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ABSTRACT

Effectively balancing uncertainty and decision-making is critical in real-world rea-
soning tasks. Split conformal prediction (SCP)—a popular statistical framework
for uncertainty quantification that constructs prediction sets using a calibration
set of interactions—is significantly limited in multi-turn interactive settings. In
particular, collecting calibration data requires the interaction trajectories to be de-
termined a priori, inducing a heuristic bias that weakens coverage. Moreover,
SCP cannot leverage the model’s own uncertainty to better guide its decision-
making without breaking coverage guarantees. To address these limitations, we
propose CONFORMAL REASONING, a novel offline conformal framework built
upon adaptive conformal inference methods that 1) is robust to distribution shift,
2) allows for flexible score function design, and, most importantly, 3) leverages
the prediction set into the model’s future decision making, all while preserving
marginal coverage guarantee. On three real-world tasks including medical diag-
nosis, embodied question-answering, and twenty questions, we show that confor-
mal reasoning empirically achieves theoretical coverage guarantees while showing
improved accuracy and efficiency.

1 INTRODUCTION

Large Language Model (Brown et al., 2020, LLM) agents are increasingly deployed for complex
decision-making tasks in the wild (Bommasani et al., 2021). In particular, agents must frequently
interact with different aspects of the environment. A crucial component of interactive decision-
making is an agent’s uncertainty over its actions. Robust uncertainty estimation provides a heuristic
for agents to abstain from making a decision and instead gather more information; this process
can continue iteratively until the agent is confident enough to make a decision, or might require
human assistance. This balance between uncertainty and decision-making is essential in high-stakes
settings, such as medical diagnosis (Li et al., 2024).

Traditional methods such as post-hoc calibration and prompting have been used to improve LLM
confidence estimation (Geng et al., 2024), but these techniques lack the formal guarantees necessary
for reliable abstention decisions. Conformal prediction (Shafer & Vovk, 2008; Angelopoulos et al.,
2023) fills this gap by providing statistically valid prediction sets with formal confidence guarantees
based on a user-defined threshold. This framework ensures that the correct answer is included
within a set of plausible options with high probability, offering a principled approach to confidence
estimation and has been proven effective in LLMs for multiple-choice tasks (Kumar et al., 2023).

However, existing applications of conformal prediction in interactive scenarios leave significant
room for improvement. Traditional split conformal prediction (SCP) requires a fixed calibra-
tion set of trajectories to be determined upfront, each coming with an associated noncomformity
score (Ren et al., 2023; 2024; Xu & Xie, 2021). This collection of a calibration set requires several
design decisions that are difficult to make a priori. For instance, the trajectories may be collected
until a policy—here, an AI agent interacting with its environment—concludes, or to a fixed time cut-
off. Neither of these calibration approaches is robust to the intricacies of the interactive multi-turn
setting. A policy-dependent approach that relies on a threshold for termination might be used for
tractable collection of a calibration set; yet, in turn, the conformal threshold q̂α generates trajectories

*Equal contribution in alphabetical order.
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Hi doctor, I am 35 y.o., female, and I have 
fatigue and night sweats. What is happening, 

what should I do?

What is your temperature?

My temperature is 98°F now, but 
it was 102°F last night.

Have you traveled anywhere recently?

I am a travel blogger, just came 
back from Africa last month.

Based on the information provided, 
you might have either A or B.

A  B  C  D

A  B  C  D

A  B  C  DA  B  C  D

Note: threshold 
for termination 

affects calibration 
trajectories, 

inducing circular 
dependency.

Termination Criteria: |C | = 1.Interactive Multi-turn TaskStandard Single-turn Task

A 35-year-old female presents with 
complaints of fatigue, nocturnal diaphoresis, 

intermittent headaches, and muscle 
aches… She denies recent respiratory or 
gastrointestinal symptoms… Currently 
afebrile with a temperature of 98°F, she 
reports a fever of 102°F last night. She 

returned from Africa one month ago and 
admits to inconsistent use of malaria 

prophylaxis during her trip.
Which of the following is correct? 
A: XXX, B: XXXX, C: XX, D: XXX.

. . .

. . .

: conformal threshold collected 
from interactive calibration set.

C = {A, B,}
Max depth reached, 

return prediction set.

C = {A, B, C, D}
→ ask question

C  = {B, C, D}
→ ask question

C = {A, B, D}
→ ask question

C  = {B}
→ return option B

Conformal threshold from 
a static calibration set.

C = {A, B}

Two runs with different conformal thresholds:

Figure 1: Single vs. multi-turn conformal prediction. In single-turn question-answering tasks (left),
conformal prediction involves obtaining a conformal threshold from a fixed set of calibration points,
providing robust coverage guarantees. However, in interactive multi-turn tasks (right), the confor-
mal threshold collected multi-turn calibration trajectories is often subject to a maximum sequence
length. This dependence on this initial condition induces heuristic bias, which breaks traditional
split conformal prediction (SCP) coverage guarantees. Note that in the right trajectory, option A is
eliminated in turn 1 but its probability exceeds the threshold in turn 2: our proposed Refresh Predic-
tion technique can recover this option while standard set construction techniques cannot.

distributed differently from that of the calibration set, creating a circular dependency. On the other
hand, a fixed time cutoff might create finite-sample in differences scores collected in a calibration
set versus those seen at test time, inducing a heuristic bias that causes conformal guarantees to fail.
Moreover, SCP prevents the conformal set—i.e., the measure of the agent’s uncertainty—from being
used in the decision-making policy; otherwise, the calibration set would also need to use conformal
sets in its own decision-making policy, creating a circular dependency.

To address these limitations, we propose a new framework, CONFORMAL REASONING, which en-
ables the use of conformal prediction in interactive reasoning tasks as demonstrated in Figure 1.
CONFORMAL REASONING builds upon adaptive conformal inference (Gibbs & Candes, 2021, ACI),
a variant of conformal prediction designed to construct valid prediction sets in response to arbitrary
distribution shifts by updating its quantile parameter based on the outcome of each sample in a se-
quential manner. An ACI-based approach is able to preserve guarantees despite the circular depen-
dency and heuristic bias issues in interactive setups. We propose a novel train-test offline adaptation
paradigm, in which we can learn the quantile parameter from the train set and eliminate the need
for sample-wise feedback at test time. Our novel application of ACI expands the design space of
score and prediction set formulation and leverages the model’s uncertainty to guide decision mak-
ing. Overall, our approach introduces three key components that extend the capabilities of conformal
reasoning for interactive tasks: 1) Offline Adaptation (OA) paradigm that applies ACI’s robustness
to distribution shifts to the multi-turn interactive setting without test-time sample-wise feedback, 2)
expanding the OA framework with flexible prediction set construction, noted as Refresh Prediction
(RP), and 3) incorporating uncertainty into subsequent actions, noted as Guided Reasoning (GR),
all while preserving conformal guarantees.

