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ABSTRACT

Learning from label proportions (LLP) has recently emerged as an important tech-
nique of weakly supervised learning on aggregated labels. In LLP, a model is
trained on groups (a.k.a bags) of feature-vectors and their corresponding label
proportions to predict labels for individual feature-vectors. While previous works
have developed a variety of techniques for LLP, including novel loss functions,
model architectures and their optimization, they typically evaluated their methods
on pseudo-synthetically generated LLP training data using common small scale
supervised learning datasets by randomly sampling or partitioning their instances
into bags. Despite growing interest in this important task there are no large scale
open source LLP benchmarks to compare various approaches. Construction of
such a benchmark is hurdled by two challenges a) lack of natural large scale LLP
like data, b) large number of mostly artificial methods of forming bags from in-
stance level datasets.
In this paper we propose LLP-Bench: a large scale LLP benchmark constructed
from the Criteo Kaggle CTR dataset. We do an in-depth, systematic study of the
Criteo dataset and propose a methodology to create a benchmark as a collection
of diverse and large scale LLP datasets. We choose the Criteo dataset since it
admits multiple natural collections of bags formed by grouping subsets of its 26
categorical features. We analyze all bag collections obtained through grouping
by one or two categorical features, in terms of their bag-level statistics as well as
embedding based distance metrics quantifying the geometric separation of bags.
We then propose to include in LLP-Bench a few groupings to fairly represent real
world bag distributions.
We also measure the performance of state of the art models, loss functions
(adapted to LLP) and optimizers on LLP-Bench. We perform a series of abla-
tions and explain the performance of various techniques on LLP-Bench. To the
best of our knowledge LLP-Bench is the first open source benchmark for the LLP
task. We hope that the proposed benchmark and the evaluation methodology will
be used by ML researchers and practitioners to better understand and hence devise
state of art LLP algorithms.

1 INTRODUCTION

In traditional supervised learning, training data consists of feature-vectors (instances) along with
their labels. A model trained using such data is then used during inference to predict the labels of
test instances. In recent times, primarily due to privacy concerns and relative rarity of high quality
supervised data, the weakly supervised framework of learning from label proportions (LLP) has
gained importance (Scott & Zhang (2020); Saket et al. (2022); O’Brien et al. (2022)). In LLP,
the training data is available as a collection of subsets or bags of instances along with the label
proportion for each bag. The goal is to learn a classification model for predicting the class-labels of
individual instances (de Freitas & Kück (2005); Musicant et al. (2007)).

Clearly, supervised learning is the special case of LLP when all bags are unit-sized. Unlike super-
vised learning however, for which a multitude of task-specific real-world datasets are easily avail-
able, the same is not true for LLP. While previous works have developed and explored a variety of
algorithmic, optimization and deep-neural net based techniques for LLP (see Sec. 2 for more de-
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tails), all of them experimentally evaluate their methods on pseudo-synthetic LLP datasets consisting
instances of some supervised learning dataset randomly sampled/partitioned into the different bags.
Further, most of the above works use limited scale data, typically small UCI (Dua & Graff (2017)),
image and social media datasets.

An exception to the above is the work of Saket et al. (2022) which also uses the Criteo Kaggle
CTR (Criteo (2014)) and MovieLens-20m (Movielens-20M; Harper & Konstan (2016)) which are
fairly large in scale, roughly 45 million instances and 20 million instances respectively. In partic-
ular, the Criteo dataset has 13 numerical and 26 categorical features whose semantics are undis-
closed. Each row is an impression and a {0, 1}-valued label indicates a click, with in total 7 days of
impression-click data. The categorical features can be used to create many different bag collections
depending on their subset used for grouping, where each choice of the subset’s values yields a bag
of instances having those feature values. These groupings simulate the typical aggregation scenarios
in real-world use-cases, however Saket et al. (2022) only experimented in a limited manner with one
grouping.

In contrast to the above state of affairs, a large number of publicly accessible real-world and large
scale supervised-learning datasets have been studied over the years, whereas there are hardly any
datasets which are curated specifically for LLP.

1.1 OUR CONTRIBUTIONS

In this work we address the unavailability of a large scale benchmark and standardized evaluation
methodologies for LLP. We make the following contributions in this paper towards creating an LLP
benchmark building on top of the publicly available Criteo Kaggle CTR dataset.

Bag collections using group-by feature-sets. Typically, for privacy preservation in CTR applica-
tions, the impressions are grouped into bags according the values of features such as advertiser-id,
product-id, date etc. Thus, we can simulate such aggregations on the Criteo dataset using any sub-
set of the categorical feature-set. However, we observe that choosing more than three categorical
features likely results in small-sized bags which would be contrary to the goal of large scale LLP
datasets. Therefore, our exploration limits the groupings to those obtained using at most two of the
categorical features. Below we present the different aspects of our exploration of these groupings.
We use a standard preprocessing previously used for training the AutoInt model (Song et al. (2019))
on the Criteo dataset at the instance level. More details can be found in Section 4.

Analysis, categorization, and filtering groupings. There are 26 categorical features, leading to
26 +

(
26
2

)
= 351 possible groupings using at most two categorical features. Our goal is to curate

LLP datasets with not too small or very large bags (as the latter have very weak label supervision),
and we always remove bags of size ≤ 50 and those of size > 2500 from these groupings, similar
to the work of Saket et al. (2022). Post this removal, we identify as outliers those groupings which
have at most 500 bags. The remainder 308 groupings are further analyzed in relation to their bag
size and label proportion distributions. For each grouping We calculate the threshold bags sizes
such that t% of the bags have at most that size, for t = 50, 70, 85, 95. Using normalized vectors of
these four values, we use k-Means clustering to the partition the groupings into four subsets typified
by increasing bag sizes. More details of these clusters can be found in Sec 5.1. Further, modeling
the labels as iid Bernoulli with bias given by the average label of the dataset, we compute for each
grouping the average of the log likelihoods of the bag label proportions. Using this we also cluster
the set of groupings into four subsets indicating how far-from random their label proportions are.
Analysis of this characterisation can be found in Section 5.2.

In the above removal of bags, a substantial fraction of the original dataset is also removed since there
is an abundance of small bags for most groupings. For subsequent analysis involving model training,
we further filter out those ones which retain less than 30% of the instances. This is to ensure that
we only have large-scale LLP bag collections, and we obtain 52 groupings satisfying the retention
condition. Details of removals by these filters can be found in Section 4.2.

It turns out that these groupings have a similar number and average size of bags. We then pro-
ceed to estimate the geometric clustering of bags by computing the average inter-bag and intra-bag
distances for these groupings. For this we use natural definitions of these notions based on the

2



Under review as a conference paper at ICLR 2023

`22-distance for ease of computation. We also prove certain metric like properties for the inter-bag
distances. Details and analysis of these distances is present in Section 5.3.

From the above analyzed groupings we select a representative subset with diverse statistical proper-
ties and include them in LLP-Bench - our proposed LLP benchmark as a collection of LLP datasets.

LLP model training methodology For each of the 52 grouping we create a LLP model training
and testing setup as follows. We remove the small and large bags as above, and then recreate the
instance-level dataset out of the remaining bags. We apply 5-fold split to obtain 5 pairs of train/test
splits at the instance-level. For each train/test split, the training bags are recreated using the same
grouping on the train set. We then train a 1-Layer MLP, 2-layer MLP and the AutoInt models using
various hyperparameter and optimizer settings, on the training bags and evaluate w.r.t AUC scores
on the test set. Details of the training and reported AUC scores are present in Section 6.1.

Statistically correlating LLP model performance. From the above experimentation we obtain
statistics for different groupings based on their bag and label proportion distributions. We calculate
the Pearson correlation scores with the model training performance of the LLP data-statistics for the
different groupings. The main observations are:

1. A negative correlation with the percentile bag size thresholds indicating that the model
performance degrades when the groupings have larger bags. This is intuitively consistent
with larger bags having less label supervision (for the same label proportion) that smaller
bags.

2. A negative correlation with the label proportion log likelihood. Since bags with label pro-
portions deviating from the global label bias have lower likelihood, roughly speaking this
means that those groupings where the positive labels are concentrated in fewer bags have
better training performance.

3. A positive correlation with the ratio of Average Inter-Bag Distances and Average Intra-Bag
Distances. Higher ratio indicates a good separation between the bags. Hence, positive
correlation indicates that models perform better when there is considerable variation in bag
distributions.

Some other correlation scores obtained and their interpretation is described in Section 6.2.

2 PREVIOUS WORK

The study of LLP is motivated by applications in which only the aggregated labels for groups (bags)
of feature vectors are available due to privacy or legal (Rüping (2010),Wojtusiak et al. (2011)) con-
straints or inadequate or costly supervision Dery et al. (2017); Chen et al. (2004). It has also been
used for several weakly supervised tasks such as IVF prediction (Hernández-González et al. (2018))
and image classification (Bortsova et al. (2018); Ørting et al. (2016)). More recently, LLP has been
proposed by O’Brien et al. (2022) as a framework for privacy preserving conversion prediction.

Several techniques for LLP have been studied over the years. de Freitas & Kück (2005); Hernández-
González et al. (2013) applied trained probabilistic models using Monte-Carlo methods. Subsequent
works (Musicant et al. (2007); Rüping (2010)) extended supervised learning techniques such neural
nets, SVM and k-nearest neighbors to LLP, others adapted clustering based approaches (Chen et al.
(2009); Stolpe & Morik (2011)), while Yu et al. (2013) proposed a novel ∝-SVM method for LLP.
Quadrianto et al. (2009) estimated model parameters from label proportions for the exponential gen-
erative model and assumptions on label distributions of bags. Their method was further applied by
Patrini et al. (2014) for more general models and relaxed distributional assumptions. More recent
works have investigated deep neural network based LLP methods (Bortsova et al. (2018); Arde-
haly & Culotta (2017); Liu et al. (2019)) and techniques using bag combinations (Scott & Zhang
(2020); Saket et al. (2022)). Recently, Saket (2021) initiated a theoretical study of LLP from the
computational learning perspective.

All of the previous works in LLP experimentally evaluate their methods on LLP datasets consist-
ing of bags randomly created from some real-world supervised learning dataset. In these pseudo-
synthetic LLP datasets, instances are randomly sampled/partitioned into the different bags, where in
Patrini et al. (2014) and Saket et al. (2022) this process also clusters feature-vectors to generate more
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complicated bag distributions. Further, most of the above works use limited scale data, typically
small to medium scale UCI datasets (Yu et al. (2013); Patrini et al. (2014); Scott & Zhang (2020)),
image datasets (Liu et al. (2019)), social media data (Ardehaly & Culotta (2017)) etc. In general,
the have been very few natural, real-world LLP datasets used for evaluations in previous works. As
mentioned earlier Saket et al. (2022) experimented with MovieLens-20m and Criteo datasets. They
used a temporal aggregation into bags for MovieLens-20m, while on the Criteo dataset they only
used one pair of categorical features to create a collection of bags for experimentation.

3 PRELIMINARIES

In our exploration of LLP we shall only consider binary {0, 1}-valued instance labels.
Notation: X := {x(i) ∈ Rn}mi=1 is the dataset of m feature vectors in n-dimensional space with
labels given by Y := {y(i) ∈ {0, 1}}mi=1. We denote by Ŷ := {ŷ(i) ∈ [0, 1]}mi=1 the corresponding
model predictions which are probabilities of the predicted label being 1.

Definition 3.1 (Bag). A bag B ⊆ [m] consists of feature vectors XB := ∪i∈Bx(i) and with the
corresponding label histogram yB := Σi∈By

(i). The label proportion of the bag is yB/|B|.
Definition 3.2 (LLP Dataset). A learning from label proportions (LLP) dataset corresponding to a
collection of bags B := {Bj}j=N

j=1 is given by {(XB , yB) | B ∈ B}. The label bias of training
dataset is µ(B, Y ) :=

(∑
B∈B yB

)
/
(∑

B∈B |B|
)
.

Since the LLP training dataset lacks instance-level labels we use the dataset label bias to model
the label histogram of a bag B as the binomial distribution B(|B|, p) where p = µ(B, Y ). Its log-
likelihood is LL(B, yB) = log f(|B|, yB , p) where f(r, k, p) :=

(
r
k

)
pk(1 − p)r−k is the pdf of

B(r, p). The dataset average bag log-likelihood is AvgBagLL(B, Y ) :=
(∑

B∈B LL(B, yB)
)
/|B|.

3.1 LLP MODEL TRAINING

In order to train a model on an LLP dataset, we apply common loss functions at the bag level. In this
work we experiment with the binary cross entropy loss Lbce and the mean-squared error loss Lmse,
which are define for a bag B with with average label zB := yB/|B| and average label prediction
ẑB := ŷB/|B| as:

Lbce(B, zB , ẑB) := − (zB log ẑB + (1− zB) log(1− ẑB)) , Lmse(B, yB , ŷB) := |yB−ŷB |2. (1)

Note that both the above losses are minimized when ŷB = yB .

In our experiments we use mini-batch based model training on LLP dataset. A mini-batch here
consists of k bags B1, . . . , Bk and their corresponding label histograms yB1

, . . . , yBk
. The model

predicts on all the instances in the bags of the minibatch are aggregated into the predicted label
histograms ŷB1

, . . . ŷBk
. The batch-level loss is given by sum of the bag-level losses over the for the

mini-batch bags.

3.2 BAG-LEVEL DISTANCES

We also analyse the geometric clustering of the feature vectors in bags, by comparing the separation
among feature-vectors within bags and their separation across bags. For this, we define a natural
bag separation.

Definition 3.3 (Bag Separation). For a distance d on Rn and collection of bags B =
{B1, . . . , BM} the corresponding separation function is defined as BagSep(B,B′, d) :=

1
|B||B′|Σx∈BΣx′∈B′d(x,x′). We define the M × M matrix BagSepMatrix(B, d) whose (i, j)th
element is given by BagSep(Bi, Bj , d).

While BagSep is not a metric since BagSep(B,B) is not necessarily zero, the following lemma
(proved in Appendix A.1) shows that it does satisfy the other metric properties.

Lemma 3.4. BagSep satisfies non-negativity, symmetry and triangle inequality.
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We use BagSep to compute the average separation between pairs of bags and the average separation
within each bag. If the feature-vectors in bags are clustered together and far away from those of
other bags, we expect the former to be significantly greater than the later.

Definition 3.5 (Inter-Bag Separation for a bag). Given B, and metric d on Rn, the
average inter-bag distance for a bag B ∈ B is defined as InterBagSep(B, d) :=

1
|B|−1

∑
B′∈B,B′ 6=B BagSep(B,B′, d).

For computing the average statistic for the entire dataset we define the following.

Definition 3.6. The mean intra-bag separation of B is defined as MeanIntraBagSep(B, d) :=
1
|B|
∑

B∈B BagSep(B,B, d). The mean of average inter-bag separation is
MeanInterBagSep(B, d) := 1

|B|
∑

B∈B InterBagSep(B, d).

We have the following lemma proved in Appendix A.2.

Lemma 3.7. For any bag B, (i) InterBagSep(B, d)/BagSep(B,B, d) ≥ 1/2 when d is a metric,
(ii) InterBagSep(B, d)/BagSep(B,B, d) ≥ 1/4 when d is the `22 distance.

The following is a straightforward corollary of Lemma 3.7.

Corollary 3.8. (i) MeanInterBagSep(B, d)/MeanIntraBagSep(B, d) ≥ 1/2 when d is a metric,
(ii) MeanInterBagSep(B, d)/MeanIntraBagSep(B, d) ≥ 1/4 when d is the `22 distance.

We expect this ratio to achieve values substantially less than 1 in adversarial cases. Appendix A.5
provides an example of such a case. For convenience, for B, we use InterIntraRatio to denote
MeanInterBagSep(B, d)/MeanIntraBagSep(B, d) when d = `22.

3.3 CRITEO DATASET

The Criteo CTR dataset (Criteo (2014)) has 13 numerical and 26 categorical features and a binary
label. Each of the approximately 45 million rows (instances) represents an impression (online ad)
and the label indicates a click. The semantics of all the features is undisclosed and the values of
all the categorical features hashed into 32-bits for anonymization. Additionally, the dataset has
missing values. We use a preprocessed version of the dataset as done for the AutoInt (Song et al.
(2019)) model, described and implemented in their provided code1. For convenience we label the
numerical and categorical features (in their order of occurrence) as N1, . . . , N13 and C1, . . . C26.
The preprocessing applies int(log2(x)) transformation when x > 2 on the numerical feature values
x, and we further additively scale so that their values are non-negative integers. The categorical
features are encoded as non-negative integers.

4 LLP DATASET: BAG CREATION

We create the LLP dataset by grouping the instances by subsets C ⊆ {C1, . . . , C26} of the categor-
ical columns, where C ≤ 2. For each setting of the values of C we obtain a bag with instances with
those values of C. Each such grouping yields an LLP dataset2. Thus, we obtain

(
26
2

)
+ 26 = 351

LLP datasets, each referred to also as a grouping on C (|C| ≤ 2). Note that for any grouping, the set
of bags partition the dataset and therefore each instance occurs in exactly one bag.

