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Abstract

Extreme weather events, such as severe storms, hurricanes, snowstorms, and ice storms,
which are exacerbated by climate change, frequently cause widespread power outages. These
outages halt industrial operations, impact communities, damage critical infrastructure, pro-
foundly disrupt economies, and have far-reaching effects across various sectors. To mitigate
these effects, the University of Connecticut and Eversource Energy Center have developed
an outage prediction modeling (OPM) system to provide pre-emptive forecasts for elec-
tric distribution networks before such weather events occur. However, existing predictive
models in the system do not incorporate the spatial effect of extreme weather events. To
this end, we develop Spatially Aware Hybrid Graph Neural Networks (SA-HGNN) with
contrastive learning to enhance the OPM predictions for extreme weather-induced power
outages. Specifically, we first encode spatial relationships of both static features (e.g., land
cover, infrastructure) and event-specific dynamic features (e.g., wind speed, precipitation)
via Spatially Aware Hybrid Graph Neural Networks (SA-HGNN). Next, we leverage con-
trastive learning to handle the imbalance problem associated with different types of extreme
weather events and generate location-specific embeddings by minimizing intra-event dis-
tances between similar locations while maximizing inter-event distances across all locations.
Thorough empirical studies in four utility service territories, i.e., Connecticut, Western Mas-
sachusetts, Eastern Massachusetts, and New Hampshire, demonstrate that SA-HGNN can
achieve state-of-the-art performance for power outage prediction.

1 Introduction

Power outages caused by severe weather events, such as hurricanes, snowstorms, and heavy rainfall, pose
significant risks to modern society by disrupting critical infrastructure and essential services across sectors
like healthcare, transportation, and finance. In the United States, weather-related power outages cost the
economy an estimated $18 to $70 billion annually, with the frequency and severity of billion-dollar disasters
steadily increasing over the past two decades |Campbell (2012); |Smith| (2020]). These outages can result in
significant economic losses and, in extreme cases, loss of life [Flores et al.| (2022); |Dominianni et al.| (2018).
For instance, over 15 months between 2011 and 2012, three major storms in Connecticut caused extensive
outages, affecting hundreds of thousands of people and resulting in considerable economic losses. Similarly,
Hurricane Sandy inflicted severe damage on New York, causing prolonged service disruptions and operational
challenges for utility companies [Yang et al.| (2020);(Udeh et al.[(2024)). Therefore, accurate forecasting of the
magnitude and spatial distribution of weather-induced power outages is essential to mitigate these impacts.
Such forecasts can inform evacuation strategies, improve storm response planning, and guide investments in
reinforcing and upgrading electrical infrastructure Baembitov et al.| (2023)); |Cerrai et al.| (2019azb); D’ Amicol
et al.| (2019).

Although outage prediction has received increasing attention recently, existing approaches still suffer from
critical limitations. Traditional machine learning methods, such as ensemble models, have shown promising
results by improving prediction accuracy and robustness [Nateghi et al.| (2014); |Wanik et al.[(2015)); He et al.
(2017)); |Cerrai et al.| (2019azc); Udeh et al.| (2024). However, they treat each location independently and do
not explicitly model spatial relationships between geographic regions, which are crucial for understanding
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the spatial effect of storm impacts. Although convolutional and recurrent neural networks, including their
advanced variants Han et al.| (2022); |Sun et al. (2022), can capture spatiotemporal dependencies in grid-
structured data such as radar images or weather maps, their dependency on rigid Euclidean grids limits their
applicability to sensor networks or outage datasets defined on irregular geographic layouts. More recently,
graph-based approaches have emerged as powerful tools for modeling non-Euclidean spatial dependencies,
allowing each node to represent a spatial location. Nevertheless, existing GNN-based methods [Kipf &
Welling| (2016)); Hamilton et al.| (2017a)); |Owerko et al.| (2018)); Defferrard et al.| (2016) often consider only
fixed spatial structures and lack the flexibility to model event-specific spatial dynamics. Furthermore, most
prior work overlooks the inherent imbalance in outage datasets, where low-impact events dominate and
high-impact events, though rare, carry greater operational significance and value. These gaps motivate
the development of a more spatially adaptive and representation-discriminative approach for power outage
prediction.

To this end, we propose Spatially Aware Hybrid Graph Neural Networks (SA-HGNN) that leverage con-
trastive learning to enhance outage prediction models (OPM) for extreme weather-induced power outages.
Specifically, we first construct a fixed adjacency matrix to encode the spatial relationships of static features
and design a dynamic graph learning module to capture and infer complex, evolving spatial dependencies
across different events. We then develop SA-HGNN to integrate spatial dependencies derived from both
static and dynamic features. To address the imbalance issue associated with extreme weather events of vary-
ing severity, we incorporate a contrastive learning strategy to generate location-specific embeddings. These
embeddings are obtained by minimizing intra-event distances between similar locations while maximizing
inter-event distances across all locations, resulting in more discriminative representations for each location.
Our main contributions include:

e We introduce SA-HGNN, a novel graph-based deep learning model that can effectively integrate
both static and dynamic spatial dependencies to enhance outage prediction for extreme weather
events.

o We develop a dynamic graph learning module that can capture and infer complex, evolving spatial
relationships across different locations, addressing the limitations of existing methods that rely solely
on fixed spatial structures.

e To tackle the imbalance issue in outage datasets, we adopt a contrastive learning strategy that
learns location-specific embeddings by minimizing intra-event distances between similar locations
while maximizing inter-event distances across all locations.

e QOur studies in four utility service territories, i.e., Connecticut, Western Massachusetts, Eastern
Massachusetts, and New Hampshire, demonstrate that SA-HGNN can achieve state-of-the-art per-
formance for power outage prediction.

