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ABSTRACT

Finding a high-quality feasible solution to a combinatorial optimization problem
in a given time budget is a challenging task due to its discrete nature. Neural div-
ing is a learning-based approach to generating partial assignments for the discrete
variables in MIP. We find that there usually is a small range of selection rates
which lead to feasible and optimal solutions; when too many parameters are se-
lected, the solution space is too restricted to find a feasible solution; when too few
parameters are selected, the solution space is too wide to efficiently find a feasible
solution. Therefore, the choice of selection rate is the critical determinant of the
Neural diving performance. In this context, we present theoretical insights that
there exist threshold functions in feasibility and feasible optimality over the selec-
tion rate. Based on the theoretical foundations, we introduce a post-hoc method,
and a learning-based approach to optimize the selection rate for partial discrete
variable assignments in MIP more efficiently. A key idea is to jointly learn to
restrict the selection rate search space, and to predict the selection rate in the
learned search space that results in a high-quality feasible solution. MIP solver
is integrated into the end-to-end learning framework. We suggest that learning
a deep neural network to generate a threshold-aware selection rate is effective in
finding high-quality feasible solutions more quickly. Experimental results demon-
strate that our method achieves state-of-the-art performance in NeurIPS ML4CO
datasets. In the workload apportionment dataset, our method achieves the opti-
mality gap of 0.45%, which is around 10× better than SCIP, at the one-minute
time limit.

1 INTRODUCTION

In diverse areas, such as transportation, finance, communication, manufacturing, retail, and system
design, many optimization problems have combinatorial characteristics. Mixed integer program-
ming (MIP) is a mathematical optimization model to solve such combinatorial optimization prob-
lems. A workhorse of the MIP solver is a group of heuristics (Berthold, 2006; Achterberg et al.,
2005; 2012; Fischetti et al., 2005) engineered to solve problems of a specific class in practice. Re-
cently, there has been an increase in interest to apply data-driven methods to complement heuristics
in the MIP solvers (He et al., 2014; Khalil et al., 2017; Balcan et al., 2018; Gasse et al., 2019; Gupta
et al., 2020; Sun et al., 2020; Tang et al., 2020; Yilmaz & Yorke-Smith, 2020; Song et al., 2020;
Paulus et al., 2021; Qi et al., 2021; Zarpellon et al., 2020; Huang et al., 2022).

Finding a high-quality feasible solution to a combinatorial optimization problem in a given time
budget is an essential, yet challenging task due to its discrete nature. In this context, learning-based
approaches to accelerate the primal solution process (Xavier et al., 2021; Nair et al., 2020; Sonnerat
et al., 2021; Shen et al., 2021; Ding et al., 2020; Khalil et al., 2022) have been proposed. These meth-
ods show empirical results that outperform the conventional solver-tuning approaches. On the other
hand, an unsupervised learning framework to learn to solve combinatorial optimization problems
on graphs proposed by Karalias & Loukas (2020) provides theoretical results based on probabilistic
methods. Still, it differs from other methods, such that the framework in Karalias & Loukas (2020)
does not leverage the MIP solver. Nair et al. (2020) suggests Neural diving along with a variant of
SelectiveNet (Geifman & El-Yaniv, 2019) to jointly learn diving style primal heuristics to generate
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feasible solutions and to adjust the coverage of a discrete variable assignment. The problem is that
one must set the target coverage as a hyperparameter to train SelectiveNet while being unaware of
the optimal coverage prior to training Neural diving models. Thus, training multiple models with
different coverage hyperparameters to find the model with the optimal coverage is inefficient. Also,
we empirically find that SelectiveNet’s choice of variables is often inferior to simple heuristics (see
Section 5). To the best of our knowledge, our work is the first attempt to study theoretical aspects of
partial variable assignments from the feasible solution generative models in MIP.

We propose a simple heuristic of setting a confidence threshold hyperparameter, and selecting all
variables of which the confidence score is above this threshold. We call this Post-hoc Confidence
Thresholding. We further propose a systematic approach to optimize the assignment coverage of
discrete variables on theoretical grounds. Our approach is inspired by a connection between the
threshold behavior in fixing integer variables of MIP and threshold functions in probabilistic com-
binatorics (Erdos et al., 1960; Bollobás, 1981), characterizing the point at which an abrupt state
change occurs in an asymptotic case. The key insight in this paper is to estimate threshold functions
in a data-driven way to provide a smaller coverage search space with a theoretical guarantee that the
near-optimal coverage resides in such space. For gradient-based learning, we propose a new loss
function to jointly estimate the threshold functions and the optimal coverage in a restricted search
space with theoretical results.

Our contributions are threefold:

1) Theoretically, we show the existence of threshold functions in learning to generate feasible
solutions of MIP.

2) Methodologically, we devise a new framework and loss function that enables more effi-
cient coverage optimization by learning to restrict the cardinality of the search space with
theoretical justifications.

3) Empirically, we demonstrate that our method outperforms the existing methods in various
MIP datasets.

2 PRELIMINARIES

2.1 NOTATIONS ON MIXED INTEGER PROGRAMMING

Let n be the number of variables, m be the number of linear constraints, x = [x1, . . . , xn] ∈ Rn
be the vector of variable values, c ∈ Rn be the vector of objective coefficients, A ∈ Rm×n be the
linear constraint coefficient matrix, b ∈ Rm be the vector of linear constraint upper bound. Let
{ei = e

(n)
i ∈ Rn : i = 1, . . . , n} be the Euclidean unit basis vector of Rn and [n] := {1, 2, . . . , n}.

Hence we can decompose the variable vector as x =
∑
i∈B xiei.

A Mixed Integer Program (MIP) is a mathematical optimization problem, in which variables are
constrained by linear and integrality constraints. Let r be the number of discrete variables. For a
given triplet (A,b, c), we express an MIP problem M = (A,b, c) as follows:

min
x

c⊤x

subject to Ax ≤ b

ℓi ≤ xi ≤ ui, i = 1, . . . , n.

(1)

where x = [x1, . . . , xn] ∈ Zr × Rn−r and −∞ ≤ ℓi, ui ≤ ∞ be the lower and upper variable,
respectively. We say x ∈ Zr ×Rn−r is a feasible solution and write x ∈ R(M) if equation 1 holds.
We call x ∈ Rn is a LP-feasible solution and write x ∈ R̄(M) when x satisfies the linear constraint
regardless of the integrality constraints. We denote discrete variables as xint ∈ Zr, and continuous
variables as xcont ∈ Rn−r. We write x = [xint;xcont] where [·; ·] means a usual concatenation
operation between two vectors, matrices, or tensors.

2.2 NEURAL DIVING

Neural diving (Nair et al., 2020) is a method to learn a generative model that targets diving heuristics
to find a high-quality feasible solution. By learning a Bernoulli distribution of a solution value of
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each discrete variable in a supervised manner, Neural diving generates a partial assignment to the
variables using the learned model. To combine model predictions with the off-the-shelf solver, it
is more effective to assign a subset of the predicted solution values than to assign the full sample
x ∼ pθ(x|M) for an unseen problem M , since the full sample is not necessarily feasible or high-
quality. In this context, Neural diving adopts Selectivenet (Geifman & El-Yaniv, 2019) to optimize
the coverage for variable assignment in an integrated manner. The Neural diving with the Selec-
tivenet model jointly learns to predict solution value and selectively refrain from predicting for each
variable. The output of the Selectivenet is sd ∈ {0, 1}, such that the variable xd is fixed with the
sample x ∼ pθ(x|M) if sd = 1, otherwise not fixed. In the evaluation phase, the subset of discrete
variables is assigned with the learned model, then an off-the-shelf MIP solver optimizes the resultant
sub-MIP.

