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Abstract

We aim to develop a fundamental understand-
ing of modality collapse, a recently observed
empirical phenomenon wherein models trained
for multimodal fusion tend to rely only on a
subset of the modalities, ignoring the rest. We
show that modality collapse happens when noisy
features from one modality are entangled, via a
shared set of neurons in the fusion head, with pre-
dictive features from another, effectively mask-
ing out positive contributions from the predic-
tive features of the former modality and lead-
ing to its collapse. We further prove that cross-
modal knowledge distillation implicitly disentan-
gles such representations by freeing up rank bot-
tlenecks in the student encoder, denoising the
fusion-head outputs without negatively impact-
ing the predictive features from either modality.
Based on the above findings, we propose an al-
gorithm that prevents modality collapse through
explicit basis reallocation, with applications in
dealing with missing modalities. Extensive exper-
iments on multiple multimodal benchmarks vali-
date our theoretical claims. Project page: https:
//abhrac.github.io/mmcollapse/.

1. Introduction
A number of recent works in the multimodal learning liter-
ature have observed that models that aim to learn a fusion
of several modalities often end up relying only on a subset
of them (Javaloy et al., 2022; Wu et al., 2024). This phe-
nomenon, termed as modality collapse, has been empirically
observed across a diverse range of fusion strategies (Javaloy
et al., 2022; Ma et al., 2022; Zhang et al., 2022; Zhou et al.,
2023; Wu et al., 2024), and has serious implications for the
scenario when certain modalities can go missing at test time
(You et al., 2020; Ma et al., 2022; Wu et al., 2024). If a
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Figure 1. When noisy features of one modality exist in entangle-
ment with predictive features of another in the fusion head (the
probability of which increases with the number of modalities), it
results in a sub-optimal solution wherein the predictive value of the
former modality is diminished by the inevitable existence of noisy
features. Freeing up rank bottlenecks allows for the denoising
of such features along independent dimensions without affecting
the latter modality, while simultaneously allowing the predictive
features of the former modality to contribute to loss reduction.

model is reliant only on a subset of modalities and if it is
those that specifically go missing at test time, the model
could end up completely non-functional. Although there
have been several attempts at mitigating modality collapse
based on a priori conjectures about what might be causing
them, such as conflicting gradients (Javaloy et al., 2022) or
interactions between data distributions and the fusion strat-
egy (Ma et al., 2022), to the best of our knowledge, there
have been no prior efforts towards developing a bottom-up
understanding of the underlying learning-theoretic phenom-
ena at play.

We aim to bridge this gap by developing a mechanistic the-
ory of multimodal feature encoding that is agnostic of the
specific choice of fusion strategy (see Task Setup in Sec-
tion 3). We start by showing that modality collapse arises
as a result of an unintended entanglement among the noisy
and the predictive features of different modalities through
a shared set of polysemantic neurons (Elhage et al., 2022),
which we observe, via Lemma 1, to increase quadratically
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Figure 2. Polysemanticity with and without feature interference between noisy and predictive features. All horizontal axes correspond
to the value of the weight of the polysemantic neuron. For (b) and (c), the vertical axes correspond to the title of the columns. When
the predictive features of modality 1 (M1) and the noisy features of modality 2 (M2) activate along the same region in the interpolation
regime of the same neuron (a - top), it prevents the predictive features of M2 from contributing to loss minimization (c - top) because of
the unintended inclusion of and the unwanted interference from the noisy features of M2 (b - top), leading to its collapse. However, when
they are disentangled (here, by being mapped to disjoint sub-regimes in the weights-space around a switching threshold: a - bottom), they
result in non-interfering activation patterns (b - bottom), and effectively, a feature-wise separable effect on the marginal loss (c - bottom).

with the number of modalities. It implies that predictive
features of some modalities cannot be learned without also
including noisy features from the other modalities. The
noisy features then effectively suppress the predictive value
of the modality that they come from, leading to their ob-
served collapse in the fused representation, a process we
formalize in Theorem 1.

As depicted in Figure 1, in the optimization landscape, col-
lapse corresponds to a suboptimal solution such that any step
around it along the dimension of entanglement (which is the
only available dimension for optimization in the given state),
would lead to a simultaneous denoising of one modality and
the forgetting of predictive features from the other. If the
latent factors underlying the modalities are sufficiently com-
plementary, we show that cross-modal predictive–predictive
feature entanglements are less likely to occur than predictive–
noisy entanglements (Lemma 3) – so, we mainly focus on
the latter in this work.

We find that this cross-modal entanglement of features hap-
pens due to faulty neural capacity allocation (Scherlis et al.,
2022) among modalities during the optimization of the fu-
sion head (illustrated in Figure 2), which we observe, in
Lemma 2, to be a result of the well-known low-rank sim-
plicity bias of neural networks (Huh et al., 2023) limiting
the rank of the gradient updates received at any given layer.

Consequently, through Theorem 2, we arrive at the result
that this gradient-rank bottleneck forces SGD to parameter-
ize the fusion head neurons in a polysemantic manner.

Interestingly, we observe in Theorem 3, that knowledge
distillation into the modalities that collapse, from the ones
that survive, implicitly averts cross-modal polysemantic
entanglements. It does so by freeing up rank bottlenecks
at the level of the student encoders. As a result, as again
shown in Figure 1, the noisy features of the modalities that
would otherwise collapse, are allocated dedicated dimen-
sions in the latent space, which the fusion operator can then
leverage to denoise the output representations. This allows
for the complete incorporation of predictive features from
all the modalities without any noisy interference, thereby
preventing collapse.

Under the condition of identifiability (Gulrajani &
Hashimoto, 2022) of modality-specific causal factors up
to equivariances of the underlying mechanisms (Ahuja et al.,
2022), we propose an algorithm called Explicit Basis Real-
location (EBR), which automatically identifies cross-modal
feature entanglements and learns independent denoising di-
rections in the latent space to counteract their hindrance on
empirical risk minimization. Consequently, the concrete
feature-to-basis mapping across modalities obtained from
EBR can be used to identify suitable substitution candidates
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for dealing with missing modalities at test-time.

To summarize, we (i) provide a theoretical understanding of
modality collapse based on polysemantic neurons in the fu-
sion head leading to unwanted cross-modal entanglements,
and the low-rank simplicity bias of neural networks; (ii)
show that cross-modal knowledge distillation into the modal-
ities undergoing collapse from the ones that survive has an
implicit effect of averting modality collapse through dis-
entanglement and denoising, based on which we propose
Explicit Basis Reallocation (EBR) for a more systematic
disentanglement and denoising of multimodal embeddings;
(iii) extensive empirical validation of our theoretical results
on multiple standard multimodal benchmarks, with EBR
achieving state-of-the-art (SOTA) results in the application
of dealing with missing modalities at test time, one of the
most challenging tests of an algorithm’s robustness to modal-
ity collapse.

