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Abstract

This paper presents a comprehensive orchestration for evaluating the sustainability1

of Large Language Models (LLMs) lifecycle by integrating carbon emissions,2

energy consumption, and cost-efficiency metrics across diverse geographic regions.3

We introduce two novel indices—Carbon-Cost Tradeoff Index (CCTI) and Green4

Cost Efficiency (GCE)—to quantify the environmental and economic trade-offs5

inherent in token generation of LLM deployment. Through extensive experimental6

analysis, including Pareto assessment of cost versus carbon footprint, we reveal the7

substantial impact of regional grid carbon intensity and model architecture on oper-8

ational sustainability. Our findings highlight that smaller, region-optimized models9

consistently achieve superior carbon-cost performance, whereas deployments in10

carbon-intensive grids exhibit pronounced inefficiencies.11

1 Introduction12

Over the past decade, LLMs such as ChatGPT, LLaMA, and Mistral have achieved remarkable suc-13

cesses across a wide spectrum of natural language tasks—including text generation, comprehension,14

and dialogue systems. However, the deployment of recent LLMs poses profound sustainability chal-15

lenges: their high parameter counts and substantial inference demands on GPU-equipped servers incur16

significant energy consumption and carbon emissions. While AI-powered services hold substantial17

promise—in one study, software development tools are projected to contribute over US$1.5 trillion to18

global GDP by 2030 (1)—such gains must be balanced against the environmental costs. For instance,19

even the frequent use of a relatively small model like CodeBERT—invoked thousands of times per20

day—may consume around 0.32 kWh, approaching the energy capacity of a typical consumer-grade21

laptop battery at approximately 70 Wh (3; 4). A laptop can only sustain CodeBERT for about 0.2222

hours, insufficient for a typical workday, limiting developer mobility and flexibility. The 0.32 kWh23

energy use corresponds to roughly 0.14 kg CO2, comparable to driving 0.6 miles.24

Therefore, this environmental concern is increasingly recognized in the research community under25

the banner of Green AI. Recent studies have begun quantifying both training- and inference-related26

emissions for LLMs—ranging from lifecycle assessments such as BLOOM’s estimated 50 tCO227

footprint (2) to simulation-based energy-and-carbon frameworks that evaluate inference under real-28

world GPU utilization and regional carbon grid intensities (6; 5). Innovative approaches such29

as SPROUT (7) have demonstrated over 40% reduction in inference-related carbon footprint using30

generation-directive strategies. Several simulation framework to quantify and optimize LLM inference31

energy use and carbon emissions under diverse deployment scenarios are illustrated in (5; 6). Shi32

et al. (8) introduces Avatar, a multi-objective optimization framework that compresses large code33

language models to 3MB to minimize energy consumption(184×) and carbon emissions (157×)34

while preserving performance. Furthermore, each ChatGPT inference consumes approximately 10×35

more energy, and LLM-generated code can far exceed the energy consumption of human-written code,36
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as shown in (11) and (12), respectively. However, several studies on the energy, carbon emission are37

illustrated in (13; 9; 10).38

Despite these advances, a key gap remains: the trade-off between deployment cost and carbon39

footprint/emission across geographic regions remains largely unexplored in the context of LLM40

orchestration and deployment where large number query to be executed. To address this, we make41

three primary contributions:42

• Benchmarking multi-region environmental impact: We systematically quantify inference-43

related energy consumption and emissions of open-source LLMs across diverse geographic44

settings, accounting for infrastructure and energy grid carbon intensity.45

• Cost–carbon trade-off analysis: We investigate the relationship between deployment46

overhead and carbon impact, examining how financial and ecological metrics diverge under47

different deployment strategies in LLM lifecycle and orchestration.48

• Novel cost–carbon efficiency metric: We introduce a composite metric that jointly evalu-49

ates economic cost and carbon footprint across regions, serving as a decision-support tool50

for environmentally responsible LLM deployment.51

2 Methodology52

In modern deployments, LLMs are predominantly hosted on commercial cloud platforms such53

as Amazon Web Services (AWS), Google Cloud Platform (GCP), and Microsoft Azure. These54