3 POST-HOC CONFIDENCE THRESHOLDING

Figure 1: Feasible instance ratio and negated primal integral over the threshold value of the Con-
fidence Thresholding method, at the 30-minute time limit. Negated primal integral represents the
solution quality, the higher the better. The target dataset is Maritime Inventory Routing from (Papa-
georgiou et al., 2014; Gasse et al., 2022). The threshold value of the confidence score is inversely
proportional to the coverage rate in general.

From our exploratory experiments, we observe that: (1) Adjusting coverage rate is critical to im-
proving the primal objective; (2) Ordering variables by confidence score is effective to improve the
primal objective; (3) An abrupt change appears in the feasibility and optimality of the MIP solution
over the coverage rate of discrete variables, as shown in Figure 1. Here we define the coverage
ρ ∈ [0, 1], such that ρ = ns/nv , where ns is the number of discrete variables to be fixed, and nv is
the number of total discrete variables in the problem.

In Neural diving, the SelectiveNet module aims to optimize the coverage with the target hyperpa-
rameter. However, the optimal coverage is unknown in advance, i.e. we need to train the multiple
neural network models to explore the optimal coverage. It requires either a non-trivial amount of
computation resource or training time, whereas fast adaptation or calibration is important in the prac-
tical use case. On the other hand, the key advantage of using SelectiveNet is an improved predictive
power in a covered domain. We empirically point out that there is a wide discrepancy between the
measure for a neural network prediction, i.e. accuracy, and the actual MIP solution quality induced
from the neural network. Instead, we find that the solution feasibility and quality show a drastic
change depending on the coverage rate, as shown in Figure 1.

In this context, we propose Post-hoc Confidence Thresholding (CT) to calibrate the coverage rate in
place of the SelectiveNet. Our method drastically improves the training inefficiency of SelectiveNet
in Neural diving by requiring a single Neural diving model without SelectiveNet. To control the
coverage of discrete variables to fix, CT adjusts the threshold value for the confidence score of the
Neural diving model output pθ(x|M). We define the confidence score as |pθ(xd|M)−0.5|. Suppose
the target threshold value is Γ, then the selection of variable xd to fix is determined as

sd =

{
1 if |pθ(xd|M)− 0.5| ≥ Γ

0 otherwise
(2)

In the NeurIPS 2021 ML4CO competition (Gasse et al., 2022), the Confidence Thresholding method
ranked second on the global leaderboard, showing the best performance in the primal task among
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other learning-based methods. We use this method as a motivation point to unfold the theory of
threshold functions for coverage of the discrete variables in learning to generate feasible solutions
of Mixed Integer Programs.

4 THRESHOLD FUNCTIONS OF PARTIAL VARIABLES IN MIP

In this paper, we follow the convention in (Bollobás & Thomason, 1987). Let P(Bn) denotes the
power set of Bn = {1, . . . , n}. A nontrivial property Hn is a nonempty collection of set B ∈
P(Bn) with Hn ̸= P(Bn) satisfying the corresponding property of Hn. We call Hn monotone
increasing if Bss ∈ Hn and Bss ⊂ Bs ∈ P(Bn) implies Bs ∈ Hn. We call Hn monotone
decreasing if Bs ∈ Hn and Bss ⊂ Bs implies Bss ∈ Hn. Note that a monotone increasing
(decreasing) propertyHn is non-trivial if and only if ∅ /∈ Hn andBn ∈ Hn (∅ ∈ Hn andBn /∈ Hn).

For i = 0, . . . , n, let Bi ⊂ P(Bn) denotes the collection of subsets B ⊂ Bn with i elements, i.e.,
|B| = i and |Bi| =

(
n
i

)
, and defineHi := {B ∈ Hn ∩ Bi}. Note that

P(Hn|Bi) =
|Hi|
|Bi|

=
|Hi|(
n
i

) (3)

where the conditional probability P(Hn|Bi) denotes the probability that a random set of B ∈ Bi has
property Hn. If an increasing sequence m = m(n) satisfies that P(Hn|Bm(n)) → 1 as n → ∞,
then we say that m-subset of B ∈ Bm(n) has Hn almost surely. Similarly, we say that m-subset of
B ∈ Bm(n) fails to haveHn almost surely if P(Hn|Bm(n))→ 0 as n→∞.

Definition 1. A function m∗(n) is a threshold function for a monotone increasing property Hn if
for m/m∗ → 0 as n→∞ (we write m≪ m∗), m-subset of Bn fails to haveHn almost surely and
for m/m∗ →∞ as n→∞ (we write m≫ m∗), m-subset of Bn hasHn almost surely:

lim
n→∞

P(Hn|Bm(n)) =

{
0 : m(n)≪ m∗(n)

1 : m(n)≫ m∗(n).
(4)

Similarly, a function m∗(n) is said to be a threshold function for a monotone decreasing property
Hn if for m/m∗ → ∞ as n → ∞ , m-subset of Bn fails to have Hn almost surely and for
m/m∗ → 0 as n→∞, m-subset of Bn hasHn almost surely:

lim
n→∞

P(Hn|Bm(n)) =

{
0 : m(n)≫ m∗(n)

1 : m(n)≪ m∗(n).
(5)

(Bollobás & Thomason, 1987, Theorem 4) states that every monotone increasing non-trivial property
has a threshold function. In Theorem 3 and Corollary 2, we introduce the formal statement about
the existence of a threshold function in monotone increasing and decreasing properties with a slight
variation from (Bollobás & Thomason, 1987). See Appendix A.2 for detail.

We say Hn is bounded monotone decreasing if Bs ∈ Hi and Bss ⊂ Bs ∈ Bi implies Bss ∈ Hi
for i < n. We say Hn is bounded monotone increasing if Bss ∈ Hi and Bss ⊂ Bs ∈ Bi implies
Bs ∈ Hi for i < n. We say Hn bounded monotone decreasing if Bs ∈ Hi and Bss ⊂ Bs ∈ Bi
implies Bss ∈ Hi for i < n. We introduce a local version of a threshold function in the Definition
1 for a bounded monotone increasing and decreasing property.
Definition 2. A function l∗(n) is a local threshold function for a bounded monotone increasing
property Hn if for l/l∗ → 0, l∗/i → 0 as n → ∞, l-subset of Bn fails to have Hn almost surely,
and for l/l∗ →∞, i/l→∞ as n→∞, l-subset of Bn hasHn almost surely:

lim
n→∞

P(Hn|Bl(n)) =
{
0 : l(n)≪ l∗(n)≪ i(n)

1 : i(n)≫ l(n)≫ l∗(n).
(6)

Similarly, a function l∗(n) is said to be a local threshold function for a bounded monotone decreas-
ing property Hn if for l/l∗ → ∞, i/l → ∞ as n → ∞, l-subset of Bn fails to have Hn almost
surely and for l/l∗ → 0, l∗/i→ 0 as n→∞, l-subset of Bn hasHn almost surely:

lim
n→∞

P(Hn|Bl(n)) =
{
0 : i(n)≫ l(n)≫ l∗(n)

1 : l(n)≪ l∗(n)≪ i(n).
(7)
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From Definition 2, we have the statement about local threshold functions in bounded monotone prop-
erties (See Theorem 4 in Appendix A.2). Theorem 4 states that every nontrivial bounded monotone
increasing property has a local threshold function in a bounded domain. Refer to Appendix A.2 for
all of the proofs in this manuscript.