We validate our method across three tasks: interactive medical diagnosis, embodied question an-
swering, and open-ended twenty questions. Our results demonstrate that Conformal Reasoning
significantly improves prediction accuracy, interaction efficiency, and the specificity of prediction
sets compared to standard SCP, making it a practical and robust solution for real-world applications.
To summarize, the key contributions of this work are:

1. We introduce CONFORMAL REASONING, a framework that adapts adaptive conformal infer-
ence (ACI) to interactive reasoning tasks, enabling models to dynamically adjust prediction sets
during multi-turn interactions while maintaining robust coverage guarantees.

2. We propose two novel conformal techniques: Refresh Prediction (RP), which refines prediction
sets over the course of the interaction to improve the model’s efficiency, and Guided Reasoning
(GR), which leverages the model’s uncertainty in the next action to improve accuracy.
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3. Our proposed Init-Train-Test paradigm—Offline Adaptation (OA)—is the first to eliminate the
need for step-wise feedback during inference by learning a prediction threshold during training,
simplifying deployment in real-world interactive systems where immediate correctness feedback
may not be available.

4. We empirically validate our method across three challenging domains—interactive medical di-
agnosis, embodied question answering, and open-ended twenty questions—demonstrating
significant improvements in prediction accuracy, interaction efficiency, and prediction set speci-
ficity compared to traditional split conformal prediction (SCP) methods.

2 RELATED WORK

Interactive Reasoning and LLM Uncertainty Estimation. The integration of LLMs into interac-
tive systems has opened new avenues for complex decision-making tasks (Ouyang et al., 2022; Wang
et al., 2023). These systems, however, often lack robust and calibrated uncertainty quantification,
which are crucial for reliable decision-making. Desai & Durrett (2020) found that larger models are
not necessarily better calibrated, highlighting the need for methods that provide reliable confidence
estimates. Srivastava et al. (2022) and Geng et al. (2023) have shown that LLMs struggle at produc-
ing numerical confidence scores (Srivastava et al., 2022; Geng et al., 2023). To this end, other works
have explored confidence calibration in LLMs via temperature scaling (Xie et al., 2024), prompting
(Tian et al., 2023), and multi-agent deliberation (Yang et al., 2024). For high-stakes applications
such as medical diagnosis, interactive reasoning becomes critical. Li et al. (2024) proposed MediQ,
a framework that simulates clinicians interactively gathering patient information to make accurate
diagnoses; there, better confidence estimation leads to higher diagnostic performance.

Online Conformal Prediction. Methods in adaptive conformal prediction were originally designed
to provide coverage in adversarial online settings. The primary method for adapting to online dis-
tribution shifts is via online gradient descent, first proposed in Gibbs & Candes (2021); successive
work has similarly used online subgradient updates with respect to tracking the quantile (Angelopou-
los et al., 2024a; Bhatnagar et al., 2023; Angelopoulos et al., 2024a). Many of these works have
focused on responsiveness to distribution shifts and characterizations of validity of prediction sets,
such as bounds on measures of regret and techniques from online learning (Gibbs & Candès, 2024;
Bastani et al., 2022; Jung et al., 2022; Zhang et al.). Our work builds upon existing approaches in
online conformal prediction, but applies these techniques in a fundamentally different setting: our
approach applies an online algorithm to data collected offline, allowing for adaptation to distribu-
tional heterogeneity in the calibration set while learning a quantile that attains marginal coverage.

Conformal Prediction in Interactive Environments. Conformal prediction has been used for tra-
jectory prediction and planning within dynamic environments; these approaches generally leverage
online technique (Gibbs & Candes, 2021; Gibbs & Candès, 2024; Angelopoulos et al., 2024b) or
attain marginal coverage over the distribution of trajectories (Xu & Xie, 2021; Stankeviciute et al.,
2021; Zaffran et al., 2022). Alternatively, a related line of work has characterized conformal predic-
tion under feedback shifts, largely through the perspective of reweighting under induced covariate
shifts (Fannjiang et al., 2022; Prinster et al., 2024). Recently, split conformal prediction has also
been applied for robot decision-making under uncertainty, using conformal prediction sets as indi-
cators for human-in-the-loop correction or as exploration stopping times (Ren et al., 2023; Liang
et al., 2024). Our work is most similar to Ren et al. (2024), though with notable exceptions: our
method of online adaptation to offline data enables using techniques that are incompatible with the
approaches used in Ren et al. (2024) but enable empirical improvement.

Conformal Prediction and Abstention. Recent work has explored using conformal-style tech-
niques for abstention, which requires controlling uncertainty over the selective classification er-
ror (Angelopoulos et al., 2021; Gui et al., 2024). These approaches are generally framed through
risk control, where with high probability the selective classification error is controlled below a user-
selected threshold using a calibration set. While these approaches successfully control the selective
classification error and thereby give guarantees (w.h.p.) of the form P(y ∈ C(x) | |C(x)| = 1) ≥
1 − α, in a naive implementation they do not provide meaningful prediction sets. In contrast, we
hope to attain marginal coverage guarantees typical in the conformal prediction literature.

Our approach interpolates between Angelopoulos et al. (2021) and Ren et al. (2024) to achieve a
correct 1 − α coverage guarantee. Ren et al. (2024) requires the interactions to terminate at the
maximum allowed timestep for their specific scenario; while not achieving conditional coverage,
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this approach would provide a marginal guarantee at the expense of the efficiency. In contrast, the
aformentioned risk control approaches ensure that terminating at a prediction set of size one would
provide a valid conditional coverage guarantee at the cost (in a naive implementation) of not offering
any terminal prediction set. In particular, both Angelopoulos et al. (2021) and Gui et al. (2024)
compute conformal p-values for each test point and use these p-values to determine whether the
model’s prediction should be used and elicited or abstained from. Here, we empirically demonstrate
that we retain marginal coverage for the final prediction set at termination time. Moreover, our
approach offers a more efficient alternative to the approach of Ren et al. (2024) that goes to the
maximum sequence length, as we enable the agent to either terminate at a prediction set of size one
or offer a terminal prediction set that can be used to aid a human practitioner.

