together, these results outline the limits of intrinsic rewards
and highlight the need for external signals and hybrid paradigms for robust, scalable gains.
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ETHICS STATEMENT

This work investigates intrinsic reward mechanisms for unsupervised reinforcement learning in large
language models. While our work advances understanding of AI self-improvement, we acknowledge
key ethical considerations. Our findings about reward hacking highlight risks if these methods were
deployed without safeguards, so that systems might become overconfident in incorrect solutions,
potentially causing harmful outputs in critical applications. Our identification of “safe” conditions
should not be interpreted as universal guarantees, as model behavior can be unpredictable in novel
contexts. We emphasize that our findings aim to improve understanding of limitations and appropriate
use cases rather than encourage unconstrained deployment. Practitioners should carefully assess the
confidence-correctness correlation in their applications and implement monitoring systems.

REPRODUCIBILITY STATEMENT

We provide complete materials for reproducing our theoretical and empirical findings. Theoreti-
cal contributions include mathematical derivations of the unified framework and formal proofs in
Appendix A.3. Experimental implementations use standardized frameworks (veRL/GRPO) with
hyperparameters in Table 5 and tuning procedures in Appendix B.3. Code for all five intrinsic reward
methods is provided in the supplementary materials. Experiments use publicly available models
(Qwen series) and datasets (DAPO-17k, AIME, AMC) are shown in the supplementary materials.
All evaluation metrics are defined in Appendix B.2, and our codebase enables reproduction of results
in all figures and tables.
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A DETAILS FOR SECTION 3

A.1 INSTANTIATIONS OF UNIFIED REWARD FRAMEWORK

To understand how different intrinsic methods fit into this framework, we define each component:

Cross-Entropy H. The fundamental building block, defined as H(q, πθ) = −
∑
v∈V q(v) log πθ(v),

measures the divergence between the anchor distribution q and the model distribution πθ. This
captures how “surprised” the model would be by samples from q.

Aggregation Granularity I. Determines the level at which distributions are compared:

• Token-level: I = {1, 2, . . . , |y|}, where each element corresponds to a position t in the sequence.
The model distribution at position t is πtθ(·) = πθ(· | x, y<t).

• Answer-level: I = {A}, a single element representing the distribution over complete answers
πA
θ = πθ(· | x) where answers are semantic conclusions rather than individual trajectories.

Anchor Distribution q and Sign Factor σ. The anchor q provides the reference point against which
the model is compared, while σ determines the optimization direction:

• When q is uniform (e.g., UV in Self-Certainty), we set σ = +1 to reward divergence from
uniformity, encouraging peaked distributions.

• When q is sharp (e.g., one-hot δ or the model’s own distribution πθ), we set σ = −1 to reward
alignment with q, reinforcing confident predictions.

Monotonic Transformation ψ. A strictly increasing function (typically identity or exponential) that
reshapes the reward signal while preserving relative ordering. Unlike ground truth rewards, where
transformations must preserve the optimal ground-truth policy, intrinsic rewards allow a flexible
choice of ψ to stabilize training or adjust gradient scales.

Remarks. We highlight two special cases. First, the formulation of Self-Certainty includes an
additional log |V | term. Since this constant is independent of model parameters, it does not
affect gradients during RL training. Second, the expression of rMV corresponds to the asymp-
totic case where the number of rollouts n → ∞. By the law of large numbers, as n → ∞,
the majority vote almost surely selects the answer with the highest probability under πAθ , i.e.
argmaxa π

A
θ (a). To make this limit computationally tractable, we use the tempered distribution

π̃Aθ (a)=exp
(
πAθ (a)/τ

)
/
∑
b∈A exp

(
πAθ (b)/τ

)
which avoids the undefined log 0 issue; as τ→0+, it

collapses to the hard majority indicator 1
[
ans(y) = argmaxa π

A
θ (a)

]
, thereby recovering the same

limiting behavior as majority voting.

Key Observations. Despite surface-level diversity, the unified framework reveals that all intrinsic
rewards share a common mechanism: manipulating cross-entropy to sharpen distributions. The
sign factor σ formalizes this: when σ = +1 (uniform anchor), rewards increase with cross-entropy,
pushing toward peaked distributions; when σ = −1 (sharp anchor), rewards decrease with cross-
entropy, reinforcing confident predictions. Beyond this shared mechanism, the framework reveals
structured differences that predict distinct behaviors:

• Granularity (I) distinguishes Token-level methods (Self-Certainty, Token/Trajectory-Level
Entropy, Probability), which operate at I = {1, . . . , |y|} creating local pressure, from Answer-
level methods (Semantic Entropy, Majority Voting) working at I = {A}. This explains why
answer-level methods, which aggregate global consistency, are more stable than those diluted by
sequence length.

• Anchor Choice (q) determines the convergence target. Uniform distributions (UV ) encourage
departure from randomness, while sharp distributions (δt, δA) reinforce high-probability paths.
Sharp anchors create self-reinforcement loops where rewards directly depend on generated
outputs.

• Transformation (ψ) determines sharpening strength. Exponential transformations (ψ(z) =
exp(z)), particularly in Probability methods (exp(|y| · z)), amplify the sharpening effect, predict-
ing faster convergence and earlier model collapse compared to the more gradual reinforcement
of identity transformations (z).
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A.2 MONOTONICITY ANALYSIS OF GENERAL OPTIMAL POLICY

The key insight comes from analyzing the monotonicity of the exponent in Equation (1). Since ψ is
strictly increasing by design, the behavior depends entirely on σ:

• Case σ = +1: The reward increases with cross-entropy. Sequences where πθ diverges from q
(typically uniform) receive higher rewards, pushing the policy toward more peaked distributions.

• Case σ = −1: The reward decreases with cross-entropy. Sequences where πθ aligns with q
(typically sharp) receive higher rewards, reinforcing existing confident predictions.

Both cases lead to the same outcome: progressive sharpening of the model’s distribution, either by
moving away from uniformity or by reinforcing peaked predictions.

A.3 PROOF OF THEOREM 1

Geometric Convergence to Deterministic Policy

Consider the training procedure where at each iteration k: (1) sampleN rollouts Yk from π
(k)
θ ,

(2) compute majority majk(Yk), (3) perform one gradient update with reward rk(x, y) =
1[ans(y) = majk(Yk)].
Under assumptions (A1) stable majority majk = maj0 and (A2) ηk ≥ ηmin > 0, the
probability mass p(k)maj converges geometrically to 1. As k → ∞:

lim
k→∞

π
(k)
θ (y|x) =

{
πref(y|x)∑

y′:ans(y′)=maj0(Y0) πref(y′|x) if ans(y) = maj0(Y0),

0 otherwise
(5)

Proof.