Random subset We introduce a random subset S(n, ρ) as a set-valued random variable. Here n is
the number of elements of a superset [n] ⊃ S(n, ρ), and ρ ∈ [0, 1] is the probability of an element to
be included in the subset. The inclusion of each element is statistically independent of the inclusion
of all other elements. In this paper, S(n, ρ) ∈ P for some collection of subsets P means that a
realization of random variable S(n, ρ) belongs to P .

4.1 PROPERTIES OF PARTIAL VARIABLES

Given an MIP problem M = (A,b, c), we have x = xint from the Neural diving model pθ(M).

Feasibility of partial variables We formulate the property of partial variables feasibility to show
the property has a threshold function. The threshold function serves as a criterion for choosing
a coverage rate for partial variable assignment to generate a feasible solution, depending on the
learned model and the input problem. We assumeM has a feasible solution, and x is not necessarily
a feasible solution.

Given x, and M , we define a property P of an arbitrary set Bsub ⊂ [n] as

P(x,A,b) := {Bsub ⊂ [n] : there exists y′ ∈ Zr × Rn−r subject to A[y + y′] ≤ b}, (8)

where y =
∑

i∈Bsub

xiei, and y′ =
∑

i∈[n]\Bsub

yiei. If x ∈ R(M), then P = P(B), i.e, P is trivial. If

x /∈ R(M) and there exist feasible partial variables, thenP is nontrivial, i.e, we can find a projection
y′ of x such that [y+y′] ∈ R(M). We assume x /∈ R(M) and there exist feasible partial variables,
such that P is nontrivial. We say Bsub ∈ P if there exists a feasible solution with variable values
of indices in Bsub ⊂ [n]. Let j(n) represent the number of elements in Bsub ⊂ [n]. We define the
coverage p(n) := j(n)

n . If P is a nontrivial monotone decreasing property, we can define threshold
function p0 of P as

P(S(n, p) ∈ P)→
{
1 if p≪ p0
0 if p≫ p0

(9)

P is monotone decreasing. By Theorem 3, P has a threshold function p0.

LP-relaxation objective satisfiability of partial variables We formulate the property of LP-
relaxation objective satisfiability of the partial variables to show there exists a local threshold func-
tion in the property. LP-relaxation objective satisfiability of the partial variables refers to the condi-
tion in which the sub-MIP formed by a partial variables assignment is LP-feasible and the solution
objective value of the LP-relaxation of the sub-MIP satisfies the criterion κ set in advance. Since the
objective value of the LP-relaxation solution poses as the lower bound of the objective value of the
feasible solution, we set κ to represent the lower bound of the primal bound of the sub-MIP given
the learned model. The local threshold function serves as a criterion to form sub-MIPs to generate a
feasible solution with an objective value of at least κ, depending on the learned model and the input
problem.

Let β0 be the LP-solution objective value without assigning any discrete variable values from x,
i.e., β0(M) = min

x̄∈R̄(M)
c⊤x̄. Similarly, let βρ(M,x) denote the LP-solution objective value after

assigning discrete variable values from x with coverage ρ. Let αρ(M,x, τ) be a primal bound of
a given MIP problem M solving for a time limit of τ , after partially assigning variable values of x
with coverage of ρ. Since R̂(M) ⊂ R(M), it suffices that αρ(M,x, τ) ≥ βρ(M,x).

Given MIP problem M = (A,b, c), x ∈ Rn, and κ ∈ R, we define a property Qκ such that

Qκ(x,A,b, c) :={Bsub ⊂ [n] : there exists z′ ∈ Rn

subject to c⊤[z+ z′] ≥ κ and A[z+ z′] ≤ b},
(10)
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where z =
∑

i∈Bsub

xiei and z′ =
∑

i∈[n]\Bsub

ziei. If x ∈ R(M) and κ → −∞, then Qκ = P([n]),

i.e, Qκ is trivial. Suppose the LP-relaxation solution x̄ and the optimal solution x⋆ are given. If
x /∈ R(M) or c⊤x̄ < κ < c⊤x⋆, and there exist LP-feasible partial variables, thenQκ is nontrivial.
We say Bsub ∈ Qκ if the objective value of the LP-solution with the fixed variable values of indices
in Bsub ⊂ [n] is at least κ.

Let g(n) represent the number of elements in Bsub ⊂ [n]. We define the coverage q(n) := g(n)
n .

By Definition 2, ifQκ is a nontrivial bounded monotone increasing property, in which the objective
criterion is fixed to κ and the bound is i(n). We define the local threshold function q0,κ as

P(S(n, q) ∈ Qκ)→
{
0 if q ≪ q0,κ ≪ i

1 if i≫ q ≫ q0,κ
(11)

To show there exists a local threshold function in the LP-relaxation objective satisfiability, we prove
that the property is bounded monotone increasing. We assume x /∈ R(M) and there exist feasible
partial variables, such that P is nontrivial. Also, we assume there exist LP-feasible partial variables,
such that Qκ is nontrivial.

If P is nontrivial and κ is fixed, then Qκ is bounded monotone increasing. By the assumption, P
is nontrivial. Consequently, Qκ has a local threshold function by Theorem 4. The local threshold
function q0,κ is dependent of κ, for which q0,κ is monotonic increasing with regard to κ. See Lemma
1 in Appendix A.2 for detail.

4.2 LP-OBJECTIVE SATISFIABILITY AND FEASIBILITY OF PARTIAL VARIABLES

We formulate the property Fκ as an intersection of the property P and Qκ in Section 4.1. We show
that Fκ has two local thresholds pa, and pb, such that p ∈ [pa, pb] implies that S(n, p) satisfies
the MIP feasibility and the LP-relaxation objective criterion of partial variables. Thus, the local
thresholds form an interval for the coverage of partial variables to generate solutions that are feasible
and have a lower bound of quality.

Formally, given that P is nontrivial monotone decreasing and Qκ is nontrivial bounded monotone
increasing,

Fκ(x,A,b, c) := P ∩Qκ, (12)

A family of subsets Hn is convex if Ba ⊆ Bb ⊆ Bc and Ba, Bc ∈ Hn imply Bb ∈ Hn. If we
bound the domain of Fκ with p0, such that ρ ∈ [0, p0] in S(n, ρ) for Fκ, then Fκ is convex in
the domain, since the intersection of an increasing and a decreasing property is a convex property
(Janson et al., 2011). Let h(n) represent the number of elements in Bsub ⊂ [n]. We define the
coverage ρ(n) := h(n)

n .

