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ABSTRACT

Catastrophic forgetting and the stability-plasticity dilemma are two major obsta-
cles to continual learning. In this paper, we first propose a theoretical analysis of a
SPCA-based continual learning algorithm using high-dimensional statistics. Sec-
ond, we design OSCL (Optimized Spca-based Continual Learning) which builds
on a flexible task optimization based on the theory. By optimizing a single task,
catastrophic forgetting can be prevented theoretically. While optimizing multi-
tasks, the trade-off between integrating knowledge from the new task and retain-
ing previous knowledge of the old tasks can be achieved by assigning appropriate
weights to corresponding tasks in compliance with the objectives. Experimental
results confirm that the various theoretical conclusions are robust to a wide range
of data distributions. Besides, several applications on synthetic and real data show
that the proposed method while being computationally efficient, achieves compa-
rable results with some state of the art.

1 INTRODUCTION

Continual learning paradigm. Machine learning methods generally learn from samples of data
randomly drawn from a stationary distribution. However, this scenario is rare in reality. Continual
learning (CL) is a particular machine learning paradigm in which data continuously arrive in a pos-
sibly non i.i.d. way and knowledge is accumulated over time (Schlimmer & Fisher, 1986; Ebrahimi
et al., 2019; Lee et al., 2020; De Lange et al., 2021). For designing real-world machine learning
systems that mimic humans, continual learning is essential. On the one hand, humans continue to
acquire knowledge and solve new problems throughout their lifetimes. The goal of continual learn-
ing is to mimic the capacity of humans to learn from a non-stationary data stream without forgetting
catastrophically the learned knowledge (Titsias et al., 2019; Lee et al., 2020). On the other hand,
when deploying a trained model in real applications, the distribution of data will consistently drift
over time. Therefore, the machine learning algorithm must be able to adapt continuously to these
changes (Kirkpatrick et al., 2017; Lesort et al., 2020).

Challenges in continual learning. One of the major challenges of continual learning is to avoid
catastrophic forgetting (McCloskey & Cohen, 1989; Chen & Liu, 2018; Aljundi, 2019). This oc-
curs when the performance of previous tasks is severely degraded during the learning process. To
take into account both the current task and the previous tasks, the stability-plasticity dilemma was
introduced (Nguyen et al., 2017; Rajasegaran et al., 2019). More specifically, plasticity refers to the
ability of integrating new knowledge, and stability to the capacity of retaining previous knowledge
(which is related to catastrophic forgetting). Note that the term catastrophic forgetting, although
strongly referenced in the literature in deep neural network models, is a fairly general concept that
can occur in any machine learning algorithm as it has been noted in shadow single-layer models,
such as self-organizing feature maps (Richardson & Thomas, 2008; Chen & Liu, 2018).
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State of the art. Most works on CL have focused on purely supervised tasks which is the focus of
the present work (Kirkpatrick et al., 2017; Nguyen et al., 2017; Lee et al., 2020). Supervised CL can
be classified into three main categories based on how knowledge and data are updated and stored:
replay, regularization, and dynamic architecture-based methods (De Lange et al., 2021). Replay-
based approaches address the catastrophic forgetting by saving and reusing the previously seen data
while learning a new task (Lopez-Paz & Ranzato, 2017; Isele & Cosgun, 2018; Titsias et al., 2019).
Regularization-based methods penalize the update of crucial weights to alleviate forgetting by in-
troducing an extra regularization term in the loss function (Kirkpatrick et al., 2017; Ebrahimi et al.,
2019). Dynamic architecture-based methods flexibly update the learning model as new tasks are
added based on the task complexity and the relation between the tasks (Rajasegaran et al., 2019; Lee
et al., 2020). Although successful cases of supervised continual learning were reported in articles,
the algorithms tend to feature unpredictable behavior, generally requiring a host of additional in-
convenient hyperparameters and requiring a high computational cost. More importantly, supervised
continual learning methods lack theoretical guarantees of avoiding catastrophic forgetting.

Contributions of the paper. In this paper, we introduce a novel CL method based on Supervised
Principal Component Analysis (SPCA). We provide a theoretical analysis of the proposed method
using high-dimensional statistics. This analysis allows us to predict in advance the performance of
the algorithm. Furthermore, we develop a label optimization scheme based on the theory that avoids
catastrophic forgetting theoretically. As a result, we obtain a simple and efficient continual learning
algorithm free of hyperparameters, at a low computational cost named OSCL. Moreover, the theory
allows us to weight the tasks during the learning process according to the user’s preferences and
priorities. This is in line with the resolution of the stability-plasticity dilemma. As such, the main
contributions of the paper can be summarized as follows.We propose a simple continual learning al-
gorithm, computationally inexpensive based on SPCA, and provide a theoretical analysis (to obtain
exact classification error rather than bounds) using high dimensional statistics. Using the theoret-
ical results, we develop a label optimization scheme that provably prevent catastrophic forgetting
and also allows for a weighting of the tasks during learning. Several applications are presented to
corroborate the practical usefulness of the approach in terms of efficiency and flexibility.

Outlines. The remainder of the paper is organized as follows. Section 2 discusses several works in
the continual learning literature and highlights the differences and contributions of the present paper.
Section 3 introduces and formalizes the continual learning framework, and furthermore proposes a
simple continual learning algorithm based on SPCA. Section 4 proposes a theoretical analysis of this
algorithm as well as flexible optimization tools to benefit from all tasks. Section 5 provides several
applications to corroborate the different conclusions of the paper.

Notations. Matrices will be represented in bold capital letters (e.g., matrix A). Vectors will be
represented in bold lowercase letters (e.g., vector v) and scalars will be represented without bold
letters (e.g., variable a). The canonical vector of size n is denoted by e[n]m ∈ Rn, 1 ≤ m ≤ n,
where the i-th element is 1 if i = m, and 0 otherwise. The diagonal matrix with diagonal x and 0
elsewhere is denoted by Dx. Generally, the subscript t refers to the task number, and the superscript
j to the class index. As an example, xjt` denotes the `-th sample of class j for task t. 1n ∈ Rn is the
vector of all ones and the matrix Σv ∈ Rn×n denotes the covariance matrix of the random vector
v. [n] denotes the set {1, . . . , n}. nt denotes the number of samples in task t, ntj is the number of
samples in class j of task t.

2 RELATED WORKS

2.1 CONTINUAL LEARNING

As mentioned in the introduction, we focus on the state of the art of supervised CL, which is divided
into three main concepts that we develop in detail in this section. The appendix provides a more
detailed picture for interested readers.