Step 0: Justifying the Ordering p∗,(k+1)
maj ≥ p

(k+1)
maj ≥ p

(k)
maj.

From the optimal policy of the standard KL-regularized RL objective, if we held reward rk fixed and
performed infinite updates starting from π

(k)
θ , we would reach the optimal policy with probability

mass:

p
∗,(k+1)
maj =

α · p(k)maj

1 + (α− 1)p
(k)
maj

, α := e1/β > 1 (6)

Lower bound (p(k+1)
maj ≥ p

(k)
maj): The policy gradient is ∇θJ = Eπθ

[rk(x, y)∇θ log πθ(y|x)]. Since
rk(x, y) = 1 for majority trajectories and rk(x, y) = 0 for non-majority trajectories, the gradient
increases log πθ(y|x) only for majority trajectories. Under standard policy gradient convergence
(positive rewards increase trajectory probabilities), this tends to increase p(k)maj. We validate this
empirically in Appendix A.5.

Upper bound (p(k+1)
maj ≤ p

∗,(k+1)
maj ): Since π∗,k

θ maximizes the KL-regularized objective for fixed rk,
our single-step update cannot exceed this optimal value.

Step 1: Effective Update Rule.

We model the actual update with step efficiency ηk ∈ (0, 1]:

p
(k+1)
maj = p

(k)
maj + ηk · (p∗,(k+1)

maj − p
(k)
maj) (7)

Substituting Equation (6):

p
(k+1)
maj = p

(k)
maj + ηk

(
α · p(k)maj

1 + (α− 1)p
(k)
maj

− p
(k)
maj

)

= p
(k)
maj + ηk ·

(α− 1)(1− p
(k)
maj)p

(k)
maj

1 + (α− 1)p
(k)
maj

(8)
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Step 2: Error Dynamics.

Define the error from the fixed point 1 as:

ϵ(k) := 1− p
(k)
maj ∈ (0, 1) (9)

Substituting into Equation (8):

ϵ(k+1)= 1− p
(k+1)
maj

= ϵ(k) − ηk ·
(α− 1)(1− ϵ(k))ϵ(k)

1 + (α− 1)(1− ϵ(k))

= ϵ(k)
(
1− ηk ·

(α− 1)(1− ϵ(k))

α− (α− 1)ϵ(k)

)
(10)

Step 3: Monotonic Decrease.

Since α > 1, ϵ(k) ∈ (0, 1), and ηk ∈ (0, 1], we have:

0 <
(α− 1)(1− ϵ(k))

α− (α− 1)ϵ(k)
< 1 (11)

Therefore:

0 < 1− ηk ·
(α− 1)(1− ϵ(k))

α− (α− 1)ϵ(k)
< 1 (12)

This implies ϵ(k+1) < ϵ(k), proving the sequence {ϵ(k)} is strictly decreasing and bounded below by
0.

Step 4: Convergence to Zero.

Let ℓ = limk→∞ ϵ(k) ≥ 0. Under assumption (A2), ηk ≥ ηmin > 0. If ℓ > 0, then for large k, the
multiplier in Equation (10):

1− ηk ·
(α− 1)(1− ϵ(k))

α− (α− 1)ϵ(k)
≤ 1− ηmin · α− 1

α
< 1 (13)

is bounded away from 1, causing continued decay. The only consistent limit is ℓ = 0. Therefore:

ϵ(k) → 0 equivalently p
(k)
maj → 1 (14)

Step 5: Geometric Convergence Rate.

From Equation (10), for large k when ϵ(k) is small:

ϵ(k+1) ≈ ϵ(k)
(
1− ηk ·

α− 1

α

)
(15)

Under assumption (A2):

ϵ(k+1) ≤
(
1− ηmin · α− 1

α

)
ϵ(k) (16)

This establishes geometric convergence with rate depending on ηmin and α = e1/β . In the ideal case
where ηk = 1 for all k (each update reaches the optimum), the convergence rate is exactly ρ = e−1/β .

Step 6: Limiting Policy.

Given assumption (A1) that the majority remains stable at maj0(Y0), as p(k)maj → 1, all probability
mass concentrates on trajectories with ans(y) = maj0(Y0). The limiting distribution is:

lim
k→∞

π
(k)
θ (y|x) =

{
πref(y|x)∑

y′:ans(y′)=maj0(Y0) πref(y′|x) if ans(y) = maj0(Y0),

0 otherwise
(17)
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This completes the proof. □

Remark on Assumptions.

• (A1) Majority stability: By the Law of Large Numbers, with N rollouts, the empirical majority
majk(Yk) converges to argmaxa π

(k)
θ (a|x) as N → ∞. Since p(k)maj increases monotonically, the

argmax remains maj0 throughout training. We validate this empirically with N = 1024 rollouts
in Appendix A.5, where the majority never flipped across 200 iterations.

• (A2) Non-trivial progress: We assume ηk ≥ ηmin > 0, meaning each gradient update makes
non-trivial progress. We validate this empirically: our experiments show consistent monotonic
increase in pmaj and convergence to 1.0 under extreme off-policy settings (Appendix A.5).

A.4 GENERALIZED SHARPENING ANALYSIS VIA UNIFIED REWARD FRAMEWORK

To address the concern that Theorem 1 applies only to Majority Voting, and to demonstrate the
analytical utility of our unified framework, we provide a generalized sharpening analysis. We show
that methods with σ = −1 share a critical structural property, Reward-Confidence Monotonicity,
which creates a persistent pressure toward distribution sharpening.

Note: The following is a proof sketch demonstrating the key convergence mechanism shared by
σ = −1 methods. A fully rigorous treatment requires additional technical conditions that we validate
empirically. Methods with σ = +1 (Self-Certainty) require separate analysis as they reward away
from uniform distribution.
Proposition 1 (Sharpening Dynamics for σ = −1 Methods). Consider any intrinsic reward with
σ = −1 in the unified framework (runi = ψ(−H(q, π))) where ψ is strictly increasing and q is a
sharp anchor. These methods satisfy Reward-Confidence Monotonicity:

πθ(ya|x) > πθ(yb|x) =⇒ runi(x, ya) > runi(x, yb) (18)

For a dominant trajectory y∗ (e.g., majority) and a non-dominant competitor y′, this inequality is
strict: r(y∗) > r(y′). Under iterative KL-regularized updates, this property creates a self-reinforcing
feedback loop that drives geometric concentration.

Proof Sketch:

We analyze the dynamics for a dominant trajectory y∗ and a competitor y′ (for ensemble methods,
not in the same class as y∗) where the model initially prefers y∗ (i.e., πk(y∗) > πk(y

′)) and assigns
it strictly higher reward (rk(y∗) > rk(y

′)).