4.1 CLIPPING GROUPINGS FOR BAG DISTRIBUTION ANALYSIS

As mentioned in Sec. 1.1 we clip the groupings by discarding all bags of sizes less than 50 and
greater than 2500, as our goal is to analyze reasonable LLP datasets. We observe that some group-
ings are left with with very few bags or zero bags, while others have a large number of bags. For e.g.,
the initial grouping on C9 creates only 3 bags and the grouping on C20 creates only 4 bags. Hence,
after clipping thse groupings have no bags. The groupings on C6, C17, C22, C23 and {C9, C20}

1The url is https://github.com/DeepGraphLearning/RecommenderSystems/tree/master/featureRec .
2Note that for model training purposes such bags may be created from only the train set portion of the entire

dataset
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all contain less than 20 bags. On the other hand, groupings on {C10, C16} and {C4, C10} each
contain more than 8× 106 bags.

We compute the mean bag sizes of the clipped groupings. The lowest mean bag size is 62 which
we obtain is for the clipped grouping on C23. It manages to retain just one bag after clipping and
has 62 instances in that bag. Similarly, the highest mean bag size that we obtain is 1292 obtained on
clipped grouping on C17. It also retains a single bag after clipping with 1292 instances in that bag.
Table 4 provides these statistics for a sample of the groupings. Refer Appendix A.8 for statistics of
all groupings.

The bag distribution analysis described in Sec. 5 is performed on the 308 clipped groupings with at
least 500 bags remaining.

4.2 FILTERING GROUPINGS FOR MODEL TRAINING

We apply the following filters on the clipped groupings to choose groupings for model training.

Label Information Loss Filter. If the number of bags that remain is less that 10000, we discard such
groupings to ensure sufficient number training bags. After applying this filter, we are left with 240
groupings.

Instance Information Loss Filter. We drop a grouping if it is left with less than 30% of the original
number of instances (≈ 13.75 × 106 instances). After applying this filter, we are left with 52
groupings. All the groupings in single columns are filtered out as the maximum percentage of
instances any of these groupings retains is 21.68% (C4). We finally obtain a set of 52 groupings
which satisfy both of the conditions listed above, all of which are emboldened in Table 10 in the
Appendix.

5 BAG DISTRIBUTION ANALYSIS

We perform the bag distribution analysis for all 308 clipped groupings which contain more than 500
bags.

5.1 CHARACTERISING THE DISTRIBUTION OF BAG SIZES

Since we have only have a label proportion for each bag, informally speaking, the larger the bag
size the lower the amount of label supervision for that bag. The bag sizes for any grouping are
characterized by their cumulative distribution function which plots the fraction of bags of size at
most t for all t ≥ 1. In all the groupings, it is observed that the density of bags drops steeply with
the increase in bag size in the histograms of bag sizes. Thus, we compute the bag sizes at the 50, 70,
85 and 95 percentile of cumulative distribution plot, for each grouping.

Hence, we can naturally classify the groupings we obtain into long-tailed and short-tailed distribu-
tions. Short-tailed distributions have most bags of small size and a very few large sized bags whereas
Long-tailed distributions contain many bags of large sizes. Bags of large sizes provide a very little
label information for a lot of feature level information. Hence, they can be used for learning repre-
sentations but are less useful in supervised training.
In order to classify the groupings created into long-tailed and short-tailed, we compute the thresh-
old bag sizes at which we attain 50, 70, 85 and 95 percentile of the bags for each clipped grouping.
We normalize these values and obtain 4-dimensional vectors for each clipped grouping. Applying
k-Means on these vectors we cluster the clipped groupings into 4 clusters. As shown in Table 1, the
mean t-percentile bag size, give the same cluster ordering for t = 50, 70, 85, 95. Hence, we name
the clusters in increasing order of these mean bag sizes as Very Short-tailed, Short-tailed, Long-
tailed and Very Long-tailed bag size distributions. Appendix A.9 contains threshold bag sizes and
cluster labels based on them for all groupings.

5.2 CHARACTERISING THE DISTRIBUTION OF LABEL HISTOGRAMS

We model the distribution of label histograms in a grouping as a binomial distribution, with bias
as the label proportion of the grouping. We compute for each grouping its AvgBagLL value. The
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Table 1: Mean bag sizes at which groupings achieve 50, 70, 85 and 95 percentile in each cluster

Bag Size Dist. Cluster # Groupings Mean bag size:
50 Percentile

Mean bag size:
70 Percentile

Mean bag size:
85 Percentile

Mean bag size:
95 Percentile

Very Short-tailed 171 107.77 189.05 375.94 905.66
Short-tailed 82 155.40 314.83 672.02 1434.77
Long-tailed 41 269.22 571.24 1094.90 1831.78
Very Long-tailed 14 590.79 1053 1599.57 2145.93

Table 2: Clustering on AvgBagLL.

Cluster # Groupings Min LL Max LL
High 26 -9.48 -3.26
Medium 73 -15.98 -9.8
Low 173 -24.19 -16.02
Very Low 36 -38.88 -25.47

Table 3: Clustering on InterIntraRatio.

Cluster # Groupings Min
Ratio

Max
Ratio

Less-separated 37 1.02 1.10
Medium-separated 196 1.12 1.24
Well-separated 58 1.25 1.40
Far-separated 17 1.41 1.56

higher the value, the closer the grouping is to having randomly distributed label proportions. Refer
to Sec. 3 for the definitions of AvgBagLL and bias of the dataset.
We perform k-Means on these values and classify our groupings into groupings having High,
Medium, Low and Very Low AvgBagLL. The ranges of AvgBagLL values for each of these clusters
are listed in Table 2. Appendix A.10 contains the AvgBagLL values as well as the clusters labels
based on them for all groupings.

5.3 BAG SEPARATION ANALYSIS

As defined in Sec. 3, higher InterIntraRatio indicates bags are clustered. First, we obtain an em-
bedding of the feature-vectors by training an instance level AutoInt Model3 on Criteo dataset and
extract it’s embedding layer using which we transform the instances into this embedding space.
We compute the InterIntraRatio and other BagSep quantities for all 308 clipped groupings in this
embedding space. We then perform k-Means on InterIntraRatio to classify our groupings into Less-
separated, Medium-separated, Well-separated and Far-separated bag distributions.
The Ranges of InterIntraRatio for each of the clusters are listed in Table 3. Appendix A.11 contains
the BagSep quantities for all the groupings along with the clusters they are classified into. Appendix
A.4 contains simplification of BagSep computation with `22-distance.

5.4 LLP-BENCH: A REPRESENTATIVE COLLECTION OF LLP DATASETS

Table 4 provides a representative set of groupings, with their cluster assignments (as per the various
analyses above) along with bag-level statistics. Several of these groupings are also used for the
LLP model training and analysis presented below. We propose LLP-Bench as collection of LLP
datasets with naturally constructed bags which simulate real-world LLP use-cases and can be used
for evaluating LLP techniques.

6 MODEL PERFORMANCE ON TRAINABLE GROUPINGS

6.1 TRAINING METHODOLOGY

We train on 52 clipped groupings which pass the filters in Sec. 4.2, for which we create the train and
test sets as follows. For each grouping, we recreate the instance-level dataset from the clipped bag-
level dataset and the original labels. On this truncated instance-level dataset we perform a 5-Fold
split, and for each split we obtain the training bags dataset by grouping the train set on the same
categorical features. The test sets remain at the instance-level.

We train 1-Layer MLP, 2-Layer MLP4 and the AutoInt model. Preprocessing mentioned in 1.1
ensures that all features have non-negative integers. We use a multihot layer whose output is passed

380% instances used for training and rest for validation.
41-Layer MLP has 64 hidden units, 2-Layer MLP has 128 and 64 units in successive layers, tanh activation
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Table 4: LLP-Bench Groupings. Bold : Analyzed for model training.

Col1 Col2
No. Bags
After
Clipping

Percentage
Inst. After
Clipping

Mean
Bag Size

Bag Distribution
Clusters

Label Prop Dist.
Clsuters Inter/Intra Ratio Clusters

C5 C8 2486 1.44 265.84 Very Short-tailed High Less-separated
C1 C10 55528 32.44 267.81 Very Short-tailed High Medium-separated
C19 C22 3893 3.69 434.23 Long-tailed High Less-separated
C6 C10 46981 31.8 310.24 Short-tailed Medium Medium-separated
C2 C13 45206 34.87 353.59 Short-tailed Low Medium-Separated
C7 C10 56575 40.52 328.31 Short-tailed Medium Far-separated
C10 C15 102841 44.66 199.07 Very Short-tailed Medium Well-separated
C7 C21 88970 40.43 208.31 Very Short-tailed Low Far-separated
C13 - 1221 2.98 1120.01 Very Long-tailed Very Low Less-separated
C9 C19 2214 2.6 538.05 Long-tailed Medium Far-separated
C7 C10 56575 40.52 328.31 Short-tailed Medium Far-separated
C9 C11 3221 5.71 812.21 Very Long-tailed Very Low Far-separated
C7 C20 30420 31.85 479.96 Long-tailed Low Well-separated

Table 5: AUC Scores of MLP classifiers obtained on LLP-Bench Groupings

Col1 Col2 E1 E2 E3 E4 E5 E6 E7 E8
C1 C10 73.64±0.05 73.67±0.05 73.6±0.06 73.61±0.04 65.03±0.11 63.43±0.1 65.55±0.22 63.97±0.23
C6 C10 72.89±0.04 72.9±0.05 72.79±0.04 72.81±0.05 65.01±0.08 62.88±0.31 65.49±0.16 63.84±0.44
C2 C13 75.23±0.04 75.23±0.03 75.06±0.03 75.08±0.04 68.04±0.07 66.75±0.13 68.57±0.21 67.21±0.12
C7 C10 73.49±0.03 73.5±0.02 73.35±0.03 73.31±0.03 64.32±0.16 62.66±0.17 65.23±0.27 63.2±0.19
C10 C15 75.76±0.04 75.75±0.04 75.58±0.05 75.56±0.04 70.07±0.05 68.83±0.11 70.63±0.08 69.51±0.17
C7 C21 76.89±0.04 76.91±0.03 76.64±0.04 76.67±0.06 70.87±0.08 69.76±0.18 71.48±0.05 70.38±0.13
C7 C10 73.49±0.03 73.5±0.02 73.35±0.03 73.31±0.03 64.32±0.16 62.66±0.17 65.23±0.27 63.2±0.19
C7 C20 74.43±0.06 74.46±0.06 74.28±0.05 74.28±0.08 64.65±0.12 63.09±0.2 65.21±0.2 63.64±0.1

to the MLP models. AutoInt has a 16-dimensional trainable embedding layer for each feature5.
Output layer has one unit with sigmoid activation.

We perform minibatch gradient descent by sampling minibatches of 8 bags each, and the model
predictions are aggregated into the predicted label proportions of the bags. The minibatch loss is
the sum over the bags of either the bag-level Lmse or Lbce as described in Sec. 3.1. We then back-
propagate this loss and update weights using the optimizer – either Adam or SGD. The specifications
of experiments are in Table 7. Using Adam, we train for 50 epochs with a learning rate of 1e− 5 for
initial 15 epochs and 1e− 6 for the rest. Using SGD, we train for 300 epochs with constant learning
rate of 1e− 5.
We use test AUC scores to qualify the tractability of an LLP dataset. For MLP trained using SGD
and Adam we use the maximum reported AUC score. On the other hand, AutoInt has an increasing
trend for both optimizers but it is not (even locally) monotonic, hence for it we use the average of
last 5 epochs of training. The AUC score (averaged over the 5 splits) for trainable groupings in
LLP-Bench and the various experiments (see in conjunction with Table 7) are listed in 5 and Table
6. AUC score for all trainable groupings are listed in Table 8. Appendix A.7 contains details of
instance-level training which we perform for completeness.

Table 6: AUC Scores of AutoInt obtained on
LLP-Bench Groupings

Col1 Col2 E9 E10 E11
C1 C10 70.4±0.17 70.23±0.18 61.98±0.38
C6 C10 69.84±0.24 69.75±0.22 63.3±1.28
C2 C13 68.81±0.23 68.88±0.42 64.51±1.74
C7 C10 69.11±0.34 68.77±0.28 62.31±2.02
C10 C15 71.88±0.11 71.93±0.02 69.52±0.19
C7 C21 72.5±0.11 72.84±0.16 71.49±1.01
C7 C10 69.11±0.34 68.77±0.28 62.31±2.02
C7 C20 67.98±0.82 67.79±0.24 63.06±0.89

Table 7: Experiment Legend

Expt. Model Opt. Loss
E1 1-Layer MLP Adam BCE
E2 1-Layer MLP Adam MSE
E3 2-Layer MLP Adam BCE
E4 2-Layer MLP Adam MSE
E5 1-Layer MLP SGD BCE
E6 1-Layer MLP SGD MSE
E7 2-Layer MLP SGD BCE
E8 2-Layer MLP SGD MSE
E9 AutoInt Adam BCE
E10 AutoInt Adam MSE
E11 AutoInt SGD BCE

5Embedding Layer for categorical features, numerical features multiplied by trainable 16-dim vector
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6.2 CORRELATION OF DATASET CHARACTERISTICS WITH AUC SCORES

We compute the Pearson correlation between the AUC scores and the bag level statistics computed
in Sec. 5. These are visualised in Fig. 1. Some observations from these scores are:

1. Positive correlation with number of bags and number of instances. This is as expected
as each bag adds to the label information and each instance adds to feature information
available to the classifier.

2. Negative correlation with the mean bag size and percentile bag size thresholds. This is
intuitively consistent with larger bags having less label supervision (for the same label
proportion) than smaller bags, and typically the model performance would degrade when
the groupings have larger bags.

3. Negative correlation with the label proportion log likelihood. A lower log likelihood in-
dicates that labels proportions in the dataset are highly skewed. This means that those
groupings where the positive labels are concentrated in fewer bags have better training per-
formance. In this case, the bag grouping features provide significant supervision which the
model can leverage. We can infer the same from highly positive correlation with standard
deviation of label proportion.

4. Positive correlation with the InterIntraRatio. Higher ratio indicates a good separation
between the bags in input space. Hence, positive correlation indicates that models perform
better when bags are separable in input space. This can be explained as follows

– The distribution of label proportions are skewed as the maximum log-likelihood ex-
hibited is −3.26. Hence, substantial label information is present at the bag-level.

– If the InterIntraRatio is high, much of the discriminative information at the bag-level
lies in the input space itself. If the InterIntraRatio is low, most of this information is
in some latent space that the model needs to learn.

Figure 1: Correlation Heatmap

7 CONCLUSION

Our work conducts an in-depth study of the Criteo CTR dataset for use as a natural LLP dataset,
and provides LLP-Bench: a collection of LLP datasets from from the Criteo dataset as a benchmark
for evaluating LLP techniques. In this process, our work analyzes bag collections given by grouping
on at most two categorical features, based on their distribution of bags as well as label proportions.
We also adopt an evaluation methodology using which we train various models on an appropriately
filtered subset of groupings and demonstrate (as well explain) correlation of the model performance
with the computed statistics.

We believe our work addresses to a great extent the current lack of natural LLP benchmarks, and
provides LLP-Bench using which LLP techniques can be systematically evaluated.
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classifiers from label proportions. Pattern Recognit., 46(12):3425–3440, 2013.
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Appendix for:
A Benchmark Dataset for
Learning from Label Proportions
A PROOFS OF LEMMAS AND ALGORITHMS

A.1 PROOF OF LEMMA 2.4

Proof. From Def. 3.3, the non-negativity and symmetry properties are obvious.