2 Related work

In recent years, machine learning methods have been increasingly employed to address the challenges of
forecasting weather-related power outages Watson et al| (2022); |Garland et al.| (2023). One widely adopted
approach is ensemble learning. For instance, [Nateghi et al.| (2014)) utilized Random Forest (RF) to predict
outages caused by tropical cyclones, while Wanik et al.| (2015]) employed tree-based models to forecast power
outages in the New England region. He and Cerrai leveraged Bayesian additive regression trees (BART)
to predict outages resulting from storm events [He et al. (2017)); |Cerrai et al.| (2019a;c|), whereas [Udeh
et al.| (2024)) explored RF for predicting storm-induced power outages in the New York State region. These
ensemble approaches help mitigate overfitting and enhance prediction accuracy by leveraging diverse decision
paths and combining the outputs of multiple decision trees. However, they do not explicitly incorporate or
exploit spatial information, which is critical for outage prediction as extreme weather events (e.g., heavy
rainfall, snowstorms) typically have strong spatial effects.

Convolutional and recurrent neural networks (CNNs and RNNs), including advanced hybrid architectures
like ConvLSTM, have been widely adopted to capture spatiotemporal relationships in targeted datasets,
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including radar images and weather sequences. These models are particularly effective at capturing both
spatial and temporal dependencies, which are critical for applications such as short-term weather forecast-
ing. For instance, Han et al.| (2022)) demonstrated the use of a U-Net model for convective precipitation
prediction, while [Sun et al. (2022) applied a 3D-ConvLSTM model for storm nowcasting, showcasing the
strengths of these architectures in handling complex weather data. However, CNNs are inherently designed
for processing data with a regular rigid structure, such as images and time series. This makes them less
suited for sensor network data used in weather and outage monitoring, with their utility in outage prediction
still underexplored.

Recently, the development of graph neural networks Kipf & Welling| (2016)); Hamilton et al.| (2017a)) provides
promising solutions to incorporate the complex spatial relationships of outage data at different locations,
where each node corresponds to a spatial location and contains both static features (e.g., land cover, infras-
tructure) as well as dynamic features (wind speed, precipitation, etc).|Owerko et al.| (2018]) explored various
GNN architectures, including ChebNet Defferrard et al.| (2016]), to predict weather-induced power outages.
However, existing techniques often fall short in simultaneously integrating static and dynamic features while
simultaneously modeling their spatial dependencies across diverse locations.

3 Problem statement

We aim to predict location-specific power outage counts during extreme weather events within a given ser-
vice territory, i.e., different regions in New England. For each specific territory, we observe a collection
of m historical extreme weather events. In every event, a fixed set of N geographical locations is moni-
tored, and each location is described by a feature vector that combines both static and dynamic attributes.
Static features capture time-invariant location characteristics, such as topography, land cover, vegetation,
and infrastructure properties, which remain fixed across events. Dynamic features capture event-specific
meteorological conditions, such as wind speed, precipitation, temperature, and soil moisture observed dur-
ing a particular extreme weather event. The complete feature description is provided in Appendix [A] This
separation enables event conditioned representation learning by decoupling persistent spatial context from
transient weather-driven effects.

Formally, for an event k, let X;, € RV*F denote the input feature matrix, where each row corresponds to
a location and F' is the number of features per location. The corresponding outage count vector is denoted
by Vi € RY, where Y} ; represents the observed outage count at location i during event k. Collectively,
the data for a territory can be viewed as an event-wise tensor X € R™*N>XF Each event is modeled as
a graph Gy, = (V, E}), where the node set V = {v1,...,un5} corresponds to the fixed locations, and edges
represent spatial or functional dependencies between locations, and E}, defines the edges based on spatial or
functional relationships. During training, we have access to event-specific adjacency matrices A, € RV*N
constructed from external structural knowledge, which are used to guide the learning of spatial relationships.
At inference time, however, the adjacency matrix is not assumed to be known; instead, the model infers an
event-specific graph structure directly from the input features Xj.

Given an event-level input Xy, a graph neural network learns spatially informed node representations and
predicts outage counts as

Vi = fann (Xi, Ag; 6), (1)

where Aj, denotes the learned adjacency matrix inferred from X}, and 6 represents the learnable model
parameters. The training objective is to minimize the discrepancy between the predicted outage counts Y
and the ground-truth observations Y} across events.

4 Methodology

In this section, we introduce the general framework of our proposed model Spatially Aware Hybrid Graph
Neural Networks (SA-HGNN) with dynamic graph inference and contrastive learning in detail. The overview
of SA-HGNN is illustrated in Figure [l SA-HGNN contains three key components: Dynamic Graph Learn-
ing, Hybrid Graph Convolutional Module, and Contrastive Learning Module. To capture latent spatial
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Figure 1: The framework of SA-HGNN. The dynamic graph learning module learns event-specific adjacency
matrices guided by external structure, which are used in the dynamic graph convolution. The hybrid
graph convolution includes a dynamic GCN (DGCN) for capturing event-specific patterns and a static GCN
(SGCN) that aggregates information from a shared graph. Their outputs are concatenated to form location-
wise embeddings. Contrastive learning further refines these embeddings by aligning similar locations within
events and separating dissimilar ones across events. A regression module then projects the fused embeddings
to predict outage values.

relationships among locations across different events under dynamically evolving extreme weather condi-
tions, the Dynamic Graph Inference Module (Subsection learns and infers a dynamic adjacency matrix
for each event, incorporating external structural knowledge to guide the learning process. To incorporate
both static and dynamic features, we design a Hybrid Graph Convolutional Module (Subsection that
separately processes learned static and dynamic neighbor information through two distinct branches, en-
abling the model to capture more meaningful spatial dependencies and adapt to varying weather-induced
outage patterns. Lastly, the Contrastive Learning Module (Subsection is designed to overcome the im-
balance issue, enhance generalization, and improve the model’s ability to distinguish outage patterns across
different extreme weather events. By incorporating intra-event and inter-event contrastive learning, the
module refines node embeddings by ensuring that locations with similar outage behaviors under the same
weather event are closely aligned, while those experiencing different outage impacts across events remain
distinct. This distinction is crucial for capturing the variability of outage patterns under different weather
conditions, allowing the model to better adapt to unseen events. Projection layers are applied to the learned
node embeddings to the desired output dimension for the final outage predictions. The following subsections
provide details of these three key components.