2. Related Works

Modality Collapse: One of the earliest reports of modality
collapse was in multimodal generative models (Shi et al.,
2019; Sutter et al., 2021; Ma et al., 2020), for which Nazábal
et al. (2020) hypothesized the phenomenon to be a result of
disparities between gradients, which was also later con-
firmed by Javaloy et al. (2022). Parallely, Wang et al.
(2020) showed modality collapse for multimodal classifica-
tion problems, where they found unimodal models to often
outperform multimodal ones. They conjectured that (i) in-
creased capacity of multimodal models leads to overfitting
– supported later in Wu et al. (2024); Zhou et al. (2023);
and (ii) different modalities generalize at different rates –
which also aligns with the findings by Nazábal et al. (2020);
Javaloy et al. (2022). Going beyond the hypotheses and
conjectures, we aim to develop a rigorous theoretical un-
derstanding of modality collapse from the perspective of
polysemanticity (Scherlis et al., 2022; Huben et al., 2024;
Lecomte et al., 2024) and low-rank simplicity bias (Huh
et al., 2023). These theoretical tools have also so far been
restricted primarily to unimodal cases, and to the best of our
knowledge, we are the first to explore them for explaining
failure modes in multimodal learning. Additionally, since
our proposed remedies to modality collapse can be lever-
aged to deal with missing modalities at test time, we provide
an extended literature review on this area in Appendix A.

3. Collapse Mechanisms and Remedies

Task Setup: We study the properties of representations of
multimodal data learned by deep modality fusion algorithms.
Specifically, based on recent literature (Wu et al., 2024;
Zhang et al., 2022; Ma et al., 2022; 2021), we follow the
generic setup where samples from a multimodal distribution

X = {X1, X2, ..., Xm}, Y with m modalities and labels
Y , first undergo an independent modality-wise encoding
through a set of learnable functions f1, f2, ..., fm, followed
by a learnable modality fusion operator φ : RN → RM ,
where N = dim(f1) + dim(f2) + ... + dim(fm), and M
is any arbitrary integer. Note that since N is finite, φ can be
considered as a neural network of bounded width and arbi-
trary depth, as they are known to be universal approximators
(Kidger & Lyons, 2020). The output from φ is then fed into
a classifier head g : RM → [0, 1]C , where C is the number
of classes in Y , to produce the output label ŷ. Specifically,
the neural representation of and the final prediction on a
multimodal sample x = {x1,x2, ...,xm} ∈ X is obtained
as follows:

ŷ = g (φ (f1(x1), f2(x2), ..., fm(xm))) ,

where {x1,x2, ...,xm} are the modality specific instanti-
ations of the sample x. All proofs are provided in Ap-
pendix B.

3.1. Polysemanticity and Cross-Modal Entanglements

We begin by showing that as the number of modalities in-
crease, the proportion of cross-modal polysemantic neurons,
i.e., those that encode features from more than one modality
(as opposed to monosemantic neurons which encode exactly
one feature from one modality) also increases (Lemma 1).
This makes it difficult for the fusion head to independently
control the contribution from a given modality without po-
tential destructive interference from others (Theorem 1).

Lemma 1 (Cross-Modal Polysemantic Collision). As the
number of modalities increase, the fraction of polysemantic
neurons encoding features from different modalities, for
a given depth and width, increases quadratically in the
number of modalities as follows:

p(wp) ≥ m(m− 1)
(dim fmin)

2(
m∑
i=1

dim fi

)2 ,

where p(wp) is the probability of a neuron being polyse-
mantic via superposition, and fmin is the modality-specific
encoder with the smallest output dimensionality.

Definition 1 (Conjugate Features). A conjugate feature
z is one that coexists, in a given modality, with another
feature z∗ such that at least one of them has some predictive
value, but they can semantically cancel each other out when
considered in conjunction, i.e.,

I(z;y) + I(z∗;y) = 0; I(zz∗;y) = 0

In other words, z and z∗ noisily interfere with each other.

Theorem 1 (Interference). As the number of cross-modal
polysemantic collisions increase, the fraction of predictive
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conjugate features contributing to the reduction of the task
loss decreases, resulting in the following limit:

lim
p(wp)→1

∑
∀zy∈X

∂

∂wp
L (φ(zy),y) = 0,

where zy denotes predictive conjugate features in X .

The modality facing the above marginal decrease in contri-
bution to the loss reduction across its feature space, is the
one that gets eliminated as part of the collapse. Next, we
show how this polysemantic interference is a consequence
of the low rank simplicity bias in neural networks.

3.2. Rank Bottleneck

We establish that with increasing number of iterations, gra-
dient updates in SGD tend to get restricted to a low-rank
manifold, the rank of which is proportional to the rank of
the average gradient outer product or AGOP (Lemma 2).
Consequently, in Theorem 2, we are able to derive an upper-
bound of convergence for every weight subspace in a given
layer, which gets tighter as the neurons in that layer get
increasingly polysemantic (Definition 2). It thus follows
that cross-modal polysemantic interference is a result of the
low-rank simplicity bias.

Lemma 2. (Gradient Rank) The rank of gradient updates
across iterations of SGD at layer l is a convergent sequence
with the following limit:

lim
n→∞

rank(∇lLn) ∝ rank

(∑
x∈X
∇φl(x)∇φl(x)T

)
,

where φl(x) and∇lLn are respectively the output and the
gradient of the loss L at layer l at the n-th iteration of SGD,
and X is the set of all inputs to layer l across the dataset.

Theorem 2 (Polysemantic Bottleneck). Let W be the
weight matrix at a given layer of φ, and w ≤ W be
any subspace in W . When the reduction in conditional
cross-entropy H(x;y|z) provided (amount of unique la-
bel information held) by each feature is the same, i.e.,
I(x;y|z1) = I(x;y|z2) = ... = I(x;y|zk), at any iter-
ation n of SGD, the norm of the difference between w and
the average gradient outer product (AGOP) of the complete
weight matrix W is bounded as follows:∥∥∥∥∥w −∑

x∈X
∇φW (x)∇φW (x)T

∥∥∥∥∥ ≤ γ(w)−1/n,

where γ(w) is the degree of polysemanticity of w.

Theorem 2 implies that since the AGOP is known to be
the low-rank subspace that W converges to under SGD
(Radhakrishnan et al., 2024), the small distance (tighter

bound) between the AGOP and w implies that W in fact
converges to the polysemantic subspace w. In other words,
SGD is more likely to parameterize W with the low-rank
polysemantic neurons than with high-rank monosemantic
ones. Below we explore ways of breaking this implicit
rank bottleneck to circumvent cross-modal polysemantic
interference.

3.3. Knowledge Distillation Frees Up Rank Bottlenecks

We propose a simple remedy to the cross-modal polyse-
mantic interference that a multimodal fusion model might
suffer from under the default training paradigm with SGD.
Based on our result in Theorem 3, the solution is to re-
place the modality-specific encoder of the modality that
gets eliminated under collapse, with one that is pretrained
via cross-modal knowledge distillation. Specifically, knowl-
edge distillation has to be performed from the modality that
survives fusion, to the one that gets ignored under fusion.
When more than one modality survives, we experimentally
find that distilling in a sequence starting from the weakest
and finishing with the strongest provides the best results
(Appendix C.3).

Theorem 3 (Dynamic Convergence Bound). When the in-
puts to φ are dynamic (for instance, when the unimodal
representations are aligned via cross-modal knowledge dis-
tillation) under some distance metric d, then at any itera-
tion n of SGD, the norm of the difference between w and
the AGOP of W is bounded as follows for all modalities
i, j ∈M and datapoints x ∈ X:

lim
d(x̃i,x̃j)→ϵ

∥∥∥∥∥w −∑
x∈X
∇φW (x)∇φW (x)T

∥∥∥∥∥ ≤ κ−1/n,

where x̃i, x̃j = fi(xi), fj(xj), κ is a constant for a given
depth proportional to the AGOP along the entire weight ma-
trix W at that depth, ϵ is the maximum permissible bound
on the distance between any pair of modality-specific encod-
ings, and both W and w are functions of xi and xj , as they
result from backpropagation on their predictions on X .