Replay-based methods. Replay-based approaches aim to retain a certain amount of historical ex-
amples, extracted features, or generated examples to reduce forgetting when training the model with
new data. Three challenges need to be solved. The first problem is selecting appropriate previous
samples. In this context, Isele & Cosgun (2018) proposed four strategies for choosing which data
will be stored. Aljundi et al. (2019) proposed sample selection as a constraint reduction problem.
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The second challenge is to find a suitable format to store data from past tasks. In this direction, Shin
et al. (2017); Ayub & Wagner (2020) used a deep generative model to sample pseudo-data points
to replay the past experience while Farajtabar et al. (2020) stored a set of gradients of each task to
minimize catastrophic forgetting. The last challenge is to find a better way to use historical data.
Lopez-Paz & Ranzato (2017); Chaudhry et al. (2018); Farajtabar et al. (2020) avoided interference
between tasks by projecting the new gradients in the feasible region constrained by the gradient(s) of
previous tasks. Wang et al. (2022) achieved a better stability-plasticity trade-off using an attention-
based framework while Hersche et al. (2022) composed a frozen feature extractor, a trainable fixed
size fully connected layer, and a re-writable dynamically growing EM (Explicit Memory) that stores
as many vectors as the number of classes encountered. It is important to note that our method does
not use any samples from previous tasks and only stores statistical data. Therefore our method is
different from the aforementioned algorithms.

Regularization-based methods. Regularization-based approaches generally impose a regulariza-
tion constraint on the objective function to maintain a balance between stability and plasticity. The
literature focuses on two main issues. In the first place, it is necessary to evaluate the importance
of parameters in the previous model and, in the second place, to limit the adjustment of critical
weights. With Kirkpatrick et al. (2017), such importance is computed from the diagonal of the
Fisher information matrix and important weights are constrained to change slowly while learning
new tasks. Nguyen et al. (2017) extended online variational inference to handle more general con-
tinual learning tasks. Ebrahimi et al. (2019); Zeno et al. (2018) used uncertainty as the importance
of the weights and subsequently, adapted the learning rate whereas Jung et al. (2020) considers the
average activation value as the importance of a node. Our algorithm does not use any regularization
and therefore differs from regularization-based approaches.

Dynamic architecture-based methods. Dynamic architecture-based approaches adjust the model
architecture according to the complexity of the tasks, and the relation between them. Two questions
are critical in this approach: the timing to adjust the model architecture and the procedure to do
so. In Fernando et al. (2017) the changing procedure uses evolutionary strategies to select pathways
through the network and freeze older pathways. In contrast, Yoon et al. (2018) and Lee et al. (2019)
don’t modify systematically the architecture given new tasks but take into account the difficulty of
the tasks and the relation between them. More specifically, Yoon et al. (2018) used group sparse reg-
ularization to dynamically expand the architecture when the accumulated knowledge alone cannot
sufficiently explain the new task. Similarly, Lee et al. (2019) expands the number of experts under
a Bayesian non-parametric framework, which determines the complexity of the model based on the
data. Our method keeps the same model from one task to another and does not fit into approaches
based on dynamic architectures.

Although the idea of label optimization has been introduced in a transfer learning framework
(Tiomoko et al., 2020), this paper is the first to propose a line of label optimization in a CL context.
As a result, our study is not directly part of the aforementioned CL classification methods but can
be considered as a new research line for CL.

2.2 SUPERVISED PRINCIPAL COMPONENT ANALYSIS

Our continual learning approach is based on SPCA. Barshan et al. (2011a) is one of the first to pro-
pose SPCA, which is a generalization of principal component analysis (PCA) and aims at finding the
principal components with maximum dependence on the response variables. Ritchie et al. (2019)
presented a manifold optimization approach to SPCA that simultaneously solves the prediction and
dimension reduction problems, which is general enough for both regression and classification set-
tings. For a more detailed review, we refer to Ghojogh & Crowley (2019) which explains PCA,
SPCA, kernel PCA, and kernel SPCA. The advantage of SPCA in a CL context is its ease of trans-
ferring knowledge from previous tasks to the next in addition to its simplicity of theoretical analysis,
which is a major advantage over more complicated algorithms such as SVM, LDA, logistic regres-
sion, or neural networks.

2.3 ON LARGE DIMENSIONAL ANALYSIS OF MACHINE LEARNING ALGORITHMS

The field of theoretical analysis of machine learning algorithms has become increasingly large with a
significant impact on the understanding and optimization of algorithms. Different fields of research
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are explored, among which we find approaches using the theory of random matrix (Mai & Couil-
let, 2021; Couillet & Benaych-Georges, 2016; Liao & Couillet, 2019; Seddik et al., 2020; Tiomoko
et al., 2020; Niyazi et al., 2021), approaches based on physical statistics (Cocco et al., 2018; Zde-
borová & Krzakala, 2016; Malzahn & Opper, 2005; Agliari et al., 2020; Carleo et al., 2019; Agliari
et al., 2020; Taheri et al., 2021), and other approaches (Convex Gaussian Min Max theorem no-
tably (Thrampoulidis et al., 2014; Deng et al., 2020)). These approaches generally have the same
goal: to predict in advance the classification error or to predict the mean square error in a regression
framework to anticipate the behavior of the algorithm and improve it. Our study is part of this wave
of asymptotic analyses and is more specifically related to the approaches of the theory of random
matrices.

Furthermore, using Bayesian and information theoretic arguments, Pentina & Lampert (2014; 2015);
Doan et al. (2021); Alquier et al. (2017); Denevi et al. (2019a;b) established bounds for the clas-
sification error in a continual learning framework. Even though these works provide loose bounds
and orders of magnitude, they do not provide a satisfying and accurate evaluation of performance,
despite their convenience for deciding whether an objective is possible. In this paper, we provide a
precise and exact theoretical classification error for SPCA-based continual learning.

3 PRELIMINARIES

3.1 CONTINUAL LEARNING FRAMEWORK

Let’s consider a m-class classification problem in a d-dimensional space with training data of task t
denotedXt = [X1

t , . . . ,X
m
t ] ∈ Rd×nt whereXj

t = [xjt1, . . . ,x
j
tntj ] ∈ Rd×ntj are the ntj vectors

of class j ∈ {1, . . . ,m}. To each xjt` ∈ Rd is attached a corresponding “label” (or score) yjt` ∈ R.
We denote in short yt = [y1t1, . . . , y

m
tnt ]

T ∈ Rnt the vector of all labels of task t.