Theorem 1. Fix κ. If q0,κ ≪ p0, then Fκ has an interval of certainty, such that q0,κ ≪ ρ ≪ p0
implies P(S(n, ρ) ∈ Fκ)→ 1.

Theorem 1 states there exists an interval enabled by q0,κ, and p0, in which the coverage for feasible
solutions satisfying the LP-relaxation solution objective criterion belongs.

4.3 THRESHOLD-AWARE LEARNING

Through experiments using the Confidence Thresholding method, we observe that 1) ordering vari-
ables by confidence score and 2) controlling the coverage to fix variable values of x is critical for
a fast improvement of the feasible solution quality in a given time limit. Particularly, the main
motivation of Threshold-aware learning is dimensionality reduction of discrete variables in MIP by
optimizing the coverage of decision variables to fix with theoretical insights. We empirically find
that scaling up n, and m shows a consistent trend in threshold points over the coverage domain, as
illustrated in Figure 2. In this context, we introduce Threshold-aware learning to optimize the cov-
erage ρ more efficiently than the Confidence Thresholding method. We define ∆-optimal solution
x∆ ∈ Zn, such that c⊤x∆ ≤ c⊤x⋆ + ∆. Let ∆-optimal coverage p∗∆ be the coverage, such that
αp∗∆(M,x, τ) ≤ c⊤x∆. The candidates for the criterion to decide the ∆-optimal coverage are the
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Figure 2: Threshold points of the feasibility and the final primal bound of set covering instances
over the discrete variable assignment coverage. We scale the number of discrete variables n, and the
number of constraints m, by 1×, 2×, 3×, 4×, 5×, and 8×. We use the same Neural diving model
trained on the dataset of the least scale, n = 1000,m = 500.

primal bound or primal integral. We use the primal bound as our optimality criterion for training
efficiency.

By Proposition 1, q0,κ ≪ ρ ≪ p0 implies P(S(n, ρ) ∈ Fκ) → 1. In practice, we deal with MIP
problems with a finite and large enough number of variables n. We refer to p1(n) ≲ p2(n) if there
exists a positive constant C independent of n, such that p1(n) ≤ Cp2(n), for n > 1/ϵ. We relax the
result of Proposition 1 for large enough n as follows.

Remark 1. q0,κ ≲ ρ ≲ p0 implies P(S(n, ρ) ∈ Fκ) ≥ 1− ϵ

We assume q0,κ ≲ p0. Since we do not know the analytical expression of p0 and q0,κ, we minimize
our proposed threshold-aware loss function to learn p0 and q0,κ.

Threshold-aware Loss We propose threshold-aware loss to learn a GNN to find the optimal cov-
erage more efficiently in a restricted search space with a theoretical justification. We model p0,
and q0,κ with neural network pψ : M → R ∈ (0, 1), and pϕ : M → R ∈ (0, 1), respectively.
We approximate p∗∆ with a neural network ρπ : M → R ∈ (0, 1), parameterized by π. Note
that the neural networks pψ, pϕ, and ρπ share the weights of the Neural diving backbone. Let
PΨ(pψ,P) : Rn → R be a neural network that maps S(n, pψ) to P(S(n, pψ) ∈ P), parameterized
by Ψ. Let PΦ(pϕ,Qκ) : Rn → R be a neural network that maps S(n, pϕ) to P(S(n, pϕ) ∈ Qκ),
parameterized by Φ. Notice that the neural networks PΨ, and PΦ share the weights of the Neural div-
ing backbone. We learn parameters ψ, ϕ, π,Ψ, and Φ by minimizing the following threshold-aware
loss function. We define

1P(S(n, pψ)) =

{
1, if S(n, pψ) ∈ P
0, otherwise

(13)

Similarly,

1Qκ(S(n, pϕ)) =

{
1, if S(n, pϕ) ∈ Qκ
0, otherwise

(14)

Let BCE(a, b) = −(a log b+(1−a) log(1−b)) for a, b ∈ [0, 1] be the binary cross entropy function.
We implement the loss function using the negative log-likelihood function, where the minimization
of the negative log-likelihood is the same as the minimization of binary cross entropy. Let i be the
iteration step in the optimization loop. The total loss we aim to minimize is

L = Lcoverage + Lthreshold + Lprob, (15)

where
Lcoverage(ρπ, p

∗
∆;π) = ∥ρπ − p∗∆∥22, (16)

Lthreshold(pψ, pϕ,PΨ(pψ,P), PΦ(pϕ,Qκ);ψ, ϕ)

= BCE(PΨ(p
(i−1)
ψ ,P), p(i)ψ ) + BCE(PΦ(p

(i−1)
ϕ ,Qκ), p(i)ϕ ),

(17)
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Lprob(PΨ(pψ,P),PΦ(pϕ,Qκ),1P(S(n, pψ)),1Qκ(S(n, pϕ)); Ψ,Φ)

= BCE(1P(S(n, pψ)), PΨ(pψ,P)) + BCE(1Qκ(S(n, pϕ)), PΦ(pϕ,Qκ))
(18)

In practice, we obtain

p∗∆ =max(arg min
ρ̄π∈[pϕ,pψ]

αρ̄π (M,x, τ) or (19)

min(arg min
ρ̄π∈[pϕ,pψ ]

αρ̄π (M,x, τ)) (20)

By Theorem 3, and 4, there exist ξ1, ξ2 ∈ (0, 1), such that P(S(n, ξ1) ∈ P) = ξ1, and
P(S(n, ξ2) ∈ Qκ) = ξ2. Hence, PΨ(pψ,P), and PΦ(pϕ,Qκ) in Lthreshold, and Lprob aim to fit
ξ1 and ξ2, respectively. On the other hand, PΨ(pψ,P), and PΦ(pϕ,Qκ) work as smoothing func-
tions for 1P(S(n, pψ)), and 1Qκ(S(n, pϕ)) in practice. Note that the loss function in equation (15)
is fully differentiable. To calculate the loss, we integrate MIP solver into the learning framework
to obtain αp∗(M,x, τ), 1P(S(n, pψ)) and 1Qκ(S(n, pϕ)), on-the-fly (see Algorithm 1, and 2 in
Appendix A.3).
Proposition 1. Fix pϕ and PΦ(pϕ,Qκ). If pψ ∼ Uniform(0, 1). then the optimal pψ in Lthreshold is
p0.

Let κ∗ := maxκ subject to βp = κ and P(S(n, p) ∈ Qκ) = ξ for some p ∈ [0, 1]. We assume κ∗ is
given as ground truth in theory, while we optimize κ in practice (see Algorithm 2 in Appendix A.3).
Corollary 1. Fix κ∗, pψ and PΨ(pψ,P). If pϕ ∼ Uniform(0, 1). then the optimal pϕ in Lthreshold is
q0,κ∗ .