Step 1: Existence of a Positive Reward Gap

Using the unified formula, we justify why the gap is positive for σ = −1:

• Self-Reinforcing Anchors (e.g., Probability): r(y) = ψ(log π(y)). Since πk(y∗) > πk(y
′) and

ψ is strictly increasing, rk(y∗) > rk(y
′).

• Answer-Level Anchors (e.g., Majority Voting): y∗ belongs to the dominant answer class a∗,
while y′ does not. By construction, r(y∗) = 1 and r(y′) = 0.

In both cases, the intrinsic reward gap is strictly positive: ∆(k)
r = rk(y

∗)− rk(y
′) > 0.

Step 2: The Optimization Target

We consider the optimal policy π∗ for the current fixed reward landscape rk. The optimal solution
implies a target ratio:

π∗(y∗)

π∗(y′)
=
πk(y

∗)

πk(y′)
· exp

(
∆

(k)
r

β

)
(19)

Since ∆
(k)
r > 0, the target ratio is strictly larger than the current ratio.

Gradient Assumption: The gradient ∇θJ = Eπk
[rk(y)∇θ log πθ(y)] assigns positive weight

to high-reward trajectories. We assume that policy gradient updates with positive learning rate
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η satisfy: if r(y∗) > r(y′) and both have positive probability, then the updated policy satisfies
πk+1(y

∗)
πk+1(y′)

≥ πk(y
∗)

πk(y′)
. This aligns with standard policy gradient convergence properties.

Step 3: The Reinforcement Loop

The unified framework reveals why this process spirals into determinism. As the policy updates to
increase the probability mass on the dominant trajectory:

• For Self-Reinforcing Anchors (e.g., Probability), because r(y) = ψ(log π(y)), increasing π(y∗)
directly increases its reward r(y∗).

• For Answer-Level Anchors (e.g., Majority Voting), increasing the total probability mass on
the dominant answer class a∗ increases the reward for all trajectories in that class (since r ∝
log p(a∗)).

This creates a positive feedback loop: the update increases the probability of the dominant path,
which maintains or widens the reward gap ∆r, ensuring the pressure to sharpen (∆r > 0) persists.

Utility of the Framework:

This derivation demonstrates that the “rich-get-richer” dynamic is a structural inevitability for any
method where the reward function is monotonically aligned with the model’s own confidence
(σ = −1). The framework allows us to identify this shared property and predict that all such methods
will drive the policy toward deterministic outputs, regardless of whether this leads to success (when
aligned with correctness) or failure (when misaligned).

Remark on σ = +1 Methods:

Self-Certainty (σ = +1) rewards higher when away from uniform distribution. Therefore, π(ya) >
π(yb) does not imply r(ya) > r(yb). A high-probability output and a very low-probability output
could both have high KL-divergence from uniform, violating direct Reward-Confidence Monotonicity.
Its sharpening mechanism requires separate analysis.

While methods with σ = +1 do not strictly align reward with raw confidence, they still induce
sharpening by penalizing high-entropy distributions. By maximizing the distance from a uniform
anchor, the optimization landscape naturally favors peaked, low-entropy policies, effectively driving
the model toward determinism.

Empirical Validation:

To substantiate the assumptions in this proof sketch, we provide empirical validation for differ-
ent intrinsic reward methods in Figure 3 and Appendix B.3, confirming that Reward-Confidence
Monotonicity is not just a theoretical construct but the actual driver of the observed training dynamics.

A.5 EMPIRICAL VALIDATION OF THEORETICAL ASSUMPTIONS

We empirically validate the key assumptions in Theorem 1 through three targeted experiments.

Experiment 1: Validation of Ordering and Majority Stability

Setup: We trained on a single problem from MATH-500 with N = 1024 rollouts (reducing majority
vote randomness) for 50 steps. We randomly selected 4 problems and monitored whether the majority
answer majk(Yk) remains stable and whether p(k)maj increases monotonically.

Step 1 2 3 4 5 6 7 8 9 10

level3_id146 12.70 15.53 15.92 16.21 18.46 22.07 22.56 24.80 31.35 39.36
level1_id187 6.64 6.69 6.84 7.42 10.45 11.04 11.43 11.82 15.82 18.46
level1_id262 15.14 17.19 17.48 18.85 20.02 22.07 24.12 25.20 34.67 39.84
level3_id122 11.33 12.01 12.40 14.06 17.87 18.46 20.31 21.29 33.59 33.89

Table 3: Monotonic increase of pmaj (%) in early training steps.

Results for monotonic increase of pmaj. Table 3 shows pmaj values for the first 10 steps. All
4 problems exhibit strict monotonic increase at every single step, confirming the lower bound
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p
(k+1)
maj ≥ p

(k)
maj of the ordering. We also found that the majority answer remained stable across all

iterations. This confirms both the ordering and assumption (A1) on majority stability.

Step 5 10 15 20 25 30 35 40 45 50

level3_id146 18.46 39.36 48.93 91.11 95.41 98.14 98.54 99.02 99.61 99.80
level1_id187 11.04 18.46 26.37 79.88 89.84 93.07 96.09 97.66 98.54 99.02
level1_id262 22.07 39.84 51.37 90.14 95.90 96.80 97.46 98.05 98.63 99.41
level3_id122 17.87 33.59 43.55 84.28 92.19 93.26 95.80 96.09 98.34 98.54

Table 4: Geometric convergence of pmaj (%) to 1.0 over 50 training steps.

Results for convergence of pmaj. Table 4 shows the same 4 problems trained for 50 steps. All
problems converge from initial values toward near-complete concentration (98.54%-99.80% at step
50), demonstrating the convergence predicted by Theorem 1. This validates assumption (A2) on
non-trivial progress and confirms that the iterative training procedure with policy-dependent rewards
does indeed converge to deterministic policies.

Experiment 2: Batch Training Validation

Setup. Our main experiments (Figure 1) train on batches with N = 8 rollouts per problem.

Results. Majority Voting Reward (batch-averaged pmaj) shows a consistent increasing trend across all
methods, confirming the lower bound p(k+1)

maj ≥ p
(k)
maj holds in practical batch training settings. Small

fluctuations occur due to finite rollouts (N = 8) and batch variance, but the monotonic trend is clear.

Experiment 3: Fixed Reward Convergence Validation

Setup. To validate that the closed-form optimal policy in Equation (3) is achievable when reward is
held fixed, we conducted an extreme off-policy experiment. We used global batch size 1024 with
mini-batch size 1, generated one-time rollout (with N = 8 for each of 1024 prompts), and performed
1024 gradient updates using rewards computed solely from the initial rollout majority. This setup
tests whether solving a single KL-regularized RL objective can converge to the theoretical optimum
when the reward signal remains constant.