In a continual learning setting, when dealing with task t, the user only has access to the data of task t,
i.e.,Xt and the associated label yt, and needs to predict label ŷ for a test data x ∈ Rd coming from
an already seen task τ ∈ [t]. If the task identity of the test data is known a priori, we refer the setting
to the Task Incremental Learning (TIL). The unknown task label during the inference scenario is
divided into the Domain Incremental Learning (DIL) where all tasks share the same label space and
Class Incremental Learning (CIL) when it changes. van de Ven & Tolias (2019) details more deeply
the relationships between the different settings.

3.2 SPCA-BASED CONTINUAL LEARNING ALGORITHM

For simplicity, we will limit ourselves to the binary case for now. Multi-class learning is handled
by using binary-based approaches such as one-versus-one and one-versus-all which are explained
in Section 4 and fully discussed in Appendix C. SPCA (Barshan et al., 2011b) extracts the principal
components of the data that are most dependent on the target variable.

More specifically, in a binary classification context, let the data matrixX = [X1, . . . ,Xt] ∈ Rd×n,
with n =

∑t
τ=1 nτ , be the collection of the training data of the t tasks already seen and their

associated labels or scores y = [yT
1 , . . . ,y

T
t ]T ∈ Rn, the decision function of SPCA is given for a

new test data x by

g(x) =
1

n
yTXTx =

1

n

t∑
τ=1

yT
τX

T
τ x. (1)

Since x(j)
t1 , . . . ,x

(j)
tnt are i.i.d. data vectors, we impose equal scores y(j)t1 = . . . = y

(j)
tntj denoted ỹtj

within every class j of task t. As such, we may reduce the score vector y ∈ Rn under the form

y =
[
ỹ111

T
n11
, . . . , ỹ2t1

T
nt2

]T
for ỹ = [ỹ11 , . . . , ỹ

2
t ]T ∈ R2t. This consists in assigning to each class of each task a unique and

common label. In a classical way, one class of all tasks will be assigned a score of −1, while the
other class will be given a score of 1, i.e., ỹ = [−1, 1,−1, 1, . . . ,−1, 1]T. The class allocation is
therefore performed based on the sign of the decision function g(x). We will see that the classical
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choice of labels for SPCA based continual learning leads to catastrophic forgetting and does not
allow us to solve the stability-plasticity dilemma. For this reason, we leave a free choice for the
labels or scores ỹ and we will optimize them using the theory similarly as done in Tiomoko et al.
(2020). This optimization of labels can be intuitively seen as a weight of different classes with
respect to their importance in the knowledge preservation.

This being said, Equation 1 can then be rewritten in a more convenient manner as

g(x) =

t∑
τ=1

2∑
j=1

nτj
n
ỹjτ µ̂

j
τ

T
x, µ̂jτ =

1

nτj
Xj
τ1nτj . (2)

Therefore, when dealing with task t, the user just needs to have access to the empirical means µ̂jτ
and the label ỹjτ for τ ≤ t, which allows an important memory saving compared to sending the raw
data.

CL has the important challenge of building a flexible optimization method that solves the catas-
trophic forgetting and the stability-plasticity dilemma. To achieve this goal, we propose a theoretical
analysis of the SPCA-based continual learning algorithm. Precisely, we will characterize the theo-
retical classification error of each task such that a flexible optimization scheme can be performed
based on the theoretical analysis.

To that end, we will make use of the following assumption on the data distribution.

Assumption 1 (Concentration ofX) For class Cj , j ∈{1, 2} of task t, we assume that all vector
xjt1, . . . ,x

j
tntj ∈ Cj are i.i.d. such that Cov(xjt1) = Σj

t and E[xjt1] = µjt . Moreover, we assume
that there exist two constants C, c > 0 (independent of n, d) such that, for any 1-Lipschitz function
f : Rd → R,

Px∼D(X)

(
|f(x)−mf(x)| ≥ t

)
≤ Ce−(t/c)

2

∀t > 0,

where mZ is a median of the random variable Z.

Assumption 1 notably encompasses the following scenarios: the columns of X are (a) indepen-
dent Gaussian random vectors with identity covariance, (b) independent random vectors uniformly
distributed on the Rd sphere of radius

√
d, and, most importantly, (c) any Lipschitz continuous

transformation thereof, such as GAN as it has been recently theoretically shown in Seddik et al.
(2020). An intuitive explanation of Assumption 1 is that the transformed random variable f(x) for
any f : Rd → R Lipschitz has a variance of order O(1). In particular, it implies that it does not de-
pend on the initial dimension d. Furthermore, we place ourselves in the following large-dimensional
regime.

Assumption 2 (High-dimensional asymptotics) As n → ∞, we consider the regime where d =

O(n) and assume d/n→ c0 > 0. Furthermore, we assume that ntj/n→ cjt .

Under Assumptions 1–2, Section 4 proposes a theoretical analysis of the classification error of
SPCA-based continual learning algorithm.

4 THEORETICAL ANALYSIS AND OPTIMIZATION FRAMEWORK

4.1 THEORETICAL ANALYSIS OF THE SPCA-BASED CONTINUAL LEARNING

Theorem 1 Under Assumptions 1–2, for x a test data vector of class j in task τ ∈ [t], following
Assumption 1 with E[x] = µjτ and Σx = Σj

τ ,

g(x)−Gjτ → 0, Gjτ ∼ N (mjτ , σ
j
τ

2
)

in distribution where,

mjτ = ỹTDcM
TMe

[2t]
τj , σjτ

2
= ỹT(DsDc +DcM

TΣxMDc)ỹ

where e[2t]τj = e
[2t]
2×τ+j is a one-hot vector, with the value at position 2 × τ + j is one. s =

[s11, . . . , s
2
t ] ∈ R2t, with sjτ = 1

n tr(Σj
τΣx), c = [c11, . . . , c

2
t ]. Dc and Ds are the diagonal ma-

trix with c and s as diagonal elements andM = [µ1
1, . . . ,µ

2
t ] ∈ Rd×2t .
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It is interesting to note that the theoretical high-dimensional performance of SPCA-based continual
learning depends only on small data statistics. This is in line with many analyses generally conducted
in the field of large-dimensional analysis. More specifically, in our case these sufficient statistics
are: 1) the correlation between the task means through MTM , 2) the correlation between the
covariance matrices through the vector s and 3) the interaction between the means and covariance
through MTΣxM . Note that these quantities incorporate the interaction between the tasks and
the classes. We would like to mention that these statistics are easily estimated using empirical
means and covariance matrices as explained in Remark 1 of the Appendix B. More importantly,
performance depends on labels ỹ we have chosen to leave as changeable parameters. Next section
will discuss the optimization of these labels in order to avoid catastrophic forgetting and resolve the
stability-plasticity dilemma. Section 5 illustrates this experimentally.