platforms offer identical hardware configurations across multiple geographic zones; however, both55

the operational cost of virtual machines (VMs) and the carbon intensity (C.I.) of the local electricity56

grid vary significantly between regions. This heterogeneity introduces substantial disparities in57

the economic and environmental impact of LLM inference. Sustainable deployment of LLMs,58

therefore, requires careful selection of deployment regions and hardware configurations to balance59

three competing objectives: monetary cost, throughput, and carbon emissions. Notably, the carbon60

emissions associated with LLM inference are primarily driven by the number of tokens generated, as61

each token requires a significant number of floating-point operations (FLOPs), leading to considerable62

energy consumption. We model the carbon emissions of LLM inference as a function of token63

generation rate. Let R denote the token generation rate (tokens/seconds(s)), P the average power64

consumption of the system in kilowatts (kW) on the target hardware while executing the LLM65

inference, and C.Iregion the regional carbon intensity in gCO2/kWh. The total carbon emissions66

(CE) for generating N tokens over a time period T seconds can be expressed as:67

CE(gCO2) =
P × T

3600
× C.Iregion (1)

Since the inference time is T = N
R , the equation becomes:68

CE(N) =
P ×N

3600×R
× C.Iregion (2)

This formulation highlights that higher throughput (tokens/s) directly reduces the carbon footprint69

per token, whereas lower throughput results in increased emissions for the same workload.70

Similarly, cloud costs are billed on an hourly basis. Let Cregion denote the hourly VM cost in USD.71

The cost of generating N tokens is given by:72

Cost(N) =
N × Cregion

R× 3600
(3)

Based on these relationships, we propose two novel metrics for sustainable LLM deployment:73

1. Carbon–Cost Tradeoff Index (CCTI)74

CCTI =
CE(N)

Cost(N)
=

P × C.Iregion

Cregion
(4)

CCTI measures the grams of CO2 emitted per dollar of cloud expenditure, providing a region-aware75

decarbonization efficiency indicator. A lower CCTI indicates that each dollar spent achieves lower76

emissions, making that region more environmentally efficient.77
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2. Green Cost Efficiency (GCE)78

GCE = CE(N)× Cost(N) =
P × C.Iregion × Cregion

36002

(
N

R

)2

(5)

GCE is a composite metric that combines both carbon emissions and monetary cost for a given79

workload. Lower GCE values correspond to more cost- and carbon-efficient deployments, while80

higher values penalize configurations that are both energy-intensive and economically inefficient.81

Together, these metrics enable geo-aware, cost-conscious, and environmentally sustainable LLM82

deployment planning, providing a quantitative basis for optimizing inference across regions and83

hardware types.84

3 Results and Discussion85

3.1 Dataset and LLM Selection86

To evaluate the proposed sustainability aspects of LLMs, we conducted an extensive analysis assessing87

their performance across multiple geographic regions. The selected models include TinyLLaMA-88

1.1B(15), LLaMA2-7B-Chat-HF(14), Gemma-2B(17), GPT-2(16), Qwen2-7B(18), and Mistral-7B-89

Instruct-v0.2 (19), deployed in regions such as Mumbai, China, US East, Australia, and Canada. The90

experiments focused on text generation tasks using the Wikitext dataset (20). All experiments were91

executed on an NVIDIA A10G GPU hosted on AWS, with deployment configurations varying by92

region. Table 2 presents a qualitative overview of the deployment cost and associated C.I factors for93

each location. The results clearly indicate significant heterogeneity across geographic regions in both94

cost and carbon intensity.95

Table 1: LLM Inference Metrics: Tokens Gener-
ated, Total Time, Throughput, and Energy Con-
sumption

Model Tokens Time (s) Tokens/s Energy (kWh)
TinyLlama-1.1B 12,973 9.06 1,432.20 0.000541
LLaMA2-Chat-HF-7B 7,158 62.60 114.35 0.004311
gemma-2b 15,407 26.16 588.89 0.001705
GPT-2 16,976 4.55 3,728.15 0.000238
Qwen2-7B-Instruct 7,557 38.84 194.59 0.002648
Mistral-7B-Instruct-v0.2 14,428 40.42 356.96 0.002828