As per Theorem 3, as the representations from different
modalities get closer to each other under the distance metric
d, which is what effectively happens during cross-modal
knowledge distillation, the proportion of monosemantic neu-
rons in W increases. This results in the AGOP of W di-
verging away from its polysemantic subspaces w. In other
words, knowledge distillation implicitly disentangles the
cross-modal interferences by freeing the rank bottleneck and
encouraging necessary monosemanticity, allowing for inde-
pendent, modality-wise denoising of features along novel
dimensions. The intuition behind this observation is graphi-
cally illustrated in Figure 3.
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Figure 3. Illustration of modality collapse due to rank bottlenecks enforcing cross-modal polysemantic interference (a), and how freeing
up such bottlenecks via basis reallocation can facilitate the elimination of noisy features (red) by encouraging monosemanticity (b).

3.4. Explicit Basis Reallocation

Although knowledge distillation facilitates independent de-
noising of modality-specific representations in the fusion
head by freeing up rank bottlenecks, the processes of dis-
entanglement and denoising are implicit and hence, slow.
We leverage our learnings about the disentanglement and
denoising dynamics of knowledge distillation and use them
as a set of inductive biases to design an algorithm for Ex-
plicit Basis Reallocation, which addresses the problem in a
significantly more controlled and efficient manner.

All modifications for EBR are restricted at the level of the
unimodal encoders, and we do not alter the fusion operator
in any way, which makes it agnostic of the choice of the
fusion operator. We introduce a simple encoder-decoder
head hi · h−1

i on top of each modality specific encoder
such that the unimodal encoding of each modality i can be
specified by the function fi = f̄i · hi · h−1

i . For notational
convenience, let gi = f̄i · hi. We also introduce a modality-
discriminator network ψ that is trained on gi(x) to predict
the modality labels. h, h−1 and ψ are simple two-layer
MLPs, and hence add minimal parameter overhead. Jointly,
we optimize the following two criteria:

Lmd =

m∑
i=1

LCE(ψ(gi(x)),m); Lsem = LCE(ŷ,y),

where Lmd and Lsem respectively stand for the modality
discrimination loss and the semantic loss (of the final mul-
timodal prediction) respectively. The modality-specific pa-
rameter sets are updated as follows in each iteration of SGD:

ψ ← ψ −∇ψLmd

gi ← gi −∇giLsem +∇giLmd

h−1
i ← h−1

i −∇h−1
i
Lsem

Theoretical Rationale: The maximization of Lmd by gi

brings all the modalities within the ϵ-neighborhood under d
specified in Theorem 3, implementing an explicit disentan-
glement of noisy and predictive features. The adversarial
updates to ψ and gi are continued until the final multimodal
prediction loss LCE(ŷ,y) decreases, so as to retain the un-
derlying causal factors that are identifiable (Gulrajani &
Hashimoto, 2022), alongside modality-specific, semanti-
cally relevant features (Chaudhuri et al., 2024) that arise
out of equivariances shared by the underlying causal mecha-
nisms (Ahuja et al., 2022). Projecting gi(x) back into the
original dimensionality of f̄i via h−1

i leads to a denoised
representation that utilizes the compete output basis of f̄i for
representing the predictive features of modality i, resulting
in increased monosemanticity.

4. Experiments

Datasets and Implementation Details: We choose the
MIMIC-IV (Johnson et al., 2023) and avMNIST (Vielzeuf
et al., 2018) datasets for our experiments. For MIMIC-IV,
we follow the same settings as (Wu et al., 2024) and that of
(Wang et al., 2023; Ma et al., 2021) for avMNIST. We use
Tian et al. (2020) as our cross-modal knowledge distillation
(KD) algorithm of choice applied on top of MUSE (Wu
et al., 2024), which also serves as our multimodal baseline
for comparing EBR with SOTA. Due to space constraints,
we report the results on MIMIC-IV in the main manuscript
and defer those on avMNIST to Appendix C.2.

4.1. Cross-Modal Polysemantic Interference

Objective and Settings: We validate our theory on cross-
modal polysemantic interference (Section 3.1) by studying
the impact of the unimodal encoder corresponding to the
modality that gets eliminated under fusion, on the minimiza-
tion of the semantic loss. The results are depicted in Figure 4.
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Figure 4. MIMIC-IV: Semantic loss curve during training with increasing number of modalities. The multimodal prefix is the semantic
loss (linear) evaluation on the modality-specific encoder corresponding to the modality that gets eliminated during multimodal training.
The unimodal baseline is the same encoder, but is additionally optimized to minimize its unimodal semantic loss.

Figure 5. MIMIC-IV: Multimodal rank and representation similarities of modalities with the multimodal representation, under implicit
(KD) and explicit (EBR) basis reallocation mechanisms, across different strengths β of the modality that gets eliminated under collapse.

The multimodal prefix is the modality-specific encoder of
the modality that gets eliminated due to collapse. The red
curve represents its semantic loss during multimodal train-
ing, computed via linear evaluation on its representation.
The unimodal baseline is the same encoder, but is addition-
ally optimized to retain unimodal semantic classification
performance. Therefore, although both encoders have the
same architecture and receive inputs from the same modal-
ity, the multimodal prefix only receives gradient updates
through the fusion head, whereas the unimodal baseline also
directly optimizes the semantic loss.

Observations and Analyses: As predicted by Lemma 1,
as the number of modalities increase, the number of poly-
semantic features in the downstream fusion head also in-
creases. Now, since polysemantic features bottleneck the
fusion head (Theorem 2) due to rank-constrained gradi-
ent updates (Lemma 2), backpropagated gradients through
the fusion head into the multimodal prefix also get rank-
constrained, forcing it to allocate fractional capacities to
features that would otherwise have been monosemantically
represented. This makes the predictive features harder to
decode, leading to the observed gap between the two curves.
Since the unimodal model also directly minimizes its own
semantic loss, it has a much lower possibility of cross-modal
interference, allowing it to successfully perform the neces-
sary capacity allocations, leading to lower loss values. As

the number of modalities increase, the gap between the uni-
modal baseline and the multimodal prefix also increases,
aligning with the conclusions of Lemma 1 and Theorem 1.

4.2. Presence of Rank Bottlenecks

Objective and Settings: We empirically validate our the-
ory linking cross-modal polysemantic interference with the
low-rank simplicity bias of neural networks (Section 3.2)
by looking at the relationship between the rank of the mul-
timodal representation and the amount of upweighting (β)
needed to force the multimodal model to incorporate the
modality that it would otherwise eliminate under collapse.
The results are visualized in Figure 5 (a) and (c). The default
setting (w/o KD or w/o EBR) corresponds to the vanilla mul-
timodal model, and the unimodal baseline refers to the rank
of the representation learned by the unimodal encoder when
trained in a standalone manner to minimize the semantic
loss without any multimodal fusion.

Observations and Analyses: As the value of β (the strength
of the modality that gets eliminated by default) is increased,
the multimodal rank can be seen to decrease very fast in
the default setting. It happens particularly rapidly around a
critical point (β = 4), exhibiting a form of phase transition
wherein the rank drops to values lower than the unimodal
baseline. As the multimodal model is forced to incorporate
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Figure 6. MIMIC-IV: Semantic loss minimization comparison be-
tween vanilla multimodal learning and using implicit (KD) and
explicit (EBR) basis reallocation.

more of the said modality, it is forced to select its (mostly
noisy) features from the polysemantic subspaces that it has
already learned (Lemma 2). So, by the virtue of being rep-
resented polysemantically, the rank of this feature subspace
ends up being much lower than it otherwise would (as de-
picted by the unimodal baseline). However, this decay in
rank is not observed as we free up rank bottlenecks through
basis reallocation, via KD or EBR, implying that rank bot-
tlenecks causing cross-modal polysemantic interference is
precisely what is at the root of modality collapse. The rank
of the default multimodal representation being bounded
above by that of the unimodal baseline beyond the phase
transition around the critical point, is a consequence of the
upper-bound presented in Theorem 2.