3 PROBLEM FORMULATION

Consistent with the notation used in Ren et al. (2024), we consider a distribution over scenarios,
ξ ∼ D, for an agent to interact with. Each scenario, ξ, is a tuple ξ := (e, y, T, x0), where e
represents the environment, y ∈ Y is the ground truth categorical answer to the posed question,
T ∈ Z+ is the maximum number of times the agent is allowed to interact with the the environment
to find y, and x0 is the agent’s initial state. Our goal is to design an agent that sequentially interacts
with the environment, e, to predict the hidden answer, y, within T steps of interactions. We model
the agent as a policy π̂(·), that, at each step t ∈ [T ], takes as input the current state xt−1, and then
takes an action, at, drawn from the policy: at ∼ π̂(xt−1). The environment provides a feedback,
e(at|a1, . . . , at−1), based on the current action given all previous actions, which in turn contributes
to updating the state, xt, that is then fed back into the agent. This updated state represents the refined
knowledge the agent has about the state of the environment and the answer. For example, a state xt

can be the complete transcript of all interactions so far, i.e. xt = (x0, a1, e(a1), a2, . . . , e(at−1)).

To make this concrete, we describe three tasks (Table 1) that we consider in our later experiments:

Proactive Medical Information Seeking (MediQ). In medical diagnosis, a clinician typically be-
gins with an initial complaint and gathers further information (e.g., patient history, symptoms, lab
results) before reaching a diagnosis. We use the MediQ benchmark (Li et al., 2024), an interactive
version of the MedQA dataset (Jin et al., 2021) that presents some initial information x0 that is
the patient’s demographic information and the chief complaint, and a medical question κ and tests
a model’s ability to take actions a by asking relevant questions to the patient until it has enough
information to make a diagnosis y.

Embodied Question Answering (EQA). The Embodied Question Answering (EQA) task assesses
a model’s ability to actively explore a 3D environment, gather visual and spatial information, and
answer questions about the scene. We use the HM-EQA dataset (Ren et al., 2024), which focuses on
human-robot scenarios within photo-realistic 3D indoor environments constructed from the Habitat
Matterport 3D dataset (HM3D) (Ramakrishnan et al., 2021). The agent controls a robot to navigate
a habitat e starting from an initial position x0 that is the robot’s initial pose and current RGB image
observed on the onboard camera. The dataset consists of questions requiring the agent to locate
objects, understand room layouts, or explore areas that may not be immediately visible; an example
is “Where did I leave my red jacket?” with possible answers Y = “a) On the couch, b) On the
kitchen table, c) In my office, or d) On the coat rack.” The agent can take actions a to move the
robot to a different location and observe a new image e(at) from the environment e.

Open Ended 20 Questions (20Q) The 20 Questions task involves two roles: the Answerer, who
selects a target word, and the Guesser, who asks Yes/No questions to identify the target. This
interactive game evaluates the model’s ability to ask strategic, information-seeking questions and
make accurate guesses based on partial information. In contrast to MediQ and EQA, where the
answer space is constrained, the 20 Questions task involves an open-ended answer space. We use
two datasets for this task: (1) Original—a hand-curated dataset of 340 target words from Hu et al.
(2024), which is sourced from the BIG-bench 20 Questions task (BIG-bench collaboration, 2021),
the 20 Questions official website1, and an object concept database (Hebart et al., 2019); and (2)
Auto20Q—a larger dataset of 2,000 target words automatically generated using GPT-4, covering a
broad range of object categories to simulate more varied and challenging interactions. The training,
validation, and test sets are partitioned accordingly to ensure balanced coverage across categories.

1https://blog.prepscholar.com/20-questions-game
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Task MediQ (Li et al., 2024) EQA (Ren et al., 2024) 20Q
Scenario ξ Clinical interaction Assistant robot Word guessing

Environment e Medical inquiry Household simulation Objects (nouns)
Answer y Multiple choice option Multiple choice option Target word

Max Turns T 15 30 20
Initial Info x0 Age, gender, complaint Pose, RGB image Game description

Example Step
What is the most What color is Is X a

Question κ likely diagnosis the curtain in living
for this patient? the bedroom? thing?

Incremental
Info xt

She has vomited
3 times and
progressively
became more
confused.

No

Elicited patient info Picture of living room Answerer response

Intermediate
Reasoning π

The confusion,
with symptoms like
vomiting, points
to hypoglycemia,
consistent with

insulin overdose...

Out of the rem-
aining options,
X1:fits desc.;
X2:fits desc.;
X3:doesn’t fit
desc. ...

Clinical rationale Semantic value repr. Option set partition

Episode-level
Prediction Set Cτ (xτ )

Ask follow-up question. Ask follow-up que-
Agent Action at E.g. "What is your Navigate to bedroom. stion. E.g. "Is X

medical history?" man-made?"

Table 1: Examples of MediQ, EQA, and 20Q task scenarios and their elements.

Metrics. At any tans ≤ T , the agent can choose to stop interacting and output a set of answers
C ⊆ Y that we call a prediction set. Given a target α, our aim is to achieve (1 − α) marginal
coverage as closely as possible, while using minimum number of queries , and aiming for minimum
size prediction set. Concretely, we aim to optimize the following metrics:

1. Coverage := P(y ∈ C); this evaluates the reliability of the prediction set. The goal is to ensure
that the true answer is included with a probability of at least 1− α, i.e., Coverage ≥ 1− α.

2. % Answered := P(|C| = 1); this measures the probability the agent outputs a single answer.

3. Specificity := 1−E[|C|/|Y|]; a higher specificity indicates that the model produces tighter pre-
diction sets. This evaluates how well the model narrows down its prediction set (and uncertainty),
reflecting its ability to focus on a smaller, more precise set of potential answers.

4. Efficiency := 1 − E[tans/T ]; a more efficient agent has smaller stopping time, tans, i.e., the
number of conversational turns required for the model to confidently produce a final prediction.

The probability and expectation are defined over the randomness in the distribution of the scenarios,
the feedback and the evolution of the environment, and the internal randomness in the agent.

Single-turn vs. multi-turn settings. Traditional conformal prediction assumes a single-turn setting
without interactions (Figure 1, left), where the goal is to construct prediction sets, C(x), for fresh
inputs, x ∈ X , at test time satisfying the target coverage of P(y ∈ C(x)) ≥ 1 − α. To this end,
the goal of conformal prediction is to use the calibration set, denoted Dcal = {(xi, yi)}ni=1, and the
model, denoted f̂ , to design a scheme that constructs small prediction sets at test time.