Since g(x) has a Gaussian limit centered around mjτ , the asymptotic standard decision for x to be
allocated to class 1 or class 2 for task τ is obtained by

g(x)
C1
≶
C2
γ (3)

for some threshold γ. To minimize the classification error, the optimal threshold γ? for separating
two Gaussians lies at the intersection between these two Gaussians and can be determined numeri-
cally as a function of mjτ and σjτ . The resulting classification error rate for task τ is given as

ετ (ỹ) = Q

(
m1
τ − γ?

σ1
τ

)
+Q

(
γ? −m2

τ

σ2
τ

)
(4)

with mjτ and σjτ as defined in Theorem 1 and where Q(z) = 1√
2π

∫ z
−∞ e−t

2/2dt is the cumulative
distribution function of standard normal distribution. As already mentioned, we defer the estimation
of mjτ and σjτ to Remark 1 in the Appendix B.

4.2 OPTIMIZATION FRAMEWORK

Having access a priori to the theoretical classification error depending on the label ỹ, one can mini-
mize the theoretical classification error as a function of ỹ. Interestingly, for the specific case where
the weights of the tasks are ω = e

[t]
τ (which refers to optimizing the single task τ ), the optimal label

has a closed form solution (see details of the derivation in Appendix B):

ỹ[t]
τ

?
=
(
DsDc +DcM

TΣxMDc

)−1DcM
TMe

[2t]
τj ∈ R2t

where ỹ[t]
τ

?
denotes the optimal label for test task τ when t tasks are seen.

Theorem 2 ( On catastrophic forgetting) Under Assumptions 1–2, ∀t and τ ∈ [t],

ετ (ỹ[t+1]
τ

?
) ≤ ετ (ỹ[t]

τ

?
)

where ετ (ỹ
[t]
τ

?
) is the classification error rate of task τ with optimal label after the model learned

on task t.

Proof-sketch. If we denote by ¯̃y
[t+1]
τ = [ỹ

[t]
τ

?T
, 0, 0]T ∈ R2(t+1), the vector ỹ[t]

τ

?
to which we

add two-zeros for both classes of task t + 1, we have: ετ (ỹ
[t]
τ

?
) = ετ (¯̃y

[t+1]
τ ) ≥ ετ (ỹ

[t+1]
τ

?
). The

equality is due to the fact that the addition of label 0 to both classes of a new task doesn’t contribute
to the decision function (see equation 2). The inequality comes from that ỹ[t+1]

τ

?
is the optimal

vector to minimize the classification error of task τ after seen task t + 1. Therefore, Theorem 2
ensures theoretically that catastrophic forgetting is prevented when adding more tasks. This will be
verified empirically in Section 5.

In the case of a generic weight vector ω (to optimize the multi-tasks), the optimization of ỹ is
performed using Scipy optimization toolbox (Bressert, 2012) with the cost function given as L(ỹ) =∑t
τ=1 ωτ ετ (ỹ), where the weights ωτ depending on the importance that user wants to put on task

τ and ετ (ỹ) is given by equation 4. The optimization framework becomes flexible, allowing the
stability and plasticity problems to be traded off and this will be illustrated in the Section 5.
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4.3 ON THE MULTI-CLASS EXTENSION

Having an optimized framework for binary classifier, our approach to multi class setting aims to
resort on one-versus-one or alternatively on one-versus-all approach. In a one-versus-one scheme,
1
2m(m− 1) binary classifiers are trained (one for each pair of class j and class j′, solving a binary
classification problem). For each test sample, each binary classifier decides on or votes for the
more relevant class. The test sample is then attributed to the class having the majority of votes.
Each binary classifier is optimized by choosing appropriate labels and decision thresholds, thereby
largely improving over the basal classifier performance. The one-versus-all approach applied to m
classes consists to build m binary classifiers where for classifier j ∈ [m], the first class is class j
and all other classes j′ 6= j are gathered into one common class. The final decision is obtained by
taking the argmin over the m classifiers. An inherent problem of one-versus-all is the scales and
alignments of the m binary classifiers to be compared which are different. We solve this problem
thanks to the theoretical statistics of g(x) per classifier in addition to the optimization of the basal
classifier. This procedure is thoroughly discussed in the Appendix C. Our algorithm (one-versus-
one) is summarized as Algorithm 1 in Appendix and the code is available online 1.

5 APPLICATIONS

5.1 DATASETS DESCRIPTION

Through the experimental part, we will use 5 data sets (Synthetic, Permuted MNIST de-
noted PMNIST, Split MNIST denoted SMNIST, Rotated MNIST denoted RMNIST, Split
Fashion MNIST denoted as SFMNIST). See more details in the Appendix D.

5.2 THEORETICAL VERSUS EMPIRICAL PREDICTION

The purpose of this section is twofold. Our first goal is to demonstrate the robustness of the theo-
retical analysis when applied to synthetic and real data by comparing the theoretical and empirical
predictions. Secondly, we would like to highlight the significant improvement brought by the op-
timization of labels and illustrate that catastrophic forgetting is avoided. Figure 1 represents the
empirical histogram of the decision function with the theoretical prediction for classical and opti-
mized schemes. It is noticeable that the concentration random vector assumption is quite realistic
since the theoretical and empirical predictions are close to each other.

Next we illustrate how catastrophic forgetting is avoided. To do so, we represent 3 examples in
Figure 2. In the synthetic case we compare the average theoretical and empirical classification
accuracy both for the classical and optimized scheme as a function of an increasing number of tasks.
Here, optimization assumes equal weight for all tasks encountered. We can see a close fit between
theory and practice while remarking that the performance of OSCL never decreases as opposed of
its counterpart non optimized (SPCA) which forgets knowledge as new tasks are encountered. In the
second and third picture (preformed on PMNIST and RMNIST), we represent the trajectory of the
accuracy for each seen task as a function of the task number we observed so far. Table 1 shows the
average forgetting measure where the values are all negative. We remark that by adding new tasks,
we always improve the accuracy previously obtained, thus avoiding catastrophic forgetting.

Table 1: Average forgetting of each task on PermutedMNIST and RotatedMNIST (TIL ↓).

Task T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

PMNIST 0 -1.019 -0.915 -0.473 -0.493 -0.150 -0.272 -0.206 -0.149 -0.221
RMNIST 0 -1.63 -1.840 -0.660 -0.480 -0.444 -0.330 -0.110 -0.219 -0.129

5.3 ON THE FLEXIBILITY OF THE FRAMEWORK

In this section, we investigate the flexibility of the optimization framework by assigning different
weights to different tasks. Considering a two-task binary classification problem, Figure 3 shows

1Code is released at https://github.com/huawei-noah/noah-research/tree/master/OSCL and
https://gitee.com/mindspore/models/tree/master/research/AI-foundation/OSCL
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(a) Synthetic (b) PMNIST (4-9) (c) RMNIST (4-9)

(d) Synthetic (e) PMNIST (4-9) (f) RMNIST (4-9)

Figure 1: Empirical histogram versus theoretical prediction for the decision function g(x) of task
2 in a two-task binary classification problem for the classical label (denoted SPCA) and for the
optimized label (the optimization is performed with equal weight for both tasks). Close fit between
theoretical and empirical predictions and better separation of the two classes with the optimized
scheme in the bottom (denoted OSCL).