4.3. Effectiveness of Basis Reallocation

Next, we test the effectiveness of basis reallocation (both
implicit, via KD, and explicit, via EBR) as a mechanism for
freeing up rank bottlenecks to break cross-modal polyseman-
tic interferences, and eventually averting modality collapse.
We report our results in Figure 5, Figures 6 and 7, and Ta-
ble 2, all of which unanimously and unambiguously show
the effectiveness of basis reallocation towards preventing
modality collapse, confirming the result in Theorem 3.

Rank and Similarity with the Multimodal Representa-
tion: Figure 5 (a) and (c) provide the most direct evidence
that basis reallocation frees up rank bottlenecks, as mul-
timodal representation in both KD and EBR consistently
have a higher rank, while EBR provides a stronger buffer
relative to KD against the rank decay occurring around the
critical point. Figure 5 (b) and (d) show the representa-
tion similarities between the multimodal representation and

Figure 7. MIMIC-IV: With increasing noise rate, existing ap-
proaches suffer from modality collapse due to noisy cross-modal
entanglements. With improved strategies of basis reallocation,
implicit (KD) or explicit (EBR), robustness to noise and the conse-
quent prevention of modality collapse can be ensured.

strongest (teacher) and the weakest (student) modalities.
Both the strongest and the weakest modality representations
can be seen to more consistently align with the multimodal
representation when using EBR, while KD requires some
upweighting (by increasing the value of β) to achieve this
alignment. In either case, they indicate that basis realloca-
tion makes the multimodal representation use information
from all the modalities, instead of collapsing onto just a
subset (strongest) of the modalities.

Optimization Dynamics: In Figure 6, we visualize the dy-
namics of optimizing the semantic loss with or without the
implicit (KD) and explicit basis reallocation (EBR) strate-
gies. Generally, we observe that using basis reallocation
provides improved overall loss minimization as opposed
to not using it (vanilla). Specifically, when using implicit
(KD), SGD tends to first learn noisy, polysemantic neurons
before freeing up rank bottlenecks to denoise them. This
leads to multiple step-like structures in the loss trajectory,
which could correspond to the saddle geometry of such
landscapes. Such geometries are possibly smoothed out into
more convex neighborhoods under EBR, providing faster
convergence and a more consistent optimization dynamic.

Denoising Effect of Basis Reallocation: Theorem 1 posits
that cross-modal polysemantic entanglements can be harm-
ful precisely due to the possibility of interference from noisy
features. We do a set of experiments where we corrupt the
weakest modality during training with additive random uni-
form noise over a range of noise rates (from 5-50%) and
compare SOTA multimodal models with our proposed im-
plicit (KD) and explicit basis reallocation (EBR) mecha-
nisms. We report our findings in Figure 7. Unless explicitly
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Method Mortality Readmission

AUC-ROC AUC-PRC AUC-ROC AUC-PRC

CM-AE (ICML ’11) 0.7873 ± 0.40 0.3620 ± 0.22 0.6007 ± 0.31 0.3355 ± 0.25
SMIL (AAAI ’21) 0.7981 ± 0.11 0.3536 ± 0.12 0.6155 ± 0.09 0.3279 ± 0.15
MT (CVPR ’22) 0.8176 ± 0.10 0.3467 ± 0.06 0.6278 ± 0.09 0.2959 ± 0.05
Grape (NeurIPS ’20) 0.7657 ± 0.16 0.3733 ± 0.09 0.6335 ± 0.07 0.3120 ± 0.11
M3Care (SIGKDD ’22) 0.8265 ± 0.09 0.3830 ± 0.07 0.6020 ± 0.09 0.3870 ± 0.05
ShaSpec (CVPR ’23) 0.8100 ± 0.13 0.3630 ± 0.09 0.6216 ± 0.10 0.3549 ± 0.08
MUSE (ICLR’24) 0.8236 ± 0.09 0.39.87 ± 0.05 0.6781 ± 0.05 0.4185 ± 0.07

EBR (Ours) 0.8533 ± 0.09 0.4277 ± 0.02 0.7030 ± 0.05 0.4290 ± 0.02

Table 1. MIMIC-IV: Comparison of average performance with standard deviation across multiple modality missingness rates.

taken care of, existing SOTA models perform notably poorly
when the noise rate is increased. Since basis reallocation
frees up rank bottlenecks, the novel dimensions can be uti-
lized by SGD for denoising. EBR makes the denoising
process explicit through the adversarial training of ψ and gi
to optimize Lmd, providing stronger robustness to noise.

Method Mortality Readmission

AUC-ROC AUC-PRC AUC-ROC AUC-PRC

Grape (NeurIPS ’20) 0.8837 0.4584 0.7085 0.4551
+ KD 0.9011 0.4620 0.7231 0.4610
+ EBR 0.9102 0.4799 0.7488 0.4691

M3Care (SIGKDD ’22) 0.8896 0.4603 0.7067 0.4532
+ KD 0.8950 0.4700 0.7080 0.4562
+ EBR 0.8987 0.4850 0.7296 0.4832

MUSE (ICLR’24) 0.9201 0.4883 0.7351 0.4985
+ KD 0.9350 0.4993 0.7402 0.5066
+ EBR 0.9380 0.5001 0.7597 0.5138

Table 2. MIMIC-IV: Using knowledge-distilled / EBR backbones
for the modality that would otherwise be eliminated by collapse.

Independence from Fusion Strategies: Finally, to show
that basis reallocation can be performed agnostic of the fu-
sion strategy, we replace the unimodal encoders of a number
of SOTA multimodal models with their knowledge distilled
/ EBR counterparts and report their performance in Table 2.
Irrespective of the fusion strategy, it can be seen that an out-
of-the-box improvement in test performance can be attained
by these simple replacements, establishing the generic na-
ture of our results.

4.4. Fusion with Inference-Time Missing Modalities

As discussed in Section 3.4, after reallocating bases to fea-
tures via EBR, since the latent factors of X are identifiable
up to the equivariances shared by the underlying mecha-
nisms, we leverage this property to substitute missing modal-
ities at test-time with those that are available. Concretely,
once training with EBR converges, we proceed as follows:
(1) Rank modalities wrt their similarities (computed pair-
wise across all samples) with a reference modality (chosen

as the strongest modality in our experiments) in terms of
the latent encoding gi(xi); (2) When a modality i of a test
sample x goes missing, choose its substitution candidate as
the modality j that is closest to it in the ranked list; (3) Com-
pute the proxy unimodal encoding of xi as h−1(gj(xj)).
We validate the importance of ranking based on the EBR
latents by benchmarking against other substitution strategies
in Appendix C.4.

To evaluate our approach, we adopt the experimental setup
of MUSE (Wu et al., 2024), following which we mask out
the modalities in the MIMIC-IV dataset with probabilities
{0.1, 0.2, 0.3, 0.4, 0.7}. We then take the average and stan-
dard deviation across these missingness rates and report the
results in Table 1. It can be seen that close to 3% improve-
ments can be achieved in both Mortality and Readmission
prediction AUC-ROC and AUC-PR metrics on top of SOTA,
by simply replacing the unimodal encoders of the baseline
MUSE with our proposed EBR variants and following the
ranking and substitution strategy for dealing with missing
modalities detailed above.