Our proposed CONFORMAL REASONING applies to a multi-turn setting (Figure 1, right), where
the goal is to construct prediction sets, C(x̄), about the hidden answer y to a question for a fresh
scenario ξ = (e, y, T, x0) at test time by interacting with the test scenario to get a sequence of
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states x̄ = (x0, x1, . . . , xtans) for some tans ≤ T . These sequence of interactions refine our belief
about the answer, in order to construct a prediction set that satisfies the target coverage of P(y ∈
C(x̄)) ≥ 1− α. We interact with each scenario to get a calibration sequence, x̄i = (x0

i , x
1
i , . . .), of

evolving states. The goal of Conformal Reasoning is to design a scheme that guides the interactions
to construct minimal size prediction sets using the scenarios in the calibration set.

4 BACKGROUND ON CONFORMAL PREDICTION

Split Conformal Prediction (SCP) for single-turn settings. In a non-interactive scenario, we are
given a calibration set of paired examples, Dcal = {(xi, yi)}ni=1 ∈ Xn × Yn, drawn i.i.d. and a
model, f̂ , to predict y given x. Given a new input x and a target confidence level 1 − α ∈ [0, 1],
uncertainty quantification aims to produce a statistically valid prediction set, C(x), of minimal size
satisfying, P(y ∈ C(x)) ≥ 1−α, where the pair (x, y) is drawn from the same distribution as Dcal.

To achieve this goal, SCP uses the model to define a nonconformity score function, s : X ×Y → R.
This measures the disagreement between the prediction f̂(x) and the true label y. For example,
s(x, y) = ∥y − f̂(x)∥ in regression and s(x, y) = 1 − fy(x) in classification, where fy(x) is the
softmax score for class y predicted from input x.

SCP calculates scores Scal := {si = s(xi, yi)}(xi,yi)∈Dcal
on the already-collected cal-

ibration dataset and computes the (1 − α)(1 + 1/n)-th empirical quantile q̂, i.e. q̂ :=
Q(1−α)(1+1/n) (S1, . . . , Sn). Finally, the prediction set for a fresh input x is the collection of outputs
with small nonconformity scores defined as

Cα(x) = { ŷ ∈ Y | s(x, ŷ) ≤ q̂α } ,

and provably achieves the desired coverage guarantee; see Angelopoulos et al. (2023, Theorem D.1).

Split Conformal Prediction (SCP) for multi-turn settings. When considering split conformal
prediction in an interactive environment, prediction sets must be constructed more delicately, espe-
cially at test time. First, recall from our interactive framework that each scenario, ξ, results in a
sequence, x̄ = (x0, x1, . . . , xtans), for some tans ≤ T ; accordingly, since each scenario, ξ, is drawn
i.i.d. from some distribution D, this, along with the exploration policy, induces a distribution over
input sequences x̄. Let x̄i denote the i-th trajectory drawn from this induced distribution for the
scenario ξi. Ren et al. (2024) apply standard conformal prediction to these trajectories by defining
nonconformity scores at each time step t within a given trajectory as sti := s(xt

i, y), where xt
i is the

state that is fed into the model f̂ at time t+ 1.

As a baseline, we compare against a slight variation of the interactive SCP algorithm intro-
duced in Ren et al. (2024). This SCP chooses the episode-level nonconformity score to be
s̄i := maxt∈[T ] s

t
i, or the worst-case nonconformity score across all time steps in the trajectory.

These episode-level scores can then be used for the standard approach in split conformal prediction;
denote q̂α as the 1− α empirical quantile over s̄i. At test time, because the agent only observes the
trajectory up to current time t, the prediction sets must be causally constructed. In particular, the
prediction set at time t is defined as

C(xt) := ∩tτ=0C(xτ ) , where C(xτ ) := {ŷ ∈ Y | s(xτ , ŷ) ≤ q̂α} , for all τ ≤ t ,

for a fresh trajectory (x0, . . . , xt) on a test scenario ξ. If |C(xt)| = 1, the agent halts exploration
and returns the singleton set as its choice. If |C(xt)| = 0 or t = T is reached without a singleton
prediction set, we need not return a prediction. This is in contrast with the version of SCP proposed
in Ren et al. (2024), which output the most likely answer when |C(xt)| = 0 or t = T ; we make this
change to emphasize our design choice of abstaining or requesting help from a human until accurate.

5 METHODS

While SCP attains marginal validity, it requires strong design choices that might not be desirable in
general. We focus on three critical constraints of SCP—termination criteria, prediction set construc-
tion, and using the conformal sets in the policy—and propose CONFORMAL PREDICTION consisting
of three novel conformal techniques—offline adaptation, refresh prediction, and guided reasoning—
to address each of the constraints.
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5.1 OFFLINE ADAPTATION (OA)

SCP requires the termination criteria of the calibration trajectories to be made a priori. Practically,
existing work collect the calibration scores with a termination criterion (TC1) of a fixed trajectory
length T and select a quantile q̂ to be the threshold for creating turn-level prediction sets at test
time, but vary the termination criterion at test time (TC2) to be either reaching the max length T
or reaching a prediction set size of 1 dependent on the selected q̂, causing a distribution shift in
the score functions that is hard to avoid in practice2(Ren et al., 2024). Given the strict (and often
impractical) constraints under SCP in multi-turn interactive settings, we propose offline adaptation
to address the distribution shift issue by dynamically updating the parameter αt using a training set
with the same score functions and data distribution as the test set. The learned αt determines a new
threshold q̂αt from the calibration scores to provide marginal coverage guarantees on the test set.

Offline Adaptation is inspired by Adaptive Conformal Inference (Gibbs & Candes, 2021; An-
gelopoulos et al., 2024b, ACI), which addresses online uncertainty quantification in settings where
arbitrary distribution shift might occur over time. In particular, at each time t, we consider a time-
dependent bounded score function st : X × Y → [0, B] defined similarly to before (see §4), but
allowing for the score to evolve over time. Given st, the prediction set is defined as

Ct(x) = {y ∈ Y : st(x, y) ≤ q̂αt},
where q̂αt is the 1 − αt empirical quantile over the collection of prior scores. The parameter αt is
updated according to

αt+1 = αt + ηt(α− 1y/∈Ct(xt)),

where ηt ∝ t−1/2−ϵ for some ϵ ∈ (0, 1/2). If Yt is not covered at time t, then αt is increased, which
in turn decreases the magnitude of q̂αt+1 . A strength of ACI is its ability for αt to converge almost
surely to α∗ when the data is i.i.d. but the score function is evolving over time. In particular, we
appeal to the following theorem:

Theorem 1 (Angelopoulos et al. (2024b)). Let (Xt, Yt)
i.i.d.∼ D for some distribution D, and assume

the score functions st are trained online. Assume that ηt is a fixed nonnegative step size satisfying∑∞
t=1 ηt = ∞ and

∑∞
t=1 η

2
t < ∞. Let s : X × Y → [0, B] be a fixed score function, and assume

that α∗ is unique as giving 1−α coverage of s(X,Y ). Then online conformal prediction satisfies the
following statement almost surely: If st

d→ s, then αt → α∗. In other words, if the score functions
converge in distribution to some fixed score function, αt will converge to α∗, where α∗ corresponds
to attaining 1− α coverage on the distribution of scores.