(a) Synthetic (b) PMNIST (c) RMNIST

Figure 2: (Left) Empirical and theoretical classification accuracy of task 1 w.r.t. task number for
the classical label (SPCA) and optimized label (OSCL). (Middle-Right) The accuracy trajectory of
all seen tasks as a function of task number with the optimized label. In the learning process, the
accuracy of tasks already seen increases over time.

the classification error of task 1 compared with task 2. Each coordinate of the point represents the
classification error of task 1 and 2 along with the weight (ω1, ω2) next to the point. We showed the
performance of the weighting scheme with (ω1, ω2) = ( α√

α2+β2
, β√

α2+β2
) and α goes from 0.8 to

0.2 and β goes from 0.2 to 0.8 with a step size of 0.1 in Figure 3. In the same figure, a red cross
represents the classification error of the classical label. A task that is given more weight is prioritized
by the algorithm over a task that is given less weight. As a result of this flexibility, certain tasks can
be favored at the user’s discretion.

5.4 COMPARISON WITH SOME STATE OF THE ART ALGORITHMS

In this section, we compare our method to a number of state-of-the-art approaches to show the
performance and the low computational cost of our algorithm. Four datasets and three scenarios
(TIL, DIL and CIL) are used to fully validate the properties of our method.

For SMNIST and PMNIST, the experimental protocols following KJ & N Balasubramanian (2020),
and the task number of RMNIST and SFMNIST are 10 and 5, respectively. More details about ex-
perimental setting will be discussed in Appendix D. From Table 2 and Table 3, as we can see, OSCL
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(a) Synthetic (b) RMNIST

Figure 3: Classification error of task 1 versus task 2. For OSCL, different weights are used to trade
off the performance of tasks 1 and 2. Weights are formatted in (ω1, ω2), with ω1 and ω2 representing
the weight of task 1 and task 2, respectively. In general, the induced error is smaller when the task
weight is greater.

Table 2: Average accuracy of the five baseline methods and the proposed one across 4 datatests.

Dataset SMNIST PMNIST RMNIST SFMNIST

scenario CIL (↑) TIL (↑) DIL (↑) DIL (↑) CIL (↑)
EWC (Kirkpatrick et al., 2017) 45.1± 0.10 98.64± 0.22 74.9± 2.10 78.35± 0.73 19.90± 0.10
GEM (Lopez-Paz & Ranzato, 2017) 86.7± 1.5 97.68± 0.32 82.5± 4.90 85.45±1.10 77.57± 0.20
iCaRL (Rebuffi et al., 2017) 89.9± 0.90 98.30± 0.11 - - 80.70± 1.29
SI (Zenke et al., 2017) 45.2± 0.15 96.56± 0.58 74.5± 2.50 71.91± 5.83 20.00± 1.50
MERLIN (KJ & N Balasubramanian, 2020) 90.7± 0.80 97.4± 0.30 85.5±0.5 - -

OSCL (ours) 91.2±0.10 98.0±0.43 77.41±0.81 72.7±0.42 90.0±0.22

Table 3: Running time on SMNIST.

Methods EWC GEM iCaRL SI MERLIN OSCL

Running time (s) (↓) 177.2±2.92 263.0±7.16 407.92±10.20 44.0±1.26 5218.96±1474.07 98.35±1.36

achieves competitive results with some baseline methods while being simpler in terms of complexity.
Which means our method is more useful for low computational resource hardware devices. Since
we use a linear classifier we have extracted HOG features (Dalal & Triggs, 2005) for some images
to fairly compare with deep neural network based approaches. We also validate the effectiveness of
using a deep neural network as a feature extractor and our method as a classifier. With the feature
extracted by a pretrained convolutional neural networks, the performance will improve from 1.1%
to 6.5% on different dataset compare with using HOG features, as detailed in the Appendix D.

6 CONCLUDING REMARKS

In this paper, a SPCA-based continual learning algorithm is analyzed from a high-dimensional per-
spective. Using the theoretical analysis, we propose an optimization of the labels that avoids catas-
trophic forgetting. In addition, the label optimization flexibly weight tasks during learning, thereby
resolving the stability-plasticity dilemma. The method shows competitive results with the state of
the art while being computationally inexpensive.

This work can be extended to the analysis of continual learning algorithm based on SVM and the
integration of nonlinear kernels, as well as the combination with the neural networks.
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ABSTRACT

The appendix contains the main technical arguments omitted in the core of the
article due to space limitations, and is organized as follows.
Section 2 complements the related works with a diagram illustrating some other
CL methods. Section B derives the asymptotic classification error of the SPCA-
based CL algorithm. To this end, Section B.1 proves the Gaussian distribution
of the classification score under concentrated random vector assumptions. Sec-
tion B.2 and B.3 computes respectively the first and second order moment of the
classification score.
Section C complements the explanation of the multi-class extensions more pre-
cisely the one-versus-all approach. Section D provides additional experiments
and additional insights into the experiments derived in the main paper.

A COMPLEMENTARY SECTION TO RELATED WORKS

To better summarize the section on the state of the art, we provide a rather didactic diagram in Figure
4 that we have constructed to classify the different methods of continual learning. Our method
could be classified in the theoretical part but with important algorithmic implications of efficiency,
flexibility and computation time.

B DERIVATION OF THE TECHNICAL RESULTS

In this section, we perform a theoretical analysis of SPCA-based continual learning. In order to
derive the theoretical classification error, we need to understand the statistical behavior of the deci-
sion function g(x) = yTXTx in particular its distribution and compute its first and second order
statistics.

To that end we recall the assumption about the data (Assumption 3) and the growth rate of the
dimension(Assumption 4).
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Figure 4: Summary of related works

Assumption 3 (Concentration ofX) For class Cj , j∈{1, 2} of task t, we assume that all vectors
xjt1, . . . ,x

j
tntj ∈ Cj are i.i.d. such that Cov(xjt1) = Σj

t and E[xjt1] = µjt . Moreover, we assume
that there exist two constants C, c > 0 (independent of n, d) such that, for any 1-Lipschitz function
f : Rd → R,

Px∼D(X)

(
|f(x)−mf(x)| ≥ t

)
≤ Ce−(t/c)

2

∀t > 0,

where mZ is a median of the random variable Z.