5. Conclusion and Discussions
We studied the phenomenon of modality collapse from
the perspective of polysemanticity and low-rank simplic-
ity bias. We established, both theoretically and empirically,
that modality collapse happens due to low rank gradient
updates forcing the fusion head neurons to polysemantically
encode predictive features of one modality with noisy fea-
tures from another, leading to the eventual collapse of the
latter. This work attempts to reveal that multimodal learning
may be plagued in ways that are rather unexpected, and con-
sequently, unexplored, thereby leaving room for a number
of improvements and future explorations.

For instance, Theorems 2 and 3 are valid when the reduction
in conditional cross-entropy provided (amount of unique la-
bel information held) by each feature is the same. It remains
to be explored how these results can be extended to the case
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when such reductions are different across features. We con-
jecture that (and as also empirically evidenced) EBR turns
the otherwise saddle landscape, that is obtained after the
rank bottlenecks are freed up by knowledge distillation, into
a convex one, enabling smoother and more predictable opti-
mization. Developing an understanding of this could lead
to deeper insights into the dynamics of the loss landscape
geometry of modality collapse.
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A. Extended Literature Review

Missing Modalities: Existing SOTA multimodal fusion approaches do not account for the possibility of missing modalities
(Ramachandram & Taylor, 2017; Nagrani et al., 2021; Shi et al., 2021; Chaudhuri et al., 2022; Zhao et al., 2024). Although
this limitation was identified in works as early as Ngiam et al. (2011), the pattern of missingness, i.e., which modality(ies)
could go missing, were assumed to be known at training time. Later, a number of graph-based techniques (You et al., 2020;
Zhang et al., 2022; Wu et al., 2024), including ones that use heterogeneous graphs to model different missingness patterns
(Chen & Zhang, 2020), alongside transformer-based (Tsai et al., 2019; Ma et al., 2022), and Bayesian meta-learning (Ma
et al., 2021) based approaches attempted to operate without this assumption. Other approaches such as those that facilitate
direct interaction among modality-specific raw inputs (Kim et al., 2021; Lee et al., 2023), and ones based on self-supervised
domain adaptation (Shen & Gao, 2019), also provided promising results.

Interestingly, it was observed by Ma et al. (2022) that multi-modal representations are strongly dependent on the fusion
strategy, and that the optimal way of fusing modalities is dependent on the data, due to which, the authors recommended
that fusion strategies should be distribution-specific. However, the limitations introduced by such dependencies was also
accounted for in related multimodal learning literature to address the challenge of resource-efficient utilization of modalities,
which was tackled through dynamic data-dependent fusion (Xue & Marculescu, 2023). Despite the existence of a number
of bespoke techniques for dealing with missing modalities, SOTA approaches such as ShaSpec (Wang et al., 2023), in
addition to such algorithms, were also benchmarked against baselines based on GANs (Goodfellow et al., 2020) and
autoencoders (Baldi, 2012), which the authors found to be similarly competitive. Although there have been some works that
explored the applicability of knowledge distillation to dealing with missing modalities, their purposes have been scoped
to addressing issues such as compressing the extra parameter overhead due to multimodal fusion (Dou et al., 2020), or
dynamically weighting data points within modalities and contributions from loss terms (Zhou et al., 2023). In this work, we
use knowledge distillation as a tool to theoretically study the fundamental processes in optimization that govern modality
collapse, and show that it can avoid collapse by implicitly freeing up rank bottlenecks that lead to cross-modal entanglements
between noisy and predictive features.

B. Proofs
Lemma 1 (Cross-Modal Polysemantic Collision). As the number of modalities increase, the fraction of polysemantic
neurons encoding features from different modalities, for a given depth and width, increases quadratically in the number of
modalities as follows:

p(wp) ≥ m(m− 1)
(dim fmin)

2(
m∑
i=1

dim fi

)2 ,

where p(wp) is the probability of a neuron being polysemantic via superposition, and fmin is the modality-specific encoder
with the smallest output dimensionality.

Proof. The number of ways any two features can be selected from by φ from X such that both belong to different modalities
is ≥

(
m
2

)
(dim fmin)

2, since there are
(
m
2

)
ways of choosing modality-pairs, and there are ≥ (dim fmin)

2 ways of choosing
feature pairs in each such combination. Now, it is these pairs of features that lead to cross-modal polysemantic collisions

(through neuron subspaces wp) during fusion in φ. Let the ambient dimension of the input to φ be Fdim =

m∑
i=1

dim fi. Then,

for a given depth and width, the probability that a polysemantic weight subspace would represent features from two different
modalities would be:

p(wp) ≥
(
m

2

)
(dim fmin)

2(
Fdim
2

) = m(m− 1)
(dim fmin)

2(
m∑
i=1

dim fi

)2

This completes the proof of the lemma.

Lemma 3 (Entanglement by Feature Type). If the latent factors underlying the modalities are sufficiently complementary to
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each other in terms of predicitvity of the label y, i.e., for any pair of modalities i and j,∑
p

∑
q

zpi · z
q
j < K,

where p and q are indices over the latent factors of modalities i and j respectively, and K is a constant, then, the noisy
features from one modality are more likely to be entangled with predictive features of another through polysemantic weights
in the fusion head, i.e., for any pair of noisy (zϵ) and predictive (zy) features from the same modality, the following will hold:∑

w zy ·w∑
w zϵ ·w

≤ 1,

where w denotes weight subspaces representing a different modality in φ.

Proof. Since noisy features are closer to random, they can get entangled with neurons representing predictive features
from any modality if the corresponding neuron allows features up to (1 − K) units of deviations, according to the
Johnson–Lindenstrauss lemma (Elhage et al., 2022), i.e., satisfying the following:

zϵ ·w ≥ K; zy ·w < K

It implies that the set of noisy features zϵ would be more closely aligned with w than the set of predictive features zy,
making the ratio of the sums over all w ∈ φ, of the latter to the former, ≤ 1.

With the elimination of noisy features, such entanglements following from superposition become less likely among predictive
features across modalities, since they would normally require dedicated dimensions with strong deviations from perfect
orthogonality, i.e., monosemantic neurons. This completes the proof of the lemma.

Theorem 1 (Interference) As the number of cross-modal polysemantic collisions increase, the fraction of predictive conjugate
features contributing to the reduction of the task loss decreases, resulting in the following limit:

lim
p(wp)→1

∑
∀zy∈X

∂

∂wp
L (φ(zy),y) = 0,

where zy denotes predictive conjugate features in X .