5.2 REFRESH PREDICTION (RP)

The construction of the prediction sets in SCP is hyperspecific: choosing a different trajectory-
level score function or set construction method does not give statistical validity. SCP requires that a
prediction set at time t be constructed by the intersection of all previous prediction sets of time j < t;
accordingly, if the true answer falls out of the prediction early in the calibration or inference trajec-
tory, the set loses coverage no matter what. We emphasize that Theorem 1 holds for an arbitrary
score function: as long as it converges in distribution, αt will converge to α∗. This enables conformal
sets to be constructed flexibly using ACI, rather than through the restrictive and potentially conser-
vative method required by SCP. Accordingly, we propose an alternative score function and method
for constructing a conformal set. In particular, for a calibration trajectory x̄ = (x1, . . . , xmin(tans,T )),
we define the score function as s(x̄, y) = s

(
xmin(tans,T ), y

)
, where T is the maximum depth of the

trajectory. I.e., only the nonconformity scores of each option at the current step are used to construct
the prediction set, rather than using the intersection with all prior prediction sets. Thus, if an option
is excluded from the prediction set in a previous step, it could still be included in a subsequent pre-
diction set. We denote this approach for computing the prediction sets as Refresh Prediction (RP),
referring to the ability of the prediction set of being refreshed at each timestep.

2In an effort to unify the termination criteria for the calibration and test sets to eliminate the distribution
shift, we explore the following two scenarios. Using TC1 for both calibration and test sets will result in the
system being hypersensitive to the choice of T a priori—small T values result in insufficient exploration
and large prediction sets, and large T values result in inefficient and wasteful algorithms not customized to
each environment—rending the set-up brittle and impractical. Using TC2 for both calibration and test sets
will require the q̂ value—needed to determine the turn-level prediction set—to be determined before iterating
through the calibration set, causing a circular dependency.
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Algorithm 1: Conformal Reasoning
Input: an exploration policy π̂(·); a calibration set Dcal = {ξi}ni=1 of size n; initialization size

ninit; a nominal error level α ∈ (0, 1); and learning rate schedule with ηj ∝ j−1/2−ϵ for
ϵ ∈ (0, 1/2), nonconformity score function s(·, ·)

/* Collect an initial set of scores using ninit sample sequences. */
1 for i ∈ [ninit] do
2 x̄i ← sequence of states from scenario ξi = (ei, Ti, x

0
i , yi) run with policy π̂

3 si = s(x̄i, yi)

4 S := {si}i∈[ninit]

5 q̂αninit+1
← Q1−α

(
δ∞ +

∑
si∈S δsi

)
6 αninit+1

← α
/* Use S to find α̂ */

7 for j ∈ {ninit + 1, . . . , n} do
8 x̄j ← sequence of states from scenario ξj = (ej , Tj , x

0
j , yj) run with policy π̂

9 αj+1 ← αj + ηj(1yj /∈Cj(x̄j) − α).
10 S ← S ∪ {s(x̄j , yj)}
11 q̂αj+1

← Q1−αj+1

(
δ∞ +

∑
si∈S δsi

)
Output: q̂αn+1

5.3 GUIDED REASONING (GR)

SCP prevents using the conformal set—i.e., the measure of the agent’s uncertainty—in the
decision-making policy; otherwise, the calibration set would also need to use conformal sets in
its own decision-making policy, creating another circular dependency. Guided Reasoning enables
the agent to use the conformal set in its exploration policy. In turn, this strategy aims to improve ex-
ploration quality by leveraging the model’s uncertainty to guide subsequent actions. More formally,
the agent takes action at ∼ π̂(xt−1, C(xt−1), where C(xt−1) is the conformal set at time t−1. This
creates an explicit dependence of the agent’s action—and consequently, its subsequent state xt—on
the construction of the conformal set and therefore αt. Here, the use of OA is critical—because the
calibration set was collected without using the conformal set in the exploration policy, it no longer
provides marginal coverage over data collected with a policy that does leverage the conformal set.
Notably, OA enable the model to adapt to the distribution shift while enabling use of the conformal
set in the exploration procedure.

Conformal Reasoning. To this end, we introduce a novel approach, CONFORMAL REASONING,
for maintaining coverage in interactive environments while leveraging conformal prediction sets in
exploration; see Alg. 1 for further details. First, we partition a calibration dataset Dcal = {ξi|ξi ∼
D}ni=1 into two distinct subsets: Dinit and Dtrain. The subset Dinit, where the policy runs until
length T , is used for providing a warm start for OA. If the dataset is known ahead of time, this
allows for additional efficiency through offline computation of α0 using traditional split conformal
prediction. After α0 is initialized, we run adaptive conformal inference with a decreasing learning
rate, where our update is only dependent on the last prediction set at tans. This allows us to use
potentially non-causal methods for constructing our prediction set during exploration.

6 EXPERIMENTS

We compare the performance of our proposed techniques—Offline Adaptation (OA) with Refresh
Prediction (RP) and Guided Reasoning (GR), collectively termed CONFORMAL REASONING—
to the baseline of Split Conformal Prediction (SCP) on the medical diagnosis (MediQ), embod-
ied question answering (EQA), and 20 Questions (20Q) tasks described in §3. We defer more
detailed description of the tasks to Appendix A. We experiment with target coverage values in
{0.5, 0.6, 0.7, 0.8, 0.9} to evaluate how varying coverage levels affect the key metrics for each task.

Evaluation Metrics. As described in §3, we measure the Coverage:= P(y ∈ C) of each method; %
Answered—the rate at which the agent arrives at a single confident answer; Specificity—how well
the model narrows down its prediction sets; and Efficiency—the speed at which the agent ends its
exploration to produce a single confident answer.
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Figure 2: The proposed approaches of ACI and ACI+RP closely match the target coverage for both
MediQ and EQA. The baseline of SCP and SCP+RP, on the other hand, fail to meet the target
coverage. See Table 2 for exact values with standard errors.

Models. We rely on open models rather than proprietary black-box models, as we require probability
outputs from our models. For MediQ and 20Q, we use the LLAMA-3-8B model (Dubey et al., 2024).
For EQA, we use Prismatic VLM (Karamcheti et al., 2024), an open vision model that achieve strong
performance on question-answering and spatial reasoning. See §A.2 for implementation details.