4.1 Dynamic Graph Learning Module

For extreme weather events, spatial dependencies among locations vary significantly across events due to the
dynamic and localized nature of weather conditions. Relying solely on a fixed, pre-defined graph constructed
from static geographic proximity or infrastructure information is therefore insufficient, as such relationships
may fail to reflect event-specific interactions induced by extreme weather. To accurately model outage
patterns, it is crucial to account for both static relationships, which are driven by persistent geographic
and infrastructural characteristics, and dynamic spatial interactions that emerge uniquely under each event.
These dynamic interactions may arise from shared exposure to high wind fields, correlated soil moisture
conditions, or aligned storm trajectories, and play a key role in shaping event-level outage propagation
let al|(2023)); |Ye et al.| (2022); [Zhang et al.| (2024)).

Inspired by prior work on adaptive adjacency learning [Wu et al. (2020)); [Shi et al.| (2019); [Wu et al.| (2019));
[Bai et al. (2020); [Chen et al| (2021)), we introduce a dynamic graph learning module that constructs an
event-specific adjacency matrix conditioned on observed node features. This formulation avoids costly and
manual graph construction, which would otherwise require event-specific engineering and detailed domain
knowledge for each extreme weather scenario. Instead, the learned adjacency enables the model to adaptively
infer spatial dependencies that generalize across unseen events within the same service territory. During
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training, the learned adjacency is further guided by external structural knowledge [Pan et al.| (2024}), which
provides a weak prior on spatial dependencies and regularizes the graph inference process (see Section [5.1.1]
for details).

This module dynamically adjusts the graph structure based on the unique weather features of each event,
capturing evolving spatial dependencies that are critical for accurately modeling outage patterns and enhanc-
ing prediction performance. Formally, the adjacency matrix Ay for each event k is learned via the following

formulation: A, = SoftMax (tanh(XkW1) ~tanh(W;X;—))
fori e {1,2,...,N}:
idx = arg topk(Ali, :])

A 1 ifjeidx
Agli, j] = .
eli-J) {O otherwise

The learnable weight matrices W1 € R¥*? and Wy € R¥*? project the feature space into a latent dimension
d. The use of tanh activation ensures bounded transformations, while the SoftMax operation normalizes
the learned adjacency matrix, making it suitable for graph convolution. Although the subsequent top-k
operation determines the final sparse graph structure, the softmax normalization plays an important role
during training by constraining the adjacency scores to a comparable scale, preventing uncontrolled growth of
bilinear similarities, and ensuring stable gradient propagation when jointly optimizing the adjacency learning
module with downstream prediction and regularization objectives. The function argtopk(-) retrieves the
indices of the top-k largest values within a vector, ensuring that only the most relevant connections are
retained in the learned graph structure.

The dynamic graph learning equation is reasonably designed. First, the dynamic nature of extreme weather
events causes spatial relationships to evolve, making a static adjacency matrix insufficient. By constructing
Ay, dynamically for each event, the model can capture how weather features, like wind speed and soil moisture,
influence spatial dependencies specific to that event. For instance, during a storm, geographic locations
in the path of high wind speeds may form stronger dependencies, which are dynamically reflected in Ay
Additionally, the bilinear operation tanh(X;W1)-tanh(WJ X,|) encodes pairwise interactions between node
features. This approach is effective in datasets where features vary significantly across events and locations,
allowing the model to identify how one location’s features influence another.

To guide the learning of dynamic adjacency matrices, we incorporate external structural priors during train-
ing. The regularization is applied to the continuous adjacency scores produced before top-k sparsification,
allowing the prior to directly shape the learned affinities through gradient-based optimization. Unlike static
geographic relationships, these priors reflect how spatial dependencies evolve under varying weather condi-
tions. Encouraging alignment between the inferred graph structure and event-specific priors helps mitigate
the risk of learning spurious connections and improves the model’s adaptability to diverse extreme weather
scenarios. To achieve this, we impose a regularization loss that minimizes the mean squared error between
the learned adjacency matrix Ay, and the prior adjacency matrix Ay:

1 NN 9
Loty = 37 20 O || Axlis 1 = Al ]| - (2)
i=1 j=1
Furthermore, the integration of this module into the graph convolutional network allows for end-to-end
learning. The parameters W, and Wy, are jointly trained with the model’s other components, ensuring that
the learned adjacency matrix aligns with the outage prediction task. This alignment is critical in maximizing
the utility of the graph structure for capturing spatial dependencies that directly impact outages.

4.2 Hybrid Graph Convolutional Module

We adopt a multi-layer Graph Convolutional Network Kipf & Welling] (2016|) with residual connections as our
spatial embedding block to effectively aggregate neighborhood information. GCNs capture complex relational
dependencies between nodes by leveraging message passing and neighborhood aggregation, following the
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layer-wise propagation rule: ~ .
HAD — (D—l/ZAD—1/2H<l>W<l>) , 3)

where A = A + I is the adjacency matrix with added self-connections, D;; = > j Aij is the degree matrix,

WO is the trainable weight matrix at layer I, and o(-) is a non-linear activation function such as ReLU.
The initial node representation is H(®) = X, where X denotes the input feature matrix.