Results. After 1024 mini-updates using the same fixed reward signal, the Majority Voting Reward
reached 1.0 (complete convergence), while validation performance on AIME24, AIME25, and
AMC23 dropped to zero. This confirms that the convergence point predicted by Equation (3) is
achievable with sufficient updates.

A.6 OPTIMAL POLICIES INDUCED BY OTHER INTRINSIC REWARDS

Optimal Policy of the Reward Function rSC. For the Self-Certainty reward function rSC, it
instantiates our unified framework with token-level granularity I = {1, 2, ..., |y|}, anchor distribution
q = {UV }|y|t=1 (uniform distribution over vocabulary), model distribution π = {πtθ}

|y|
t=1, sign factor

σ = +1, and transformation ψ(z) = z. As established previously, for any input x, the token-level
predictive distribution of the model is evaluated against the current policy π. Due to σ = +1,
the farther this distribution deviates from the uniform distribution (i.e., the higher the model’s
confidence), the larger the reward rSC(x, y). Consequently, after a single step of policy update, the
optimal probability πθ(y|x) increases for such high-confidence sequences, whereas it decreases when
the per-token distribution is close to uniform (low confidence). Thus, rSC encourages the model to
generate answers that are already preferred by the prior policy.

A detailed derivation is provided below. The Self-Certainty based reward is defined as:

rSC(x, y) =
1

|y|

|y|∑
t=1

DKL
(
U ∥ πθ(· | x, y<t)

)
= − log |V | − 1

|y| |V |

|y|∑
t=1

|V |∑
v=1

log πtθ(yt = v). (20)

Within the KL-regularized RL framework, dropping the constant term − log |V |, the one-step optimal
policy becomes:
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πθ(y|x) ∝ πref(y|x) exp

− 1

β |y| |V |

|y|∑
t=1

|V |∑
v=1

log πtθ(yt = v)

 . (21)

Therefore, whenever the model assigns concentrated probabilities to every token of y (high confi-
dence), the exponent grows, thus increasing the probability of the sequence πθ(y|x). In summary, the
Self-Certainty based reward systematically enhances the model’s “self-confidence” with respect to its
prior policy.

Optimal Policy of the Reward Function rH . For the token-level entropy-based reward rH , it
instantiates our unified framework with token-level granularity I = {1, 2, ..., |y|}, anchor distribution
q = {πtθ}

|y|
t=1, model distribution π = {πtθ}

|y|
t=1, sign factor σ = −1, and transformation ψ(z) =

z. Maximizing rH is equivalent to minimizing the predictive entropy at every position, thereby
discouraging the model from spreading its probability mass across multiple candidate tokens and
hence increasing its decisiveness.

A detailed derivation is provided below. The entropy-based reward is defined as:

rH(x, y) = − 1

|y|

|y|∑
t=1

H
(
πθ(· | x, y<t)

)
= − 1

|y|

|y|∑
t=1

|V |∑
v=1

πtθ(yt = v) log πtθ(yt = v). (22)

Within the KL-regularized RL framework, the one-step optimal policy becomes:

πθ(y|x) ∝ πref(y|x) exp

− 1

β |y|

|y|∑
t=1

|V |∑
v=1

πtθ(yt = v) log πtθ(yt = v)

 . (23)

Consequently, if the predictive distribution of an output sequence y exhibits high entropy (i.e., the
per-token distributions are close to uniform), the negative-entropy reward rH is strongly negative,
which suppresses the exponential weight and reduces πθ(y|x). Conversely, low entropy (highly
peaked per-token distributions) yields rH ≈ 0, thus the sequence probability is enhanced after
normalization. Therefore, the entropy-based reward rH encourages the model to generate answers
whose token-level distributions are sharply concentrated, effectively boosting its "self-confidence"
under the prior policy.

Optimal Policy of the Reward Function rTraj. For the trajectory-level entropy-based reward rTraj, it
instantiates our unified framework with token-level granularity I = {1, 2, ..., |y|}, anchor distribution
q = {δt}|y|t=1, model distribution π = {πtθ}

|y|
t=1, sign factor σ = −1, and transformation ψ(z) = z.

For a given input x, the model’s predictive distribution is evaluated at every token. With σ = −1,
the closer the distribution is to the one-hot reference δt (i.e., the higher the model’s confidence in
each ground-truth token), the larger the reward rTraj(x, y). Hence, after one policy-update step, the
optimal probability πθ(y|x) increases for such high-confidence trajectories, and decreases otherwise.
Thus, rTraj encourages the model to generate sequences that already enjoy high probability under the
prior policy.

The trajectory-level reward is defined as:

rTraj(x, y) =
1

|y|

|y|∑
t=1

log πθ(yt | x, y<t) =
1

|y|
log πθ(y | x). (24)

Within the KL-regularized RL framework, the one-step optimal policy becomes:

πθ(y|x) ∝ πref(y|x) exp
(

1

β |y|
log πθ(y | x)

)
= πref(y|x)·

[
πθ(y | x)

] 1
β|y| . (25)

Consequently, whenever the model assigns a higher prior probability to a sequence y, the weighted
product term is amplified, thereby increasing its normalized probability πθ(y|x). Therefore, the
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trajectory-level entropy reward boosts the probability of sequences that are already likely under the
current policy πθ.

Optimal Policy of the Reward Function rProb. For the probability-based reward function rProb, it
instantiates our unified framework with token-level granularity I = {1, 2, ..., |y|}, anchor distribution
q = {δt}|y|t=1, model distribution π = {πtθ}

|y|
t=1, sign factor σ = −1, and transformation ψ(z) =

exp(z). For a given input x, the model’s predictive distribution is evaluated at every token. With
σ = −1, the closer the distribution is to the one-hot reference δt (i.e., the higher the model’s
confidence in each ground-truth token), the larger the reward rProb(x, y) will be. Hence, after one
policy-update step, the optimal probability πθ(y|x) increases for such high-confidence trajectories,
and decreases otherwise. Thus, rProb encourages the model to generate sequences that already enjoy
high probability under the prior policy.

The probability-based reward is defined as:

rProb(x, y) =

|y|∏
t=1

πθ(yt | x, y<t) = πθ(y | x). (26)

Within the KL-regularized RL framework, the one-step optimal policy becomes:

πθ(y|x) ∝ πref(y|x) exp
(
1

β
πθ(y | x)

)
. (27)

Consequently, whenever the model assigns a high joint probability to a sequence y, the exponential
weight is amplified, thereby increasing its normalized probability πθ(y|x). The probability-product
reward thus directly reinforces sequences that are already likely under the current policy, enhancing
the model’s preference for "high-likelihood" trajectories.