7 RESULTS

Offline Adaptation (OA) maintains coverage. A fundamental requirement of the conformal pre-
diction framework is to ensure coverage, i.e., the prediction set consistently includes the correct
answer with high enough probability. As expected, our Offline Adaptation technique ensures the
coverage guarantee across all tasks by utilizing adaptive conformal inference, closely aligning em-
pirical coverage with the target coverage level. In contrast, SCP, while theoretically sound in single-
turn settings, struggles to maintain this guarantee in multi-turn settings (Figure 2). In particular, the
draw of the calibration set and the corresponding conformal threshold influences the policies of the
inference-time tasks, creating a distribution shift. In contrast, OA adjusts its prediction thresholds
dynamically throughout the sample scenarios in the calibration set, ensuring that coverage remains
close to the target level, even as the data distribution changes with the prediction thresholds. Upon
further analysis, the deviation of SCP methods away from the target coverage is particularly pro-
nounced when the trajectory lengths of the test set differ from that of the calibration set. More
results on SCP across all three tasks can be found in Appendix B.

Refresh Prediction (RP) increases percent answered and efficiency. Refresh Prediction, a key
part of our contribution, improves the model’s ability to confidently select a single correct answer by
the end of the interaction, which we measure using the percent answered metric. Using prediction
sets constructed through RP, CONFORMAL REASONING is able to refine the model’s final output,
improving the frequency of the model outputting one single option by 42.7% across tasks and target
coverage levels (Table 2). Overall, RP improves the exploration efficiency by 20.7%, 20.9%, 55.1%
on MediQ, EQA, and 20Q, respectively, effectively reducing the number of steps needed to achieve
the target coverage while improving percent answered. This is particularly crucial in high-stakes
or high-cost applications to ensure timely and resource-effective decisions. In medical diagnosis,
this means that the model can confidently reach a conclusion after fewer questions, which is highly
desirable in real-world applications where asking unnecessary questions can waste time or resources.

Guided Reasoning (GR) improves accuracy for open-ended tasks. Guided Reasoning enables
the model to leverage its own uncertainty to produce the next best action. This is achieved by
adding the prediction set from each turn to the prompt, guiding it to ask a question that would best
distinguish the remaining options in the narrowed-down prediction set, rather than starting from the
whole solution space. Intuitively, guided reasoning is the most helpful when the size of the solution
space is large, as it helps the model focus on a subset of options only. On the 20Q task, GR not only
improves efficiency and specificity, it significantly improves the accuracy by an average of 12.4%
across target coverage levels with and without RP (figure 3). On the multiple-choice tasks, GR
improves efficiency and specificity, though to a lesser degree than that of 20Q. Additional results on
GR is reported in Appendix D.
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Task Target Refresh Empirical % Answered ↑ Specificity(%)↑ Efficiency(%)↑Coverage Prediction Coverage

MediQ

0.9 ✗ 89.7±0.7 26.8±1.3 30.0±1.1 22.9±1.0

✓ 89.2±0.8 34.4±1.2 27.9±0.9 28.9±0.7

0.8 ✗ 79.9±1.1 44.4±1.5 46.1±1.4 38.1±1.5

✓ 79.1±1.1 55.2±2.5 45.0±1.7 47.7±2.2

0.5 ✗ 53.1±0.3 94.4±0.4 75.1±0.0 91.1±0.1

✓ 48.8±0.9 99.6±0.5 74.9±0.1 96.7±1.6

EQA

0.9 ✗ 90.3±0.6 13.1±1.2 30.5±0.8 14.4±3.7

✓ 89.8±1.6 14.5±1.1 32.2±1.4 17.0±2.8

0.8 ✗ 81.3±1.8 34.5±1.1 33.7±1.2 29.6±3.3

✓ 79.7±1.4 42.9±2.7 39.8±1.5 42.2±4.1

0.5 ✗ 51.0±2.5 83.2±2.2 75.2±2.1 77.5±3.1

✓ 48.1±2.3 83.7±1.8 84.0±2.6 79.2±2.9

20Q

0.9 ✗ 90.5±1.1 0.1±0.2 52.6±1.4 4.0±0.4

✓ 88.4±2.0 5.7±1.4 67.6±1.4 7.9±0.8

0.8 ✗ 83.2±3.1 0.5±0.4 62.4±2.1 4.6±0.5

✓ 82.7±4.6 10.8±2.1 77.5±2.5 8.9±1.1

0.5 ✗ 53.4±3.8 2.5±0.5 79.5±0.4 4.8±0.5

✓ 52.5±3.6 38.9±4.5 93.7±0.2 14.3±1.2

Table 2: Conformal Reasoning results on MediQ, EQA, and 20Q, with depth limit 15, 30, and 20
respectively. Conformal Reasoning employs adaptive conformal prediction to ensure that empirical
coverage matches the target coverage, while adding refresh prediction (RP) further improves percent
answered and exploration efficiency without significantly sacrificing output specificity.
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Figure 3: Guided Reasoning (GR) significantly improves accuracy on tasks with a larger solution
space (20Q) while maintaining performance on others. More results in Appendix D.

8 DISCUSSION

In this work, we introduce CONFORMAL REASONING—extending adaptive conformal inference
to interactive environments. We first propose a novel offline adapataion paradigm where the need
for sample-wise feedback is eliminated, allowing practical deployment in real-world scenarios. We
present 1) Refresh Prediction for constructing flexible prediction sets in multi-turn settings and 2)
Guided Reasoning for leveraging the prediction set in the decision-making process. Our results
demonstrate strong empirical performance in domains like medical diagnosis, embodied question
answering, and open-ended 20 questions, showing more reliable coverage rate and improved explo-
ration efficiency. However, there are still various important considerations to explore in the space of
conformal prediction for multi-turn interactions. While Conformal Reasoning addresses the heuris-
tic bias between calibration trajectories and termination criteria, we encourage future research to
focus on optimizing reasoning abilities of agents with episode-level prediction sets and understand-
ing trade-offs among coverage, efficiency, and specificity.

10



Under review as a conference paper at ICLR 2025

LIMITATIONS

While Conformal Reasoning maintains coverage and improves performance relative to split confor-
mal prediction, our approach nonetheless has some limitations. First, convergence and stability of
Conformal Reasoning is dependent on the choice of learning rate in adapting αt, requiring some
hyperparameter tuning for the best performance. Moreover, if the calibration set for tuning alpha is
too small, Conformal Reasoning might not converge to the optimal α∗ value.

ETHICS STATEMENT

While the Conformal Reasoning framework shows potential, several risks must be addressed before
real-world deployment.