Next, we design a novel hybrid encoding architecture tailored for extreme weather-induced outage prediction
based on the standard GCN spatial embedding block. Unlike traditional graph-based approaches that treat
all input features uniformly Kipf & Welling| (2016); Velickovic et al| (2017), our framework separates the
processing of static and dynamic features to capture distinct spatial relationships. Specifically, we employ
two parallel GCN embedding channels:

e The static channel uses a fixed adjacency matrix across all events, modeling persistent geographic
or infrastructural relationships. It takes as input the static feature matrix X ().

e The dynamic channel constructs an event-specific adjacency matrix A}, to reflect the evolving
spatial dependencies under different weather conditions. It processes the dynamic feature matrix
X,id) for each event k.

The outputs of both channels are concatenated to form a unified node embedding, which is then passed
through a two-layer MLP to generate the final prediction. This hybrid structure enables more context-aware
message passing and improves model performance in scenarios characterized by heterogeneous and evolving
spatial dependencies.

4.3 Contrastive Learning Across Intra and Inter-Event

Accurate power outage prediction during extreme weather events further requires modeling robust and gener-
alizable spatial representations that capture both local dependencies and global variations across events [Sun
et al.[(2020)); Hassani & Khasahmadif (2020)). However, due to the inherent imbalance in outage datasets, the
learned representations may become biased toward dominant outage patterns, limiting the model’s ability
to generalize. To consider this, we develop a contrastive learning module that enhances the spatial repre-
sentations learned by the hybrid GCN module to further distinguish similar and dissimilar locations within
individual events and across different events |Zhou et al.| (2020); |Zhang et al.| (2023); [Velickovic et al.| (2019);
Zhang et al.| (2022)); [Xie et al.| (2022). By leveraging both intra-event and inter-event contrastive learning
strategies, this module improves the quality of the learned representations and ensures the model’s ability
to generalize across diverse weather conditions. To capture meaningful spatial dependencies within and
across different events, we adopt a contrastive learning framework that integrates intra-event and inter-event
objectives.

Intra-event contrast. Within each event k, the learned dynamic adjacency matrix Ay, defines the spatial
relationships among different locations. We treat node pairs connected by an edge in Ay, as positive pairs,
reflecting strong local dependencies under specific weather conditions. In contrast, unconnected node pairs
within the same event are considered negative pairs. Let z;; denote the embedding of node ¢ in event k.
The intra-event contrastive objective encourages embeddings of positive pairs (2, 2x,;) to be closer in the
representation space, while pushing negative pairs apart. This promotes spatial coherence and localized
discriminative learning.

Inter-event contrast. Extreme weather events often exhibit distinct spatial patterns. To improve general-
ization across events, we introduce an inter-event contrastive objective that explicitly contrasts embeddings
of nodes from different events. Specifically, for each node zj ;, we randomly sample a node zj/ ,, from an-
other event k' # k to form an inter-event negative pair. This encourages the model to distinguish between
structurally different events and avoid overfitting to event-specific noise.

Overall contrastive objective. The final contrastive loss integrates both intra-event and inter-event
components and is defined as:
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exp (sim 2k, 2k,5)/7)
diepiont uni . exp(sim(zg.i, 21)/7)

intra inter

L.=—E |log (4)

where sim(-,-) denotes cosine similarity between two embeddings; P? is the set of positive indices for an-
chor node zg;; M., and N, denote intra-event and inter-event negative sets, respectively, and 7 is a
temperature scaling parameter.

By optimizing this contrastive loss, the model learns spatially aware and event-generalizable representations,
ultimately improving the robustness and accuracy of outage forecasting across diverse extreme weather
scenarios.

4.4 Optimization Objectives

To effectively optimize the designed model, we adopt the Huber loss Barron| (2019) between predicted outage
counts Y} ; and ground truths Y ; as the main learning objective £,. The Huber loss is defined as:

1 % 2 : %
. 5(Yes — Yii)®, if |Yii—Yii| <0
£,(0.9) {2( ) | |

= A 5
4 8 (|Yii — Yl — 26), otherwise 5)

where 0 is a threshold parameter that balances the sensitivity to outliers. The Huber loss allows us to
effectively handle predictions across a wide range of weather scenarios. The total learning objective function
for this regression task consists of the forecasting objective L,, the contrastive learning objective L., and
the learning dynamic adjacency matrix objective Lq4;:

‘Ctotal = Ep + A‘Cc + ’7‘Cadj7 (6)

where A > 0 and v > 0 are hyperparameters determined by grid search over the training set.

5 Experiment

5.1 Experiment Setup

5.1.1 Datasets and Preprocessing

Table 1: The detailed statistics of four datasets

Datasets # Events # Locations Feature Length Output Length
Connecticut 294 815 390 1
New Hampshire 227 1022 390 1
Western Massachusetts 271 312 390 1
Eastern Massachusetts 231 383 390 1

To evaluate the effectiveness of the proposed SA-HGNN to predict power outages during extreme weather
events, we compare SA-HGNN with baseline methods over four utility service territories of Eversource, i.e.,
Connecticut, Western Massachusetts, Eastern Massachusetts, and New Hampshire. The detailed statistics
of benchmark datasets are summarized in Table [l

The datasets include weather variables, utility infrastructure, land cover, vegetation, and historical outage
data for each storm, modeling power disruptions across uniformly distributed locations within each state.
Details on feature sources are provided below.