Triangle Inequality : let B1, B2, B3 ∈ B, and we use the following notation for convenience:
B1 = {xi|i ∈ [n]}, B2 = {yj |j ∈ [m]}, B3 = {zk|k ∈ [l]}. As d is a metric, we know that for all
i ∈ [n], j ∈ [m] and k ∈ [l], d(xi, zk) ≤ d(xi, yj) + d(yj , zk). Hence,

d(xi, zk) ≤
Σj=m

j=1 d(xi, yj)

m
+

Σj=m
j=1 d(yj , zk)

m

⇒ Σi=n
i=1d(xi, zk)

n
≤

Σi=n
i=1Σj=m

j=1 d(xi, yj)

nm
+

Σj=m
j=1 d(yj , zk)

m

⇒ Σk=l
k=1Σi=n

i=1d(xi, zk)

ln
≤

Σi=n
i=1Σj=m

j=1 d(xi, yj)

nm
+

Σk=l
k=1Σj=m

j=1 d(yj , zk)

ml
⇒ BagSep(B1, B3, d) ≤ BagSep(B1, B2, d) + BagSep(B2, B3, d)
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A.2 PROOF OF LEMMA 2.7

Proof. Let B ∈ B. Using triangle inequality and symmetry from Lemma 2.4:

∀B′ ∈ B,BagSep(B,B, d) ≤ BagSep(B,B′, d) + BagSep(B′, B, d)

⇒ ∀B′ ∈ B,BagSep(B,B, d) ≤ 2BagSep(B′, B, d)

⇒ BagSep(B,B, d) ≤ 2
ΣB′∈B,B′ 6=BBagSep(B′, B, d)

|B| − 1

⇒ BagSep(B,B, d) ≤ 2InterBagSep(B, d)

⇒ InterBagSep(B, d)/BagSep(B,B, d) ≥ 1/2

The squared euclidean distance is not a metric as it follows all properties other than the triangle
inequality. Hence, we show the following

Lemma A.1. For any a, b ∈ Rn, 1
2 ||a+ b||22 ≤ ||a||22 + ||b||22

Theorem A.2. Given X , Y and B, for any B1, B2, B3 ∈ B
1
2BagSep(B1, B3, `

2
2) ≤ BagSep(B1, B2, `

2
2) + BagSep(B2, B3, `

2
2)

Proof. Follows by replacing triangle inequality in Lemma 2.4 with inequality in Lemma A.1

Corollary A.3. InterBagSep(B, `22)/BagSep(B,B, `22) ≥ 1/4

Proof. Follows by replacing inequality in proof of Lemma 2.7 with inequality in Theorem A.2

A.3 PROOF OF COROLLARY 2.8

Proof. Given X , Y and B, and metric d in Rn. Starting with inequality in Lemma 2.7

∀B ∈ B,BagSep(B,B, d) ≤ 2InterBagSep(B, d)

⇒ ΣB∈BBagSep(B,B, d) ≤ 2ΣB∈BInterBagSep(B, d)

⇒ 1

|B|
BagSep(B,B, d) ≤ 2

1

|B|
InterBagSep(B, d)

⇒ MeanInterBagSep(B, d)/MeanIntraBagSep(B, d) ≥ 1/2

Starting with inequality for `22-distance in Lemma 2.7, we get
MeanInterBagSep(B, `22)/MeanIntraBagSep(B, `22) ≥ 1/2

A.4 BAG DISTANCE RESULTS USING SQUARED EUCLIDEAN DISTANCE

We use the squared euclidean distance to compute the bag distances as it makes the computation
faster. Algorithm 1 is used to compute the Bag Separation for any general metric d.

Theorem A.4. Assuming the Bags to be disjoint, the running time of Algorithm 1 is O(m2n) where
m is the number of examples and n is the dimension of the input space.

Proof. Runtime = ΣB1∈BΣB2∈B|B1||B2|n = ΣB1∈B|B1|ΣB2∈B|B2|n = m2n

Now, this computation can be simplified due to the following lemma.

Lemma A.5. For any B,B′ ∈ B, BagSep(B,B′, `22) = AvgSqNorm(B) + AvgSqNorm(B′) −
2DotProduct(Mean(B),Mean(B′))

12
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Algorithm 1: Compute Bag Separation of a dataset
Data: Set of bags B, metric d on Rn

Result: BagSepMatrix(B, d)
BagSepMatrix← [0]|B|x|B|
for B1 ∈ B do

for B2 ∈ B do
for i ∈ B1 do

for j ∈ B2 do
BagSepMatrix[B1, B2]← BagSepMatrix[B1, B2] + d(x(i), x(j))

end
end
BagSepMatrix[B1, B2]← BagSepMatrix[B1, B2]/(|B1||B2|)

end
end

Proof. Let B = {xi|i ∈ [n]}, B′ = {yj |j ∈ [m]}

BagSep(B,B′, `22) =
1

mn
Σi=n

i=1Σj=m
j=1 ||xi − yj ||

2
2

⇒ BagSep(B,B′, `22) =
1

n
Σi=n

i=1 ||xi||22 +
1

m
Σj=m

j=1 ||yj ||
2
2 −

2

mn
Σi=n

i=1Σj=m
j=1 〈xi, yj〉

⇒ BagSep(B,B′, `22) =
1

n
Σi=n

i=1 ||xi||22 +
1

m
Σj=m

j=1 ||yj ||
2
2 −

2

mn
〈Σi=n

i=1xi,Σ
j=m
j=1 yj〉

Algorithm 2 is used to compute the Bag Separation for squared euclidean distance.

Algorithm 2: Compute Bag Separation with squared euclidean distance
Data: Set of bags B
Result: BagSepMatrix(B, `22)
BagSepMatrix← [0]|B|x|B|
AvgSqNorm← [0]|B|
BagMeans← [0]|B|xn
for B ∈ B do

for i ∈ B do
AvgSqNorm(B)← AvgSqNorm(B) + ||x(i)||22
BagMeans(B)← BagMeans(B) + x(i)

end
AvgSqNorm(B)← AvgSqNorm(B)/|B|
BagMeans(B)← BagMeans(B)/|B|

end
for B1 ∈ B do

for B2 ∈ B do
BagSepMatrix[B1, B2]←
AvgSqNorm[B1] +AvgSqNorm[B2]− 2DotProduct(BagMeans[B1],Bagmeans[B2])

end
end

Theorem A.6. Assuming the Bags to be disjoint, the running time of Algorithm 2 isO(mn+|B|2n+
|B|2) where m is the number of examples and n is the dimension of the input space.

Proof. Runtime = ΣB∈B|B|n+ ΣB1∈BΣB2∈B(1 + n) = mn+ |B|2n+ |B|2
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A.5 ADVERSARIAL EXAMPLE OF BAGS WITH RATIO OF MEAN INTER TO INTRA BAG
SEPARATION AS 1/2

Consider X = {x(1), x(2), x(3)} which lie on a straight line. The distances are as follows:

• d(x(1), x(2)) = d1

• d(x(2), x(3)) = d2

• d(x(1), x(3)) = d1 + d2

We have two bags B1 = {x(1), x(3)} and B2 = {x(2)}. The Intra-bag separations for both of them
are as follows:

• BagSep(B1, B1, d) = 1
22 (d(x(1), x(1)) + d(x(1), x(3)) + d(x(3), x(1)) + d(x(3), x(3))) =

1
2 (d1 + d2)

• BagSep(B2, B2, d) = 0

Hence, MeanIntraBagSep(B, d) = 1
4 (d1 + d2). Now, the bag separation between the bags is as

follows:

• BagSep(B1, B2, d) = 1
1×2 (d(x(1), x(2)) + d(x(3), x(2))) = 1

2 (d1 + d2)

• InterBagSep(B1, d) = 1
2−1 (BagSep(B1, B2, d)) = 1

2 (d1 + d2)

• InterBagSep(B2, d) = 1
2−1 (BagSep(B2, B1, d)) = 1

2 (d1 + d2)

Hence, MeanInterBagSep(B, d) = 1
2 (d1 + d2).

Hence, MeanInterBagSep(B, d)/MeanIntraBagSep(B, d) = 1/2

A.6 LLP MODEL TRAINING RESULTS

This table contains the AUC scores of all the experiments in Table 7. Each value represents the
mean AUC score in percentage across 5 splits which are created as mentioned in 6.1. The error is
the standard deviation of mean AUC scores across these 5 splits.

Table 8: AUC Scores obtained after different training configurations for all groupings

Col1 Col2 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11
C1 C7 74.88±0.04 74.95±0.03 74.76±0.04 74.78±0.03 65.88±0.1 64.19±0.1 66.84±0.25 64.88±0.21 69.94±0.62 69.81±0.47 65.03±0.8
C1 C10 73.64±0.05 73.67±0.05 73.6±0.06 73.61±0.04 65.03±0.11 63.43±0.1 65.55±0.22 63.97±0.23 70.4±0.17 70.23±0.18 61.98±0.38
C2 C7 75.63±0.02 75.63±0.02 75.42±0.04 75.44±0.03 68.74±0.1 67.34±0.1 69.33±0.09 67.99±0.17 70.76±0.11 70.42±0.16 67.2±1.0
C2 C10 74.45±0.04 74.43±0.04 74.3±0.04 74.29±0.05 67.98±0.1 66.85±0.14 68.57±0.14 67.41±0.08 70.23±0.32 70.27±0.13 66.88±0.85
C2 C11 75.56±0.02 75.58±0.02 75.42±0.02 75.42±0.02 68.44±0.06 67.09±0.13 68.99±0.15 67.62±0.19 69.55±0.24 69.48±0.41 65.66±0.41
C2 C13 75.23±0.04 75.23±0.03 75.06±0.03 75.08±0.04 68.04±0.07 66.75±0.13 68.57±0.21 67.21±0.12 68.81±0.23 68.88±0.42 64.51±1.74
C3 C7 76.93±0.02 76.95±0.02 76.7±0.01 76.7±0.02 70.85±0.1 69.65±0.06 71.31±0.12 70.22±0.14 72.4±0.19 72.7±0.11 71.4±1.05
C3 C10 75.88±0.04 75.87±0.04 75.64±0.04 75.62±0.02 70.01±0.11 69.02±0.12 70.49±0.05 69.47±0.14 72.43±0.09 72.36±0.11 70.04±0.39
C3 C11 77.09±0.02 77.08±0.05 76.8±0.04 76.79±0.06 70.88±0.05 69.74±0.06 71.39±0.06 70.18±0.17 72.61±0.23 72.68±0.16 71.56±0.27
C3 C13 76.95±0.04 76.92±0.03 76.68±0.03 76.61±0.03 70.57±0.06 69.47±0.09 71.05±0.03 69.85±0.09 72.23±0.3 72.43±0.35 71.74±0.88
C4 C7 76.98±0.02 76.99±0.03 76.73±0.04 76.73±0.02 71.11±0.06 70.02±0.08 71.57±0.16 70.53±0.18 72.71±0.13 72.8±0.16 71.23±0.6
C4 C10 76.31±0.03 76.31±0.03 76.06±0.03 76.06±0.05 70.59±0.08 69.6±0.09 71.06±0.06 69.99±0.08 72.72±0.1 72.63±0.06 69.94±0.4
C4 C11 76.77±0.02 76.76±0.02 76.49±0.05 76.47±0.02 70.69±0.09 69.63±0.09 71.3±0.09 70.04±0.13 72.57±0.28 72.58±0.19 71.34±0.51
C4 C13 76.6±0.02 76.59±0.01 76.32±0.02 76.3±0.02 70.44±0.11 69.26±0.09 70.89±0.09 69.85±0.07 72.32±0.07 72.22±0.15 71.35±0.91
C4 C15 75.51±0.02 75.47±0.03 74.9±0.07 74.85±0.06 68.66±0.05 67.69±0.09 69.07±0.12 68.06±0.23 71.13±0.3 71.41±0.23 66.68±0.61
C6 C7 73.56±0.04 73.61±0.04 73.41±0.04 73.4±0.04 64.8±0.05 62.87±0.25 65.57±0.13 63.81±0.12 68.23±0.33 68.26±0.48 62.62±1.64
C6 C10 72.89±0.04 72.9±0.05 72.79±0.04 72.81±0.05 65.01±0.08 62.88±0.31 65.49±0.16 63.84±0.44 69.84±0.24 69.75±0.22 63.3±1.28
C7 C8 74.55±0.02 74.58±0.03 74.41±0.02 74.41±0.04 65.17±0.16 63.35±0.24 66.12±0.17 64.27±0.13 68.87±0.3 68.96±0.37 64.87±0.58
C7 C10 73.49±0.03 73.5±0.02 73.35±0.03 73.31±0.03 64.32±0.16 62.66±0.17 65.23±0.27 63.2±0.19 69.11±0.34 68.77±0.28 62.31±2.02
C7 C12 76.87±0.04 76.88±0.03 76.62±0.06 76.64±0.03 70.74±0.09 69.6±0.21 71.37±0.1 70.02±0.12 72.48±0.11 72.74±0.15 70.85±0.42
C7 C14 74.66±0.05 74.68±0.05 74.46±0.05 74.48±0.06 66.92±0.14 65.18±0.11 67.52±0.12 65.84±0.12 68.9±0.56 68.74±0.51 65.31±0.99
C7 C15 76.89±0.03 76.89±0.03 76.67±0.02 76.64±0.04 71.0±0.04 69.89±0.07 71.65±0.11 70.35±0.09 72.5±0.06 72.51±0.21 70.6±0.29
C7 C16 76.89±0.03 76.91±0.03 76.66±0.03 76.66±0.05 70.98±0.05 69.83±0.13 71.41±0.08 70.31±0.22 72.61±0.11 72.72±0.14 70.95±0.18
C7 C18 76.56±0.03 76.55±0.03 76.34±0.05 76.31±0.04 70.4±0.1 69.31±0.07 70.85±0.05 69.75±0.15 71.87±0.16 71.86±0.07 70.06±0.44
C7 C20 74.43±0.06 74.46±0.06 74.28±0.05 74.28±0.08 64.65±0.12 63.09±0.2 65.21±0.2 63.64±0.1 67.98±0.82 67.79±0.24 63.06±0.89
C7 C21 76.89±0.04 76.91±0.03 76.64±0.04 76.67±0.06 70.87±0.08 69.76±0.18 71.48±0.05 70.38±0.13 72.5±0.11 72.84±0.16 71.49±1.01
C7 C24 76.38±0.04 76.35±0.03 76.11±0.03 76.04±0.06 70.39±0.05 69.28±0.17 70.74±0.12 69.78±0.09 72.3±0.16 72.18±0.06 70.9±0.87
C7 C26 75.45±0.02 75.42±0.04 75.14±0.03 75.11±0.04 69.64±0.07 68.4±0.11 70.0±0.04 68.97±0.12 71.23±0.04 71.14±0.08 69.27±0.4
C10 C12 75.91±0.04 75.9±0.04 75.67±0.04 75.66±0.04 70.04±0.07 69.1±0.1 70.44±0.08 69.4±0.11 72.43±0.32 72.31±0.17 70.52±0.22
C10 C14 73.59±0.04 73.6±0.04 73.53±0.04 73.48±0.05 66.77±0.1 65.36±0.18 67.27±0.09 65.86±0.26 69.69±0.29 69.64±0.19 65.08±0.73
C10 C15 75.76±0.04 75.75±0.04 75.58±0.05 75.56±0.04 70.07±0.05 68.83±0.11 70.63±0.08 69.51±0.17 71.88±0.11 71.93±0.02 69.52±0.19
C10 C16 76.03±0.02 76.03±0.03 75.76±0.03 75.77±0.04 70.2±0.09 69.25±0.06 70.79±0.06 69.66±0.1 72.48±0.13 72.44±0.11 70.24±0.56
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C10 C17 73.18±0.04 73.18±0.04 73.12±0.04 73.06±0.02 63.66±0.13 62.33±0.21 64.55±0.14 62.78±0.18 68.94±0.19 69.23±0.3 62.02±1.2
C10 C18 75.29±0.03 75.28±0.03 75.12±0.03 75.09±0.05 69.24±0.1 68.29±0.09 69.8±0.07 68.66±0.09 71.26±0.19 71.21±0.14 68.77±0.45
C10 C20 73.41±0.04 73.4±0.04 73.36±0.04 73.29±0.05 65.07±0.19 63.46±0.22 65.75±0.18 64.13±0.24 69.35±0.52 69.53±0.29 62.98±0.61
C10 C21 76.02±0.03 76.01±0.04 75.77±0.05 75.76±0.04 70.11±0.09 69.23±0.09 70.7±0.09 69.62±0.2 72.38±0.08 72.46±0.09 70.54±0.67
C10 C24 75.4±0.03 75.37±0.01 75.18±0.02 75.11±0.04 69.72±0.04 68.83±0.08 70.12±0.09 69.24±0.1 72.35±0.1 71.95±0.14 69.32±0.51
C10 C26 74.73±0.03 74.72±0.03 74.48±0.06 74.46±0.05 69.05±0.11 67.94±0.08 69.43±0.06 68.44±0.15 71.03±0.26 70.78±0.25 68.03±0.97
C11 C12 76.98±0.05 76.98±0.03 76.71±0.04 76.72±0.03 70.72±0.09 69.57±0.1 71.37±0.14 69.96±0.15 72.59±0.13 72.65±0.13 71.47±0.18
C11 C15 76.85±0.02 76.83±0.01 76.61±0.01 76.66±0.04 70.76±0.08 69.68±0.08 71.37±0.1 70.1±0.09 72.39±0.11 72.32±0.16 71.1±0.42
C11 C16 76.87±0.03 76.86±0.04 76.6±0.02 76.59±0.03 70.81±0.08 69.65±0.06 71.39±0.03 70.08±0.06 72.69±0.3 72.51±0.11 71.53±0.58
C11 C18 76.54±0.05 76.55±0.06 76.33±0.05 76.33±0.04 70.24±0.09 69.05±0.11 70.68±0.11 69.46±0.09 71.69±0.17 71.78±0.14 70.3±0.78
C11 C21 77.0±0.02 76.99±0.01 76.73±0.02 76.72±0.02 70.92±0.09 69.73±0.11 71.48±0.1 70.28±0.16 72.71±0.17 72.78±0.18 72.04±1.24
C11 C24 76.31±0.03 76.27±0.03 76.01±0.04 75.93±0.04 70.15±0.07 69.09±0.08 70.57±0.07 69.46±0.09 72.07±0.14 72.15±0.19 70.98±0.44
C11 C26 75.89±0.03 75.86±0.04 75.6±0.05 75.58±0.04 69.85±0.07 68.67±0.29 70.37±0.11 69.25±0.09 71.24±0.16 71.42±0.1 69.18±0.39
C12 C13 76.83±0.04 76.82±0.05 76.55±0.05 76.54±0.04 70.4±0.05 69.41±0.06 71.0±0.08 69.71±0.1 72.01±0.16 72.38±0.07 71.26±0.42
C13 C15 76.82±0.02 76.8±0.02 76.61±0.03 76.57±0.04 70.58±0.06 69.44±0.15 71.03±0.12 69.91±0.1 71.99±0.11 72.04±0.2 70.7±0.3
C13 C16 76.71±0.02 76.71±0.02 76.44±0.05 76.42±0.02 70.51±0.07 69.42±0.09 71.06±0.14 69.86±0.15 72.36±0.21 72.24±0.12 72.07±0.53
C13 C18 76.33±0.03 76.32±0.04 76.11±0.02 76.11±0.04 69.99±0.1 68.8±0.11 70.41±0.07 69.17±0.1 71.18±0.13 71.38±0.19 68.88±0.66
C13 C21 76.83±0.02 76.83±0.02 76.57±0.02 76.56±0.02 70.57±0.03 69.47±0.09 71.06±0.15 69.82±0.07 72.32±0.12 72.46±0.14 71.5±0.23
C13 C24 76.13±0.03 76.09±0.02 75.81±0.02 75.8±0.02 69.89±0.02 68.91±0.07 70.2±0.06 69.29±0.12 71.94±0.11 71.77±0.13 70.35±0.41
C13 C26 75.96±0.02 75.92±0.03 75.68±0.05 75.59±0.04 69.85±0.07 68.47±0.15 70.29±0.05 69.13±0.19 71.53±0.14 71.34±0.19 69.16±0.61