Optimal Policy of the Reward Function rEMPO. For the answer-space probability-distribution
reward rEMPO employed by the EMPO algorithm, it instantiates our unified framework with answer-
level granularity I = {A}, anchor distribution q = δA, model distribution π = πAθ , σ = −1, and
transformation ψ(z) = exp(z). For a given input x, multiple roll-outs are used to estimate the current
policy’s distribution over the answer space. With σ = −1, the closer this distribution is to the one-hot
reference δA (i.e., the more probability mass is assigned to the extracted answer), the larger the
reward rEMPO(x, y) will be. Hence, after one policy-update step, the optimal probability πθ(y|x)
increases for sequences that endorse the high-probability answer, while it decreases for all others.
Maximizing rEMPO is therefore equivalent to driving the model to become more decisive at the answer
level, thereby improving the consistency and determinism of the generated outputs.

Formally, the reward is defined as:

rEMPO(x, y) = πθ(ans(y) | x), where πθ(ans(y) | x) =
∑

ans(y′)=ans(y)

πθ(y
′ | x). (28)

Within the KL-regularised RL framework, the one-step optimal policy is:

πθ(y | x) ∝ πref(y | x) exp
(
πθ(ans(y) | x)

β

)
. (29)

As evidenced by Equation (29), a single EMPO update re-weights each sequence by a factor of
exp
(
πθ(ans(y) | x)/β

)
that depends on the current answer-level probability. After normalization,

answers that already enjoy high probability under the prior policy gain additional mass, whereas low-
probability answers suffer a decrease. Consequently, the optimal policy at each step systematically
shifts the overall probability mass toward the high-probability region of the prior policy.
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Figure 7: Examples of per-problem training dynamics from MATH-500.

Table 5: Default hyperparameters for training.

Model Dataset Training
Temperature

Global
Batch Size

Mini
Batch Size

Rollout
Number Regularization Max Context

Length
Learning

Rate Epoch

Qwen3-1.7B-Base DAPO-17k 1.0 64 64 8 w/o KL
w/o Entropy 8192 1e-6 1

B DETAILS FOR SECTION 4

B.1 EXPERIMENTAL SETUP

Implementation Details. All experiments are conducted using the VeRL framework (Sheng et al.,
2025) with the GRPO algorithm. Unless stated otherwise, we utilize the default configuration outlined
in Table 5. We implement five representative intrinsic rewards by customizing the RewardManager
module of VeRL, following the reward formulations in Table 6 and Table 7:

• Ensemble-Based Reward Estimators: Majority Voting

• Certainty-Based Reward Estimators: Self-Certainty, Token-Level Entropy, Trajectory-Level
Entropy, and Probability

Evaluation Protocol. We evaluate on three challenging mathematics benchmarks: AIME 2024 (Li
et al., 2024), AIME 2025 (Balunović et al., 2025), and AMC 2023 (Li et al., 2024). Following
standard practice, we generate 32 solutions per problem using a temperature of 0.6 and a top-p value
of 0.95, and report the mean accuracy at 32 solutions (mean@32).
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Table 6: Overview of certainty-based rewards, estimators and their formulas.

Method Estimator Formula

RLIF Self-Certainty r(x, y) = 1
|y|

∑|y|
t=1DKL(U∥πθ(·|x, y<t))

EM-RL Trajectory-Level
Entropy r(x, y) = 1

|y|
∑|y|

t=1 log πθ(yt|x, y<t)

EM-RL, RENT Token-Level Entropy r(x, y) = − 1
|y|

∑|y|
t=1H(πθ(·|x, y<t))

RLSC Probability r(x, y) =
∏|y|

t=1 πθ(yt|x, y<t)

RLSF Probability Disparity
r(x, y) =

1

M

|a|∑
t=1

[
max
at

πθ(at|x, c, a<t)

− max
at ̸=arg maxπθ

πθ(at|x, c, a<t)
]

Training Dynamics Monitoring. To monitor reward hacking and validate our theoretical predictions
from Section 3, we implement specialized metrics to track the evolution of pseudo-rewards and their
alignment with ground truth. These metrics help identify when and how these intrinsic methods
transition from beneficial sharpening to pathological collapse.

• Ensemble-Based Metrics: For methods using majority voting, we separately track the accuracy
of the chosen label and the accuracy of the rewards it generates.

– Label Accuracy: Prompt-level accuracy of majority-voted answers against ground truth,
measuring ensemble quality

– Reward Accuracy: Sample-level agreement between pseudo rewards and oracle rewards,
capturing “lucky hits” (Zuo et al., 2025) where individual rewards align despite incorrect
majority votes

– Ground Truth Reward: Average oracle reward (supervised baseline), computed using actual
correctness

– Majority Voting Reward: Average pseudo reward from majority voting, the divergence from
Ground Truth Reward indicates reward hacking

• Certainty-Based Metrics: For certainty-based methods, we measure the correlation between this
proxy reward and the actual correctness.

– Label Accuracy: Ground-truth accuracy of the highest-confidence response per prompt,
testing whether maximum certainty implies correctness

– Point-Biserial Correlation: Point-biserial correlation between pseudo reward and binary
correctness, quantifying the fundamental assumption that confidence predicts accuracy

These metrics collectively diagnose three critical phenomena: (1) pseudo-label quality degradation
via Label Accuracy, (2) reward signal corruption via the gap between Majority Voting Reward and
Ground Truth Reward, and (3) confidence miscalibration via Point-Biserial Correlation. Mathematical
definitions and implementation details are provided in Appendix B.2.

B.2 CALCULATION OF TRAINING DYNAMICS

We provide mathematical definitions for the metrics used to monitor training dynamics. These metrics
diagnose reward hacking and validate theoretical predictions about distribution sharpening.

B.2.1 NOTATION

Let D = {(xi, a∗i )}Mi=1 denote the training dataset with M prompts, where xi is the i-th prompt
and a∗i is its ground-truth answer. For each prompt xi, we generate N rollout responses {yi,j}Nj=1
from the current policy πθ, where each response yi,j contains a trajectory and an extracted answer
ans(yi,j).

Define the following:
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Table 7: Overview of ensemble-based rewards, estimators and their formulas.