Proof. Let zϵ be the noisy conjugate of zy. As the number of polysemantic collisions increase, so does the proportion of
polysemantic neurons, i.e., lim

p(wp)→1
. Now, from Lemma 3, we know that as the noisy features are more likely to get into

cross-modal polysemantic entanglements, which implies that they would exhibit a higher similarity (dot-product) with the
polysemantic subspace wp. Additionally, since zy and zϵ are conjugate to each other, zy would exhibit a low similarity
(dot-product) with wp, activating in the opposite direction as that of zϵ. Again, from Lemma 3, since zϵ is entangled with
wp, when present in the input, it would always activate. Based on this, the conjugate activation equation (without the
non-linearity) of zy can be written as:

lim
p(wp)→1

φ(zy) = φ(zy) + φ(zϵ) = wp · zy︸ ︷︷ ︸
large -ve

+wp · zϵ︸ ︷︷ ︸
large +ve

= 0,

meaning that the net activation of zy along wp is 0, which ultimately implies that:

lim
p(wp)→1

∑
∀zy∈X

∂

∂wp
L (φ(zy),y) = 0

This completes the proof of the theorem.
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B.1. Rank Bottleneck

Definition 2 (Degree of Polysemanticity). We quantitatively define the degree of polysemanticity (Elhage et al., 2022;
Scherlis et al., 2022), γ, of a weight subspace, w, as the ratio of the number of features in the input distribution X encoded
in the subspace and the number of dimensions of the subspace, i.e.,

γ(w) =
|w ∩X|
dim(w)

,

where |w ∩X| is the number of features in X that are encoded in w.

Polysemantic neurons lie on a low-rank manifold that the weights of each layer converge to under SGD. So, since all
optimization happens along this low-rank polysemantic manifold, it is not possible for φ to avert the cancellation effect
among conjugate features, of which the noisy counterparts may get encoded as part of a polysemantic neuron.

Lemma 2 (Gradient Rank). The rank of gradient updates across iterations of SGD at layer l is a convergent sequence with
the following limit:

lim
n→∞

rank(∇lLn) ∝ rank

(∑
x∈X
∇φl(x)∇φl(x)T

)
,

where φl(x) and∇lLn are respectively the output and the gradient of the loss L at layer l at the n-th iteration of SGD, and
X is the set of all inputs to layer l across the dataset.

Proof. Step 1: The rank of each layer decreases with every iteration of SGD (Galanti et al., 2024). Step 2: Every layer
converges to a quantity proportional to the average gradient outer product (Radhakrishnan et al., 2024).

Theorem 4 (Depth-Rank Duality (Sreelatha et al., 2024)). Let A = [A0, A1, ..., An] be the attribute subspace of X
with increasing ranks, i.e., rank(A0) < rank(A1) < ... < rank(An), such that every A ∈ A is maximally and equally
informative of the label Y , i.e., I(A0, Y ) = I(A1, Y ) = ... = I(An, Y ). Then, across the depth of the encoder ϕ, SGD
yields a parameterization that optimizes the following objective:

min
ϕ,f
L(f(ϕ(X)), Y )︸ ︷︷ ︸

ERM

+min
ϕ

∑
l

∥∥∥ϕ[l](X̃)− Ωd ⊙A
∥∥∥
2
,

where L(·, ·) is the empirical risk, f(·) is a classifier head, ϕ[l](·) is the output of the encoder ϕ (optimized end-
to-end) at depth l, ∥·∥2 is the l2-norm, ⊙ is the element-wise product, X̃ is the l2-normalized version of X , Ωd =
[1π1(l);1π2(l); ...;1πn(l)], 1π is a random binary function that outputs 1 with a probability π, and πi(l) is the propagation
probability of Ai at depth l bounded as:

πi(l) = O
(
rank(ϕ[l]) r−di

)
,

where rank(ϕ[l]) is the effective rank of the ϕ[l] representation space, and ri = rank(Ai).

Theorem 2 (Polysemantic Bottleneck) Let W be the weight matrix at a given layer of φ, and w ≤W be any subspace in
W . When the reduction in conditional cross-entropy H(x;y|z) provided (amount of unique label information held) by each
feature is the same, i.e., I(x;y|z1) = I(x;y|z2) = ... = I(x;y|zk), at any iteration n of SGD, the norm of the difference
between w and the average gradient outer product (AGOP) of the complete weight matrix W is bounded as follows:∥∥∥∥∥w −∑

x∈X
∇φW (x)∇φW (x)T

∥∥∥∥∥ ≤ γ(w)−1/n,

where γ(w) is the degree of polysemanticity of w.

Proof. We know that the weights of a neural network when optimized with SGD converge to a value proportional to the
Averge Gradient Outer Product (AGOP), which essentially represents those sets of features which when minimally perturbed,
produce a large change in the output (Radhakrishnan et al., 2024).
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Additionally, SGD with weight decay minimizes the ranks of the weight matrices (Galanti et al., 2024) and that this
minimization is more pronounced as we go deeper into the neural network (Huh et al., 2023), as formalized in Theorem 4 by
Sreelatha et al. (2024).

In other words, the deeper we go into a network, the more likely it is for the representations to be of a lower rank (Huh
et al., 2023; Sreelatha et al., 2024), and that this rank decreases with each successive iteration (Galanti et al., 2024). In
other words, for each layer, there is a subspace of a specific rank that is updated through backpropagation, and according
to Lemma 2, since the rank of such updates decrease with iterations, the lower the rank of this subspace, the greater its
cumulative gradient across iterations, i.e., the more likely it is to be learned by gradient descent and the more likely it is that
the weights of the particular layer would converge to this subspace.

If two features equally minimize the empirical risk, and their joint encoding has no local improvement in the minimization
of the marginal loss, extending the result by Galanti et al. (2024), SGD on the fusion operator would prioritize the encoding
of the modality with the lower rank of the two as follows:

min
W̄φ(l)

∑
m∈M

l

∥∥∥∥∥∥ W
φ(l)
m∥∥∥Wφ(l)
m

∥∥∥ − ¯Wφ(l)

∥∥∥∥∥∥ ≤ K · (1− 2µλ)nl, (1)

where Wφ(l)
m is the subspace of the weight matrix at layer l of the fusion operator φ corresponding to the modality m, µ is

the learning rate, n is the SGD iteration, and W̄φ(l) is the target weight matrix that the fusion operator converges towards at
layer l such that:

rank(W̄φ(d)) =
∑
m∈Mc

rank(W̄ fm(o)),

where W̄ f(o)
m is the weight matrix at the output layer of the modality-specific encoder fm(o) of modality m and Mc is the

set of modalities that survive collapse. Now, for polysemantic subspaces w, since the degree of polysemanticity γ(w) > 1,
we can extend Equation (1) as:

min
W̄φ(l)

∑
m∈M

d

∥∥∥∥∥∥ W
φ(l)
m∥∥∥Wφ(l)
m

∥∥∥ − ¯Wφ(l)

∥∥∥∥∥∥ ≤ K · (1− 2µλ)nl ≤ γ(w)−1/n (2)

According to the condition I(x;y|z1) = I(x;y|z2) = ... = I(x;y|zk), since basins corresponding to multimodal
combinations all lie at the same depth, their empirical risks are essentially the same, and so are the gradients from the ERM
term. Now, as a result of modality collapse, we know that one of the basins is steeper than the rest, meaning it has a higher
local gradient. Since the empirical risk is constant across all the basins / multimodal combinations, the steepness must come
from the rank minimization term. Therefore, the combination with a steep entry must lead to a lower rank solution.

As observed by (Javaloy et al., 2022), no local improvement in the minimization of the marginal loss may be due to conflicting
gradients in the local parameterizations for the two modalities. Note that this does not imply that the two modalities are
globally conflicting. It is only the local encodings of the two that somehow conflict with each other. Specifically, following
from Equations (1) and (2) and Lemma 2, the norm of the difference between the polysemantic subspace w and the AGOP
of the ambient weight matrix W can be bound as:∥∥∥∥∥w −∑

x∈X
∇φW (x)∇φW (x)T

∥∥∥∥∥ ≤ K · (1− 2µλ)nl (3)

Therefore, for polysemantic bases, at any given iteration of SGD, the difference with the AGOP can be more tightly bound
than for monosemantic bases. Formally, combining Equations (1) to (3), we have:∥∥∥∥∥w −∑

x∈X
∇φW (x)∇φW (x)T

∥∥∥∥∥ ≤ K · (1− 2µλ)nl ≤ γ(w)−1/n (4)

In other words a basis formed with polysemantic neurons is more similar to the AGOP than one formed with monosemantic
neurons, provided the conditional cross-entropy H(x;y|z) reduction provided (amount of unique label information held) by
each feature is the same, i.e., I(x;y|z1) = I(x;y|z2) = ... = I(x;y|zk).
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This completes the proof of the theorem.

