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Abstract

This paper presents a comprehensive orchestration for evaluating the sustainability
of Large Language Models (LLMs) lifecycle by integrating carbon emissions,
energy consumption, and cost-efficiency metrics across diverse geographic regions.
We introduce two novel indices—Carbon-Cost Tradeoff Index (CCTI) and Green
Cost Efficiency (GCE)—to quantify the environmental and economic trade-offs
inherent in token generation of LLM deployment. Through extensive experimental
analysis, including Pareto assessment of cost versus carbon footprint, we reveal the
substantial impact of regional grid carbon intensity and model architecture on oper-
ational sustainability. Our findings highlight that smaller, region-optimized models
consistently achieve superior carbon-cost performance, whereas deployments in
carbon-intensive grids exhibit pronounced inefficiencies.

1 Introduction

Over the past decade, LLMs such as ChatGPT, LLaMA, and Mistral have achieved remarkable suc-
cesses across a wide spectrum of natural language tasks—including text generation, comprehension,
and dialogue systems. However, the deployment of recent LLMs poses profound sustainability chal-
lenges: their high parameter counts and substantial inference demands on GPU-equipped servers incur
significant energy consumption and carbon emissions. While Al-powered services hold substantial
promise—in one study, software development tools are projected to contribute over US$1.5 trillion to
global GDP by 2030 (1)—such gains must be balanced against the environmental costs. For instance,
even the frequent use of a relatively small model like CodeBERT—invoked thousands of times per
day—may consume around 0.32 kWh, approaching the energy capacity of a typical consumer-grade
laptop battery at approximately 70 Wh (3; 4). A laptop can only sustain CodeBERT for about 0.22
hours, insufficient for a typical workday, limiting developer mobility and flexibility. The 0.32 kWh
energy use corresponds to roughly 0.14 kg CO2, comparable to driving 0.6 miles.

Therefore, this environmental concern is increasingly recognized in the research community under
the banner of Green Al Recent studies have begun quantifying both training- and inference-related
emissions for LLMs—ranging from lifecycle assessments such as BLOOM’s estimated 50 tCOq
footprint (2) to simulation-based energy-and-carbon frameworks that evaluate inference under real-
world GPU utilization and regional carbon grid intensities (6 5). Innovative approaches such
as SPROUT (7) have demonstrated over 40% reduction in inference-related carbon footprint using
generation-directive strategies. Several simulation framework to quantify and optimize LLM inference
energy use and carbon emissions under diverse deployment scenarios are illustrated in (55 |6). Shi
et al. (8) introduces Avatar, a multi-objective optimization framework that compresses large code
language models to 3MB to minimize energy consumption(184x) and carbon emissions (157 x)
while preserving performance. Furthermore, each ChatGPT inference consumes approximately 10x
more energy, and LLM-generated code can far exceed the energy consumption of human-written code,
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as shown in (11) and (12)), respectively. However, several studies on the energy, carbon emission are
illustrated in (13;195[10).

Despite these advances, a key gap remains: the trade-off between deployment cost and carbon
Sfootprint/emission across geographic regions remains largely unexplored in the context of LLM
orchestration and deployment where large number query to be executed. To address this, we make
three primary contributions:

* Benchmarking multi-region environmental impact: We systematically quantify inference-
related energy consumption and emissions of open-source LLMs across diverse geographic
settings, accounting for infrastructure and energy grid carbon intensity.

* Cost—carbon trade-off analysis: We investigate the relationship between deployment
overhead and carbon impact, examining how financial and ecological metrics diverge under
different deployment strategies in LLM lifecycle and orchestration.

* Novel cost—carbon efficiency metric: We introduce a composite metric that jointly evalu-
ates economic cost and carbon footprint across regions, serving as a decision-support tool
for environmentally responsible LLM deployment.