Assumption 4 (High-dimensional asymptotics) As n → ∞, we consider the regime where d =

O(n) and assume d/n → c0 > 0. Furthermore, we assume that ntj/n → cjt and we will denote
c = [c11, . . . , c

2
t ].

B.1 ON THE DISTRIBUTION OF THE DECISION SCORE.

In this section, the goal is to study the asymptotic behavior of g(x)|x ∈ Cj .

Since conditionally on the training dataX , yTXTx is expressed as the projection of the determinis-
tic vectorXy on the Gaussian random vector x, it follows that yTXTx is asymptotically Gaussian.
The proof under the concentrated random vector unfolds from the following proposition.

Theorem 3 (CLT for concentrated random vectors (Klartag, 2007; Fleury et al., 2007)) If x ∈
Rd is a concentrated random vector with E[x] = 0, E[xxT] = Id with an observable diameter of
orderO(1) and σ be the uniform measure on the sphere Sd−1 ⊂ Rd of radius 1, then for any integer
k, small compared to d, there exist two constants C, c and a set Θ ⊂ (Sd−1)k ⊂ Rd×k such that
σ ⊗ . . .⊗ σ︸ ︷︷ ︸

k

(Θ) ≥ 1−
√
dCe−c

√
d and for all θ = (θ1, . . . ,θk) ∈ Θ,

sup
t∈R

∣∣P(aTθTx ≥ t)− F0,1(t)
∣∣ ≤ Cd− 1

4 ∀a ∈ Rk,

where F0,1 is the cumulative distribution function of the standard normal distribution N (0, 1).

Since g(x) is asymptotically Gaussian, we will focus on computing its first and second order mo-
ments.
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B.2 FIRST ORDER MOMENT OF THE DECISION SCORE.

Due to the independence between the training and test datasetX and x, the mean for task t reads as

mjt =
1

n
E[g(x)|x ∈ Cj ]

=
1

n
E[yTXTx|x ∈ Cj ]

=
1

n
yTE[X]TE[x|x ∈ Cj ]

=
1

n
ỹTJTJMTMe

[mT ]
tj

= ỹTDcMTMe
[2t]
tj

where Dc stands for the diagonal matrix containing on its diagonal elements the elements of vector
c = [n11/n, . . . , n2t/n].

B.3 SECOND ORDER MOMENT OF THE DECISION SCORE.

The variance of the decision score g(x) reads as

Var(g(x)) = E[g(x)2]− E[g(x)]2

=
1

n2
E[yTXTxxTXy]− 1

n2
E[yTXTx]E[xTXy]

=
1

n2
E[yTXTCxXy]− 1

n2
E[yTXTx]E[xTXy]

Moreover we have that {
E[xT

i Cxxj ] = E[xi]
TCxE[xj ] i 6= j

E[xT
i Cxxi] = tr (CiCx)

Therefore

Var(g(x)) =
1

n2
E[yTDTy] +

1

n2
E[yTJMTΣxMJTy]

where DT =


Tr(Σ11Σx) 0 ... 0

0
. . . ... 0

...
...

. . .
...

0 0 ... T r(ΣmTΣx)

 ∈ Rn×n.

We deduce the final expression of the variance as

Var(g(x)) = ỹT(DsDc +DcM
TΣxMDc)ỹ

with s = [s11, . . . , s
2
t ] ∈ R2t, with sjτ = 1

n tr(Σj
τΣx)

Remark 1 (Estimation of mjτ and σjτ ) All the quantities defined in Theorem are known a priori
except the scalar productsMTM ,MTΣxM and the vector s. Note that 1

n tr(Σ̂j
τ Σ̂x) is a consis-

tent estimator for sjτ with Σ̂j
τ and Σ̂x, the empirical covariance matrices. For large Gaussian data,

MTM can be effectively estimated as Tiomoko et al. (2020)

[MTM ]qq =
4

n2τj
1T
nτjX

T
[τ ]j;1X[τ ]j;21nτj + op(1)

[MTM ]qq′ =
1

nτjnτ ′ j′
1T
nτjX

T
[τ ]jX[τ ′ ]j′1nτ′ j′ + op(1)

with q = 2(τ − 1) + j and q′ = 2(τ
′ − 1) + j′ different and Xτj = [Xτj;1,Xτj;2] an even-sized

division ofXτj .
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B.4 DERIVATION OF THE OPTIMAL LABEL

In the case of identical covariance for both classes i.e., Σ1
τ = Σ2

τ , the optimal threshold γ is given
as

γ? =
1

2
(m1

τ + m2
τ )

The associated classification error is given by

ετ =Q
(
m1
τ −m2

τ

2στ

)

Therefore

ỹ[t]
τ

?
= arg min

ỹ
Q
(
m1
τ −m2

τ

2στ

)

= arg max
ỹ

(
m1
τ −m2

τ

)2
2σ2

τ

= arg max
ỹ

ỹTDcMTMe
[2t]
tj e

[2t]
tj

T
MTMDcỹ

2ỹT(DsDc +DcMTΣxMDc)ỹ

The previous optimization is known as the optimization of Rayleigh quotient (Li, 2015) which is
convex and the optimal solution is given as

ỹ[t]
τ

?
=
(
DsDc +DcM

TΣxMDc

)−1DcM
TMe

[2t]
tj

C ON THE MULTI-CLASS EXTENSION

The literature Bishop & Nasrabadi (2006) describes broad groups of approaches to deal with classi-
fication with m > 2 classes. We focus here on the most common method, namely the one-versus-all
approach. The complete optimization of one-versus-all being theoretically heavy to handle and
demanding prior knowledge on the decision output statistics, the method inherently suffers from
sometimes severe practical limitations; these are partly tackled here exploiting the large dimen-
sional analysis performed in this article. In an one-versus-one setting, 1

2m(m− 1) binary classifiers
are trained (one for each pair j, j′ of classes, solving a binary classification). For each test sample,
each binary classifier decides on – or “votes” for – the more relevant class. The test sample is then
attributed to the class having the majority of votes. Although the number of binary classifiers is
greater than in the one-versus-all approach, the training process for each classifier is faster since
the training database is much smaller for each binary classifier. Besides, the method is more robust
to class imbalances (since only pairwise comparisons are made) but suffers from an undecidability
limitation in the case of equal numbers of majority votes for two or more classes.