A.7 INSTANCE-LEVEL MODEL TRAINING RESULTS

We perform all the experiments mentioned in 7 on instance-level data. The process remains similar
for different configurations as described in Sec. 6.1. We perform a train-test spilt of 80:20 on the
dataset. We then train using instance level mini-batch gradient descent for the same number of
epochs, using the same optimizer, model, learning rate schedule and the instance-level variant of
the loss function. We again report the AUC scores as described in Sec. 6.1.

Table 9: AUC scores obtained by instance level training on Criteo

Experiment Model Optimizer Loss Function AUC Score
E1 1-Layer MLP Adam BCE 79.23
E2 1-Layer MLP Adam MSE 79.2
E3 2-Layer MLP Adam BCE 80.1
E4 2-Layer MLP Adam MSE 79.94
E5 1-Layer MLP SGD BCE 80.7
E6 1-Layer MLP SGD MSE 80.54
E7 2-Layer MLP SGD BCE 79.17
E8 2-Layer MLP SGD MSE 80.56
E9 AutoInt Adam BCE 80.66
E10 AutoInt Adam MSE 80.7
E11 AutoInt Adam MSE 79.02
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A.8 BAG LEVEL STATISTICS

The bag level statistics for all 349 groupings is as follows. The Groupings which are emboldened
pass our filters and are used for training.

Table 10: Bag Level Statistics of all the Groupings (Emboldened : Used for Training)

Col1 Col2 No. Bags Created No. of bags left
after clipping

Percentage of Inst.
left after clipping Mean Bag size Standard Deviation

of Bag sizes
C1 - 1443 1261 0.7 256.16 386.61
C3 - 175781 39052 18.42 216.17 316.89
C4 - 128509 38802 21.68 256.11 359.9
C7 - 11930 7839 12.39 724.69 636.25
C8 - 629 531 0.34 295.24 446.88
C10 - 41224 20252 17.01 384.92 482.64
C11 - 5160 2519 4.57 832.04 683.76
C12 - 174835 39444 18.79 218.32 318.82
C13 - 3175 1221 2.98 1120.01 684.56
C15 - 11254 6514 7.28 512.67 569
C16 - 165206 40109 20.06 229.24 334.09
C18 - 4605 2623 3.32 580.78 607.85
C19 - 2017 1300 1.99 701.55 651.27
C21 - 172322 39781 19.28 222.14 322.1
C24 - 56456 21694 14.66 309.88 421.33
C26 - 43356 17702 11.57 299.58 404.4
C1 C2 144029 11999 9.12 348.43 463.68
C1 C3 1986996 47251 22.36 216.96 318.6
C1 C4 1807068 58010 28.87 228.13 328.8
C1 C5 4852 4274 2.27 243.02 370.43
C1 C6 9950 2075 1.53 337.95 461.16
C1 C7 724000 55937 37.91 310.69 417.54
C1 C8 6577 5828 2.95 232.16 362.12
C1 C9 3005 1501 0.86 261.47 391.39
C1 C10 1034267 55528 32.44 267.81 374.19
C1 C11 421601 38117 27.5 330.67 441.68
C1 C12 1998608 48523 23.07 217.95 320.44
C1 C13 334925 32966 24.27 337.48 448.48
C1 C14 16449 2503 1.87 341.7 462.37
C1 C15 614530 39530 26.63 308.8 418.5
C1 C16 1992989 52671 25.52 222.14 324.99
C1 C17 12199 2245 1.7 346.25 460.77
C1 C18 365498 25570 18.07 324.03 435.59
C1 C19 144901 10476 7.18 314.3 423.13
C1 C20 5772 1732 1.26 332.59 460.3
C1 C21 2003740 50168 23.93 218.63 320.6
C1 C22 7269 1895 1.18 285.31 422.19
C1 C23 13043 2353 1.76 343.42 465.82
C1 C24 1062954 44816 24.81 253.74 359.8
C1 C25 23208 3126 2.34 342.44 458.17
C1 C26 816802 34315 18.37 245.35 349.16
C2 C3 645467 40900 19.63 219.98 321.84
C2 C4 588748 44692 24.03 246.51 351.32
C2 C5 41463 5606 4.9 400.34 505.1
C2 C6 4834 1907 2.85 684.3 653.76
C2 C7 444591 78261 48.74 285.51 377.68
C2 C8 73020 7884 6.42 373.27 480.22
C2 C10 945374 75614 41.23 249.98 345.32
C2 C11 221445 53308 39.09 336.11 431.53
C2 C12 649357 41375 19.97 221.23 322.15
C2 C13 162788 45206 34.87 353.59 446.07
C2 C14 2102 850 1.53 824.67 693.24
C2 C15 11390 6516 7.28 512.53 568.97
C2 C16 664651 43198 21.66 229.8 334.93
C2 C17 4855 2646 3.93 681.16 614.67
C2 C18 4631 2624 3.32 580.59 607.81
C2 C19 43411 10084 7.49 340.45 449.13
C2 C21 658369 42128 20.57 223.84 325.78
C2 C22 4337 1579 1.96 567.74 610.32
C2 C23 5080 2523 3.49 633.74 611.09
C2 C24 344266 31123 19.15 282.09 397.8
C2 C25 5228 1275 1.32 475.44 564.53
C2 C26 247348 24100 14.25 271.12 381.53
C3 C4 247003 55817 26.21 215.23 310.73
C3 C5 1114179 43934 20.88 217.81 318.81
C3 C6 844001 43641 20.62 216.6 316.98
C3 C7 7358757 80788 37.88 214.92 310.29
C3 C8 1438370 45282 21.51 217.78 319.66
C3 C9 309182 40293 19.2 218.42 320.38
C3 C10 7699949 71467 32 205.27 300.03
C3 C11 5826125 73331 35.78 223.64 324.41
C3 C12 187130 39997 18.82 215.65 316.49
C3 C13 5313650 70587 34.78 225.86 328.16
C3 C14 413784 40592 19.43 219.46 322.47
C3 C15 1076734 48427 26.22 248.23 363.96
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C3 C16 228945 48449 21.91 207.32 303.14
C3 C17 1082770 45864 22.1 220.88 325.63
C3 C18 726224 43469 22.2 234.16 346.86
C3 C19 483684 41188 19.99 222.47 327.54
C3 C20 346464 39600 18.8 217.58 316.56
C3 C21 205311 42537 19.54 210.52 309.43
C3 C22 561157 41869 19.95 218.46 323.34
C3 C23 898234 44976 21.41 218.17 318.12
C3 C24 229746 54447 27.12 228.34 329.83
C3 C25 352479 40796 19.45 218.52 318.79
C3 C26 406506 53753 26.8 228.57 329.43
C4 C5 955570 51305 26.41 235.97 336.72
C4 C6 649962 53352 27.1 232.83 332.09
C4 C7 7408443 103144 43.82 194.74 275.28
C4 C8 1264446 54197 27.55 233.03 334.98
C4 C9 230748 42003 22.99 250.9 353.24
C4 C10 8060081 86205 36.08 191.88 273.47
C4 C11 5628943 96009 44.42 212.1 299.69
C4 C12 245809 55816 26.26 215.67 311.09
C4 C13 5060557 93015 43.86 216.13 306.73
C4 C14 311943 47208 24.98 242.56 342.57
C4 C15 969150 56468 31.06 252.18 360.88
C4 C16 230280 49211 23.8 221.65 323.65
C4 C17 825745 56219 28.55 232.81 334.87
C4 C18 628441 47904 26.35 252.14 360.8
C4 C19 682269 44217 23.23 240.81 343.11
C4 C20 262150 43501 23.37 246.24 347.36
C4 C21 242560 54642 25.65 215.17 309.81
C4 C22 436550 46518 24.77 244.09 348.14
C4 C23 686712 54106 27.73 234.96 333.37
C4 C24 177482 45078 24.31 247.24 350.87
C4 C25 259638 43224 23.8 252.44 356.34
C4 C26 325526 49851 26.9 247.37 351.63
C5 C6 2260 579 0.51 401.17 511.77
C5 C7 290810 37354 29.42 360.98 463.2
C5 C8 2870 2486 1.44 265.84 406.85
C5 C10 480175 42678 27.35 293.75 398.83
C5 C11 159530 22921 19.1 381.99 488.02
C5 C12 1116548 44853 21.39 218.6 318.78
C5 C13 122621 18931 16.14 390.76 494.88
C5 C14 3934 780 0.68 399.88 504.78
C5 C15 235816 25697 19.44 346.74 454.78
C5 C16 1096716 47775 23.45 224.99 326.23
C5 C17 2619 649 0.57 403.67 512.2
C5 C18 128596 15061 12.02 366 472.77
C5 C19 53803 6342 5.04 364.25 467.44
C5 C21 1114287 46016 22.18 220.94 321.83
C5 C23 2904 698 0.62 404.87 524.76
C5 C24 517424 36088 21.14 268.51 375.4
C5 C25 5983 1066 0.91 390.25 492.66
C5 C26 401151 28221 16.01 260.12 365.26
C6 C7 82996 38449 35.84 427.31 492.33
C6 C8 4482 1006 0.82 371.25 477.59
C6 C10 235940 46981 31.8 310.24 411.03
C6 C11 38136 18249 21.92 550.51 575.83
C6 C12 840420 44685 21.2 217.45 318.9
C6 C13 25706 13586 17.92 604.75 595.34
C6 C15 70477 21774 19.65 413.78 509.4
C6 C16 808500 47935 23.52 224.89 324.94
C6 C18 31408 10996 10.79 449.9 531.49
C6 C19 14898 6625 6.02 416.53 489.81
C6 C21 833932 46083 21.94 218.28 317.68
C6 C24 301823 37787 22.33 270.9 377.4
C6 C26 238487 30115 17.26 262.65 372.55
C7 C8 436540 45042 33.37 339.57 446.24
C7 C9 11932 7842 12.4 724.75 636.39
C7 C10 238182 56575 40.52 328.31 428.64
C7 C11 17182 10090 14.47 657.49 620.35
C7 C12 7437839 84716 39.24 212.34 304.78
C7 C13 12348 7840 12.39 724.6 636.25
C7 C14 91450 38685 34.97 414.38 491.63
C7 C15 2885460 123209 53.78 200.1 280.57
C7 C16 7589473 94444 41.84 203.06 287.73
C7 C17 40660 21577 24.25 515.12 550.29
C7 C18 1770225 104806 51.31 224.44 314.1
C7 C19 1417980 41919 29.7 324.83 446.6
C7 C20 47371 30420 31.85 479.96 523.93
C7 C21 7515688 88970 40.43 208.31 297.62
C7 C22 70043 24036 23.42 446.7 517.49
C7 C23 69312 24818 23.79 439.47 519.91
C7 C24 5036272 103413 46.89 207.86 294.56
C7 C25 166138 26949 25.82 439.26 523.34
C7 C26 3804785 71088 35.56 229.28 335.78
C8 C9 1331 666 0.44 301.59 445.21
C8 C10 672470 48179 29.58 281.42 386.29
C8 C11 246919 28835 22.65 360.15 468.25
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C8 C12 1443335 46342 22.08 218.43 319.62
C8 C13 192815 24342 19.56 368.4 476.4
C8 C14 7603 1321 1.05 364.99 472.07
C8 C15 360202 31235 22.42 329.01 437.19
C8 C16 1426019 49809 24.34 224 325.98
C8 C17 5354 1163 0.95 374.7 489.44
C8 C18 204516 19086 14.39 345.67 453.35
C8 C19 83464 7972 5.88 338.4 444.15
C8 C20 2516 798 0.63 360.99 467.7
C8 C21 1442803 47665 22.87 219.92 320.34
C8 C22 3359 901 0.65 330.91 475.51
C8 C23 5847 1206 0.99 376.07 492.87
C8 C24 709532 39791 22.66 261.1 366.7
C8 C25 11146 1738 1.41 371.65 483.72
C8 C26 548366 30787 17.03 253.52 358.22
C9 C10 57586 23958 19.2 367.44 466.48
C9 C11 6317 3221 5.71 812.21 679.5
C9 C12 307826 40753 19.57 220.16 321.14
C9 C13 4085 1765 3.98 1033.66 690.28
C9 C15 22903 10022 10.06 459.94 537.52
C9 C16 293126 42011 20.92 228.26 332.12
C9 C18 9681 4547 5.06 509.69 566.6
C9 C19 4237 2214 2.6 538.05 582.85
C9 C21 304213 41192 20.05 223.11 322.92
C9 C24 104354 25184 16.51 300.58 411.1
C9 C26 79650 20247 12.76 288.85 394.88
C10 C11 91642 33364 27.97 384.27 480.8
C10 C12 7813021 73831 32.78 203.52 296.05
C10 C13 70927 29424 24.97 389.02 485.56
C10 C14 265775 47774 32.11 308.12 412
C10 C15 3893598 102841 44.66 199.07 283.28
C10 C16 8081277 79973 34.12 195.6 280.63
C10 C17 212092 44463 30.74 316.96 419.23
C10 C18 2524716 90181 42.31 215.05 305.56
C10 C19 1736492 48288 28.12 266.92 378.75
C10 C20 160915 41714 30 329.68 433.6
C10 C21 7935189 76455 33.32 199.78 288.52
C10 C22 169631 33712 24.05 327.08 430.99
C10 C23 196907 38464 27.12 323.17 423.14
C10 C24 5740783 87116 38.29 201.48 285.8
C10 C25 283759 37913 26.43 319.56 425.56
C10 C26 4449999 65658 31.38 219.1 319.86
C11 C12 5873140 76545 37.53 224.75 324.16
C11 C13 5460 2521 4.57 830.67 683.58
C11 C14 40358 19527 21.42 502.94 556.55
C11 C15 1847996 110386 53.39 221.71 306.51
C11 C16 5919824 85995 41.47 221.08 315.6
C11 C17 31753 16992 20.57 554.93 576.07
C11 C18 1088147 87394 47.51 249.22 344.12
C11 C19 947216 31892 20.29 291.63 426.76
C11 C20 20474 12946 18.01 637.83 604.71
C11 C21 5913565 80683 39.4 223.86 322.08
C11 C22 33530 12068 13.13 498.66 559.33
C11 C23 30567 13330 13.9 478.04 553.47
C11 C24 3654197 91578 45.3 226.75 319.09
C11 C25 91831 14952 14.43 442.27 545.98
C11 C26 2775118 63466 31.4 226.78 329.92
C12 C13 5350294 73654 36.56 227.52 329.06
C12 C14 410926 41573 19.85 218.85 320.3
C12 C15 1078982 49466 26.56 246.12 361.67
C12 C16 227478 48044 21.84 208.34 304.65
C12 C17 1078501 46908 22.61 220.91 324.81
C12 C18 728462 44143 22.46 233.28 344.19
C12 C19 489684 41677 20.36 223.94 329.07
C12 C20 346040 40127 19.11 218.34 316.26
C12 C21 201953 41802 19.51 213.92 313.62
C12 C22 559523 42652 20.45 219.76 324.27
C12 C23 894488 46019 21.95 218.66 318.19
C12 C24 228628 54766 27.35 228.93 329.94
C12 C25 351278 41326 19.84 220.07 319.52
C12 C26 406749 54177 27.06 229 329.34
C13 C14 26418 14778 17.58 545.39 576.63
C13 C15 1541997 103804 52.44 231.6 320.76
C13 C16 5369689 82839 40.64 224.87 321.63
C13 C17 21711 13065 17.24 605.06 594.38
C13 C18 891380 80044 45.09 258.23 354.54
C13 C19 814645 29681 18.26 282.07 416.78
C13 C20 12667 8879 14.33 740 625.94
C13 C21 5379799 77621 38.45 227.05 327.39
C13 C22 23085 8892 10.41 536.5 583.78
C13 C23 20835 10425 11.47 504.4 567.35
C13 C24 3231274 87527 44.17 231.32 326.29
C13 C25 69825 11776 11.75 457.51 559.89
C13 C26 2466154 61128 30.4 227.99 332.29
C14 C15 11281 6532 7.31 512.76 568.76
C14 C16 393993 44415 22.19 229.03 332.96
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C14 C18 9799 5079 6.02 543.16 584.07
C14 C19 20339 6913 5.89 390.4 477.7
C14 C21 409726 42492 20.66 222.92 322.38
C14 C24 150980 30844 19.48 289.49 392.99
C14 C26 113197 23964 14.63 279.87 386.91
C15 C16 1092948 53050 28.67 247.75 359.24
C15 C17 90598 28410 24.63 397.42 493.15
C15 C18 12255 6521 7.29 512.29 568.84
C15 C19 186732 25897 18.35 324.82 434.28
C15 C20 12824 7268 8.37 528.03 581.62
C15 C21 1093512 50874 27.26 245.6 359.28
C15 C22 56802 15626 14.28 418.99 513.2
C15 C23 79514 22941 19.83 396.22 489.02
C15 C24 591651 43783 27.07 283.46 394.29
C15 C25 29235 9819 9.98 466.04 541.56
C15 C26 431970 36836 23.9 297.37 411.98
C16 C17 1028310 50610 24.88 225.31 328.36
C16 C18 727988 46323 24.31 240.57 350.21
C16 C19 592668 42843 21.45 229.46 335.21
C16 C20 331688 42038 20.78 226.66 327.87
C16 C21 220892 45463 21.16 213.33 311.16
C16 C22 535479 44618 22.28 228.89 334.42
C16 C23 852691 49312 24.22 225.11 323.37
C16 C24 218175 53197 26.54 228.67 330.42
C16 C25 337787 42815 21.46 229.76 332.85
C16 C26 388938 53940 27.25 231.58 334.5
C17 C18 38523 14374 13.84 441.28 518.96
C17 C19 17150 7252 5.98 378.04 462.68
C17 C21 1065077 48331 23.37 221.64 325.22
C17 C24 383364 41263 24.18 268.65 376.64
C17 C26 293309 31763 17.97 259.39 366.12
C18 C19 59982 13650 11.21 376.48 484.6
C18 C20 5016 2769 3.57 590.95 613.21
C18 C21 734247 45194 23.09 234.21 343.82
C18 C22 25833 7794 7.63 448.62 531.88
C18 C23 36318 12199 11.79 442.94 518.85
C18 C24 361722 33658 21.14 287.85 403.88
C18 C25 11302 3962 4.47 516.88 575.34
C18 C26 252997 26993 17.63 299.37 414.88
C19 C20 5946 3305 3.68 510.17 546.43
C19 C21 515626 42198 20.78 225.76 329.07
C19 C22 12243 3893 3.69 434.23 512.33
C19 C23 18121 6530 5.64 395.95 478.38
C19 C24 513765 30953 18.5 273.92 386.6
C19 C25 31248 7260 5.92 374.09 483.47
C19 C26 519124 25569 14.06 252.04 357.66
C20 C21 342773 40942 19.74 220.99 319.39
C20 C24 122667 27766 17.58 290.31 397.66
C20 C26 79271 21542 13.37 284.52 390.22
C21 C22 553344 43555 21.03 221.35 324.7
C21 C23 885098 47266 22.74 220.57 319.3
C21 C24 225892 54751 27.33 228.84 327.83
C21 C25 348750 42006 20.41 222.77 322.11
C21 C26 403280 54611 27.32 229.35 329.42
C22 C24 207779 29960 18.7 286.2 396.64
C22 C26 162373 23738 14.33 276.8 383.56
C23 C24 326117 38494 22.7 270.28 373.29
C23 C26 246190 29727 17.06 263.12 365.1
C24 C25 141933 26882 17.68 301.46 413.97
C24 C26 193330 30432 20.05 302.07 412.59
C25 C26 96107 21524 13.86 295.26 402.75
C2 - 554 130 0.29 1012.17 693.33
C5 - 305 238 0.17 328.15 449.85
C6 - 19 5 0.01 918.6 709.03
C14 - 27 2 0 1095 562
C17 - 10 1 0 1292 0
C22 - 18 5 0 193.4 155.81
C23 - 15 1 0 62 0
C25 - 86 24 0.02 304.54 269.11
C2 C9 1287 452 0.76 766.81 682.5
C2 C20 787 189 0.37 904.18 672.73
C5 C9 654 312 0.24 349.6 474.05
C5 C20 1220 441 0.39 403.24 526.74
C5 C22 1713 471 0.37 360.37 478.7
C6 C9 48 16 0.02 580.5 548.02
C6 C14 304 89 0.11 579.75 678.32
C6 C17 164 44 0.03 317.89 332.98
C6 C20 75 24 0.03 534.54 546.47
C6 C22 111 27 0.04 593.22 587.68
C6 C23 208 50 0.06 528.42 527.49
C6 C25 711 186 0.26 631.13 649.91
C9 C14 68 18 0.03 790.28 749.69
C9 C17 28 10 0.02 893.8 730.07
C9 C20 12 3 0.01 1145.33 535.07
C9 C22 46 10 0.01 548.9 454.85
C9 C23 40 11 0.02 672.18 709.77
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C9 C25 206 57 0.07 580.17 655.06
C14 C17 238 79 0.17 966.99 656.28
C14 C20 80 13 0.02 624.23 582.95
C14 C22 294 96 0.13 641.21 680.65
C14 C23 197 61 0.11 827.28 746.54
C14 C25 744 214 0.27 577.49 595
C17 C20 40 4 0 323 128.08
C17 C22 153 34 0.04 530.21 477.38
C17 C23 135 23 0.02 480.09 573.73
C17 C25 719 194 0.31 738.04 703.07
C20 C22 67 13 0.03 899.38 755.05
C20 C23 55 5 0.01 1095.6 398.26
C20 C25 251 61 0.09 648.51 730.95
C22 C23 192 46 0.06 634.89 603.13
C22 C25 592 174 0.2 522.01 557.59
C23 C25 809 210 0.28 614.03 636.39