Method Estimator Formula

TTRL, SRT, ETTRL Majority Voting r(x, y) = 1
[
y = argmaxy′

∑N
i=1 1[yi = y′]

]
, {yi}N

i=1 ∼ πθ(·|x)

Co-Reward Majority Voting
across Rephrased
Question

r(x, y) = 1

[
y = argmax

y∗

N∑
i=1

1[yi = y
∗
]

]
, {yi}N

i=1 ∼ πθ(·|x)

+ 1

y = argmax
y∗

N∑
j=1

1[y
′
j = y

∗
]

 , {y′j}
N
j=1 ∼ πθ(·|rephrase(x))

RLCCF Self-consistency
Weighted Voting

r(x, y) = 1

[
y = argmax

a

N∑
n=1

(
max
a′

K∑
k=1

1[on,k = a
′
]
)
·

K∑
k=1

1[a = on,k]

]
,

{on,k}K
k=1 ∼ πθn (·|x), n = 1, . . . , N

EMPO Semantic Similarity
r(x, y) =

|C(y)|
G , C(y) ∈ SemanticCluster({oi}G

i=1),

{oi}G
i=1 ∼ πθ(·|x)

CoVo Trajectory Consistency
and Volatility

r(x, y) = 1
G

∥∥∥∥∥
G∑

i=1

Con(yi) · [cos(Vol(yi)), sin(Vol(yi))]

∥∥∥∥∥ + rcur,

{yi}N
i=1 ∼ πθ(·|x), G = |{i : ans(yi) = ans(y)}|

• 1[·]: Indicator function returning 1 if the condition is true, 0 otherwise

• maj(xi): Majority-voted answer for prompt xi, computed as argmaxa
∑N
j=1 1[ans(yi,j) = a]

• rgt(yi,j): Ground-truth reward for response yi,j , equals 1[ans(yi,j) = a∗i ]

• rmv(yi,j): Majority-voting pseudo-reward, equals 1[ans(yi,j) = maj(xi)]
• rcert(yi,j): Certainty-based reward (e.g., self-certainty, entropy) for response yi,j

B.2.2 ENSEMBLE-BASED METRICS

Label Accuracy Measures the prompt-level accuracy of majority-voted answers:

Label Accuracy =
1

M

M∑
i=1

1[maj(xi) = a∗i ]. (30)

This metric ranges from 0 to 1, where 1 indicates perfect pseudo-label generation.

Reward Accuracy Quantifies sample-level agreement between pseudo-rewards and oracle rewards:

Reward Accuracy =
1

M ·N

M∑
i=1

N∑
j=1

1[rmv(yi,j) = rgt(yi,j)]. (31)

This captures “lucky hits” where individual rewards are correct even when the majority vote is wrong.
For example, if the majority vote is incorrect but a minority response is correct, that response still
receives the appropriate (zero) pseudo-reward.

Ground Truth Reward Average oracle reward across all generated responses:

Ground Truth Reward =
1

M ·N

M∑
i=1

N∑
j=1

rgt(yi,j). (32)

This represents the true quality of generated responses and serves as the supervised baseline.

Majority Voting Reward Average pseudo-reward from majority voting:

Majority Voting Reward =
1

M ·N

M∑
i=1

N∑
j=1

rmv(yi,j). (33)
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The divergence between this metric and Ground Truth Reward indicates reward hacking: when the
model learns to maximize pseudo-rewards at the expense of actual correctness.

B.2.3 CERTAINTY-BASED METRICS

Label Accuracy For certainty-based methods, we identify the highest-confidence response per
prompt and measure its accuracy:

Label Accuracy =
1

M

M∑
i=1

1[ans(yi,j∗i ) = a∗i ], (34)

where j∗i = argmaxj∈{1,...,N} rcert(yi,j) is the index of the highest-confidence response for prompt
xi.

Point-Biserial Correlation Measures the correlation between continuous certainty scores and
binary correctness:

ρpb =
r̄1 − r̄0
sr

·
√
n1n0
n2

, (35)

where:

• n =M ·N is the total number of responses
• n1 =

∑
i,j rgt(yi,j) is the number of correct responses

• n0 = n− n1 is the number of incorrect responses
• r̄1 = 1

n1

∑
i,j:rgt(yi,j)=1 rcert(yi,j) is the mean certainty for correct responses

• r̄0 = 1
n0

∑
i,j:rgt(yi,j)=0 rcert(yi,j) is the mean certainty for incorrect responses

• sr =
√

1
n−1

∑
i,j(rcert(yi,j)− r̄)2 is the standard deviation of all certainty scores

• r̄ = 1
n

∑
i,j rcert(yi,j) is the mean of all certainty scores

The correlation ρpb ∈ [−1, 1] quantifies the relationship between confidence and correctness. Positive
values indicate that higher certainty correlates with correctness (desired behavior), while values near
zero suggest certainty is uninformative, and negative values indicate miscalibration.

B.3 HYPERPARAMETER TUNING

Setup. We study four hyperparameters, including training temperature, mini-batch size, KL di-
vergence regularization, and rollout count, that directly influence convergence dynamics in our
theoretical framework. We vary one parameter at a time while keeping others fixed at baseline values
(see Appendix B.1).

B.3.1 MAJORITY VOTING

Training Temperature. Temperature directly controls exploration during rollout generation and
affects the quality of pseudo-labels via voting diversity. From our convergence analysis in Theorem 1,
lower temperature reduces the effective β in the KL regularization term, accelerating convergence.
As shown in Figure 8, low T ∈{0.6, 0.8} quickly sharpens logits, causing unstable Label Accuracy,
consistent with premature convergence to an early majority that may be incorrect. Higher temperature
(T = 1.2) maintains stability longer by preserving exploration, but the increased noise reduces peak
performance. We find T = 1.0 provides optimal balance, showing steady early gains with delayed
degradation.

Mini-batch Size. This parameter controls the on-policy nature of updates, directly affecting the
validity of our optimal policy assumptions. Our theoretical derivation in Equation (3) assumes rewards
are computed under the current policy πθ. Small mini-batches violate this assumption through reward
staleness: pseudo-rewards computed under πθ become misaligned when applied to samples from πθold .
As shown in Figure 9, mini-batch size 1 drives rapid collapse within 20 steps, while pure on-policy
training (mini-batch = 64, matching global batch size) provides maximum stability. The intermediate
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Figure 8: Effect of training temperature for Majority Voting method.
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Figure 9: Effect of mini-batch size for Majority Voting method.

sizes (16–32) show gradual improvement, confirming that maintaining policy-reward alignment is
crucial for stable convergence.

KL Regularization. Our theoretical analysis suggests that KL regularization should slow convergence
by increasing the effective β parameter in ??. However, empirical results in Figure 10 show that
adding KL regularization (β = 0.005) yields only marginal benefits: small early gains but increased
training variance and minimal delay in collapse (∼ 40 steps). This discrepancy arises because intrinsic
rewards create competing optimization pressures, where the intrinsic signal drives sharpening while
KL pulls toward the reference policy. Rather than smoothly balancing these forces, the optimization
oscillates between them, increasing variance without providing durable stability. The marginal gains
do not justify the additional memory overhead and training instability.