We assume that the solution from the Neural diving model x = xpartial + x′
partial, such that the

partial solution xpartial from the Neural diving model output is a partial solution of the ∆-optimal
solution x∆, once satisfying certain LP-relaxation objective criterion. Formally, we assume there
exists x̃′

partial, such that c⊤[xpartial + x̃′
partial] ≤ c⊤x∆, and xpartial =

∑
i∈Bsub

xiei, for Bsub ∈ Qκ∗ . Let

A be the original search space to find the ∆-optimal coverage p∗∆. Let t be the complexity to find
the optimal point as a function of search space size |A|, such that |A| → t(|A|). It follows that the
complexity to find the optimal coverage is O(t(|A|)). Practically, configuring the optimal setting
of the MIP solver in an automated and efficient way is an important task to find higher quality
feasible solutions in a shorter time (). In this context, we prove that Threshold-aware learning
improves the complexity to find the ∆-optimal coverage p∗∆ by restricting the search space, such
that p∗∆ ∈ [q0,κ∗ , p0], if the test dataset and the training dataset is i.i.d and the time budget to find
the feasible solution is sufficient in the test phase.
Theorem 2. If x = xpartial + x′

partial, such that there exists x̃′
partial : c[xpartial + x̃′

partial] ≤ c⊤x∆,
where xpartial =

∑
i∈Bsub

xiei, for Bsub ∈ Fκ∗ , then the complexity of finding the ∆-optimal coverage

is O(t((p0 − q0,κ∗)|A|)) at the global optimum of Lthreshold.

Specifically, we optimize p∗∆ using derivative-free optimization (DFO), such as Bayesian optimiza-
tion or ternary search in the search space restricted into [q0,κ, p0]. Note that searching for the optimal
coverage in the restricted search space [q0,κ, p0] is more efficient than in the original search space
[0, 1], by Theorem 2.

The gradient-based training for threshold-aware learning is summarized in Algorithm 1 in Appendix
A.3. The loss function in 15 is minimized by iterating over the inner loop of the algorithm. It is
sufficient to assume that the loss becomes small enough through iterative updates. Consequently,
pψ ≈ p0, and pϕ ≈ q0,κ∗ , by Proposition 1, and Corollary 1. By Theorem 2 and our assumption,
the cardinality of the search space of the ThresholdDFO function in Algorithm 2 in Appendix A.3
to find p∗∆ becomes (p0 − q0,κ∗)|A|.

5 EXPERIMENTS

We evaluate the performance of threshold-aware learning with various problems against other meth-
ods. See Appendix A.5.1 for details of the methods used in the experiments.
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5.1 DATA AND EVALUATION SETTINGS

We evaluate the methods in Appendix A.5.1 with the datasets introduced from (Gasse et al., 2022;
2019). Specifically, we choose workload apportionment, maritime inventory routing problem from
(Gasse et al., 2022), and set covering, capacitated facility location, and maximum independent set
problem from (Gasse et al., 2019). For workload apportionment and maritime inventory routing
problems, we set a time limit of 1 minute to evaluate. For set covering, capacitated facility flow, and
maximum independent set problems, we solve the problems for 1, 10, and 5 seconds, respectively.
We convert the objective of the capacitated facility flow problem into a minimization problem by
negating the objective coefficients, where it is originally formulated as a maximization problem
in (Gasse et al., 2019). Additionally, we measure the performance of the model trained on the
maritime inventory routing dataset augmented with MIPLIB 2017 (Gleixner et al., 2021) to verify
the effectiveness of data augmentation.

5.2 METRICS

To evaluate the solution quality over the time dimension, we also use Primal Integral (PI), as pro-
posed by Berthold (2013). Primal integral measures the area between the primal bound and the
optimal solution objective value over time.

5.3 RESULTS

Table 1: PI and PB are shorthand for Primal Integral and Primal Bound, respectively. OG and OR
are shorthand for Optimality Gap and Optimal instance Rate, respectively.

Workload Maritime Inventory Maritime Inventory
Apportionment Routing (non-augmented) Routing (augmented)

PI ↓ PB ↓ OG (%) ↓ OR (%) ↑ PI ↓ PB ↓ OG (%) ↓ OR (%) ↑ PI ↓ PB ↓ OG (%) ↓ OR (%) ↑
SCIP (30 hrs) - 708.31 0.01 98 - 50175.95 0 100 - 50175.95 0 100
SCIP (1 min) 48182.31 738.85 4.36 0 41682758.55 647961.18 305.48 30 41682758.55 647961.18 305.48 30
Neural diving (Nair et al., 2020) 44926.06 713.10 0.69 2 28357794.50 372770.44 143.08 30 30101028.39 322748.95 115.88 30
GNNExplainer (Ying et al., 2019) 47165.63 719.96 1.65 0 29343874.24 369122.56 141.50 20 39004703.50 509108.16 249.95 25
CT (Ours) 44862.77 711.43 0.47 2 24581204.50 202526.50 83.91 35 24795796.07 306165.57 136.55 30
TaL (Ours) 44634.85 711.34 0.45 4 24288490.56 192074.00 69.97 30 33639950.16 287189.69 106.68 35

Set Covering Capacitated Facility Flow Maximum Independent Set

PI ↓ PB ↓ OG (%) ↓ OR (%) ↑ PI ↓ PB ↓ OG (%) ↓ OR (%) ↑ PI ↓ PB ↓ OG (%) ↓ OR (%) ↑
SCIP 788.04 606.68 165.96 2 834198.50 43172.72 139.40 0 −1009.56 −218.64 3.55 10
Neural diving (Nair et al., 2020) 493.65 246.12 8.99 0 312589.87 18221.34 0.93 34 −1062.37 −226.51 0.05 95
CT (Ours) 431.31 233.06 3.13 5 319075.00 18214.33 0.91 16 −1081.87 −226.44 0.08 87
TaL (Ours) 411.45 232.99 3.09 3 318984.36 18147.82 0.54 23 −1075.95 −226.57 0.02 96

Table 1 shows that our method outperforms the other methods on all five datasets. In the workload
apportionment dataset, Threshold-aware Learning shows a 0.45% optimality gap at the one-minute
time limit, which is roughly 10× better than the optimality gap of SCIP. In the maritime inventory
routing dataset, the performance of the best method in the data-augmented case is comparable to the
best performance in the non-augmented case. It implies the possibility of a general-purpose model
trained on a heterogeneous class of MIP instances.

6 CONCLUSION

In this work, we establish theoretical grounds for optimizing the coverage in learning to generate
feasible solutions of MIP from a probabilistic combinatorics perspective. Based on our theoretical
insights, we devise a provably efficient learning framework that jointly learns the coverage and the
coverage search space by modeling threshold functions. Empirically, our method shows competitive
results against other methods. In future work, we would like to extend our learning framework
to a broader area of machine learning in a high-dimensional setting. Also, we consider coverage
distribution estimation can be further investigated, i.e. Beta distribution of our target coverage.
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A APPENDIX

A.1 NOTATIONS

• n: the number of variables

• m: the number of linear constraints

• r: the number of discrete variables

• x = [x1, . . . , xn] ∈ Rn: the vector of variable values

• xint ∈ Zr,xcont ∈ Rn−r and x = [xint;xcont]

• x⋆: the vector of optimal solution variable values

• c ∈ Rn: the vector of objective coefficients
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• A ∈ Rm×n: the linear constraint coefficient matrix