Table 2: Cost of deployment in AWS
and Carbon Intensity by Location
(gCO2/kWh)

Location USD/Hr C.I(gCO2/kWh)
Mumbai (India) 1.208 713.441
China (Beijing) 9.514 582.317
US East (Ohio) 1.006 369.473
Australia (Sydney) 1.308 470.783
Canada (Central) 1.117 56.039

(a) (b)

Figure 1: (a) Energy per 1M tokens of LLMs, (b) Carbon emission of LLMs various geo-regions

3



3.2 Multi Geo-Regional Sustainable Analysis of LLMs Deployment96

The presented analyses collectively illuminate the intricate trade-offs between computational cost,97

energy consumption, and carbon emissions across geographic regions and language model scales,98

providing actionable insights for sustainable AI deployment. Table 1 illustrates the quantitative99

performance of LLMs on the considered GPU. The carbon intensity Figure 1(b) reveals stark regional100

disparities, with Mumbai and Beijing exhibiting the highest emissions per million tokens, while101

Canada (Central) and US East (Ohio) demonstrate significantly lower carbon footprints due to cleaner102

energy mixes. The energy consumption Figure 1(a) further highlights that energy use scales non-103

linearly with model size, where larger models (e.g.,LLaMA2-Chat-HF ) consume up to 0.6 kWh104

per million tokens, amplifying emissions particularly in carbon-intensive grids, whereas smaller105

models (e.g., GPT-2, TinyLlama-1.1B) exhibit more stable and environmentally resilient performance.106

The GCE heatmap (Figure 2(b)) indicates that lower values correspond to more sustainable and107

cost-effective deployments; however, high-capacity models in emission-heavy regions show GCE108

values that are orders of magnitude worse, especially in China (Beijing) and Mumbai. Similarly, the109

CCTI heatmap (Figure 2(a)) quantifies the carbon penalty per dollar spent, revealing that deployments110

in high-emission regions can exceed 140 gCO2/USD, while low-carbon grids achieve values below111

15 gCO2/USD.

Figure 2: (a), (b) shows the CCTI and GCE heatmap of LLMs across multiple geo-region, (c) shows
the Pareto plot of carbon-cost trade-off

112

3.3 Pareto Analysis: Cost vs Carbon foot print Trade-off of LLMs113

The Pareto analysis presented in Figure 2 (c) delineates the trade-off frontier between cost per one114

million tokens (USD) and carbon emissions per one million tokens (gCO2) across diverse geographic115

regions and language model architectures. The plot demonstrates that low-cost deployments often116

coincide with lower carbon emissions, particularly in regions with cleaner energy grids, such as117

Canada (Central) and US East (Ohio). Conversely, deployments in China (Beijing) and Mumbai118

(India) exhibit pronounced inefficiencies, occupying the upper-right quadrant with both elevated119

costs and disproportionately high emissions. Larger-scale models, such as LLaMA2-Chat-HF and120

Mistral-7B-Instruct-v0.2, display wide variability across regions, underscoring the significance of121

grid carbon intensity in determining sustainability outcomes. For the LLaMA2-Chat-HF model,122

the carbon emissions between Mumbai and China exhibit only a marginal difference, whereas a123

significant disparity exists in deployment cost. This pattern is consistent across other LLMs as124

well. Notably, the Pareto-efficient frontier aligns with the lower-left envelope, where models such125

as TinyLLaMA-1.1B and GPT-2 strike an optimal balance between economic and environmental126

impact. This underscores a pronounced trade-off between carbon footprint and deployment cost127

across geographic regions.128

4 Conclusion129

This study presents a comprehensive analysis of sustainable LLM deployment life cycle across130

diverse geographic regions. By integrating Pareto-based optimization for both carbon footprint and131

operational expenditure, the findings demonstrate that strategic model selection and deployment132

localization can substantially reduce environmental impact without compromising performance. The133

results highlight a practical framework for guiding industry stakeholders and policymakers toward134

greener AI operations while ensuring cost efficiency and scalability.135
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