In the one-versus-all method, focusing on Task t, m individual binary classifiers, indexed by ` =
1, . . . ,m, are trained, each of them separating Class Ct` from the other m − 1 classes Ct`′ , `′ 6= `.
Each test sample is then allocated to the class index corresponding to the classifier reaching the
highest of the m classifier scores. Although quite used in practice, the approach first suffers a severe
unbalanced data bias when using binary (±1) labels as the set of negative labels in each binary
classification is on average m − 1 times larger than the set of positive labels, and also suffers a
center-scale issue when ultimately comparing the outputs of the m decision functions, the average
locations and ranges of which may greatly differ; these issues lead to undesirable effects, as reported
in (Bishop & Nasrabadi, 2006, section 7.1.3)).

These problems are here simultaneously addressed: specifically, having access to the large dimen-
sional statistics of the classification scores allows us to appropriately center and scale the scores.
Each centered-scaled binary classifier is then further optimized by appropriately selecting the class
labels (different from ±1) so to minimize the resulting classification error. See Figure 5 for a con-
venient illustration of the improvement induced by this centering-scaling and label optimization
approach.
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C.1 ONE-VERSUS-ALL MULTI-CLASS OPTIMIZATION

For each target task t, in a one-to-all approach, m SPCA-based CL binary classifications are solved
with the target class Cτ` (renamed “class C`τ1”), against all other C`τ2 classes (combined into a single
“C`τ2 class”). Calling g(`)x the output of the classifier ` for a new datum x, the class allocation decision
is traditionally based on the largest among all scores g(1)x , . . . , g

(m)
x,t . However, this presumes that

the distribution of the scores g(1)x when x ∈ C1, g(2)x when x ∈ C2, etc., more or less have the
same statistical mean and variance. This is not the case in general, as depicted in the first column
of Figure 5, where data from class C1 are more likely to be allocated to class C3 (compare the red
curves).

By providing an accurate estimate of the distribution of the scores g(`)x for all `’s and all genuine
classes of x, Theorem 1 of the main article allows us to predict the various positions of the Gaussian
curves in Figure 5. In particular, it is possible, for each binary classifier ` to center and scale g(`)x

when x ∈ C`. This operation averts the centering and scaling biases depicted in the first column of
Figure 5: the result of the center-scale operation appears in the second column of Figure 5.

This first improvement step simplifies the algorithm which now boils down to determining the index
of the largest g(`)x −m(`)

τ1 , ` ∈ {1, . . . ,m}, while limiting the risks induced by the center-scale biases.

This being said, our theoretical analysis further allows to adapt the input labels ỹ(`) in such a way
to optimize the expected output. Ideally, assuming x genuinely belongs to class C`, one may aim to
increase the distance between the output score g(`)x and the other output scores g(`

′)
x for `′ 6= `.

This is performed by maximizing the distance between the output score g(`)x for x ∈ C` and the
scores g(`)x for x 6∈ C`. By “mechanically” pushing away all wrong decisions, this ensures that, when
x ∈ C`, g(`)x is greater than g(`

′)
x for `′ 6= `. This is visually seen in the third column of Figure 5,

where the distances between the rightmost Gaussians and the other two is increased when compared
to the second column, and we retrieve the desired behavior. Algorithm 1 and C.1 summarizes the
OSCL for one-versus-one and one-versus-all schemes

Algorithm 1 Proposed OSCL algorithm (one-versus-one).

Input: Training samples of current task t i.e., Xt = [X1
t , . . . ,X

m
t ], X`

τ ∈ Rp×nτ` , test data x

and empirical means and covariance matrices of previous tasks µ̂jτ , Σ̂
j
τ for τ < t.

Output: Estimated class ˆ̀∈ {1, . . . ,m} of x.
for j = 1 to m do

for j′ ∈ {1, . . . ,m} \ {j′} do
Estimate: MTM ,MTΣxM and s according to Remark 1.
Create optimal scores ỹ?(j′, j) = arg minỹ

∑τ
s=1 ωsεs(ỹ).

Compute classification scores according to equation 2, deduce the predicted class c(j, j′) =
j or c(j, j′) = j′ based on the decision rule in equation 3.
Update the mean matrix M and Σ by sending the empirical means µ̂jt and covariance
matrices Σ̂j

t for using in the next task
end for

end for
Output: ĵ = mode

j′,j∈{1,...,m}
{c(j, j′)}.2

Remark 2 (On the complexity of OSCL) The complexity of OSCL depends on the multi-class ex-
tension chosen. OSCL may be sequentially described as performing 1

2m(m− 1) times (for the one-
versus-one) and m times (for the one-versus-all) the following procedure in 1) computing the deci-
sion score g(x) as per equation 3, 2) estimation of M>M , M>ΣxM and s , 3) optimization of
ỹ. The complexity of computing g(x) is a matrix-vector multiplication, yielding complexity O(n2).

2The mode of a set of indices is defined as the most frequent value. When multiple indices occur equally
frequently, the smallest of those indices is considered by convention.
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Figure 5: Test score distribution in a 2-task and 3 classes-per-task setting, using a one-versus-all
multi-class classification. Every graph in row ` depicts the limiting distributions of g(`)x for x in dif-
ferent classes. Column 1 (Classical) is the standard implementation of the one-versus-all approach.
Column 2 (Scaled scores) is the output for centered and scaled g(`)x for x ∈ C`. Column 3 (Optimized
labels) is the same as Column 2 but with optimized input scores (labels) ỹ?(`). Under “classical”
approach, data from C1 (red curves) will often be misclassified as C2. With “optimized labels”, the
discrimination of scores for x in either class C2 or C3 is improved (blue curve in 2nd row further
away from blue curve in 1st row; and similarly for green curve in 3rd versus 1st row).

Algorithm 2 Proposed OSCL algorithm (one-versus-all).

Input: Training samples of current task t i.e., Xt = [X1
t , . . . ,X

m
t ], X`

τ ∈ Rp×nτ` , test data x

and empirical means and covariance matrices of previous tasks µ̂jτ , Σ̂
j
τ for τ < t.

Output: Estimated class ˆ̀∈ {1, . . . ,m} of x.
for j = 1 to m do

Estimate: MTM ,MTΣxM and s according to Remark 1.
Create optimal scores ỹ?(j) = arg minỹ

∑t
s=1 ωsεs(ỹ).

Compute classification scores g(x, `) according to equation 2.

Compute the theoretical statistics mjt
(`)

and σjt
(`)

as per Theorem 1, center and scale the deci-

sion function as g(x,`)−mjt
(`)

σjt
(`) .