• b ∈ Rm: the vector of linear constraint upper bound

• (ℓ,u): the vector of lower and upper variable

• ei = e
(n)
i ∈ Rn, i = 1, . . . , n: the Euclidean standard basis

• [n] = {1, 2, . . . , n}: index set

• M = (A,b, c, ℓ,u): MIP problem

• I: the set of dimensions of x that is discrete

• xd: d-th dimension of x

• sd: binary classifier output to decide to fix xd
• pθ: Neural diving model parameterized by θ

• Np: the number of MIP problems in the dataset

• Γ: threshold value for Post hoc Confidence Thresholding

• R(M): the set of feasible solution x ∈ Zr × Rn−r

• R̄(M): the set of LP-feasible solution x ∈ Rn which satisfies Ax ≤ b ignoring the
integrality constraints

• R̂(M): the set of LP-feasible solution x ∈ Zr × Rn−r which satisfies Ax ≤ b after
partially fixing discrete variables of x

• ξ ∈ (0, 1): probability at which threshold behavior occurs

• P(X): powerset of X

• a≪ b or a(n)≪ b(n) : lim
n→∞

a(n)/b(n) = 0

• a≫ b or a(n)≫ b(n) : lim
n→∞

a(n)/b(n) =∞

• a ≲ b : a(n) ≲ b(n) : there exists C > 0, s. t. a(n) ≤ Cb(n), where n ∈ N , for some set
N

• κ: target objective value of the LP-solution for partial discrete variables fixed

• β0(M) = min c⊤R̄(M): the LP-solution objective value without assigning any discrete
variable values from x

• βp(M,x) = c⊤[z + z′], where z =
∑

i∈S(B,p)
xiei ∈ Zn, and z′ =

∑
i∈[n]\S(B,p)

ziei ∈

Rn: the LP-solution objective value after assigning discrete variable values from x with
coverage p

• αp(M,x, τ): a primal bound of a given MIP problem M solving for a time limit of τ , after
partially assigning variable values of x with coverage of p.

A.2 STATEMENTS AND PROOFS

Theorem 3. Let ξ ∈ (0, 1). For each n ∈ N, let Hn be a monotone increasing non-trivial property
and set

m∗(n) := max {m : P(Hn|Bm) ≤ ξ} . (21)

If m ≤ m∗(n), then

P(Hn|Bm) ≤ 1− ξ
m

m∗(n) (22)

and, if m ≥ m∗(n) + 1, then

P(Hn|Bm) ≥ 1− ξ
m

m∗(n)+1 . (23)

In particular, m∗(n) is a threshold function ofHn.
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Proof. We slightly modify the proof in (Bollobás & Thomason, 1987, Theorem 4) for rigorousness.
Let Jn denote the negation ofHn.Note that Jn is a nontrivial monotone decreasing property.

If m ≤ m∗(n), then
P(Jn|Bm) ≥ P(Jn|Bm∗(n)) ≥ ξ

m
m∗(n)

If m ≥ m∗(n) + 1, then

P(Jn|Bm) ≤ P(Jn|Bm∗(n)+1) ≤ ξ
m

m∗(n)+1

From Theorem 3, we have the following statement.
Corollary 2. Let ξ ∈ (0, 1). For each n ∈ N, letHn be a monotone decreasing nontrivial property.

m∗(n) := min {m : P(Hn|Bm) ≥ ξ} . (24)

If m ≤ m∗(n), then

P(Hn|Bm) ≥ 1− ξ
m

m∗(n) (25)

If m ≥ m∗(n) + 1, then

P(Hn|Bm) ≤ 1− ξ
m

m∗(n)+1 (26)

In particular, m∗(n) is a threshold function ofHn.

Proof. Let Jn denote the negation ofHn.Note that Jn is a nontrivial monotone increasing property.

If m ≤ m∗(n), then
P(Jn|Bm) ≤ P(Jn|Bm∗(n)) ≤ ξ

m
m∗(n)

If m ≥ m∗(n) + 1, then

P(Jn|Bm) ≥ P(Jn|Bm∗(n)+1) ≥ ξ
m

m∗(n)+1

Lemma 1. If P is nontrivial, then q0,κ is monotonic increasing with regard to κ, bounded by p0.

Proof. By Lemma 3 and Theorem 4, Qκ is bounded monotone increasing and has a local threshold
function q0,κ, where κ is fixed. We choose the constant ξ ∈ (0, 1) as in Theorem 3, such that
P(S(n, q0,κ) ∈ Qκ) = ξ. We choose p0 as a bound of Qκ as in Lemma 3. Suppose κ1 ≤ κ2, such
that c⊤x̄ < κ1 ≤ κ ≤ κ2 < c⊤x⋆. If follows that

P(S(n, q0,κ) ∈ Qκ1
) ≥ P(S(n, q0,κ) ∈ Qκ) ≥ P(S(n, q0,κ) ∈ Qκ2

) (27)

By Definition 2 and Theorem 4,

P(S(n, q0,κ1
) ∈ Qκ1

) = P(S(n, q0,κ) ∈ Qκ) = P(S(n, q0,κ2
) ∈ Qκ2

) = ξ (28)

Hence,

q0,κ1
≤ q0,κ ≤ q0,κ2

≪ p0 (29)

Theorem 4. Let ξ ∈ (0, 1). For each n ∈ N, let Hn be a non-trivial bounded monotone increasing
property, where the bound is i.

l∗(n) := max {l : P(Hn|Bl) ≤ ξ} . (30)

If l ≥ i+ 1, then it is of limited interest sinceHn is non-monotone in such domain.

If l ≤ l∗(n) ≤ i, then

P(Hn|Bl) ≤ 1− ξ
l

l∗(n) and P(Hn|Bl∗(n)) ≤ 1− ξ
l∗(n)
i (31)

If i ≥ l ≥ l∗(n) + 1, then

P(Hn|Bl) ≥ 1− ξ
l

l∗(n)+1 and P(Hn|Bi) ≥ 1− ξ il (32)

In particular, l∗ is a local threshold function ofHn bounded by i.
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Proof. We adapt the proof in (Bollobás & Thomason, 1987, Theorem 4) for Definition 2. Let Jn
denote the negation ofHn.Note that Jn is a nontrivial bounded monotone decreasing property.

If l ≤ l∗(n) ≤ i, then

P(Jn|Bl) ≥ P(Jn|Bl∗(n)) ≥ ξ
l

l∗(n) and P(Jn|Bl∗(n)) ≥ P(Jn|Bi) ≥ ξ
l∗(n)
i

If i ≥ l ≥ l∗(n) + 1, then

P(Jn|Bl) ≤ P(Jn|Bl∗(n)+1) ≤ ξ
l

l∗(n)+1 and P(Jn|Bi) ≤ P(Jn|Bl) ≤ ξ
i
l

Lemma 2. P is monotone decreasing.

Proof. Let Bs be a set, such that Bs ⊂ B. Let Bss be a set, such that Bss ⊂ Bs. By definition,
if Bs ∈ P , then there exists z′s, such that A [zs + z′s] ≤ b, where zs =

∑
i∈Bs

xiei, and z′s =∑
i∈[n]\Bs

ziei, given x. Let zss =
∑

i∈Bss
xiei, and z′ss =

∑
i∈[n]\Bss

ziei for Bss ⊂ Bs. We can choose

z′ss, such that z′ss = z′s +
∑

i∈Bs\Bss
xiei, where

∑
i∈Bs\Bss

xiei = zs −
∑

i∈Bss
xiei. It follows that

there exists z′ss, such that A[zss + z′ss] = A [zs + z′s] ≤ b. Hence, Bs ∈ P implies Bss ∈ P .