Bias and Fairness. Calibration sets can introduce biases, which may result in unequal outcomes
across different demographics, especially in medical applications. Future work should assess these
risks through fairness evaluations to ensure equitable outcomes across all groups.
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A DETAILED TASK DESCRIPTIONS

A.1 MEDIQ

We now include details about how the agent performs clinical reasoning using the MediQ frame-
work (Li et al., 2024). The MediQ framework comprises two components: a Patient system that
simulates a patient and responds to follow-up questions, and an Expert system that serves as a doc-
tor’s assistant and asks questions to the patient before making a medical decision. We MediQ to
explore how conformal prediction can guide the Expert System’s interactive medical diagnosis ca-
pabilities. Specifically, in this interactive clinical reasoning task, a successful information-seeking
Expert should decide, at each turn, whether it has enough information to provide a confident answer;
if not, it should ask a follow-up question.

The dynamic medical consultation task simulates the iterative nature of real-world clinical interac-
tions. This task starts by providing an initial patient description k0 of their conditions to the Expert
system. The initial information typically contains the patient’s age, gender, and chief complaint
for the visit. The Patient system has access to the entire patient record K = {k0, k1, . . . , kn}, and
the necessary information to answer the multiple choice question is K∗ ⊆ K. At the start of the
t-th turn, the knowledge available to the Expert system is denoted as Kt−1 = {k0, . . . , ki}. Given
follow-up question qt, the Patient system responds with rt = {k|k ∈ K}. The Expert knowledge is
then updated as Kt = Kt−1 ∪ rt. The main challenge of the task is for the Expert system to ask
information-seeking questions to expand Kt until the Expert system is sufficiently, at which point
the Expert system is asked to make a final decision. The decision to either ask another follow-up
question or to provide the final diagnosis is made through the episode-level prediction set generated
by the conformal prediction process (C(xt))—when there are more than one option remaining in
the prediction set, more information is needed to rule out the wrong answers, so the model should
abstain from answering, whereas when there is only one option in the prediction set, we deem the
model confident enough to provide the final answer.

Nonconformity Scores At each step of the interaction, the model outputs logit scores for the pos-
sible letter choices—A, B, C, D—which are conditioned on the preceding conversation context
and the given question. We apply a softmax function to these logits to derive normalized probabili-
ties, which we use as nonconformity scores for each option.

A.2 EQA

Here, we provide additional details on how exploration and question-answering takes place in
our embodied question answering tasks. We focus on two parts in particular: how EQA per-
forms targeted exploration and the scores used as the stopping criterion in the conformal predic-
tion subroutine. We closely follow the approach described by Ren et al. (2024); we restate this
approach here briefly for further detail but refer the reader in search of full implementation details
to ren2024exploreconfident.
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A.2.1 TARGETED EXPLORATION

In EQA, we would like the robot to explore areas that are useful in answering the desired question.
To do so, we create a 3D voxel representation for the scene, where each voxel corresponds to a
cube of fixed side length. At a given state of the robot—that is, a pose and location within the
environment—and associated depth image, we apply volumetric truncated signed distance function
(TSDF) to update the occupancy of the voxels and their presence in the current image. At each
time step, the 3D voxel map is projected onto a 2D map M , where each 2D point is determined
as occupied or unoccupied based on the occupancy of voxels within a 1.5m radius and as explored
or not if the voxels have been marked as explored. Based on the constructed 2D map, we then use
a heuristic-based 2D planner based on Frontier-Based Exploration (FBE). This approach looks for
locations at the boundary of explored and unexplored areas, samples one, and uses the normal vector
from the current location to the selected region boundary as the target orientation.

While naive frontier-based exploration can yield efficient exploration of an environment, it fails to
leverage the prior knowledge stored within the VLM for determining the most relevant areas for
exploration. Here, we characterize the VLM’s uncertainty using visual prompting. For a given
image, we identify three points in free space within the image and annotate them on the image with
the letters A, B, and C. We then use this image for visual prompting using the prompts identified
in Figure 4. The normalized output probability can be used to construct the local semantic value of
each of the three points as follows:

LSVp(x
t) = f̂yp

(xt) = f̂yp
(Itc, sLSV,q) ∈ [0, 1]

where Itc is the current RGB image, q is the question to be answered, f̂y(·) is the (normalized)
softmax score associated with token y, and sLSV,q is the prompt from Figure 4 with the question
filled in. In particular, f̂yp

(·) is the softmax score associated with the letter for a given point p, i.e.
if p is annotated with the letter A, then f̂yp

(·) is the normalized softmax score associated with the
token A.

While LSV captures the local score associated with each point, it does not capture the value of
different points seen in alternate poses of the robot. To help address this problem, we determine
whether we should navigate to other poses in the first place. We can again prompt the VLM using
prompt in Figure 5. This captures the global semantic value of moving to point p, and is formulated
as

GSVp(x
t) = f̂Yes(x

t) = f̂Yes(I
t
c, sGSV,q) ∈ [0, 1]

In other words, we characterize the the value in moving to point p by the normalized softmax score
of the VLM predicting “yes.” Together, we compute the overall semantic value as

SVp(x
t) = exp(τLSV · LSVp(x

t) + τGSV ·GSVp(x
t))

where τLSV and τGSV are temperature-scaling parameters. We then use this semantic value map
weighting our frontier-based exploration value map.

A.2.2 NONCONFORMITY SCORES

Here, we also characterize the nonconformity scores used in conformal reasoning. First, we can
characterize the VLM’s confidence in the current image being relevant for answering the target
question through direct prompting. In particular, we define the the question-image relevance score
as

Rel(xt) = f̂Yes(I
t
c, (q, sRel, q))

where sRel,q is the prompt in Figure 6 with the question filled in. Finally, we determine the relevance-
weighted confidence score at time t as

ρty(x
t) := Rel(xt)(f̂y(x

t)− 1).

We use this as our nonconformity score for our EQA task.

A.3 IMPLEMENTATION DETAILS

At each step of the interaction, the model outputs logit scores for the possible choices—A,B,C,D
for multiple choice and yes,no for open-ended questions—which are conditioned on the preceding
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Consider the question: {question}, and you will explore the scene for
answering it. Which direction (black letters on the image) would you
explore then? Answer with a single letter.

Figure 4: EQA local semantic value (LSV) prompt.

Consider the question: {question}, and you will explore the scene for
answering it. Is there any direction shown in the image worth exploring?
Answer with Yes or No.

Figure 5: EQA global semantic value (GSV) prompt.

Consider the question {question}. Are you confident about answering the
question given the current view?