A.9 BAG SIZES TO ACHIEVE 50, 70, 85, 95 PERCENTILE OF BAGS

This table contains the threshold bags sizes such that t% of the bags have at most that size, for
t = 50, 70, 85, 95 for all 349 groupings (removing groupings which were left with no bags after
clipping). We perform K-Means of 308 of these groupings that have more than 500 bags after
clipping. The cluster assigned to each bag is also listed.

Table 11: Threshold bag size values below which 50, 70, 85, 95% of bags present and clustering
based on this distribution

Col1 Col2 Bag size below
which 50% bags

Bag size below
which 70% bags

Bag size below
which 85% bags

Bag size below
which 95% bags

Clusters assigned on
bag size distribution

C1 - 70 210 420 1130 Very Short-tailed
C3 - 101 172 335 812 Very Short-tailed
C4 - 117 212 430 1019 Very Short-tailed
C7 - 502 951 1499 2076 Very Long-tailed
C8 - 110 210 510 1383 Short-tailed
C10 - 175 365 764 1533 Short-tailed
C11 - 637 1155 1699 2194 Very Long-tailed
C12 - 103 175 341 821 Very Short-tailed
C13 - 1044 1498 1976 2349 Very Long-tailed
C15 - 264 564 1121 1829 Long-tailed
C16 - 106 184 364 890 Very Short-tailed
C18 - 327 697 1271 1983 Long-tailed
C19 - 456 917 1454 2153 Very Long-tailed
C21 - 104 180 352 835 Very Short-tailed
C24 - 136 264 559 1279 Short-tailed
C26 - 136 256 538 1203 Short-tailed
C1 C2 151 308 671 1455 Short-tailed
C1 C3 103 171 335 825 Very Short-tailed
C1 C4 108 184 361 872 Very Short-tailed
C1 C5 70 190 415 1050 Very Short-tailed
C1 C6 142 286 647 1449 Short-tailed
C1 C7 140 271 569 1270 Short-tailed
C1 C8 70 140 361 1010 Very Short-tailed
C1 C9 91 197 449 1168 Very Short-tailed
C1 C10 122 224 454 1068 Very Short-tailed
C1 C11 145 290 624 1374 Short-tailed
C1 C12 103 172 338 829 Very Short-tailed
C1 C13 148 299 643 1397 Short-tailed
C1 C14 142 289 633 1461 Short-tailed
C1 C15 137 265 566 1267 Short-tailed
C1 C16 104 176 347 854 Very Short-tailed
C1 C17 151 302 655 1443 Short-tailed
C1 C18 142 281 606 1333 Short-tailed
C1 C19 140 272 575 1292 Short-tailed
C1 C20 138 277 645 1419 Short-tailed
C1 C21 103 174 339 830 Very Short-tailed
C1 C22 109 224 525 1247 Short-tailed
C1 C23 142 293 652 1456 Short-tailed
C1 C24 116 209 422 1006 Very Short-tailed
C1 C25 148 297 658 1417 Short-tailed
C1 C26 114 200 404 964 Very Short-tailed
C2 C3 102 176 344 837 Very Short-tailed
C2 C4 112 201 404 984 Very Short-tailed
C2 C5 175 377 816 1622 Short-tailed
C2 C6 419 878 1499 2112 Very Long-tailed
C2 C7 136 253 503 1102 Very Short-tailed
C2 C8 164 344 742 1523 Short-tailed
C2 C10 119 210 420 957 Very Short-tailed
C2 C11 157 311 637 1329 Short-tailed
C2 C12 103 177 347 842 Very Short-tailed
C2 C13 165 334 688 1398 Short-tailed
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C2 C14 613 1139 1701 2229 Very Long-tailed
C2 C15 264 564 1121 1829 Long-tailed
C2 C16 105 183 364 903 Very Short-tailed
C2 C17 479 855 1413 2010 Very Long-tailed
C2 C18 327 696 1271 1983 Long-tailed
C2 C19 151 304 630 1413 Short-tailed
C2 C21 104 180 353 853 Very Short-tailed
C2 C22 304 664 1245 2019 Long-tailed
C2 C23 395 788 1351 1992 Long-tailed
C2 C24 124 232 484 1171 Very Short-tailed
C2 C25 210 506 1041 1813 Long-tailed
C2 C26 122 224 458 1089 Very Short-tailed
C3 C4 103 175 335 803 Very Short-tailed
C3 C5 103 174 336 819 Very Short-tailed
C3 C6 102 170 334 837 Very Short-tailed
C3 C7 103 173 334 804 Very Short-tailed
C3 C8 103 173 336 832 Very Short-tailed
C3 C9 102 175 341 827 Very Short-tailed
C3 C10 100 164 312 753 Very Short-tailed
C3 C11 105 179 351 853 Very Short-tailed
C3 C12 101 172 334 810 Very Short-tailed
C3 C13 106 180 357 864 Very Short-tailed
C3 C14 103 175 337 836 Very Short-tailed
C3 C15 109 193 402 1030 Very Short-tailed
C3 C16 100 166 316 764 Very Short-tailed
C3 C17 103 175 344 846 Very Short-tailed
C3 C18 104 183 371 950 Very Short-tailed
C3 C19 102 175 350 858 Very Short-tailed
C3 C20 103 175 340 820 Very Short-tailed
C3 C21 100 167 322 786 Very Short-tailed
C3 C22 102 172 338 837 Very Short-tailed
C3 C23 103 174 340 834 Very Short-tailed
C3 C24 107 185 364 875 Very Short-tailed
C3 C25 103 175 339 826 Very Short-tailed
C3 C26 107 185 365 877 Very Short-tailed
C4 C5 110 192 382 912 Very Short-tailed
C4 C6 110 190 373 895 Very Short-tailed
C4 C7 100 161 296 685 Very Short-tailed
C4 C8 109 188 372 895 Very Short-tailed
C4 C9 116 207 418 987 Very Short-tailed
C4 C10 97 157 290 669 Very Short-tailed
C4 C11 104 174 333 780 Very Short-tailed
C4 C12 103 175 337 804 Very Short-tailed
C4 C13 106 177 341 800 Very Short-tailed
C4 C14 114 200 397 945 Very Short-tailed
C4 C15 114 203 417 1030 Very Short-tailed
C4 C16 104 177 349 843 Very Short-tailed
C4 C17 110 189 374 892 Very Short-tailed
C4 C18 114 205 413 1020 Very Short-tailed
C4 C19 111 196 392 953 Very Short-tailed
C4 C20 114 202 407 965 Very Short-tailed
C4 C21 103 175 337 793 Very Short-tailed
C4 C22 113 199 400 964 Very Short-tailed
C4 C23 110 192 384 904 Very Short-tailed
C4 C24 113 202 408 976 Very Short-tailed
C4 C25 116 208 418 1012 Very Short-tailed
C4 C26 114 202 406 983 Very Short-tailed
C5 C6 176 358 821 1641 Short-tailed
C5 C7 163 331 702 1465 Short-tailed
C5 C8 70 210 470 1210 Very Short-tailed
C5 C10 133 253 523 1192 Short-tailed
C5 C11 169 356 765 1556 Short-tailed
C5 C12 103 174 338 825 Very Short-tailed
C5 C13 173 368 791 1582 Short-tailed
C5 C14 179 373 825 1638 Short-tailed
C5 C15 153 310 667 1416 Short-tailed
C5 C16 105 180 355 860 Very Short-tailed
C5 C17 180 392 789 1699 Short-tailed
C5 C18 162 334 720 1498 Short-tailed
C5 C19 162 339 712 1506 Short-tailed
C5 C21 104 177 344 833 Very Short-tailed
C5 C23 174 367 821 1705 Short-tailed
C5 C24 122 223 459 1093 Very Short-tailed
C5 C25 173 372 772 1589 Short-tailed
C5 C26 119 215 440 1034 Very Short-tailed
C6 C7 222 443 854 1600 Short-tailed
C6 C8 165 343 729 1534 Short-tailed
C6 C10 144 271 567 1246 Short-tailed
C6 C11 310 640 1172 1872 Long-tailed
C6 C12 102 171 335 839 Very Short-tailed
C6 C13 367 728 1274 1944 Long-tailed
C6 C15 190 400 837 1645 Short-tailed
C6 C16 106 180 355 872 Very Short-tailed
C6 C18 217 464 937 1730 Long-tailed
C6 C19 211 422 822 1578 Short-tailed
C6 C21 103 173 338 840 Very Short-tailed
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C6 C24 124 228 459 1091 Very Short-tailed
C6 C26 119 216 436 1066 Very Short-tailed
C7 C8 153 303 646 1383 Short-tailed
C7 C9 502 951 1499 2076 Very Long-tailed
C7 C10 151 296 613 1316 Short-tailed
C7 C11 419 832 1392 2019 Very Long-tailed
C7 C12 103 173 329 787 Very Short-tailed
C7 C13 502 951 1499 2076 Very Long-tailed
C7 C14 205 417 833 1577 Short-tailed
C7 C15 103 168 306 696 Very Short-tailed
C7 C16 102 168 311 727 Very Short-tailed
C7 C17 284 581 1076 1791 Long-tailed
C7 C18 110 188 360 830 Very Short-tailed
C7 C19 133 273 619 1384 Short-tailed
C7 C20 261 523 977 1703 Long-tailed
C7 C21 103 171 321 761 Very Short-tailed
C7 C22 223 467 929 1670 Long-tailed
C7 C23 210 450 918 1676 Long-tailed
C7 C24 104 172 322 748 Very Short-tailed
C7 C25 209 450 916 1700 Long-tailed
C7 C26 106 181 364 887 Very Short-tailed
C8 C9 121 220 596 1443 Short-tailed
C8 C10 128 238 491 1132 Very Short-tailed
C8 C11 159 326 705 1486 Short-tailed
C8 C12 104 174 339 833 Very Short-tailed
C8 C13 162 337 727 1516 Short-tailed
C8 C14 156 348 719 1505 Short-tailed
C8 C15 146 288 619 1350 Short-tailed
C8 C16 105 179 352 860 Very Short-tailed
C8 C17 158 344 748 1552 Short-tailed
C8 C18 154 308 667 1422 Short-tailed
C8 C19 150 306 646 1381 Short-tailed
C8 C20 161 330 754 1537 Short-tailed
C8 C21 104 176 342 839 Very Short-tailed
C8 C22 121 268 660 1473 Short-tailed
C8 C23 160 343 737 1580 Short-tailed
C8 C24 119 216 441 1049 Very Short-tailed
C8 C25 158 334 743 1529 Short-tailed
C8 C26 116 209 426 998 Very Short-tailed
C9 C10 168 344 709 1468 Short-tailed
C9 C11 610 1119 1671 2185 Very Long-tailed
C9 C12 103 177 346 834 Very Short-tailed
C9 C13 925 1394 1903 2298 Very Long-tailed
C9 C15 223 482 966 1749 Long-tailed
C9 C16 106 183 364 890 Very Short-tailed
C9 C18 264 560 1079 1863 Long-tailed
C9 C19 284 620 1162 1923 Long-tailed
C9 C21 105 181 355 845 Very Short-tailed
C9 C24 133 256 538 1245 Short-tailed
C9 C26 130 244 512 1156 Very Short-tailed
C10 C11 177 365 763 1523 Short-tailed
C10 C12 99 163 309 744 Very Short-tailed
C10 C13 177 372 777 1548 Short-tailed
C10 C14 141 272 557 1233 Short-tailed
C10 C15 101 164 303 705 Very Short-tailed
C10 C16 98 158 296 697 Very Short-tailed
C10 C17 145 280 581 1281 Short-tailed
C10 C18 105 176 338 786 Very Short-tailed
C10 C19 118 218 454 1081 Very Short-tailed
C10 C20 151 295 614 1342 Short-tailed
C10 C21 99 161 302 721 Very Short-tailed
C10 C22 147 290 614 1336 Short-tailed
C10 C23 149 289 595 1300 Short-tailed
C10 C24 100 165 310 728 Very Short-tailed
C10 C25 144 281 589 1294 Short-tailed
C10 C26 104 176 341 833 Very Short-tailed
C11 C12 106 181 356 857 Very Short-tailed
C11 C13 636 1151 1698 2192 Very Long-tailed
C11 C14 265 545 1067 1810 Long-tailed
C11 C15 110 188 355 810 Very Short-tailed
C11 C16 106 180 349 830 Very Short-tailed
C11 C17 312 647 1181 1872 Long-tailed
C11 C18 119 211 417 951 Very Short-tailed
C11 C19 117 223 505 1304 Short-tailed