2 Methodology

In modern deployments, LLMs are predominantly hosted on commercial cloud platforms such
as Amazon Web Services (AWS), Google Cloud Platform (GCP), and Microsoft Azure. These
platforms offer identical hardware configurations across multiple geographic zones; however, both
the operational cost of virtual machines (VMs) and the carbon intensity (C.1.) of the local electricity
grid vary significantly between regions. This heterogeneity introduces substantial disparities in
the economic and environmental impact of LLM inference. Sustainable deployment of LLMs,
therefore, requires careful selection of deployment regions and hardware configurations to balance
three competing objectives: monetary cost, throughput, and carbon emissions. Notably, the carbon
emissions associated with LLM inference are primarily driven by the number of tokens generated, as
each token requires a significant number of floating-point operations (FLOPs), leading to considerable
energy consumption. We model the carbon emissions of LLM inference as a function of token
generation rate. Let R denote the token generation rate (tokens/seconds(s)), P the average power
consumption of the system in kilowatts (kW) on the target hardware while executing the LLM
inference, and C'.Iigion the regional carbon intensity in gCO2/kWh. The total carbon emissions
(CE) for generating N tokens over a time period 7" seconds can be expressed as:

PxT
CE(gCOg) = m X C~Iregion (1)
Since the inference time is T" = %, the equation becomes:
P x N
OE(N) - m X C-Iregion (2)

This formulation highlights that higher throughput (tokens/s) directly reduces the carbon footprint
per token, whereas lower throughput results in increased emissions for the same workload.

Similarly, cloud costs are billed on an hourly basis. Let Ciegion denote the hourly VM cost in USD.
The cost of generating IV tokens is given by:

N x Cregion

t(N) =
Cost(N) = 23600 ©)
Based on these relationships, we propose two novel metrics for sustainable LLM deployment:
1. Carbon—Cost Tradeoff Index (CCTI)
E(N P X C. Ly
corr = CEWN) P X Colrgion @

Cost(N) Cregion

CCTI measures the grams of CO4 emitted per dollar of cloud expenditure, providing a region-aware
decarbonization efficiency indicator. A lower CCTI indicates that each dollar spent achieves lower
emissions, making that region more environmentally efficient.
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2. Green Cost Efficiency (GCE)

P Jre ion region N 2
GCE = CE(N) x Cost(N) = 2 350(; Creg < R) )

GCE is a composite metric that combines both carbon emissions and monetary cost for a given
workload. Lower GCE values correspond to more cost- and carbon-efficient deployments, while
higher values penalize configurations that are both energy-intensive and economically inefficient.
Together, these metrics enable geo-aware, cost-conscious, and environmentally sustainable LLM
deployment planning, providing a quantitative basis for optimizing inference across regions and
hardware types.

3 Results and Discussion

3.1 Dataset and LLM Selection

To evaluate the proposed sustainability aspects of LLMs, we conducted an extensive analysis assessing
their performance across multiple geographic regions. The selected models include TinyLLaMA-
1.1B(13), LLaMA2-7B-Chat-HF(14), Gemma-2B(17), GPT-2(16), Qwen2-7B(18)), and Mistral-7B-
Instruct-v0.2 (19), deployed in regions such as Mumbai, China, US East, Australia, and Canada. The
experiments focused on text generation tasks using the Wikitext dataset (20). All experiments were
executed on an NVIDIA A10G GPU hosted on AWS, with deployment configurations varying by
region. Table [2] presents a qualitative overview of the deployment cost and associated C.I factors for
each location. The results clearly indicate significant heterogeneity across geographic regions in both
cost and carbon intensity.

Table 1: LLM Inference Metrics: Tokens Gener-

. Table 2: Cost of deployment in AWS
ated, Total Time, Throughput, and Energy Con-

and Carbon Intensity by Location

Sumptlon (gCOZ/kWh)

Model Tokens Time (s) Tokens/s Energy (kWh) -

TinyLlama-1.1B 12.973 906 143220 0.000541 ]l\jl‘:f;g:i“an T USII)/ZI;; C‘I(gcoglllgvm)
LLaMA?2-Chat-HF-7B 7,158 62.60 114.35 0004311 0514 582317
gemma-2b 15,407 26.16 588.89 0.001705 (OJhif) 1006 260173
GPT-2 16,976 455  3728.15 0.000238 St : .
Qwen2-7B-Instruct 7,557 3884  194.59 0.002648 é:igj;‘?éjﬁ;ﬁ” H?ﬁ 4;2'(7)23
Mistral-7B-Instruct-v0.2 14,428 40.42 356.96 0.002828 : -

Energy per 1M Tokens by Model Carbon per 1M Tokens Across Regions

0.6 mmm Australia (Sydney)