B.2. Knowledge Distillation Frees Up Rank Bottlenecks

As described earlier, the cause for collapse is cross-modal interference between noisy and predictive features. Here, we
find that knowledge distillation implicitly remedies this problem. Knowledge distillation converges when the noisy and the
predictive subspaces have been sufficiently disentangled to the point that the available rank can be assigned completely
towards modeling the teacher modality, after effectively having discarded as many of the noisy features as possible. There is
some empirical evidence on this from the self-distillation literature (Xie et al., 2019). With the disentangled and denoised
representations obtained from knowledge distillation, the causal factors of the previously eliminated modalities can expand
(inverse of collapse) the multimodal representation space, utilizing previously unused dimensions for encoding features that
effectively reduce the loss. Previously, the effect of the semantically relevant features from the eliminated modalities would
not be observable since the superposition with the noisy features would cancel out (when marginalized across all features)
any conditional reduction in loss that the causal factors would have induced.

Theorem 3 (Dynamic Convergence Bound]). When the inputs to φ are dynamic (for instance, when the unimodal
representations are aligned via cross-modal knowledge distillation) under some distance metric d, then at any iteration n of
SGD, the norm of the difference between w and the AGOP of W is bounded as follows for all modalities i, j ∈ M and
datapoints x ∈ X:

lim
d(x̃i,x̃j)→ϵ

∥∥∥∥∥w −∑
x∈X
∇φW (x)∇φW (x)T

∥∥∥∥∥ ≤ κ−1/n,

where x̃i, x̃j = fi(xi), fj(xj), κ is a constant for a given depth proportional to the AGOP along the entire weight matrix W
at that depth, ϵ is the maximum permissible bound on the distance between any pair of modality-specific encodings, and
both W and w are functions of xi and xj , as they result from backpropagation on their predictions on X .

Proof. Every modality consists of both noisy and predictive features. If fusion collapses to a specific modality (target), it
means that the modality contains more predictive information and less noise than the rest. Knowledge distillation to align the
representations of the other modalities with the target would thus denoise the other modalities, allocating a larger fraction
of the feature space of the modality-specific encodings of such modalities to predictive features. Since noisy features are
closer to random, they can get entangled with predictive features from any modality if the corresponding neuron has a
slight deviation from perfect orthogonality, according to the Johnson–Lindenstrauss lemma (Elhage et al., 2022). With
the elimination of noisy features, such entanglements following from superposition become less likely among predictive
features across modalities, since they would normally require dedicated dimensions with strong deviations from perfect
orthogonality, i.e., monosemantic neurons. Therefore, as the unimodal representations get closer to each other through the
implicit denoising mechanism of knowledge distillation, SGD gets increasingly compelled to parameterize the fusion head
in a monosemantic manner.

As the representations from different modalities get closer to each other under the distance metric d, which is what effectively
happens during cross-modal knowledge distillation, the proportion of monosemantic neurons in W increases. This results
in the AGOP of W diverging away from its polysemantic subspaces w. In other words, knowledge distillation implicitly
disentangles the cross-modal interferences by freeing rank bottlenecks and encouraging necessary monosemanticity, allowing
for independent, modality-wise denoising of features along novel dimensions.

In other words, when cross-modal polysemantic weight matrices are rank-bottlenecked, the only solution to minimize the
loss further is to allocate the noisy features new, independent dimensions in the latent space. However, this causes an
increase in representation rank. To counteract this, knowledge distillation frees up the rank bottlenecks by down-weighting
the rank-regularization term.

An intuition for this can be developed based on the low-rank simplicity bias. A weighted general case of the Depth-Rank
Duality result by (Sreelatha et al., 2024) follows as a consequence of cross-modal interferences, which can be written as:

min
ϕ,f
L(φ(X), Y )︸ ︷︷ ︸

ERM

+(1− κ)αmin
ϕ

∑
d

rank(φl),

where κ is the strength of cross-modal knowledge distillation. Now, when cross-modal polysemantic interference happens
despite there being extra available dimensions in the ambient space, it indicates a faulty capacity allocation (Scherlis et al.,
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2022) of the corresponding neurons by SGD, which follows from the Johnson–Lindenstrauss lemma (Elhage et al., 2022). It
happens because SGD, by default, performs the aforementioned implicit weighted rank-regularization aside from ERM,
with equal weights between ERM and the rank regularization term.

Knowledge distillation reduces the weight on the rank-regularization term, freeing up other dimensions for exploration,
potentially containing higher rank solutions with more modalities. The rank de-regularization happens due to knowledge
distillation having to denoise the student modality in order to align its representation with that of the teacher (Bishop, 1995).
Once the optimizer converges to the modality-collapsed solution at the saddle point, the value of the loss and the rank of the
solution balance each other out. Now, to explore new dimensions from the saddle point, the optimizer has to explore a novel
direction in the parameter space, which leads to a reduction in loss but a simultaneous increase in rank. The reason behind
this saddle-geometry is the presence of noisy features from the one modality in entanglement with the predictive features
from the another, which results in an adversarial minimax game between the two. On either side of the saddle point along
the unexplored dimensions are predictive features of the former modality which could potentially minimize the task loss, but
is not taken into account due to rank regularization.

Since the rank-regularization happens when d(x̃i, x̃j)→ ϵ, it implies that knowledge distillation down-weights this regular-
ization by disentanglement and denoising of the bases of the modalities from which the noise features originate.

Specifically, under a dynamic input space approaching a bounded neighborhood ϵ, the number of features encoded in any
polysemantic subspace gets bounded by a constant (say, kw) as the n→∞. So, the RHS in Theorem 2 can be rewritten as:

lim
n→∞

γ(w)−1/n =

(
|w ∩X|
dim(w)

)−1/n

=

(
kw

dim(w)

)−1/n

= κ−1/n,

where κ = kw/ dim(w) is a constant is both kw and dim(w) are constants. Finally, following from the above, when
d(x̃i, x̃j)→ ϵ, Equation (4) from the proof of Theorem 2 can be expressed in terms of κ as:

lim
d(x̃i,x̃j)→ϵ

∥∥∥∥∥w −∑
x∈X
∇φW (x)∇φW (x)T

∥∥∥∥∥ ≤ K · (1− 2µλ)nl ≤ γ(w)−1/n = κ−1/n

This completes the proof of the theorem.

B.3. Additional Remarks

Unequal conditional cross-entropy across features: According to the condition I(x;y|z1) = I(x;y|z2) = ... =
I(x;y|zk), since basins corresponding to multimodal combinations all lie at the same depth, their empirical risks are
essentially the same, and so are the gradients from the ERM term. Now, as a result of modality collapse, we know that one
of the basins is steeper than the rest, meaning it has a higher local gradient. Since the empirical risk is constant across all the
basins / multimodal combinations, the steepness must come from the rank minimization term in Theorem 4. Therefore, the
combination with a steep entry must lead to a lower rank solution. When the equality is not met across all features, the
low-rank / steepness condition is trivially satisfied by the existence of a lower-dimensional subspace of zis that has a lower
conditional mutual information I(x;y|zi), and deriving the upper-bound on the rank in terms of the AGOP is no-longer
necessary. The rank of the subspace comprising features with lower relative mutual information could act as a reasonable
estimate of the rank of the final weights that SGD would converge to. By considering the condition with the equality, we
analyze the boundary case that even when such a subspace with low conditional mutual information cannot be identified, it
is possible to upper-bound the rank of the weight matrix.