Lemma 3. Fix κ. If P is nontrivial, then Qκ is bounded monotone increasing.

Proof. P has a threshold function p0 by Theorem 3 and Lemma 2. We choose p0 for the bound
of Qκ. Therefore, we inspect only the domain of interest q ∈ [0, p0] in S(n, q) for Qκ. Let up =∑
i∈Bp

xiei ∈ Zn for Bp ∈ P and Bp = S(B, p0). Given Bp ∈ P , there exists u′
p =

∑
i∈[n]\Bp

uiei ∈

Rn, such that A[up + u′
p] ≤ b, since Zn ⊂ Rn.

Let Bs be a set, such that Bs ⊂ Bp. Let Bss be a set, such that Bss ⊂ Bs. By definition,
Bss ∈ Qκ implies there exists u′

ss =
∑

i∈[n]\Bss
uiei ∈ Rn, such that A [uss + u′

ss] ≤ b, and

c⊤ [uss + u′
ss] ≥ κ where uss =

∑
i∈Bss

xiei ∈ Zn, given x. Let us =
∑
i∈Bs

xiei ∈ Zn, and

u′
s =

∑
i∈[n]\Bs

uiei ∈ Rn. We show that 1) Bss ∈ Qκ implies A[us + u′
s] ≤ b, and 2) Bss ∈ Qκ

implies c⊤[us + u′
s] ≥ κ.

1) Let us−ss =
∑

i∈Bs\Bss
xiei ∈ Zn. Let u′

p =
∑

i∈[n]\Bp
uiei ∈ Rn. For any Bs ⊃ Bss, Bs \Bss ∈

P . Also, we can find u′
s = up−s + u′

p, such that A[uss + us−ss + up−s + u′
p] = A[us + u′

s] =
A[up + u′

p] ≤ b, since Zn ⊂ Rn. Therefore, A[us + u′
s] ≤ b.

2) Let R̂(M) be the set of LP-feasible solution û, after fixing the nontrivial number of discrete
variables of M . Let R̄(M) be the set of LP-feasible solution ū, without fixing variables of M .
SinceR(M) ⊆ R̂(M) ⊆ R̄(M), min

ū∈R̄(M)
c⊤ū ≤ min

û∈R̂(M)
c⊤û ≤ min

u∈R(M)
c⊤u. Therefore, for any

Bs ⊃ Bss, c⊤ [us + u′
s] = c⊤ [uss + us−ss + u′

s] ≥ c⊤ [uss + u′
ss] ≥ κ.

By 1) and 2), Bss ∈ Qκ implies Bs ∈ Qκ. Hence, Qκ is bounded monotone increasing, in which
the bound is at most p0, such that q ∈ [0, p0] in S(B, q) for Qκ.

Proof of Theorem 1

Proof. By Lemma 2 and 3, there exist p0 and q0 such that

P(S(n, ρ) ∈ P)→
{
1 if ρ≪ p0
0 if ρ≫ p0
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and

P(S(n, ρ) ∈ Qκ)→
{
0 if ρ≪ q0,κ ≪ p0
1 if p0 ≫ ρ≫ q0,κ

Since
P(S(n, ρ) ∈ Fκ) ≥ P(S(n, ρ) ∈ P) + P(S(n, ρ) ∈ Qκ)− 1 (33)

By equation (33),

q0,κ ≪ ρ≪ p0 implies P(S(n, ρ) ∈ Fκ)→ 1 (34)

Proof of Proposition 1

Proof. PΨ(pψ,P), PΦ(pϕ,Qκ) By Theorem 3 and Lemma 2, P has a threshold function p0. For
simplicity of notation, we denote the sample X = 1P(S(n, pψ)). Suppose there exist H samples.
For pϕ and PΦ(pϕ,Qκ) fixed, the training of Lprob is to maximize

H∑
i=1

Xi logPΨ(pψ,P) +
H∑
i=1

(1−Xi) log(1− PΦ(pϕ,Qκ)) (35)

For any (a, b) ∈ R2 \ (0, 0), let Z : Y → a log(Y ) + b log(1 − Y ). Then argmaxZ(Y ) = a
a+b .

Hence,

argminLprob =
1

H

H∑
i=1

Xi (36)

for PΦ(pϕ,Qκ) fixed. Similarly, the training of Lthreshold is to maximize
H∑
i=1

P
(i)
Ψ (pψ,P) log pψ +

H∑
i=1

(1−P (i)
Ψ (pψ,P)) log(1− pψ), where P (i)

Ψ (pψ,P) corresponds to PΨ(pψ,P) at i-th iteration for

Xi.

argminLthreshold =
1

H

H∑
i=1

P
(i)
Ψ (pψ,P) (37)

At the global minima of Lthreshold, and Lprob,

PΨ(pψ,P) =
1

H

H∑
i=1

Xi (38)

and

pψ =
1

H

H∑
i=1

P
(i)
Ψ (pψ,P) ≈

1

H

H∑
i=1

Xi, (39)

for large enough H . Let ξ = P(S(n, pψ) ∈ P) = 1
H

H∑
i=1

Xi = argminLprob. Choose p0 = ξ.

Proof of Corollary 1

Proof. By Lemma 3, and Theorem 4, Qκ has a local threshold function q0,κ. Immediately from the

proof of Proposition 1, choose q0,κ∗ = ξ = 1
H

H∑
i=1

Xi.
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Proof of Theorem 2

Proof. First, we prove the following statement:

If p∗∆ = argmin
p
αp(M,x, τ), then q0,κ∗ ≲ p∗∆ ≲ p0 (40)

under the condition:

x = xpartial + x′
partial,

such that there exists x̃′
partial : c

⊤[xpartial + x̃′
partial] ≤ c⊤x∆, (41)

where xpartial =
∑
i∈Bsub

xiei, for Bsub ∈ Fκ∗

To obtain a contradiction, suppose p∗∆ = max(argmin
p
αp(M,x, τ)). Suppose also p∗∆ ≲ q0,κ∗ or

p∗∆ ≳ p0.

1) p∗∆ ≳ p0 implies S(n, p∗∆) /∈ P with high probability. This contradicts p∗∆ =
max(argmin

p
αp(M,x, τ)).

2) p∗∆ ≲ q0,κ∗ implies S(n, p∗∆) /∈ Qκ∗ with high probability. Since q0,κ∗ ≲ p0, S(n, p∗∆) ∈ P
with high probability. By condition in (41), there exists p′ : S(n, p′) ∈ Qκ∗ and αp′(M,x, τ) ≤
αp∗∆(M,x, τ), and p′ > p∗∆. This contradicts p∗∆ = max(argmin

p
αp(M,x, τ)).

Hence, (40) is true under the condition (41). By Proposition 1, argmin
pψ
Lthreshold = p0, with pϕ and

PΦ(pϕ,Qκ∗) fixed. By Corollary 1, argmin
pϕ
Lthreshold = q0,κ∗ , with κ∗, pψ and PΨ(pψ,P) fixed.