C11 C20 402 793 1345 1979 Long-tailed
C11 C21 106 181 353 852 Very Short-tailed
C11 C22 251 560 1071 1812 Long-tailed
C11 C23 233 507 1021 1809 Long-tailed
C11 C24 109 187 364 859 Very Short-tailed
C11 C25 189 435 957 1783 Long-tailed
C11 C26 106 181 356 884 Very Short-tailed
C12 C13 107 183 362 871 Very Short-tailed
C12 C14 103 175 336 830 Very Short-tailed
C12 C15 108 191 395 1023 Very Short-tailed
C12 C16 100 167 318 772 Very Short-tailed
C12 C17 103 175 344 844 Very Short-tailed
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C12 C18 104 183 369 936 Very Short-tailed
C12 C19 103 177 353 868 Very Short-tailed
C12 C20 103 176 342 821 Very Short-tailed
C12 C21 101 171 332 798 Very Short-tailed
C12 C22 103 174 341 842 Very Short-tailed
C12 C23 103 175 342 836 Very Short-tailed
C12 C24 107 186 366 873 Very Short-tailed
C12 C25 104 177 342 833 Very Short-tailed
C12 C26 108 186 366 876 Very Short-tailed
C13 C14 302 618 1157 1882 Long-tailed
C13 C15 113 195 374 868 Very Short-tailed
C13 C16 107 182 359 854 Very Short-tailed
C13 C17 367 733 1279 1960 Long-tailed
C13 C18 122 220 436 997 Very Short-tailed
C13 C19 114 214 482 1264 Short-tailed
C13 C20 527 951 1491 2074 Very Long-tailed
C13 C21 107 183 361 869 Very Short-tailed
C13 C22 276 626 1157 1902 Long-tailed
C13 C23 252 553 1085 1854 Long-tailed
C13 C24 111 191 373 880 Very Short-tailed
C13 C25 194 460 1002 1819 Long-tailed
C13 C26 107 183 357 890 Very Short-tailed
C14 C15 264 565 1120 1829 Long-tailed
C14 C16 107 185 362 882 Very Short-tailed
C14 C18 291 618 1180 1883 Long-tailed
C14 C19 188 379 761 1507 Short-tailed
C14 C21 106 181 349 839 Very Short-tailed
C14 C24 131 248 513 1163 Very Short-tailed
C14 C26 127 235 485 1134 Very Short-tailed
C15 C16 111 196 403 1017 Very Short-tailed
C15 C17 185 381 792 1592 Short-tailed
C15 C18 263 563 1120 1825 Long-tailed
C15 C19 142 284 610 1335 Short-tailed
C15 C20 272 588 1168 1885 Long-tailed
C15 C21 109 192 396 1011 Very Short-tailed
C15 C22 192 407 884 1662 Short-tailed
C15 C23 184 384 789 1580 Short-tailed
C15 C24 125 235 494 1181 Very Short-tailed
C15 C25 227 494 993 1746 Long-tailed
C15 C26 129 246 534 1252 Short-tailed
C16 C17 105 180 357 861 Very Short-tailed
C16 C18 108 191 389 966 Very Short-tailed
C16 C19 105 182 366 898 Very Short-tailed
C16 C20 106 182 360 869 Very Short-tailed
C16 C21 101 171 330 792 Very Short-tailed
C16 C22 106 183 362 890 Very Short-tailed
C16 C23 106 182 359 861 Very Short-tailed
C16 C24 107 184 364 881 Very Short-tailed
C16 C25 107 184 363 901 Very Short-tailed
C16 C26 108 186 369 899 Very Short-tailed
C17 C18 215 456 910 1695 Long-tailed
C17 C19 184 367 737 1477 Short-tailed
C17 C21 104 176 345 842 Very Short-tailed
C17 C24 122 223 458 1066 Very Short-tailed
C17 C26 118 213 441 1022 Very Short-tailed
C18 C19 166 348 742 1558 Short-tailed
C18 C20 335 712 1292 2002 Long-tailed
C18 C21 106 185 374 936 Very Short-tailed
C18 C22 211 454 958 1722 Long-tailed
C18 C23 217 460 918 1684 Long-tailed
C18 C24 126 238 497 1204 Very Short-tailed
C18 C25 264 564 1119 1860 Long-tailed
C18 C26 130 251 528 1253 Short-tailed
C19 C20 287 573 1076 1773 Long-tailed
C19 C21 104 180 358 870 Very Short-tailed
C19 C22 206 453 888 1648 Long-tailed
C19 C23 193 391 779 1526 Short-tailed
C19 C24 120 225 473 1125 Very Short-tailed
C19 C25 166 344 724 1575 Short-tailed
C19 C26 116 205 417 1004 Very Short-tailed
C20 C21 104 179 348 830 Very Short-tailed
C20 C24 130 247 516 1171 Very Short-tailed
C20 C26 130 241 498 1140 Very Short-tailed
C21 C22 104 177 345 848 Very Short-tailed
C21 C23 104 177 346 846 Very Short-tailed
C21 C24 108 187 368 864 Very Short-tailed
C21 C25 105 180 349 845 Very Short-tailed
C21 C26 108 186 366 875 Very Short-tailed
C22 C24 127 237 504 1170 Very Short-tailed
C22 C26 124 230 482 1124 Very Short-tailed
C23 C24 123 226 467 1079 Very Short-tailed
C23 C26 122 221 445 1039 Very Short-tailed
C24 C25 133 255 537 1257 Short-tailed
C24 C26 134 256 540 1255 Short-tailed
C25 C26 133 250 523 1197 Short-tailed
C2 - 934 1443 1846 2283 -
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C5 - 140 280 630 1550 -
C6 - 573 1362 2079 2079 -
C14 - 1657 1657 1657 1657 -
C17 - 1292 1292 1292 1292 -
C22 - 117 180 496 496 -
C23 - 62 62 62 62 -
C25 - 190 408 591 730 -
C2 C9 544 993 1642 2277 -
C2 C20 801 1200 1713 2249 -
C5 C9 143 303 726 1509 -
C5 C20 168 346 793 1708 -
C5 C22 154 327 712 1467 -
C6 C9 459 771 1236 1852 -
C6 C14 259 608 1545 2127 -
C6 C17 209 353 620 864 -
C6 C20 336 747 1060 1738 -
C6 C22 413 573 1362 1869 -
C6 C23 358 717 1006 1902 -
C6 C25 355 817 1475 2060 -
C9 C14 613 1046 1657 2380 -
C9 C17 660 1513 1877 2286 -
C9 C20 773 1902 1902 1902 -
C9 C22 457 1115 1169 1302 -
C9 C23 294 917 1526 2323 -
C9 C25 302 641 1361 2223 -
C14 C17 822 1320 1792 2134 -
C14 C20 530 737 1657 1988 -
C14 C22 296 958 1527 2076 -
C14 C23 574 944 1781 2305 -
C14 C25 299 700 1304 1909 -
C17 C20 367 367 513 513 -
C17 C22 369 580 830 1655 -
C17 C23 247 619 912 1733 -
C17 C25 471 885 1691 2262 -
C20 C22 812 1482 2174 2180 -
C20 C23 1016 1386 1700 1700 -
C20 C25 297 834 1605 2243 -
C22 C23 476 768 1291 1899 -
C22 C25 310 536 1147 1903 -
C23 C25 348 740 1327 2105 -

A.10 AVERAGE LOG LIKELIHOOD OF LABEL HISTOGRAM DISTRIBUTIONS FOR ALL
GROUPINGS

This table contains the Average Log Likelihood of Label Proportion distributions for all 349
groupings (removing groupings which were left with no bags after clipping). We perform K-Means
of 308 of these groupings that have more than 500 bags after clipping. The cluster assigned to each
bag is also listed.

Table 12: Average Log Likelihood of Label Distribution of all grouping and it’s clusters

Col1 Col2 Standard deviation
of label proportions

Label bias of
the grouping

Average Log likelihood
of label histogram distribution

Clusters assigned on label
histogram diatribution

C1 - 0.05 0.26 -3.31 High
C3 - 0.17 0.26 -17.26 Low
C4 - 0.16 0.26 -18.24 Low
C7 - 0.11 0.22 -25.85 Very Low
C8 - 0.05 0.26 -3.33 High
C10 - 0.1 0.25 -11.68 Medium
C11 - 0.1 0.21 -29.13 Very Low
C12 - 0.17 0.26 -17.29 Low
C13 - 0.09 0.21 -32.14 Very Low
C15 - 0.16 0.27 -34.69 Very Low
C16 - 0.16 0.26 -17.37 Low
C18 - 0.15 0.29 -35.47 Very Low
C19 - 0.07 0.26 -10.9 Medium
C21 - 0.16 0.26 -17.33 Low
C24 - 0.14 0.26 -19.06 Low
C26 - 0.14 0.25 -17.84 Low
C1 C2 0.1 0.26 -11.58 Medium
C1 C3 0.16 0.26 -15.35 Medium
C1 C4 0.15 0.26 -14.82 Medium
C1 C5 0.05 0.26 -3.29 High
C1 C6 0.05 0.26 -3.86 High
C1 C7 0.12 0.24 -14.11 Medium
C1 C8 0.05 0.26 -3.26 High
C1 C9 0.08 0.24 -6.41 High
C1 C10 0.1 0.26 -9.17 High
C1 C11 0.11 0.24 -13.62 Medium
C1 C12 0.16 0.26 -15.3 Medium
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C1 C13 0.11 0.24 -12.79 Medium
C1 C14 0.1 0.26 -10.68 Medium
C1 C15 0.14 0.27 -17.63 Low
C1 C16 0.15 0.26 -14.98 Medium
C1 C17 0.09 0.23 -9.84 Medium
C1 C18 0.14 0.27 -16.43 Low
C1 C19 0.08 0.26 -6.54 High
C1 C20 0.05 0.25 -3.74 High
C1 C21 0.16 0.26 -15.25 Medium
C1 C22 0.05 0.26 -3.47 High
C1 C23 0.08 0.25 -8.35 High
C1 C24 0.14 0.26 -15.09 Medium
C1 C25 0.06 0.27 -4.95 High
C1 C26 0.14 0.25 -14.47 Medium
C2 C3 0.17 0.26 -18.51 Low
C2 C4 0.16 0.25 -18.73 Low
C2 C5 0.1 0.26 -13.44 Medium
C2 C6 0.12 0.26 -25.47 Very Low
C2 C7 0.14 0.24 -17.67 Low
C2 C8 0.1 0.26 -12.51 Medium
C2 C10 0.13 0.26 -12.53 Medium
C2 C11 0.14 0.24 -19.45 Low
C2 C12 0.17 0.26 -18.55 Low
C2 C13 0.14 0.24 -19.35 Low
C2 C14 0.13 0.23 -38.88 Very Low
C2 C15 0.16 0.27 -34.68 Very Low
C2 C16 0.17 0.26 -18.51 Low
C2 C17 0.12 0.22 -30.65 Very Low
C2 C18 0.15 0.29 -35.45 Very Low
C2 C19 0.1 0.26 -10.64 Medium
C2 C21 0.17 0.26 -18.49 Low
C2 C22 0.12 0.27 -20.9 Low
C2 C23 0.13 0.23 -31.79 Very Low
C2 C24 0.15 0.25 -19.33 Low
C2 C25 0.11 0.27 -16.42 Low
C2 C26 0.15 0.24 -17.86 Low
C3 C4 0.16 0.26 -16.04 Low
C3 C5 0.16 0.26 -16.29 Low
C3 C6 0.17 0.26 -17 Low
C3 C7 0.18 0.25 -17.95 Low
C3 C8 0.16 0.26 -15.91 Medium
C3 C9 0.17 0.26 -18.56 Low
C3 C10 0.16 0.26 -14.44 Medium
C3 C11 0.18 0.25 -18.57 Low
C3 C12 0.17 0.26 -17.24 Low
C3 C13 0.18 0.24 -18.5 Low
C3 C14 0.18 0.26 -19.68 Low
C3 C15 0.18 0.26 -21.58 Low
C3 C16 0.16 0.26 -16.08 Low
C3 C17 0.18 0.26 -19.53 Low
C3 C18 0.17 0.26 -19.44 Low
C3 C19 0.16 0.26 -16.79 Low
C3 C20 0.17 0.26 -18.1 Low
C3 C21 0.17 0.26 -16.86 Low
C3 C22 0.17 0.26 -17.05 Low
C3 C23 0.18 0.26 -19.2 Low
C3 C24 0.16 0.26 -16.42 Low
C3 C25 0.17 0.26 -17.98 Low
C3 C26 0.16 0.26 -17.63 Low
C4 C5 0.15 0.26 -15.94 Medium
C4 C6 0.16 0.26 -16.48 Low
C4 C7 0.18 0.26 -17.39 Low
C4 C8 0.15 0.26 -15.44 Medium
C4 C9 0.16 0.25 -19.17 Low
C4 C10 0.16 0.27 -14.9 Medium
C4 C11 0.17 0.26 -17.92 Low
C4 C12 0.16 0.26 -15.98 Medium
C4 C13 0.17 0.26 -17.93 Low
C4 C14 0.16 0.26 -19.6 Low
C4 C15 0.17 0.26 -20.63 Low
C4 C16 0.16 0.26 -16.51 Low
C4 C17 0.16 0.26 -18.79 Low
C4 C18 0.16 0.26 -19.2 Low
C4 C19 0.15 0.26 -17 Low
C4 C20 0.16 0.26 -18.48 Low
C4 C21 0.16 0.26 -15.96 Medium
C4 C22 0.16 0.26 -17.34 Low
C4 C23 0.17 0.26 -19.01 Low
C4 C24 0.15 0.26 -17.38 Low
C4 C25 0.16 0.26 -18.53 Low
C4 C26 0.16 0.26 -18.41 Low
C5 C6 0.05 0.26 -4.13 High
C5 C7 0.12 0.23 -15.47 Medium
C5 C8 0.05 0.26 -3.29 High
C5 C10 0.1 0.26 -9.8 Medium
C5 C11 0.11 0.23 -15.13 Medium