Number of Rollouts. The rollout count N affects both vote reliability and signal strength. While
more rollouts improve statistical reliability of the majority vote, they also amplify the majority signal
strength. From Equation (3), each update amplifies majority probability by factor e1/β . With more
rollouts, this majority becomes more confident, accelerating convergence. Figure 11 shows this effect:
N = 32 collapses within 180 steps, N = 16 within 220 steps, while N ≤ 8 remains stable over the
full epoch. Although N = 4 shows competitive performance in some metrics, we recommend N = 8
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Figure 10: Effect of KL divergence regularization for Majority Voting method.

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Training Step

0.00

0.06

0.12

0.18

0.24

Label Accuracy

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Training Step

0.00
0.03
0.06
0.09
0.12
0.15

Ground Truth Reward

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Training Step

0.2

0.4

0.6

0.8

1.0
Majority Voting Reward

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Training Step

0.0

0.2

0.4

0.6

0.8

Reward Accuracy

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Training Step

0.00

0.15

0.30

0.45

0.60
Training Pass@N

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Training Step

0.25

0.50

0.75

1.00

1.25

Actor Entropy

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Training Step

0.000

0.015

0.030

0.045

0.060

0.075
AIME 2024 Accuracy (avg@32)

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Training Step

0.000
0.008
0.016
0.024
0.032
0.040

AIME 2025 Accuracy (avg@32)

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Training Step

0.00
0.06
0.12
0.18
0.24
0.30

AMC 2023 Accuracy (avg@32)

N = 4 N = 8 N = 16 N = 32

Figure 11: Effect of rollout number for Majority Voting method.

as it provides better statistical reliability for the voting mechanism while maintaining reasonable
convergence control. The slight performance difference suggests that for this specific experimental
setup, the trade-off between reliability and stability favors slightly smaller N , but N = 8 offers more
robust behavior across diverse problem types.

B.3.2 CERTAINTY-BASED METHODS

Training Temperature. Temperature effects on certainty-based methods reveal distinct behavioral
patterns compared to ensemble-based approaches. Unlike Majority Voting, certainty-based methods
generally benefit from higher exploration temperatures, with notable method-specific variations in
optimal configurations and convergence characteristics.

Results in Figures 13 to 15 demonstrate that higher temperature (T = 1.2) significantly delays
model collapse across Token-Level Entropy, Trajectory-Level Entropy, and Probability methods.
Higher temperatures initially maintain elevated Actor Entropy, facilitating extended exploration
phases with gradual improvements across validation benchmarks. Importantly, these methods also
exhibit relatively higher Point-Biserial Correlation values at T = 1.2, indicating stronger alignment
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Figure 12: Effect of training temperature on Self-Certainty performance. Note that Point-Biserial
Correlation is replaced with Mean Response Length due to Self-Certainty’s scoring characteristics.
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Figure 13: Effect of training temperature on Token-Level Entropy performance.
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Figure 14: Effect of training temperature on Trajectory-Level Entropy performance.

between certainty estimates and actual correctness—a crucial property for effective uncertainty-based
reward assignment.

However, Figure 12 reveals that Self-Certainty exhibits contrasting behavior. Higher temperature
(T = 1.2) leads to excessive exploration without convergence, maintaining persistently high Actor
Entropy while achieving lower validation scores and Label Accuracy. The moderate temperature
T = 1.0 provides more stable and superior performance for Self-Certainty. This divergence suggests
that while different certainty-based methods converge toward similar sharp distributions, they exhibit
distinct convergence rates requiring method-specific temperature tuning. Among all certainty-based
approaches, Token-Level and Trajectory-Level Entropy methods demonstrate the greatest benefits
from higher temperature exploration, likely due to their more robust entropy-based uncertainty
estimation mechanisms.
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Figure 15: Effect of training temperature on Probability-based certainty performance.
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Figure 16: Effect of mini-batch size on Self-Certainty performance.
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Figure 17: Effect of mini-batch size on Token-Level Entropy performance.
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Figure 18: Effect of mini-batch size on Trajectory-Level Entropy performance.
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Figure 19: Effect of mini-batch size on Probability performance.
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Figure 20: Effect of KL divergence regularization on Self-Certainty performance.

Mini-Batch Size. Mini-batch size effects on certainty-based methods largely parallel those observed
in Majority Voting, confirming that on-policy ratio critically affects training stability regardless of the
underlying reward computation mechanism. However, method-specific sensitivities reveal important
distinctions in robustness to off-policy learning.

Figures 17 to 19 consistently demonstrate that larger mini-batch sizes prevent premature model
collapse across Token-Level Entropy, Trajectory-Level Entropy, and Probability methods. This
pattern mirrors Majority Voting behavior, where pure on-policy training (mini-batch size = 64)
maintains optimal coupling between samples and their corresponding certainty-based rewards. The
underlying mechanism remains consistent: certainty estimates computed from current policy states
become unreliable when applied to samples generated from earlier policy iterations.

Notably, Self-Certainty exhibits exceptional robustness to mini-batch size variations, as shown in
Figure 16. This method demonstrates minimal sensitivity to on-policy ratio changes, suggesting that
KL divergence-based certainty computation may be inherently more stable across different temporal
policy alignments. This robustness likely stems from Self-Certainty’s reliance on logit distribution
comparisons rather than explicit probability estimates, making it less susceptible to the temporal
inconsistencies that destabilize other certainty-based approaches. Among the certainty-based methods,
Self-Certainty thus offers superior stability but at the cost of lower overall performance improvements.

KL Divergence Regularization. KL regularization effects on certainty-based methods mirror the
limited impact observed in Majority Voting, confirming that this regularization technique fails to
address the fundamental instabilities inherent in training. However, subtle differences in method
responses provide insights into the interaction between regularization and different uncertainty
estimation approaches.

Results across all certainty-based methods (Figures 20 to 23) show minimal impact on both training
dynamics and downstream performance. KL regularization neither prevents eventual model collapse
(except for Self-Certainty) nor significantly improves validation scores, consistent with our findings
for Majority Voting. The underlying issue persists: regularization techniques designed for fixed
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Figure 21: Effect of KL divergence regularization on Token-Level Entropy performance.
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Figure 22: Effect of KL divergence regularization on Trajectory-Level Entropy performance.
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Figure 23: Effect of KL divergence regularization on Probability performance.

reward signals cannot effectively stabilize systems where rewards themselves evolve with policy
changes.

Interestingly, Token-Level and Trajectory-Level Entropy methods exhibit slightly more pronounced
benefits from KL regularization, as evidenced by modest improvements in Label Accuracy curves.
While these improvements remain insufficient to prevent collapse, they suggest that entropy-based
certainty estimation may have marginally better compatibility with KL-based stabilization approaches.
This observation aligns with the superior temperature robustness of these methods, indicating that
entropy-based uncertainty measures may be inherently more amenable to regularization techniques
than probability-based or KL-based certainty estimates.