Weather: Weather input is the largest source of uncertainty in the outage predictions |Guikema/ (2018). The
weather data is obtained from 48-hour simulations using version 3.8.1 of the Advanced Weather Research
and Forecasting (WRF) model [Powers et al.| (2017)); |Skamarock et al.| (2008)), with a 4-km horizontal grid
spacing over the northeastern United States. Initial and lateral conditions were derived from the North
American Mesoscale (NAM) Forecast System at a 12-km spatial resolution.
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Utility Infrastructure: The utility infrastructure information of Eversource Energy contains multiple
types of assets, including electric fuses, reclosers, and poles. These serve as key explanatory variables because
outages are recorded at the asset level, and the risk of having a reported outage is directly proportional to
the number of assets.

Land Cover: The U.S. Geological Survey (USGS) provided National Land Cover Database (NLCD) prod-
ucts, detailing vegetation and urbanization patterns. Since tree interaction with overhead lines during storms
is a major cause of outages, we incorporated tree-related land cover variables, including the percentages of
miscellaneous forests, deciduous forests, and developed areas.

The complete extreme weather database contains 390 distinct numerical features associated with outage
occurrences. Incorporating all features in a high-dimensional space introduces challenges that degrade model
performance and interpretability. The curse of dimensionality leads to data sparsity, poor generalization, and
overfitting, while redundant or irrelevant features add noise, increase computational costs, and complicate
model training |Rice et al| (2020); Bejani & Ghatee| (2021). To address these issues and enhance model
efficiency, we applied the Pearson correlation coefficient to quantify the linear relationship between each
feature X,,, and the outage count Y. The Pearson correlation coefficient rx, y is defined as:

B et (X = Xim) (Vi = Y)
7 \/Ziil (Xm,i - Xm)Q\/Zfil (Yi - )7)2

(7)

where X,,; is the value of feature X, for location ¢, X,, is the mean of feature X,, across events, Y;
is the outage count for location i, and Y is the mean outage count. Based on the computed correlation
values, we selected the top 50 features with the highest correlation to outage counts. Among the selected
variables, 20 features are static, representing location-specific characteristics that remain static over time,
while the remaining 30 features are dynamic, capturing temporal variations across different events. The
complete selected feature description is provided in Appendix [A] We construct two adjacency matrices
based on these two types of features and use them as external structural knowledge. The static adjacency
matrix is derived from geographic distances, where each location is connected to its eight nearest neighbors,
forming a fixed graph structure that remains consistent across all events. In contrast, the dynamic adjacency
matrix captures event-specific spatial relationships that may vary under different weather conditions. To
construct this matrix, we compute the Pearson correlation coefficients between dynamic features measured
during each event. For a given location, we identify the eight locations with the highest Pearson correlation
coefficients and establish eight edges between them. As a result, each event in our dataset is associated with
a unique dynamic adjacency matrix, which serves as external structural knowledge to guide the dynamic
graph learning module in Section [I.1]

5.1.2 Evaluation Protocols and Metrics

Given the critical importance of every extreme weather event, we adopt a leave-one-out evaluation strategy
to assess model performance |Yang et al.| (2021). For example, in the Connecticut dataset, which consists of
294 extreme weather events, we conduct 294 training and evaluation loops, each time leaving out a single
event for evaluation while training on the remaining 293 events. A similar leave-one-out procedure is applied
to datasets from Western Massachusetts, Eastern Massachusetts, and New Hampshire.

We evaluated the performance of outage predictions by using absolute error (AFE), absolute percentage
error (APE), mean absolute percentage error (M APE), centered root mean square error (CRMSE), and
R-square (r?). The definitions of evaluation metrics are detailed in Appendix

5.1.3 Baseline Model

To establish a comprehensive baseline for our proposed method, we conducted a thorough comparison against
7 models, which we have categorized into three groups: traditional machine learning methods: Random Forest
Breiman| (2001)), XGBoost |Chen & Guestrin| (2016)); GNN-based methods: ChebNet |Tang et al.| (2024),
Graph Attention Networks (GAT) [Velickovic et al| (2017), GraphSAGE Hamilton et al.| (2017b), Graph
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Isomorphism Network (GIN) Xu et al.| (2018); tabular foundation model: TabPFN |Hollmann et al.| (2025)).
We provide detailed descriptions of each baseline below:

o« Random Forest Breiman| (2001): This method combines multiple decision trees using bagging
to improve predictive performance and reduce overfitting, making it robust for handling high-
dimensional data and capturing complex relationships.

o XGBoost |Chen & Guestrin| (2016): This is a gradient boosting framework that builds decision
trees sequentially, optimizing for speed and accuracy.

o Graph Attention Networks (GAT) [Velickovic et al.|(2017)): It leverages attention mechanisms
to dynamically assign weights to neighboring nodes, enabling the model to focus on the most relevant
parts of the graph for learning node embeddings.

e GraphSAGE Hamilton et al.|(2017b)): The method generates node embeddings by sampling and
aggregating features from a fixed-size neighborhood, enabling efficient and scalable learning on large
graphs.

o Graph Isomorphism Network (GIN) Xu et al.| (2018): GIN achieves strong expressive power by
using a sum aggregation function and learnable weights, making it capable of distinguishing different
graph structures more effectively than traditional GNNs.

o TabPFN |Hollmann et al.| (2025)): It is a pre-trained transformer-based deep learning foundation
model for regression and classification on tabular data.