Update the mean matrixM and the covariance matrices Σ by sending the empirical means µ̂jt
and covariance matrices Σ̂j

t for use in the next task)
end for
Output: ˆ̀= arg max`∈{1,...,m} g(x; `).
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The computation ofM>M (as well asM>ΣxM and the vector s) is of complexityO(dn+d) (es-
timation + product). The optimization of the labels being performed using the BFGS algorithm is of
complexity O(t3), t being the number of tasks. The overall complexity is O(m2T 3) +O(n2m2) for
the one-versus-one scheme and O(mT 3) + O(n2m) for the one-versus-all. Note that competitors
(using for most of them deep neural networks) can difficulty computes algorithmic complexity since
it depends on the architecture chosen and depends on the internal optimization of the deep neural
networks. But as confirmed with the running time (both for training and inference), our method
achieves a lower computational cost.

D EXPERIMENTAL PART

D.1 THE DESCRIPTION OF DATA SET AND EXPERIMENTAL SET UP

The Synthetic: Gaussian mixture model with two classes with means µτj = (−1)jµτ with
µτ = βtµ+

√
1− β2

t µ
⊥ for βt a relatedness parameter and with µ = e

[p]
1 , µ⊥ = e

[p]
p .

The Permuted MNIST dataset has 70,000 images of handwritten digits from 0 to 9, with 60,000
being used for training and 10,000 for testing. Different from the original MNIST dataset, this
dataset uses random permutations of pixels as inputs for each of the ten tasks.

The Spilt MNIST is based on 5 subsets of consecutive digits within the MNIST training data set.
Learning to distinguish between two consecutive digits from 0 to 10 is the goal of the five tasks.

In the Rotated MNIST, the digits were rotated by an angle generated uniformly between 0 and
180 degrees and data for different tasks have different rotation angles. Based on this, the rotation
angle and the factors of variation already included in MNIST are the factors of variation.

The Fashion MNIST dataset has the same size as MNIST, but is based on different (and more
challenging) 10 classes. Similar to the Split MNIST, we will split the Fashion MNIST into
5 tasks, and the five binary classification tasks are: T-shirt/Trouser, Pullover/Dress, Coat/Sandals,
Shirt/Sneaker, and Bag/Ankle boots.

Across all MNIST variants, 1000 samples were used as training data. For Rotated MNIST and
Permuted MNIST, 10 tasks were generated. And regarding Split MNIST and Split Fash-
ion MNIST, 5 tasks are generated, as in KJ & N Balasubramanian (2020); Sokar et al. (2020).
Each experiment was run five times randomly to obtain the results. For a fair comparison, given
that we are using a linear model, we used HOG (Dalal & Triggs, 2005) to extract features for
Rotated MNIST, Split MNIST, and Split Fashion MNIST, and raw data for Permuted
MNIST (without any feature extraction).

D.2 EVALUATION METRICS

We evaluate our algorithm by average accuracy A across tasks. A = 1
T

∑T
t=1At, where At =

1
t

∑t
τ at,τ and at,τ is the accuracy of task τ after the model is trained on tth task. We also use the

metrics Ft = 1
t−1

∑t−1
j=1( max

l∈{1,...,t−1}
al,j − at,j) to measure the average forgetting of our approach

on task t (Table 1) (KJ & N Balasubramanian, 2020).

D.3 SUPPLEMENTARY EXPERIMENTS

Table 4: Accuracy of each task on SplitMNIST and Split FashionMNIST.

Task T1 T2 T3 T4 T5

SMNIST 98.34 ± 0.73 96.22 ± 0.14 92.86 ± 0.05 90.27 ± 0.28 85.99 ± 0.12
SFashionMNIST 99.39 ± 0.20 89.70 ± 0.21 89.12 ± 0.13 86.78 ± 0.10 85.02 ± 0.22
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Table 5: Accuracy of each task on PermutedMNIST and RotatedMNIST.

Task T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

PMNIST 81.38 ± 0.07 80.57 ± 0.14 79.87 ± 0.16 78.91 ± 0.24 78.18 ± 0.12 77.05 ± 0.21 76.00 ± 0.08 75.12 ± 0.11 73.92±0.13 73.18 ± 0.09
RMNIST 85.37 ± 0.07 84.04 ± 0.22 80.54±0.09 78.17± 0.14 74.91 ± 0.07 71.36 ± 0.11 68.01±0.15 62.60 ± 0.21 61.84 ±0.14 60.87 ± 0.18

D.3.1 COMBINATION WITH NEURAL NETWORK

We use an ordinary CNN model as pre-trained model, and it has five layers (2 convolution layers +
3 fully connected layers). The detail of model structure is as follows.

FashionMnistModel(

(layer1): Sequential(

(0): Conv2d(1, 32, kernelsize=(5, 5), stride=(1, 1), padding=(1, 1))

(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True)

(2): ReLU()

(3): MaxPool2d(kernelsize=2, stride=2, padding=0, dilation=1)

)

(layer2): Sequential(

(0): Conv2d(32, 32, kernelsize=(3, 3), stride=(1, 1))

(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True)

(2): ReLU()

(3): MaxPool2d(kernelsize=2, stride=2, padding=0, dilation=1)

)

(fc1): Linear(in=800, out=600, bias=True)

(drop): Dropout2d(p=0.25, inplace=False)

(fc2): Linear(in=600, out=120, bias=True)

(fc3): Linear(in=120, out=10, bias=True)

)

Table 6 summarizes the result obtained by using the aforementioned pretrained convolutional neural
network together with the proposed method. The experimental settings and remarks are as follows:

Table 6: Average accuracy on three scenarios (TIL, DIL and CIL) with the HOG features and with
the pretrained features.

Task SMNIST (TIL ↑) RMNIST (DIL ↑) SMNIST (CIL ↑)
HOG + optimized SPCA 98.0 ± 0.43 72.7 ± 0.42 91.2 ± 0.10
CNN feature + optimized SPCA 99.1 ± 0.40 79.2 ± 0.11 95.3±0.04

• Considering we want to use the pre-trained model for MNIST data, we use an ordinary
CNN model (2 convolution layers + 3 fully connected layers, more details about the model’s
structure see Appendix in main paper) and pre-train it on FashionMNIST data (60000 train
data).

• FashionMNIST data is similar to the MNIST data. Both of them are in grayscale with
the same shape. But the high-level semantic informations of these two datasets are totally
different (handwritten digits vs clothing and personal adornment).
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• We assume (or observe) that FashionMNIST and MNIST share similar semantic informa-
tion at a low level. So an extracted feature is derived from the flattened output of the second
convolution layer.

From Table 6, we can see a significant improvement after we use a neural network as a feature
extractor. We believe that the improvement is caused by a better representation of the pre-train
neural network. It is important to notice that extracted features must be chosen carefully, and several
failures have been remarked in selecting high-level representations as features in our experiments.
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