Figure 6: EQA relevance score prompt.

conversation context and the given question. We apply a softmax function to these logits to derive
normalized probabilities, which we use as nonconformity scores for each option. In the open-ended
setting, we use a preset list of 26 options consisting of the correct answer and in-category and out-
of-category terms to simulate a large solution space. In our EQA task, we weight the normalized
probabilities by a question-image relevance score; see Appendix A for task-specific details.

B SCP RESULTS

Task Method Avg. Deviation Avg. Efficiency

MediQ SCP+X 5.70±5.33 62.07±23.98

OA+X 1.38±1.09 53.86±24.35

EQA SCP+X 90.2±0.7 21.4±2.0

OA+X 89.2±0.8 31.0±1.8

20Q SCP+X 3.50±2.72 7.43±3.14

OA+X 3.42±2.86 7.30±3.13

Table 3: SCP on multi-turn interactive tasks weakens coverage guarantees.

C ABLATIONS

Depth Limit In this ablation study, we control for the lengths of the trajectories to highlight the
heuristic bias introduced by the calibration set and train-test sets not having the same termination
criteria. By shortening the maximum number of turns in each trajectory, we reduce the variations
between the lengths in the calibration set and the train-set sets. As shown in Table 5, after increasing
the maximum depth of the trajectories, the distribution, both in mean and standard error, changes
relative to trajectories with shorter depth limit. These differences are particularly noticeable with
respect to efficiency.

Online Conformal Algorithm While ACI is the most basic form of base algorithm to use for
offline adaptation (OA), more modern approaches to online conformal inference exist, particularly
with respect to controlling different measures of regret. Here, we compare our results against two
more recent online conformal techniques: MVP from Bastani et al. (2022) and MagL-D from Zhang
et al.. Our results on the EQA are available in Table 4. Broadly, we demonstrate that our approach
is agnostic of the specific online conformal algorithm used; that is, our approach still maintains cov-
erage across our design choices. Moreover, while using the improved online conformal algorithms
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Figure 7: Empirical OA convergence on EQA task across coverage levels. Despite some variation
in αt and empirical coverage level, OA tends to converge relatively quickly despite its guarantees
primarily being asymptotic.

improves our downstream metrics, they do so relatively marginally compared to ACI, which is sim-
pler to implement. Characterizing the tradeoffs in downstream metrics between these methods is
interesting future work.

Empirical Convergence of αt While the theoretical guarantees for using offline adaptation come
asymptotically, we characterize the empirical convergence of αt for our EQA task in Figure 7.
Here, we see that across coverage levels, OA empirically converges reasonably quickly despite being
applied on a relatively small calibration set size.

Tradeoffs Between Efficiency and Specificity in Refresh Prediction Here, we characterize the
tradeoffs between specificity and efficiency, particularly in the context of RP. Our results are visible
in Figure 8. Broadly speaking, we see that in many cases, using RP improves the Pareto frontier
relative to OA alone. Additionally, the degree to which the Pareto frontier changes under RP strongly
depends on the task that Conformal Reasoning is applied to.

D GUIDED REASONING RESULTS

Experimental results find that Guided Reasoning (GR) is particularly helpful when the size of the
solution space is large. However, we also show that for multiple choice tasks containing only 4
options, addiing GR still maintains robust performance on both the MediQ (Figure 3b) and EQA
(Figure 9) tasks.
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Figure 8: Tradeoffs between specificity and efficiency across tasks and target coverage levels. In
general, using RP improves the Pareto frontier between specificity and efficiency.

Figure 9: GR Performance on EQA. Relative to OA and OA+RP, adding GR improves accuracy on
EQA.
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OA Alg. Target Refresh Empirical % Answered ↑ Specificity(%)↑ Efficiency(%)↑Coverage Prediction Coverage

ACI
0.9 ✗ 90.3±0.6 13.1±1.2 30.5±0.8 14.4±3.7

✓ 89.8±1.6 14.5±1.1 32.2±1.4 17.0±2.8

0.8 ✗ 81.3±1.8 34.5±1.1 33.7±1.2 29.6±3.3

✓ 79.7±1.4 42.9±2.7 39.8±1.5 42.2±4.1

MVP
0.9 ✗ 90.1±0.7 14.2±1.1 32.1±0.9 15.8±3.5

✓ 89.5±1.5 15.8±1.2 33.9±1.3 18.5±2.9

0.8 ✗ 81.0±1.7 36.2±1.2 35.4±1.3 31.8±3.4

✓ 79.4±1.5 44.5±2.5 41.6±1.6 44.7±4.0

MagL-D
0.9 ✗ 90.2±1.0 14.8±1.3 33.2±1.1 16.5±3.6

✓ 89.3±1.7 16.4±1.2 34.8±1.4 19.2±2.7

0.8 ✗ 80.8±1.9 37.8±1.3 36.9±1.4 33.5±3.5

✓ 79.1±1.6 46.2±2.4 43.3±1.7 46.8±3.9

Table 4: Conformal Reasoning results on EQA using different online conformal algorithms. Broadly
speaking, we see that using more advanced forms of online conformal algorithms yield benefits
across our downstream metrics while retaining coverage.

Exp. Target Max Empirical % Answered ↑ Specificity(%)↑ Efficiency(%)↑Coverage Depth Coverage
OA 0.9 10 89.3±0.7 17.2±0.9 29.2±1.2 09.6±1.1

OA+RP 0.9 10 89.5±1.4 18.4±1.3 28.9±1.7 12.1±0.8

OA 0.9 30 90.3±0.6 13.1±1.2 30.5±0.8 14.4±3.7

OA+RP 0.9 30 89.8±1.6 14.5±1.1 32.2±1.4 17.0±2.8

OA 0.8 10 80.2±1.0 24.4±1.1 32.2±1.5 15.9±1.8

OA+RP 0.8 10 80.9±0.9 24.1±1.6 32.1±1.7 16.1±1.4

OA 0.8 30 81.3±1.8 34.5±1.1 33.7±1.2 29.6±3.3

OA+RP 0.8 30 79.7±1.4 42.9±2.7 39.8±1.5 42.2±4.1

OA 0.5 10 43.9±8.3 81.3±2.6 84.0±1.2 74.2±1.5

OA+RP 0.5 10 45.7±7.2 85.1±2.1 80.2±2.9 75.4±1.1

OA 0.5 30 51.0±2.5 83.2±2.2 75.2±2.1 77.5±3.1

OA+RP 0.5 30 48.1±2.3 83..7±1.8 84.0±2.6 79.2±2.9

Table 5: Ablation study on depth limit on the EQA task. While coverage remains essentially the
same, changing the depth limit in EQA affects other downstream metrics, particularly efficiency.
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