5.2 Main Results

Table [2] shows the full outage prediction results on all four datasets: Connecticut, New Hampshire, Western
Massachusetts, and Eastern Massachusetts. SA-HGNN consistently achieves the best performance across all
four datasets, with the lowest AE, APE, and MAPE scores in most cases. In particular, in Connecticut,
the improvement of SA-HGNN in terms of MAPE is most significant, improving by 19.45% compared to
the second best method. Meanwhile, it achieves the best (lowest) AE Q50 and APE Q50, showcasing a
clear advantage over three other baseline models in Figure 2] SA-HGNN significantly outperforms ensemble
learning methods methods such as Random Forest and XGBoost, graph-based models including GAT, GIN,
and GraphSAGE, as well as the state-of-the-art tabular foundation model TabPFN. The model achieves
the highest R? scores, reaching 0.79 in Connecticut and 0.43 in Eastern Massachusetts, indicating superior
predictive accuracy. Additionally, SA-HGNN demonstrates the lowest CRSME values, showing improved
robustness in capturing outage patterns. These results confirm that SA-HGNN effectively models spatial
dependencies and dynamic weather impacts, leading to more accurate outage forecasts.

Our experimental results show that ensemble learning methods, such as Random Forest and XGBoost,
yield suboptimal performance in outage prediction. This is primarily because they treat each location
independently, ignoring critical spatial correlations and dynamic interactions that shape outage patterns
during extreme weather events. In contrast, graph-based models like GAT and GIN generally perform better
by leveraging graph structures to model spatial dependencies. However, their aggregation mechanisms are
often fixed, and their adjacency matrices are typically predefined, limiting their adaptability to event-specific
spatial dynamics. For instance, while GAT assigns attention-based weights to neighboring nodes, it does not
dynamically adjust the graph structure to reflect evolving event-specific relationships.

SA-HGNN improves outage prediction by effectively capturing the unique spatial dependencies and event-
specific dynamics of extreme weather data. Unlike traditional models, SA-HGNN processes static and
dynamic features separately, ensuring better representation of both constant infrastructure-related attributes
and evolving weather conditions, as demonstrated in Section A key advantage of SA-HGNN is its
dynamic adjacency matrix, which adapts to each event and captures event-specific spatial relationships
crucial for predicting outages under varying weather conditions. Additionally, the contrastive learning module
enhances the model’s ability to distinguish intra-event neighbors from inter-event non-neighbors, leading
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Table 2: Extreme weather outage prediction results. Best results are highlighted in bold, and the second
best results are underlined.

Datasets ‘ Metric H SA-HGNN | Random Forest | XGBoost ‘ GAT ‘ GIN ‘ GraphSAGE | TabPFN

AE ¢25 25.00 84.50 48.00 31.50 | 33.00 32.00 31.25

AE ¢50 62.50 199.00 136.00 78.00 | 63.50 77.50 74.00

APE q25 23.09 45.75 32.10 29.65 | 24.73 28.57 24.97
CT APE 50 49.36 109.62 64.61 55.32 | 52.72 54.69 52.48
MAPE 52.77 127.15 155.87 65.52 | 65.98 67.87 79.41

CRMSE 851 1726 1323 1598 | 1755 1761 1590

R? 0.79 0.23 0.49 0.25 0.10 0.12 0.26

AE ¢25 12.50 37.00 26.00 15.00 | 12.00 13.00 13.00

AE q50 29.00 83.00 58.00 27.00 | 32.00 31.00 31.00

APE q25 23.75 41.42 28.34 20.14 | 21.29 22.16 23.40

NH APE ¢50 40.70 88.94 70.24 41.30 | 46.75 42.31 48.45
MAPE 45.66 190.77 142.54 52.34 | 51.38 59.89 51.51

CRMSE 364 359 360 388 389 379 395

R? 0.09 0.11 0.11 0.04 0.04 0.01 0.07

AE ¢25 5.00 10.00 8.00 4.00 | 4.50 4.00 5.00

AE q50 9.00 26.00 19.00 9.00 | 10.00 9.00 10.00

APE 25 25.54 32.44 31.15 25.00 | 26.79 25.89 25.90

WMA | APE g50 48.65 90.91 69.23 47.06 | 50.00 46.67 48.28
MAPE 55.87 177.64 143.29 55.76 | 54.52 51.81 54.98

CRMSE 92 116 110 111 116 116 112

R? 0.32 0.09 0.02 0.10 0.08 0.08 0.02

AE ¢25 11.00 28.00 21.00 12.00 | 11.00 12.00 12.50
AE q50 21.00 55.00 44.00 25.00 | 25.00 25.00 23.00

APE q25 22.02 39.91 28.87 23.75 | 21.21 20.24 22.78
EMA APE q50 39.02 91.76 66.67 43.96 | 41.67 45.16 40.91
MAPE 50.19 170.57 144.31 60.09 | 56.61 64.14 54.33

CRMSE 433 566 564.26 550 575 547 522

R? 0.43 0.03 0.04 0.09 0.10 0.09 0.17

to more robust and generalizable node embeddings. This is evident in the t-SNE visualization, where
embeddings with similar outage counts form well-defined clusters after contrastive learning, highlighting its
effectiveness in learning meaningful representations as shown in Figure [3]

5.3 Ablation Study

In this section, we conduct an ablation study on the Connecticut extreme weather dataset to assess the
impact of key components on model performance as shown in Table[3] Our analysis highlights three critical
modules that contribute to SA-HGNN’s effectiveness:

w/o HGNN: SA-HGNN without the hybrid graph convolution module, which separates the processing of
dynamic and constant neighbor information into two distinct branches. In this configuration, the module is
replaced with a single graph convolution branch that exclusively considers static neighbor information. With
this setting, the performance consistently perform worse than SA-HGNN. This is because during extreme
weather events, the outage of one location only only rely on its geographical neighborhood locations but also
depend on the dynamic weather conditions across different locations.

w/o DSK: SA-HGNN without dynamic structural knowledge (DSK) guiding the learning process of the
dynamic adjacency matrix. Instead, the model derives the dynamic adjacency matrix directly from each
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Figure 2: Actual outages vs. predicted outages comparison of four models on Connecticut extreme weather

data.
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Figure 3: Comparison of learned location embeddings across different methods on the Connecticut dataset.