Number of Rollouts. Rollout count effects reveal consistent patterns across most certainty-based
methods, with one notable exception that highlights fundamental differences in underlying reward
computation mechanisms. These findings provide crucial insights into the sample size requirements
for reliable uncertainty estimation.
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Figure 24: Effect of rollout number on Self-Certainty performance.
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Figure 25: Effect of rollout number on Token-Level Entropy performance.
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Figure 26: Effect of rollout number on Trajectory-Level Entropy performance.
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Figure 27: Effect of rollout number on Probability performance.
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Table 8: Model configurations for backbone experiments. Models are categorized by family, training
stage, and size.

Family Model Abbrev. Stage Size

Qwen

Qwen2.5-1.5B Q2.5-1.5B Base 1.5B
Qwen2.5-Math-1.5B Q2.5-Math-1.5B Math Base 1.5B
DeepSeek-R1-Distill-Qwen-1.5B DS-R1-1.5B SFT 1.5B
Qwen2.5-1.5B-Instruct Q2.5-1.5B-Inst Instruct 1.5B
Qwen3-1.7B-Base Q3-1.7B Base 1.7B
Qwen3-4B-Base Q3-4B Base 4B

Llama

Meta-Llama-3.1-8B L3.1-8B Base 8B
OctoThinker-8B-Short-Base Octo-8B Math Base 8B
OctoThinker-3B-Short-Base Octo-3B Math Base 3B
Llama-3.1-Tulu-3-8B-SFT L3.1-8B-Tulu-SFT SFT 8B
Meta-Llama-3.1-8B-Instruct L3.1-8B-Inst Instruct 8B

Figures 25 to 27 demonstrate behavior parallel to Majority Voting: larger rollout counts (N ≥
16) accelerate model convergence and premature collapse, as evidenced by rapid degradation in
validation benchmarks and Label Accuracy. This pattern suggests that the self-reinforcing dynamics
observed in ensemble voting also manifest in certainty-based reward assignment, where higher sample
sizes amplify confidence in potentially incorrect assessments, leading to faster convergence toward
suboptimal solutions.

However, Self-Certainty exhibits markedly different behavior, as shown in Figure 24. This method
demonstrates remarkable stability across all rollout configurations, maintaining consistent perfor-
mance without collapse or significant improvement. This unique characteristic stems from Self-
Certainty’s reliance on KL divergence between uniform and logit distribution. This fundamental
difference in reward computation makes Self-Certainty inherently more robust to sample size varia-
tions, though at the cost of limited performance improvements throughout training.

B.4 IMPACT OF BACKBONE MODEL

We investigate how backbone models influence training stability and performance across three key
dimensions: training stage, model size, and architectural generation. Our analysis employs 11
models from Qwen and Llama families (detailed configurations in Table 8), selected to provide
systematic coverage of these factors. This selection is motivated by recent findings showing distinct
architectural behaviors (Gandhi et al., 2025) and potential data contamination concerns (Wu et al.,
2025b), making cross-architecture comparison essential. All models are trained on DAPO-17k using
optimal hyperparameters from Appendix B.3 with Majority Voting as the representative intrinsic
reward.

B.4.1 HORIZONTAL ANALYSIS: TRAINING STAGE IMPACT

Training stage progression reveals distinct stability patterns between architectures. For the Qwen
family (Figure 28), math-specialized and SFT models demonstrate superior stability, maintaining
Majority Voting Reward within 0.3-0.6 while base and instruct variants reach saturation (1.0)
by step 180. Math specialization and strong supervised fine-tuning (DS-R1-1.5B) create robust
foundations for optimization compared to raw base models or non-math aligned instruct variants.

The Llama family exhibits contrasting behavior: all variants eventually succumb to reward hacking
with different collapse timing, where base models fail earliest (step 40), followed by math-specialized,
SFT, then instruct versions (detailed analysis in Figure 29). This architectural difference highlights
Qwen’s fundamental advantage in providing genuine stability.

B.4.2 VERTICAL ANALYSIS: SCALE AND GENERATION EFFECTS

Model size analysis (Figure 30) reveals counterintuitive scaling effects: smaller models consistently
outperform larger variants. Q3-1.7B maintains stability significantly longer than Q3-4B, while
Octo-3B outlasts Octo-8B by about 40 steps. This suggests larger models’ increased capacity
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Figure 28: Training dynamics across different training stages in Qwen family models.
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Figure 29: Training dynamics across different training stages in Llama family models.
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Figure 30: Effect of model size on stability across both Qwen and Llama families.
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Figure 31: Comparison of Qwen 2.5 and Qwen 3 generations across comprehensive training metrics.
Results reveal improved stability in the newer generation, with Qwen3 models demonstrating more
gradual and controlled training dynamics compared to Qwen2.5 counterparts.
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Figure 32: Comparison of different training data sources.

amplifies sensitivity to noisy pseudo-rewards, accelerating convergence toward degenerate solutions
and challenging conventional scaling assumptions.

Architectural generation comparison shows clear improvements in newer versions. Qwen3 models
exhibit superior stability compared to Qwen2.5 counterparts, with Q3-1.7B-Base demonstrating more
controlled Majority Voting Reward progression (comprehensive comparison in Figure 31). These
improvements likely stem from better-calibrated uncertainty estimates and enhanced representation
learning supporting more reliable pseudo-reward computation.

B.5 IMPACT OF TRAINING DATASET

Setup. We investigate how different training dataset influence training stability and performance,
focusing on math reasoning, utilizing MATH-8k (Hendrycks et al., 2021), DeepScaleR-40k (Luo
et al., 2025), DAPO-17k (Yu et al., 2025) and ORZ-56k (Hu et al., 2025), all settings are trained
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on Qwen3-1.7B-Base with 1 epoch using optimal hyperparameters from Appendix B.3, and also
evaluated on three validation benchmarks.

Results. We can see from Figure 32, much larger datasets (DeepScaler-40k and ORZ-56k) exhibits
clear reward hacking trend, while smaller datasets settings are on its steady or rise stage, indicating
that current intrinsic methods may see its short-sighted incremental improvements at the early stage,
while extending it much larger training corpora, it inevitably encounter the reward hacking.

C THE USE OF LARGE LANGUAGE MODELS

We use large language models to refine our writing. In particular, we use ChatGPT (GPT-5 Thinking)
to revise the manuscript. The prompt provided to the model is: “I am writing an academic paper in
English. Please polish the following draft so that it adheres to the conventions of academic writing.”
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