400 4 = Canada (Central)
mmm China (Beijing)
mm Mumbai (India)
B US East (Ohio)

0.5

04 300

0.31
200 1

0.2 1

Energy per 1M tokens (kWh)
Carbon per 1M tokens (gCO:)

0.11

0.0-

) ok 20 Q2 x 2 ) S\ 2} 2 X 2
ma“"x o m«\al O N0 oY ™ o2 P e R
\o a e q X! \or® @l e 1% X
oM Yort ¢ quet? e ALl et i quet e
e\ - xeaV
Wt Wt
(a) (b)

Figure 1: (a) Energy per 1M tokens of LLMs, (b) Carbon emission of LLMs various geo-regions
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3.2 Multi Geo-Regional Sustainable Analysis of LLLMs Deployment

The presented analyses collectively illuminate the intricate trade-offs between computational cost,
energy consumption, and carbon emissions across geographic regions and language model scales,
providing actionable insights for sustainable AI deployment. Table [T] illustrates the quantitative
performance of LLMs on the considered GPU. The carbon intensity Figure[T[b) reveals stark regional
disparities, with Mumbai and Beijing exhibiting the highest emissions per million tokens, while
Canada (Central) and US East (Ohio) demonstrate significantly lower carbon footprints due to cleaner
energy mixes. The energy consumption Figure [I(a) further highlights that energy use scales non-
linearly with model size, where larger models (e.g.,.LLaMA2-Chat-HF ) consume up to 0.6 kWh
per million tokens, amplifying emissions particularly in carbon-intensive grids, whereas smaller
models (e.g., GPT-2, TinyLlama-1.1B) exhibit more stable and environmentally resilient performance.
The GCE heatmap (Figure b)) indicates that lower values correspond to more sustainable and
cost-effective deployments; however, high-capacity models in emission-heavy regions show GCE
values that are orders of magnitude worse, especially in China (Beijing) and Mumbai. Similarly, the
CCTTI heatmap (Figure 2J(a)) quantifies the carbon penalty per dollar spent, revealing that deployments
in high-emission regions can exceed 140 gCO2/USD, while low-carbon grids achieve values below
15 gCO2/USD.

CCTI: Carbon-Cost Tradeoff Index (gCO: per USD)

GCE: Green Cost Efficiency (lower is better) Pareto: Cost vs Carbon per 1M Tokens (Al Regions & Models)
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Figure 2: (a), (b) shows the CCTI and GCE heatmap of LLMs across multiple geo-region, (c) shows
the Pareto plot of carbon-cost trade-off

3.3 Pareto Analysis: Cost vs Carbon foot print Trade-off of LLMs

The Pareto analysis presented in Figure 2] (c) delineates the trade-off frontier between cost per one
million tokens (USD) and carbon emissions per one million tokens (gC0O2) across diverse geographic
regions and language model architectures. The plot demonstrates that low-cost deployments often
coincide with lower carbon emissions, particularly in regions with cleaner energy grids, such as
Canada (Central) and US East (Ohio). Conversely, deployments in China (Beijing) and Mumbai
(India) exhibit pronounced inefficiencies, occupying the upper-right quadrant with both elevated
costs and disproportionately high emissions. Larger-scale models, such as LLaMA2-Chat-HF and
Mistral-7B-Instruct-v0.2, display wide variability across regions, underscoring the significance of
grid carbon intensity in determining sustainability outcomes. For the LLaMA2-Chat-HF model,
the carbon emissions between Mumbai and China exhibit only a marginal difference, whereas a
significant disparity exists in deployment cost. This pattern is consistent across other LLMs as
well. Notably, the Pareto-efficient frontier aligns with the lower-left envelope, where models such
as TinyLLaMA-1.1B and GPT-2 strike an optimal balance between economic and environmental
impact. This underscores a pronounced trade-off between carbon footprint and deployment cost
across geographic regions.

4 Conclusion

This study presents a comprehensive analysis of sustainable LLM deployment life cycle across
diverse geographic regions. By integrating Pareto-based optimization for both carbon footprint and
operational expenditure, the findings demonstrate that strategic model selection and deployment
localization can substantially reduce environmental impact without compromising performance. The
results highlight a practical framework for guiding industry stakeholders and policymakers toward
greener Al operations while ensuring cost efficiency and scalability.
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