weather event’s data, without incorporating external prior information. The absence of external dynamic
structural knowledge for each weather event restricts the model’s ability to effectively capture the complex
and evolving spatial dependencies that arise under different extreme weather conditions. Without dynamic
graph learning module, the graph learning process struggles to generalize to new weather events. Conse-
quently, the learned dynamic graphs are less informative, leading to suboptimal performance.

w/o CL: SA-HGNN without contrastive learning,
where the SA-HGNN is trained to generate loca-

tion embeddings without explicitly grouping similar
location pairs or enforcing discrimination between
different types of locations. The results show that
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removing contrastive learning degrades model per-
formance, underscoring its role in enhancing out-
age prediction. In addition, we visualized the em-
beddings of the learned locations in eight extreme
weather events using t-SNE, as shown in Figure [4]
where each event contains 815 locations. After ap-
plying contrastive learning, the embeddings exhibit
clear separability and are grouped with similar out-
age counts. However, the absence of contrastive
learning significantly degrades the embedding structure, resulting in less distinguishable representations.
By minimizing intra-event distances between similar locations while maximizing inter-event distances across

(2) SA-HGNN W/O CL (b) SA-HGNN W/ CL

Figure 4: SA-HGNN CL representation comparison
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Table 3: Ablation study of our proposed SA-HGNN.

Methods|[SA-HGNN w/o HGNN w/o DSK w/o CL

AE Q25 25.00 30.50 31.00 34.00
AE Q50 62.50 68.00 67.50 77.50
APE Q25 23.09 30.18 30.53 36.92
APE Q50 49.36 55.18 49.85 57.46
MAPE 52.77 53.46 52.11 56.80
CRMSE 851 1565 1405 1378
R? 0.79 0.29 0.42 0.45

all locations, contrastive learning can help overcome potential imbalance issues and improve the model’s
capability to capture meaningful spatial patterns.

5.4 Case Study

We conduct case studies on two representative extreme weather events to further demonstrate the effective-
ness of the proposed SA-HGNN model, as illustrated in Figures [fland [} Figure [f] visualizes the predicted
outage distribution across the Connecticut service territory during Hurricane Irene (August 28, 2011). While
GAT partially captures spatial outage patterns, GIN fails to accurately predict high-outage locations, and
XGBoost tends to overestimate outage counts in low-impact areas, resulting in notable deviations from the
observed outage distribution. The outage prediction patterns indicate that SA-HGNN effectively captures
local outage patterns and aligns most closely with the ground truth distribution in Figure a), highlighting
the advantages of the proposed SA-HGNN.

Figure |§| presents a second case study for a severe storm event in Eastern Massachusetts (October 29,
2017). Compared to Connecticut, this event exhibits sparser and more fragmented outage patterns. Despite
the weaker spatial signal, SA-HGNN remains more consistent with the ground truth distribution than the
baselines, demonstrating robustness across regions with differing outage characteristics.

(a) Actual Outage Distribution (b) SA-HGNN Prediction (¢) XGBoost Prediction (d) GIN Prediction (e) GAT Prediction

Figure 5: Outage prediction distribution of Hurricane Irene (August 28, 2011) in Connecticut. The ground
truth total outage count is 16022 (a). SA-HGNN (b) produces the closest total prediction (14512) compared
to XGBoost (21385), GIN (11273), and GAT (13742).

5.5 Hyperparameter Sensitivity

We further examine the sensitivity of SA-HGNN to the weighting coefficients A\ and ~ in Eq. (6), which
control the relative contributions of the contrastive objective and the dynamic adjacency regularization,
respectively. As shown in Figure 6, the model demonstrates stable performance over a wide range of values
for both hyperparameters. In particular, moderate values of A lead to consistently low MAPE, AE¢25, and
APE¢25, indicating that the contrastive objective enhances representation learning without overwhelming the
forecasting loss. The performance is also relatively insensitive to -, and based on this analysis, we set A = 0.01
and v = 0.5 in the experiments, which achieve a good balance between accuracy and stability. Overall, these
results show that the proposed framework is robust and does not rely on fine-grained hyperparameter tuning.

12
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(a) Actual Outage Distribution (b) SA-HGNN Prediction (c) XGBoost Prediction (d) GIN Prediction (e) GAT Prediction

Figure 6: Outage prediction distribution of Storm (October 29, 2017) in East Massachusetts. The ground
truth total outage count is 2520 (a). SA-HGNN (b) produces the closest total prediction (2673) compared
to XGBoost (3052), GIN (2087), and GAT (2201).
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Figure 7: Hyperparameter sensitivity analysis. We report MAPE, AE 25, and APE 25 under different
values of A and . The x-axis is shown in log scale.

6 Limitations and Future Work

Although our proposed framework SA-HGNN demonstrates promising performance in modeling both static
infrastructure features and dynamic storm-level spatial dependence, several limitations remain that motivate
future research.

One limitation of the current framework is that data from different service territories are treated indepen-
dently, with separate models trained for each region. Although the data are collected from multiple real-world
service territories, these regions exhibit inherent distributional differences in infrastructure, vegetation, and
climatic conditions, leading to feature drift across territories. Training region-specific models avoids infor-
mation leakage and allows the model to capture local characteristics, but it does not explicitly leverage
shared structure across regions, nor does it enable a systematic evaluation of cross-region generalization. As

13
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a result, the model’s portability to utilities or service territories with substantially different characteristics
has not yet been studied. Addressing such cross-region heterogeneity is an important direction for future
work, and transfer learning and domain adaptation strategies could be explored to account for distribution
shifts while exploiting commonalities across regions, thereby improving robustness and generalizability across
heterogeneous service territories and utility systems.