By Remark 1 for large enough n,

q0,κ∗ ≲ ρ ≲ p0 implies P(S(n, ρ) ∈ Fκ∗) ≥ 1− ϵ (42)

Thus, S(n, p∗∆) ∈ Fκ∗ with high probability, for p∗∆ ∈ [q0,κ∗ , p0]. Therefore, we search p∗∆ ∈
[q0,κ∗ , p0] at the global optimum of Lthreshold, such that the cardinality of the search space becomes
(p0 − q0,κ∗)|A|.

A.3 ALGORITHMS

Algorithm 1 ThresholdAwareLearning
1: procedure THRESHOLDAWARELEARNING(M )
2: Batch size H , the number of iterations T
3: ThresholdAwareGNN parameterized by ψ, ϕ, π.
4: ThresholdAwareProbGNN parameterized by Ψ,Φ.
5: i← 0
6: for i ≤ T do
7: for j ≤ H do ▷ in parallel
8: x, pψ, pϕ, ρπ ← ThresholdAwareGNN(M)
9: PΨ(pψ,P), PΦ(pϕ,Qκ)← ThresholdAwareProbGNN(M,pψ, pϕ, ρπ)

10: 1P(S(n, pψ)),1Qκ(S(n, pϕ)), p
∗
∆ ← ThresholdSolve(M,x, pψ, pϕ, ρπ)

11: if p∗∆ is Null then break
12: Compute Lcoverage,Lthreshold,Lprob by eq. equation 16, equation 17, equation 18
13: gcoverage, gthreshold, gprob ← ∇πLcoverage,∇ψ,ϕLthreshold,∇Ψ,ΦLprob
14: Update π, (ψ, ϕ), (Ψ,Φ) by gradient descent with gcoverage, gthreshold, gprob
15: j ← j + 1

16: i← i+ 1
return ThresholdAwareGNN
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Algorithm 2 ThresholdSolve
1: procedure THRESHOLDSOLVE(M,x, pψ, pϕ, ρπ)
2: β0(M)← SolveLP(M,x, 0)
3: βρπ (M,x)← SolveLP(M,x, ρπ)
4: αρπ (M,x, τ)← SolveMIP(M,x, ρπ, τ)
5: if S(n, pψ) ∈ P then
6: 1P(S(n, pψ))← 1
7: αpψ (M,x, τ)← SolveMIP(M,x, pψ, τ)
8: else
9: 1P(S(n, pψ))← 0

10: αpψ (M,x, τ)← Null

11: if S(n, pϕ) ∈ P then
12: αpϕ(M,x, τ)← SolveMIP(M,x, pϕ, τ)
13: κ← pϕ · (αpϕ(M,x, τ)− β0(M)) + β0(M)
14: if βρπ (M,x) ≥ κ then
15: 1Qκ(S(n, pϕ))← 1
16: else
17: 1Qκ(S(n, pϕ))← 0

18: else
19: 1Qκ(S(n, pϕ))← 0
20: αpϕ(M,x, τ)← Null

21: if S(n,min(pψ, pϕ)) ∈ P then
22: p∗∆ ← ThresholdDFO(pψ, pϕ,x, αpψ (M,x, τ), αpϕ(M,x, τ))
23: else
24: p∗∆ ← Null

return 1P(S(n, pψ)),1Qκ(S(n, pϕ)), p
∗

Solving LP-relaxation and sub-MIP using MIP solver SolveLP(M,x, 0) refers to the process
of solving LP-relaxation of M to return the objective value of the solution. SolveLP(M,x, ρπ) is
the process of solving LP-relaxation of the sub-MIP of M by fixing variables with coverage ρπ and
values x. Since the objective term is unbounded, we set κ ∈ (β0(M), αρ(M,x, τ)), and calibrate κ
to κ∗.

A.4 NEURAL NETWORK ARCHITECTURE

We model the thresholds pψ, pϕ and the coverage ρπ by constructing a multipartite graph represen-
tation of threshold-related nodes along with a coverage node on top of the Neural diving backbone
model. Multipartite graph representation enables scalable representation learning by allowing a
flexible number of input variable nodes, while MLP requires a fixed size of the input.

A.5 EXPERIMENTAL DETAILS

A.5.1 EXPERIMENTAL METHODS

Threshold-aware Learning To optimize the loss function in equation (15) in a scalable and struc-
tured manner, Threshold-aware Learning (TaL) extends the existing bipartite graph representation
of MIP (Gasse et al., 2019; Nair et al., 2020; Khalil et al., 2022) into a multipartite graph represen-
tation to jointly learn threshold-related parameters ψ, ϕ, and the coverage parameter f . As shown
in Figure 3, we use the GNN architecture from (Gasse et al., 2019) to pre-train the Neural diving
model without Selectivenet, denoted by constraint and variable nodes. After training the Neural
diving model, we build the multipartite graph representation on top of the Neural diving GNN by
constructing confidence nodes based on the confidence scores |pθ(x|M)−1/2| of the Neural diving
model output pθ(x|M), where 1 ∈ Zn is the vector of 1’s. The output of the threshold-aware GNN
are pψ , pϕ, and f parameterized by ψ, ϕ, and π, respectively. In the training phase, we freeze the
weights of Neural diving GNN and update weights of MLP layers of node embedders of confidence
nodes, threshold nodes, and a coverage node, along with edge embedders connecting them. For or-
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Figure 3: Forward pass of the multipartite graph representation.

dering of variables to fix, one may consider input order, objective coefficient order, and fractionality
order as suggested in (Nair et al., 2020).

Post-hoc Confidence Thresholding As a motivation point of threshold aware learning, Post-hoc
Confidence Thresholding (CT) method shows that the confidence score is a competitive measure
for ordering variables. We build on top of the Neural diving model (Nair et al., 2020) without
Selectivenet (Geifman & El-Yaniv, 2019) to control the coverage for partial variable assignment
by using a post-hoc technique. We set a threshold on the confidence score |pθ(x|M) − 1/2| of
the Neural diving model output pθ(x|M). If the confidence score of a certain variable exceeds
the threshold, then we assign the rounded value of the corresponding Neural diving output to the
variable value.

Neural diving To jointly learn the coverage and variable assignment values, Neural diving (Nair
et al., 2020) adopts Selectivenet (Geifman & El-Yaniv, 2019). We train multiple models for each
coverage rate whose value is close to the coverage rate of the best result of other methods. The
difference from (Nair et al., 2020) is that we use L1 norm in place of L2 norm for the coverage
penalty term to allow fluctuations around the target coverage to obtain more diverse coverage output
across neural network weight checkpoints. Since Selectivenet learns to abstain from predicting
variable values, it is not necessary to consider the ordering of variables.

GNNExplainer GNNExplainer (Ying et al., 2019) is a post-hoc interpretability method for any
GNN predictions. The idea of GNNExplainer is to find a simplified model that maximizes the
mutual information between the prediction of the original model and the simplified model. We
adapt GNNExplainer to the Neural diving setting, where the objective is to find the proper subset of
predicted variables.
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