25



Under review as a conference paper at ICLR 2023

C5 C12 0.16 0.26 -16.24 Low
C5 C13 0.11 0.23 -13.94 Medium
C5 C14 0.11 0.26 -13.34 Medium
C5 C15 0.15 0.27 -20.47 Low
C5 C16 0.16 0.26 -16.02 Low
C5 C17 0.09 0.23 -11.8 Medium
C5 C18 0.14 0.28 -19.16 Low
C5 C19 0.07 0.26 -7.35 High
C5 C21 0.16 0.26 -16.28 Low
C5 C23 0.08 0.24 -9.94 Medium
C5 C24 0.14 0.26 -16.28 Low
C5 C25 0.06 0.27 -5.53 High
C5 C26 0.14 0.25 -15.58 Medium
C6 C7 0.12 0.23 -18.8 Low
C6 C8 0.05 0.26 -3.94 High
C6 C10 0.1 0.26 -10.84 Medium
C6 C11 0.11 0.23 -21.32 Low
C6 C12 0.16 0.26 -16.94 Low
C6 C13 0.1 0.23 -20.68 Low
C6 C15 0.16 0.27 -26.42 Very Low
C6 C16 0.16 0.26 -16.72 Low
C6 C18 0.16 0.29 -26.28 Very Low
C6 C19 0.08 0.26 -8.89 High
C6 C21 0.16 0.26 -16.91 Low
C6 C24 0.15 0.26 -17.56 Low
C6 C26 0.15 0.25 -16.74 Low
C7 C8 0.12 0.24 -14.95 Medium
C7 C9 0.11 0.22 -25.84 Very Low
C7 C10 0.11 0.24 -13.29 Medium
C7 C11 0.11 0.22 -25.75 Very Low
C7 C12 0.17 0.25 -17.65 Low
C7 C13 0.11 0.22 -25.85 Very Low
C7 C14 0.14 0.23 -21.55 Low
C7 C15 0.17 0.25 -17.15 Low
C7 C16 0.17 0.25 -17.37 Low
C7 C17 0.11 0.21 -20.27 Low
C7 C18 0.16 0.24 -17.44 Low
C7 C19 0.14 0.24 -16.64 Low
C7 C20 0.12 0.22 -20.59 Low
C7 C21 0.18 0.25 -17.68 Low
C7 C22 0.12 0.24 -19.64 Low
C7 C23 0.12 0.23 -20 Low
C7 C24 0.17 0.26 -16.83 Low
C7 C25 0.12 0.23 -19.57 Low
C7 C26 0.17 0.25 -17.49 Low
C8 C9 0.08 0.23 -7.1 High
C8 C10 0.1 0.26 -9.48 High
C8 C11 0.11 0.24 -14.45 Medium
C8 C12 0.16 0.26 -15.84 Medium
C8 C13 0.11 0.24 -13.45 Medium
C8 C14 0.1 0.26 -12.16 Medium
C8 C15 0.14 0.27 -19.11 Low
C8 C16 0.16 0.26 -15.6 Medium
C8 C17 0.09 0.23 -10.55 Medium
C8 C18 0.14 0.28 -17.86 Low
C8 C19 0.08 0.26 -6.9 High
C8 C20 0.05 0.25 -3.84 High
C8 C21 0.16 0.26 -15.87 Medium
C8 C22 0.05 0.26 -3.54 High
C8 C23 0.08 0.24 -9 High
C8 C24 0.14 0.26 -15.74 Medium
C8 C25 0.06 0.27 -5.27 High
C8 C26 0.14 0.25 -15.18 Medium
C9 C10 0.1 0.24 -12.92 Medium
C9 C11 0.1 0.2 -30.29 Very Low
C9 C12 0.17 0.26 -18.55 Low
C9 C13 0.1 0.19 -33.86 Very Low
C9 C15 0.16 0.25 -34.98 Very Low
C9 C16 0.17 0.26 -18.45 Low
C9 C18 0.16 0.26 -35.17 Very Low
C9 C19 0.1 0.23 -15.93 Medium
C9 C21 0.17 0.26 -18.52 Low
C9 C24 0.15 0.25 -20.43 Low
C9 C26 0.14 0.24 -18.93 Low
C10 C11 0.1 0.24 -13.61 Medium
C10 C12 0.16 0.26 -14.31 Medium
C10 C13 0.1 0.24 -12.8 Medium
C10 C14 0.12 0.26 -13.33 Medium
C10 C15 0.15 0.26 -14.08 Medium
C10 C16 0.16 0.26 -14.35 Medium
C10 C17 0.1 0.25 -11.73 Medium
C10 C18 0.15 0.26 -13.55 Medium
C10 C19 0.12 0.26 -11.26 Medium
C10 C20 0.1 0.26 -11.43 Medium
C10 C21 0.16 0.26 -14.4 Medium
C10 C22 0.1 0.26 -11.19 Medium
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C10 C23 0.11 0.26 -12.46 Medium
C10 C24 0.15 0.27 -13.68 Medium
C10 C25 0.11 0.26 -11.28 Medium
C10 C26 0.15 0.26 -13.96 Medium
C11 C12 0.18 0.25 -18.45 Low
C11 C13 0.1 0.21 -29.1 Very Low
C11 C14 0.14 0.23 -25.74 Very Low
C11 C15 0.16 0.24 -17.9 Low
C11 C16 0.17 0.25 -18.17 Low
C11 C17 0.11 0.21 -20.9 Low
C11 C18 0.16 0.24 -18.61 Low
C11 C19 0.13 0.25 -14.39 Medium
C11 C20 0.11 0.22 -23.87 Low
C11 C21 0.18 0.25 -18.6 Low
C11 C22 0.12 0.23 -20.17 Low
C11 C23 0.12 0.23 -21 Low
C11 C24 0.17 0.25 -17.53 Low
C11 C25 0.12 0.23 -18.45 Low
C11 C26 0.17 0.25 -17.67 Low
C12 C13 0.17 0.25 -18.42 Low
C12 C14 0.18 0.26 -19.52 Low
C12 C15 0.18 0.26 -21.37 Low
C12 C16 0.16 0.26 -16.1 Low
C12 C17 0.17 0.26 -19.4 Low
C12 C18 0.17 0.26 -19.37 Low
C12 C19 0.16 0.26 -16.82 Low
C12 C20 0.17 0.26 -18.09 Low
C12 C21 0.16 0.26 -16.99 Low
C12 C22 0.16 0.26 -17.03 Low
C12 C23 0.18 0.26 -19.21 Low
C12 C24 0.16 0.26 -16.4 Low
C12 C25 0.17 0.26 -18.02 Low
C12 C26 0.16 0.26 -17.62 Low
C13 C14 0.13 0.23 -26.13 Very Low
C13 C15 0.16 0.24 -18.38 Low
C13 C16 0.17 0.25 -18.16 Low
C13 C17 0.1 0.21 -20.48 Low
C13 C18 0.16 0.24 -18.75 Low
C13 C19 0.13 0.25 -13.32 Medium
C13 C20 0.1 0.22 -24.19 Low
C13 C21 0.17 0.25 -18.56 Low
C13 C22 0.11 0.23 -19.33 Low
C13 C23 0.12 0.23 -20.39 Low
C13 C24 0.16 0.25 -17.45 Low
C13 C25 0.12 0.23 -17.36 Low
C13 C26 0.17 0.25 -17.96 Low
C14 C15 0.16 0.27 -34.64 Very Low
C14 C16 0.17 0.26 -19.62 Low
C14 C18 0.15 0.27 -34.77 Very Low
C14 C19 0.11 0.25 -13.26 Medium
C14 C21 0.18 0.26 -19.73 Low
C14 C24 0.16 0.26 -21 Low
C14 C26 0.15 0.25 -19.3 Low
C15 C16 0.17 0.26 -21.13 Low
C15 C17 0.16 0.25 -29.03 Very Low
C15 C18 0.16 0.27 -34.66 Very Low
C15 C19 0.13 0.26 -17.46 Low
C15 C20 0.16 0.27 -34.75 Very Low
C15 C21 0.18 0.26 -21.28 Low
C15 C22 0.16 0.28 -26.58 Very Low
C15 C23 0.16 0.26 -30.28 Very Low
C15 C24 0.16 0.25 -21.78 Low
C15 C25 0.15 0.27 -28.49 Very Low
C15 C26 0.16 0.25 -21.96 Low
C16 C17 0.17 0.26 -18.97 Low
C16 C18 0.17 0.26 -19.3 Low
C16 C19 0.16 0.26 -16.83 Low
C16 C20 0.17 0.26 -18.13 Low
C16 C21 0.16 0.26 -16.43 Low
C16 C22 0.16 0.26 -17.16 Low
C16 C23 0.17 0.26 -19.05 Low
C16 C24 0.16 0.26 -16.29 Low
C16 C25 0.16 0.26 -17.99 Low
C16 C26 0.16 0.26 -17.68 Low
C17 C18 0.16 0.26 -30.52 Very Low
C17 C19 0.1 0.24 -13 Medium
C17 C21 0.17 0.26 -19.25 Low
C17 C24 0.16 0.25 -20.31 Low
C17 C26 0.15 0.24 -18.47 Low
C18 C19 0.12 0.27 -15.5 Medium
C18 C20 0.15 0.28 -35.7 Very Low
C18 C21 0.17 0.26 -19.29 Low
C18 C22 0.15 0.29 -25.63 Very Low
C18 C23 0.16 0.26 -32.27 Very Low
C18 C24 0.15 0.25 -20.08 Low
C18 C25 0.14 0.28 -28.31 Very Low
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C18 C26 0.15 0.25 -20 Low
C19 C20 0.08 0.26 -10.84 Medium
C19 C21 0.16 0.26 -16.92 Low
C19 C22 0.08 0.26 -8.94 High
C19 C23 0.1 0.25 -12.29 Medium
C19 C24 0.14 0.25 -16.5 Low
C19 C25 0.09 0.26 -10.23 Medium
C19 C26 0.14 0.25 -14.99 Medium
C20 C21 0.17 0.26 -18.19 Low
C20 C24 0.15 0.25 -19.38 Low
C20 C26 0.15 0.25 -18.09 Low
C21 C22 0.16 0.26 -17.08 Low
C21 C23 0.18 0.26 -19.2 Low
C21 C24 0.16 0.26 -16.34 Low
C21 C25 0.17 0.26 -17.94 Low
C21 C26 0.16 0.26 -17.63 Low
C22 C24 0.15 0.26 -18.31 Low
C22 C26 0.14 0.25 -17.29 Low
C23 C24 0.16 0.26 -20.12 Low
C23 C26 0.15 0.24 -18.82 Low
C24 C25 0.15 0.25 -19.27 Low
C24 C26 0.15 0.25 -20.44 Low
C25 C26 0.14 0.24 -18.44 Low
C2 - 0.13 0.28 -47.05 -
C5 - 0.05 0.26 -3.41 -
C6 - 0.09 0.25 -12.4 -
C14 - 0.12 0.29 -33.6 -
C17 - 0 0.06 -3.09 -
C22 - 0.05 0.26 -3.24 -
C23 - 0 0.11 -1.84 -
C25 - 0.08 0.26 -5.81 -
C2 C9 0.12 0.21 -36.84 -
C2 C20 0.13 0.27 -42.36 -
C5 C9 0.08 0.22 -8.52 -
C5 C20 0.04 0.25 -3.93 -
C5 C22 0.05 0.27 -3.67 -
C6 C9 0.09 0.19 -16.45 -
C6 C14 0.13 0.23 -32.2 -
C6 C17 0.09 0.2 -11.09 -
C6 C20 0.07 0.23 -5.86 -
C6 C22 0.15 0.27 -9.38 -
C6 C23 0.11 0.2 -21.74 -
C6 C25 0.08 0.28 -9.46 -
C9 C14 0.11 0.22 -36.01 -
C9 C17 0.06 0.11 -16.34 -
C9 C20 0.03 0.11 -10.53 -
C9 C22 0.08 0.18 -7.53 -
C9 C23 0.04 0.12 -10.5 -
C9 C25 0.1 0.16 -21.25 -
C14 C17 0.14 0.22 -65.29 -
C14 C20 0.13 0.2 -38.31 -
C14 C22 0.15 0.26 -37.84 -
C14 C23 0.16 0.24 -66.83 -
C14 C25 0.13 0.26 -26.84 -
C17 C20 0.02 0.06 -3.74 -
C17 C22 0.11 0.25 -15.52 -
C17 C23 0.06 0.09 -10.64 -
C17 C25 0.11 0.21 -25.85 -
C20 C22 0.05 0.29 -4.91 -
C20 C23 0.16 0.11 -78.7 -
C20 C25 0.08 0.25 -11.92 -
C22 C23 0.11 0.26 -21.53 -
C22 C25 0.08 0.31 -9.01 -
C23 C25 0.12 0.24 -27.2 -

A.11 BAG SEPARATION STATISTICS FOR ALL THE GROUPINGS

This table contains MeanInterBagSep, MeanIntraBagSep and their ratio for all 349 clipped
groupings (removing groupings which were left with no bags after clipping). We perform K-Means
of 308 of these groupings that have more than 500 bags after clipping. The cluster assigned to each
bag is also listed.