Another challenge arises from the temporal granularity of the available data. Each extreme weather event
in our dataset is represented by a single aggregated snapshot of meteorological and infrastructure variables,
rather than a temporally continuous sequence that tracks storm evolution. As a result, the constructed
dynamic adjacency matrix varies across events but remains static within each event, limiting the model’s
ability to capture the evolving propagation of storms and cascading outage dynamics over time. Recent
advances in spatio-temporal graph neural networks highlight the importance of jointly modeling spatial and
temporal dependencies through dynamic edge adaptation. Incorporating temporally resolved observations,
such as hourly wind fields or sequential outage reports, would enable future extensions toward fully spatio-
temporal graph formulations, where both node states and edge connections evolve continuously to reflect
the real-time progression of extreme weather systems.

Finally, the contrastive learning strategy improves representation discriminability, but the selection of pos-
itive and negative pairs is heuristic and may not fully reflect complex inter-event dependencies. Future
research could explore adaptive contrastive sampling or curriculum-based contrastive learning to better cap-
ture hierarchical relationships among events of varying severity.

7 Conclusion

In this study, we introduced SA-HGNN] a spatially aware hybrid graph neural network to predicter outages
caused by extreme weather events. By integrating dynamic graph inference, hybrid graph convolution, and
contrastive learning, SA-HGNN effectively captures both static and evolving spatial dependencies. Exper-
imental results on four utility service territories show that SA-HGNN outperforms existing ensemble and
graph-based models by adapting to event-specific graph structures and refining node embeddings.

Beyond outage prediction, this research contributes to the broader field of graph-based forecasting under
dynamic conditions, with potential applications in disaster response, climate impact modeling, and resilient
infrastructure planning.
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A Selected Feature Information

This section provides a comprehensive list of all the selected features along with their explanations. Each
feature is described in detail to clarify its significance and relevance to the analysis. These features encompass
various environmental, meteorological, and infrastructure-related factors essential for understanding outage

patterns.

land21: Land cover Area - Developed, Open Space
land22: Land cover Area - Developed, Low

Intensity

land23: Land cover Area - Developed, Medium
Intensity

land24: Land cover Area - Developed High
Intensity

land43: Land cover Area - Mixed Forest
landTotal: Land cover Area - Total

prec81: Percentage of land81(Land cover -
Pasture/Hay)

soilDepth: Mean Soil Depth

avgSMOIS3: Average Soil Moisture (40-100 cm
deep)

stdSMOIS4: Standard Deviation Soil Moisture
(100-200 cm deep)

avgTPA: Trees per acre avgLFSH: Leaf Stress
avgCIN: Average Convective Inhibition

stdCIN: Standard Deviation Convective Inhibition
avgDPT: Avearage Dew Point Temperature at 2 m
stdDPT: Standard Deviation Dew Point
Temperature at 2 m

hydNo: Percent Not Hydric Soils

avgSDI: Average Total stand density index
avgHardBA: Average Hardwood basal area
stdHardBA: Standard Deviation Hardwood basal
area

avgHardSDI: Average Hardwood stand density
index

stdHardSDI: Standard Deviation Hardwood stand
density index

peakPSFC: Peak Surface Pressure

minPSFC: Minimum Surface Pressure
peakPOTT: Peak Potential Temperature at 2 m
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stdPOTT: Standard Deviation Potential
Temperature at 2 m

peakSPFH: Peak Specific Humidity

HGT: WRF elevation

coggtl7: Duration of Continuous Gusts above 17
m/s

coggt27: Duration of Continuous Gusts above 27
m/s

coggt22: Duration of Continuous Gusts above 22
m/s

ggtl7: Hours of Wind Gusts above 17 m/s
ggt22: Hours of Wind Gusts above 22 m/s
ggt27: Hours of Wind Gusts above 27 m/s
peakGUST: Peak Wind Gust Speed
maxGUST: Max Wind Gust Speed

stdGUST: Standard Deviation Wind Gust Speed
peakW850: Peak Wind Speed above 850 mb
maxW850: Max Wind Speed above 850 mb
stdW850: Standard Deviation Wind Speed at 850
mb

stdTDIF: Standard Deviation of Temperature
Difference (850 mb to 1000 mb)

maxWSPD: max Wind Speed at 10m
peakLLWS: Low Level Wind Shear

avgCAPE: Convective Available Potential Energy
maxCAPE: Max Convective Available Potential
Energy

stdTURB: Standard Deviation Turbulence
maxTURB: Max Turbulence

poleCount: Number of poles

fuseCount: Number of fuses

ohLength: Length of overhead lines
reclrCount: Number of reclosers



Under review as submission to TMLR

B Evaluations

AE is used to measure the difference between the total predicted (p;) and actual (0;) outage counts from
event i. AE Q25 and AE Q50 mean the 25th and 50th quantile value of all events’ AE. And AE is calculated
as:

AE = |pi — o4, (8)

Also APE Q25 and APE Q50 represents the 25th and 50th quantile value of all events’ APE, which is
calculated as:

app =Pzl 9)

0j
MAPE is utilized to mean relative error as a percentage and is defined as:

n

100%
MAPE =
w2

i=1

0; — P
0;

: (10)

CRMSE is to measure the deviation of predictions from the actual values while removing systematic biases.
The lower this value, the better the performance of the model.

_ 1 Z?:l(pi - Oi) ?
CRMSE = , | > <p1, —0; — ;. , (11)

i=1

R? shows the goodness of fit of the various model predictions to the actual outages. The higher this value,
the better the performance of the model.

woly

i=1

(12)
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