Table 13: Bag Separation Statistics and their clusters on all groupings

Col1 Col2 MeanInterBagSep MeanIntraBagSep InterIntraRatio Clusters assigned based on InterIntraRatio distribution
C1 - 0.83 0.82 1.02 Less-separated
C3 - 0.81 0.7 1.16 Medium-separated
C4 - 0.81 0.7 1.16 Medium-separated
C7 - 0.81 0.61 1.33 Well-separated
C8 - 0.83 0.81 1.02 Less-separated
C10 - 0.82 0.7 1.18 Medium-separated
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C11 - 0.75 0.63 1.2 Medium-separated
C12 - 0.81 0.7 1.16 Medium-separated
C13 - 0.72 0.65 1.1 Less-separated
C15 - 0.8 0.7 1.15 Medium-separated
C16 - 0.81 0.7 1.16 Medium-separated
C18 - 0.79 0.71 1.12 Medium-separated
C19 - 0.78 0.76 1.03 Less-separated
C21 - 0.81 0.7 1.16 Medium-separated
C24 - 0.82 0.72 1.14 Medium-separated
C26 - 0.79 0.7 1.12 Medium-separated
C1 C2 0.81 0.74 1.1 Less-separated
C1 C3 0.83 0.72 1.15 Medium-separated
C1 C4 0.82 0.72 1.14 Medium-separated
C1 C5 0.83 0.81 1.02 Less-separated
C1 C6 0.82 0.79 1.03 Less-separated
C1 C7 0.81 0.6 1.34 Well-separated
C1 C8 0.83 0.81 1.02 Less-separated
C1 C9 0.9 0.8 1.12 Medium-separated
C1 C10 0.82 0.73 1.14 Medium-separated
C1 C11 0.79 0.68 1.17 Medium-separated
C1 C12 0.83 0.72 1.15 Medium-separated
C1 C13 0.79 0.7 1.13 Medium-separated
C1 C14 0.82 0.78 1.05 Less-separated
C1 C15 0.82 0.72 1.14 Medium-separated
C1 C16 0.82 0.72 1.15 Medium-separated
C1 C17 0.86 0.73 1.17 Medium-separated
C1 C18 0.81 0.73 1.12 Medium-separated
C1 C19 0.8 0.77 1.04 Less-separated
C1 C20 0.83 0.81 1.03 Less-separated
C1 C21 0.83 0.72 1.15 Medium-separated
C1 C22 0.83 0.81 1.02 Less-separated
C1 C23 0.84 0.8 1.05 Less-separated
C1 C24 0.83 0.73 1.13 Medium-separated
C1 C25 0.83 0.8 1.04 Less-separated
C1 C26 0.81 0.72 1.12 Medium-separated
C2 C3 0.82 0.69 1.19 Medium-separated
C2 C4 0.82 0.69 1.18 Medium-separated
C2 C5 0.81 0.73 1.1 Less-separated
C2 C6 0.74 0.66 1.13 Medium-separated
C2 C7 0.78 0.55 1.44 Far-separated
C2 C8 0.81 0.74 1.1 Less-separated
C2 C10 0.81 0.67 1.21 Medium-separated
C2 C11 0.76 0.6 1.26 Well-separated
C2 C12 0.82 0.69 1.19 Medium-separated
C2 C13 0.75 0.62 1.22 Medium-separated
C2 C14 0.76 0.68 1.13 Medium-separated
C2 C15 0.8 0.7 1.15 Medium-separated
C2 C16 0.82 0.69 1.18 Medium-separated
C2 C17 0.81 0.6 1.34 Well-separated
C2 C18 0.79 0.71 1.12 Medium-separated
C2 C19 0.78 0.72 1.09 Less-separated
C2 C21 0.82 0.69 1.19 Medium-separated
C2 C22 0.77 0.69 1.12 Medium-separated
C2 C23 0.79 0.66 1.2 Medium-separated
C2 C24 0.83 0.71 1.17 Medium-separated
C2 C25 0.85 0.78 1.09 Less-separated
C2 C26 0.8 0.7 1.14 Medium-separated
C3 C4 0.8 0.69 1.16 Medium-separated
C3 C5 0.82 0.71 1.16 Medium-separated
C3 C6 0.82 0.7 1.18 Medium-separated
C3 C7 0.84 0.54 1.56 Far-separated
C3 C8 0.83 0.72 1.15 Medium-separated
C3 C9 0.83 0.64 1.3 Well-separated
C3 C10 0.83 0.67 1.25 Well-separated
C3 C11 0.84 0.62 1.35 Well-separated
C3 C12 0.81 0.7 1.16 Medium-separated
C3 C13 0.84 0.63 1.32 Well-separated
C3 C14 0.82 0.69 1.19 Medium-separated
C3 C15 0.83 0.69 1.21 Medium-separated
C3 C16 0.8 0.69 1.16 Medium-separated
C3 C17 0.83 0.64 1.28 Well-separated
C3 C18 0.82 0.69 1.19 Medium-separated
C3 C19 0.82 0.7 1.17 Medium-separated
C3 C20 0.82 0.69 1.18 Medium-separated
C3 C21 0.81 0.7 1.16 Medium-separated
C3 C22 0.82 0.7 1.17 Medium-separated
C3 C23 0.83 0.68 1.22 Medium-separated
C3 C24 0.81 0.7 1.16 Medium-separated
C3 C25 0.82 0.7 1.17 Medium-separated
C3 C26 0.81 0.69 1.17 Medium-separated
C4 C5 0.82 0.71 1.15 Medium-separated
C4 C6 0.81 0.69 1.17 Medium-separated
C4 C7 0.83 0.53 1.55 Far-separated
C4 C8 0.82 0.71 1.15 Medium-separated
C4 C9 0.85 0.64 1.33 Well-separated
C4 C10 0.83 0.66 1.26 Well-separated
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C4 C11 0.82 0.62 1.34 Well-separated
C4 C12 0.8 0.69 1.16 Medium-separated
C4 C13 0.82 0.63 1.31 Well-separated
C4 C14 0.81 0.69 1.18 Medium-separated
C4 C15 0.82 0.68 1.2 Medium-separated
C4 C16 0.81 0.7 1.16 Medium-separated
C4 C17 0.82 0.64 1.28 Well-separated
C4 C18 0.82 0.69 1.18 Medium-separated
C4 C19 0.81 0.7 1.16 Medium-separated
C4 C20 0.81 0.69 1.17 Medium-separated
C4 C21 0.8 0.7 1.16 Medium-separated
C4 C22 0.82 0.7 1.16 Medium-separated
C4 C23 0.82 0.68 1.21 Medium-separated
C4 C24 0.81 0.7 1.15 Medium-separated
C4 C25 0.82 0.7 1.16 Medium-separated
C4 C26 0.81 0.69 1.17 Medium-separated
C5 C6 0.81 0.79 1.03 Less-separated
C5 C7 0.81 0.6 1.34 Well-separated
C5 C8 0.83 0.81 1.02 Less-separated
C5 C10 0.82 0.72 1.14 Medium-separated
C5 C11 0.79 0.67 1.17 Medium-separated
C5 C12 0.82 0.71 1.16 Medium-separated
C5 C13 0.78 0.7 1.12 Medium-separated
C5 C14 0.82 0.77 1.05 Less-separated
C5 C15 0.82 0.71 1.14 Medium-separated
C5 C16 0.82 0.71 1.15 Medium-separated
C5 C17 0.88 0.73 1.21 Medium-separated
C5 C18 0.81 0.72 1.12 Medium-separated
C5 C19 0.79 0.76 1.04 Less-separated
C5 C21 0.82 0.71 1.16 Medium-separated
C5 C23 0.84 0.8 1.06 Less-separated
C5 C24 0.83 0.73 1.14 Medium-separated
C5 C25 0.82 0.79 1.04 Less-separated
C5 C26 0.8 0.72 1.12 Medium-separated
C6 C7 0.78 0.58 1.36 Well-separated
C6 C8 0.82 0.79 1.03 Less-separated
C6 C10 0.81 0.7 1.17 Medium-separated
C6 C11 0.75 0.63 1.19 Medium-separated
C6 C12 0.82 0.69 1.18 Medium-separated
C6 C13 0.73 0.64 1.14 Medium-separated
C6 C15 0.79 0.67 1.17 Medium-separated
C6 C16 0.81 0.69 1.18 Medium-separated
C6 C18 0.77 0.67 1.15 Medium-separated
C6 C19 0.77 0.72 1.06 Less-separated
C6 C21 0.82 0.69 1.18 Medium-separated
C6 C24 0.82 0.7 1.16 Medium-separated
C6 C26 0.8 0.69 1.15 Medium-separated
C7 C8 0.81 0.6 1.34 Well-separated
C7 C9 0.81 0.61 1.33 Well-separated
C7 C10 0.84 0.6 1.41 Far-separated
C7 C11 0.81 0.6 1.35 Well-separated
C7 C12 0.84 0.54 1.56 Far-separated
C7 C13 0.81 0.61 1.33 Well-separated
C7 C14 0.79 0.57 1.38 Well-separated
C7 C15 0.81 0.53 1.54 Far-separated
C7 C16 0.83 0.54 1.56 Far-separated
C7 C17 0.83 0.58 1.43 Far-separated
C7 C18 0.8 0.53 1.51 Far-separated
C7 C19 0.82 0.58 1.4 Well-separated
C7 C20 0.8 0.58 1.38 Well-separated
C7 C21 0.84 0.54 1.56 Far-separated
C7 C22 0.81 0.6 1.36 Well-separated
C7 C23 0.82 0.59 1.4 Well-separated
C7 C24 0.83 0.54 1.53 Far-separated
C7 C25 0.8 0.59 1.36 Well-separated
C7 C26 0.84 0.55 1.54 Far-separated
C8 C9 0.92 0.81 1.14 Medium-separated
C8 C10 0.83 0.72 1.14 Medium-separated
C8 C11 0.79 0.68 1.17 Medium-separated
C8 C12 0.82 0.71 1.15 Medium-separated
C8 C13 0.78 0.7 1.12 Medium-separated
C8 C14 0.82 0.78 1.05 Less-separated
C8 C15 0.82 0.72 1.14 Medium-separated
C8 C16 0.82 0.71 1.15 Medium-separated
C8 C17 0.87 0.73 1.19 Medium-separated
C8 C18 0.81 0.72 1.12 Medium-separated
C8 C19 0.79 0.76 1.04 Less-separated
C8 C20 0.83 0.8 1.03 Less-separated
C8 C21 0.82 0.71 1.15 Medium-separated
C8 C22 0.83 0.81 1.02 Less-separated
C8 C23 0.84 0.8 1.05 Less-separated
C8 C24 0.83 0.73 1.13 Medium-separated
C8 C25 0.82 0.79 1.04 Less-separated
C8 C26 0.81 0.72 1.12 Medium-separated
C9 C10 0.88 0.6 1.46 Far-separated
C9 C11 0.86 0.58 1.48 Far-separated
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C9 C12 0.83 0.64 1.3 Well-separated
C9 C13 0.88 0.6 1.48 Far-separated
C9 C15 0.97 0.68 1.44 Far-separated
C9 C16 0.84 0.64 1.31 Well-separated
C9 C18 0.98 0.71 1.38 Well-separated
C9 C19 0.99 0.69 1.44 Far-separated
C9 C21 0.83 0.64 1.3 Well-separated
C9 C24 0.9 0.66 1.36 Well-separated
C9 C26 0.86 0.63 1.37 Well-separated
C10 C11 0.83 0.68 1.22 Medium-separated
C10 C12 0.83 0.66 1.25 Well-separated
C10 C13 0.83 0.69 1.21 Medium-separated
C10 C14 0.82 0.7 1.17 Medium-separated
C10 C15 0.82 0.65 1.25 Well-separated
C10 C16 0.83 0.66 1.25 Well-separated
C10 C17 0.84 0.68 1.23 Medium-separated
C10 C18 0.81 0.66 1.23 Medium-separated
C10 C19 0.84 0.69 1.2 Medium-separated
C10 C20 0.83 0.7 1.18 Medium-separated
C10 C21 0.83 0.66 1.25 Well-separated
C10 C22 0.83 0.71 1.16 Medium-separated
C10 C23 0.84 0.68 1.24 Medium-separated
C10 C24 0.83 0.67 1.24 Medium-separated
C10 C25 0.82 0.7 1.18 Medium-separated
C10 C26 0.84 0.67 1.26 Well-separated
C11 C12 0.83 0.62 1.35 Well-separated
C11 C13 0.75 0.63 1.2 Medium-separated
C11 C14 0.75 0.62 1.2 Medium-separated
C11 C15 0.8 0.6 1.33 Well-separated
C11 C16 0.83 0.62 1.34 Well-separated
C11 C17 0.78 0.63 1.24 Medium-separated
C11 C18 0.78 0.6 1.32 Well-separated
C11 C19 0.79 0.65 1.2 Medium-separated
C11 C20 0.76 0.63 1.21 Medium-separated
C11 C21 0.83 0.62 1.35 Well-separated
C11 C22 0.77 0.65 1.19 Medium-separated
C11 C23 0.81 0.64 1.26 Well-separated
C11 C24 0.82 0.62 1.31 Well-separated
C11 C25 0.78 0.64 1.2 Medium-separated
C11 C26 0.83 0.63 1.31 Well-separated
C12 C13 0.83 0.63 1.32 Well-separated
C12 C14 0.82 0.69 1.18 Medium-separated
C12 C15 0.83 0.69 1.2 Medium-separated
C12 C16 0.8 0.69 1.16 Medium-separated
C12 C17 0.82 0.64 1.28 Well-separated
C12 C18 0.82 0.69 1.19 Medium-separated
C12 C19 0.81 0.7 1.17 Medium-separated
C12 C20 0.81 0.69 1.18 Medium-separated
C12 C21 0.81 0.7 1.16 Medium-separated
C12 C22 0.82 0.7 1.17 Medium-separated
C12 C23 0.83 0.68 1.22 Medium-separated
C12 C24 0.81 0.7 1.15 Medium-separated
C12 C25 0.82 0.7 1.17 Medium-separated
C12 C26 0.81 0.69 1.17 Medium-separated
C13 C14 0.74 0.64 1.15 Medium-separated
C13 C15 0.79 0.61 1.3 Well-separated
C13 C16 0.83 0.63 1.32 Well-separated
C13 C17 0.78 0.64 1.21 Medium-separated
C13 C18 0.78 0.61 1.28 Well-separated
C13 C19 0.78 0.66 1.18 Medium-separated
C13 C20 0.74 0.65 1.14 Medium-separated
C13 C21 0.83 0.63 1.32 Well-separated
C13 C22 0.76 0.67 1.13 Medium-separated
C13 C23 0.8 0.65 1.23 Medium-separated
C13 C24 0.82 0.64 1.28 Well-separated
C13 C25 0.77 0.67 1.15 Medium-separated
C13 C26 0.83 0.64 1.29 Well-separated
C14 C15 0.8 0.7 1.15 Medium-separated
C14 C16 0.82 0.69 1.18 Medium-separated
C14 C18 0.79 0.69 1.14 Medium-separated
C14 C19 0.78 0.72 1.07 Less-separated
C14 C21 0.82 0.69 1.19 Medium-separated
C14 C24 0.82 0.7 1.17 Medium-separated
C14 C26 0.8 0.69 1.15 Medium-separated
C15 C16 0.82 0.68 1.21 Medium-separated
C15 C17 0.82 0.61 1.35 Well-separated
C15 C18 0.8 0.7 1.15 Medium-separated
C15 C19 0.8 0.7 1.14 Medium-separated
C15 C20 0.81 0.7 1.15 Medium-separated
C15 C21 0.83 0.68 1.21 Medium-separated
C15 C22 0.81 0.7 1.16 Medium-separated
C15 C23 0.82 0.66 1.24 Medium-separated
C15 C24 0.83 0.7 1.19 Medium-separated
C15 C25 0.82 0.72 1.14 Medium-separated
C15 C26 0.82 0.7 1.18 Medium-separated
C16 C17 0.82 0.64 1.28 Well-separated
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C16 C18 0.82 0.69 1.19 Medium-separated
C16 C19 0.82 0.7 1.17 Medium-separated
C16 C20 0.81 0.69 1.18 Medium-separated
C16 C21 0.81 0.7 1.16 Medium-separated
C16 C22 0.82 0.7 1.16 Medium-separated
C16 C23 0.82 0.68 1.22 Medium-separated
C16 C24 0.81 0.7 1.15 Medium-separated
C16 C25 0.82 0.7 1.17 Medium-separated
C16 C26 0.81 0.69 1.17 Medium-separated
C17 C18 0.81 0.6 1.34 Well-separated
C17 C19 0.81 0.7 1.16 Medium-separated
C17 C21 0.82 0.64 1.28 Well-separated
C17 C24 0.83 0.66 1.27 Well-separated
C17 C26 0.81 0.66 1.24 Medium-separated
C18 C19 0.79 0.71 1.11 Medium-separated
C18 C20 0.79 0.71 1.12 Medium-separated
C18 C21 0.82 0.69 1.19 Medium-separated
C18 C22 0.8 0.71 1.13 Medium-separated
C18 C23 0.81 0.67 1.21 Medium-separated
C18 C24 0.82 0.7 1.17 Medium-separated
C18 C25 0.83 0.74 1.12 Medium-separated
C18 C26 0.81 0.7 1.15 Medium-separated
C19 C20 0.78 0.73 1.06 Less-separated
C19 C21 0.82 0.7 1.17 Medium-separated
C19 C22 0.8 0.76 1.05 Less-separated
C19 C23 0.78 0.73 1.07 Less-separated
C19 C24 0.82 0.71 1.15 Medium-separated
C19 C25 0.78 0.72 1.08 Less-separated
C19 C26 0.8 0.7 1.13 Medium-separated
C20 C21 0.81 0.69 1.18 Medium-separated
C20 C24 0.82 0.7 1.16 Medium-separated
C20 C26 0.79 0.7 1.14 Medium-separated
C21 C22 0.82 0.7 1.17 Medium-separated
C21 C23 0.83 0.68 1.22 Medium-separated
C21 C24 0.81 0.7 1.15 Medium-separated
C21 C25 0.82 0.7 1.17 Medium-separated
C21 C26 0.81 0.69 1.17 Medium-separated
C22 C24 0.83 0.72 1.15 Medium-separated
C22 C26 0.8 0.71 1.14 Medium-separated
C23 C24 0.83 0.7 1.19 Medium-separated
C23 C26 0.8 0.68 1.18 Medium-separated
C24 C25 0.83 0.72 1.15 Medium-separated
C24 C26 0.82 0.71 1.16 Medium-separated
C25 C26 0.8 0.71 1.13 Medium-separated
C2 - 0.73 0.64 1.14 -
C5 - 0.82 0.8 1.02 -
C6 - 0.85 0.65 1.32 -
C14 - 0.78 0.71 1.11 -
C17 - 0.55 -
C22 - 0.87 0.84 1.04 -
C23 - 0.53 -
C25 - 0.82 0.78 1.05 -
C2 C9 0.96 0.68 1.42 -
C2 C20 0.76 0.67 1.13 -
C5 C9 0.94 0.82 1.14 -
C5 C20 0.83 0.81 1.03 -
C5 C22 0.82 0.81 1.02 -
C6 C9 1 0.77 1.29 -
C6 C14 0.78 0.69 1.13 -
C6 C17 1.15 0.67 1.71 -
C6 C20 0.83 0.74 1.12 -
C6 C22 0.92 0.83 1.12 -
C6 C23 0.87 0.76 1.15 -
C6 C25 0.76 0.71 1.08 -
C9 C14 0.82 0.51 1.6 -
C9 C17 0.98 0.56 1.75 -
C9 C20 0.63 0.6 1.04 -
C9 C22 1.06 0.93 1.14 -
C9 C23 0.73 0.57 1.28 -
C9 C25 1.08 0.87 1.24 -
C14 C17 0.99 0.6 1.64 -
C14 C20 0.87 0.77 1.13 -
C14 C22 0.79 0.71 1.11 -
C14 C23 0.83 0.67 1.23 -
C14 C25 0.75 0.7 1.07 -
C17 C20 0.55 0.53 1.04 -
C17 C22 1.23 0.7 1.75 -
C17 C23 1.39 0.59 2.35 -
C17 C25 0.88 0.64 1.38 -
C20 C22 0.88 0.85 1.04 -
C20 C23 0.86 0.74 1.16 -
C20 C25 0.82 0.77 1.06 -
C22 C23 0.85 0.77 1.11 -
C22 C25 0.8 0.75 1.06 -
C23 C25 0.81 0.73 1.11 -
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