Identifying Latent Factors and Substitutability: If the latent factors are identifiable from the data up to some symmetry
of the latent distribution (Gulrajani & Hashimoto, 2022), then the substitutability result also holds up to the actions of that
symmetry group. In other words, substitutability is directly contingent on identifiability, i.e., the existence of symmetries in
the latent distribution can affect the substitutability of latent factors among modalities.

Segregating predictive and noisy features from the set of latent factors can be done by learning to discover independent
causal mechanisms on the aggregate of all modalities (Parascandolo et al., 2018). The degree to which the latent factor
representations of the individual modalities can be compressed, i.e., the value of ϵ in Theorem 3, depends on the size / rank
of the invariant (Arjovsky et al., 2019) subspace.
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C. Additional Experimental Settings and Results
C.1. Experimental Settings

Dataset Details: MIMIC-IV contains information about 180,000 patients across their 431,000 admissions to the ICU.
Following Wu et al. (2024), we use the clinical notes, lab values, demographics (age, gender, and ethnicity), diagnosis,
procedure, and medications as the set of input modalities. The task is to perform Mortality (whether the patient will pass
away in the 90 days after discharge) and Readmission (whether a patient will be readmitted within the next 15 days following
discharge) prediction for a given patient. avMNIST comprises 1500 samples of images and audio, taken from MNIST
(Lecun et al., 1998) and the Free Spoken Digits Dataset (Jackson et al., 2018), where the task is to predict the labels of the
input digits from 0 to 9. We adopt the experimental setup of Wang et al. (2023) for avMNIST.

Implementation Details: The two hidden layers of ψ have output dimensionalities 512 and 256 respectively. The hidden
layers of h have output dimensionalities 1024 and 512 respectively, whereas that of h−1 is 512 and 1024. The model was
trained for 1200 epochs, with an initial learning rate of 0.01, decayed at a rate of 0.9 every 100 epochs. We interleave
between the optimization of Lmd and Lsem every 10 epochs.

C.2. Results on avMNIST

Following on from Section 4, we list the empirical results on avMNIST as follows:

• Presence of rank bottlenecks: Figure 10 (a) and (c)

• Effectiveness of basis reallocation:

– Rank and Similarity with the Multimodal Representation: Figure 10
– Optimization Dynamics: Figure 9
– Denoising Effect of Basis Reallocation: Figure 8
– Independence from Fusion Strategies: Table 4

• Fusion with Inference-time Missing Modalities: Table 3

The analytical conclusions for avMNIST are the same as what is discussed in Section 4, since the patterns of observations
are highly consistent between avMNIST and MIMIC-IV. The only experiment not included for avMNIST is the one
corresponding to Figure 4 for MIMIC-IV, since avMNIST has only two modalities, and hence, it is not possible to monitor
the effect of increasing the number of modalities on the loss curves.

Method Acc @ Audio Missingness Rate

95% 90% 85% 80%

Autoencoder (ICMLW’12) 89.78 89.33 89.78 88.89
GAN (ACM Comm’20) 89.11 89.78 91.11 93.11
Full2miss (IPMI’19) 90.00 91.11 92.23 92.67
Grape (NeurIPS’20) 89.65 90.42 91.15 91.37
SMIL (AAAI’21) 92.89 93.11 93.33 94.44
ShaSpec (CVPR’23) 93.33 93.56 93.78 94.67
MUSE (ICLR’24) 94.21 94.36 94.82 94.93

EBR (Ours) 95.30 95.57 95.89 95.93

Table 3. avMNIST: Comparison with SOTA on dealing with the missing audio modality across different missingness rates at test time,
following the baseline setup of Wang et al. (2023).

C.3. Sequence of Distillation

The results of various strategies for sequencing the teacher modality for cross-modal knowledge distillation are reported in
Table 5. Based on these observations, we choose weakest-to-strongest as the sequence to benchmark our KD based implicit
basis reallocation mechanism.
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Figure 8. avMNIST: With increasing noise rate, existing approaches suffer from modality collapse due to noisy cross-modal entanglements.
With improved strategies of basis reallocation, implicit (KD) or explicit (EBR), robustness to noise and the consequent prevention of
modality collapse can be ensured.

Figure 9. avMNIST: Semantic loss minimization comparison between vanilla multimodal learning and using implicit (KD) and explicit
(EBR) basis reallocation.

C.4. Baselines for Substitutability

We design the following baselines for comparison against our EBR-based modality substitution approach: zeros, random
sampling, nearest-neighbor modality, train set average. Using four (two weak and two strong - diagnosis, lab values, clinical
notes, and medication respectively) modalities from MIMIC IV, we report the average with standard deviation of the 15
possible missingness patterns on the AUC-ROC metric for Mortality prediction in Table 6. The target represents the model
trained on specifically on the subset of modalities that do not go missing, i.e., its performance would always be higher than
any baseline since it does not have to deal with the distribution shift that comes from modalities going missing at test time.

C.5. Multicollinearity

We expect to see increased levels of multicollinearity as the number of modalities increase, if the dimensionality of the
representation space remains constant. As correctly conjectured by the reviewer, we would expect multicollinearity to be
more pronounced in the deeper layers of the fusion head. The reason behind this is that although there may be dependencies
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Figure 10. avMNIST: Multimodal rank and representation similarities of modalities with the multimodal representation, under implicit
(KD) and explicit (EBR) reallocation mechanisms, across different strengths β of the modality that gets eliminated under collapse.

Method Acc @ Audio Missingness Rate

95% 90% 85% 80%

SMIL (AAAI’21) 92.89 93.11 93.33 94.44
+ KD 92.95 93.97 94.06 94.70
+ EBR 93.77 94.02 94.51 94.96

ShaSpec (CVPR’23) 93.33 93.56 93.78 94.67
+ KD 95.02 95.16 95.30 95.45
+ EBR 95.30 95.57 95.89 95.93

MUSE (ICLR’24) 94.21 94.36 94.82 94.93
+ KD 94.98 95.02 95.40 95.55
+ EBR 95.02 95.26 95.61 95.70

Table 4. avMNIST: Using knowledge-distilled / EBR backbones for the modality that would otherwise be eliminated.

Method AUC-ROC AUC-PR

Strongest only 0.9196 0.4875
Strongest-to-weakest 0.8651 0.4130
Random 0.9005 0.4685
Simultaneous 0.9102 0.4786
Weakest-to-strongest 0.9350 0.4993

Table 5. MIMIC-IV: AUC-ROC and AUC-PR on Mortality Prediction for various sequences of knowledge distillation.

Method AUC-ROC Target

Zeros 0.5110 ± 0.18

0.7844 ± 0.02

Random 0.6139 ± 0.15
Rep-NN 0.7150 ± 0.08
Late Fusion 0.6990 ± 0.06
Avg w/o cls 0.5312 ± 0.23
Avg w/ cls 0.7396 ± 0.09

EBR (Ours) 0.7829 ± 0.05

Table 6. MIMIC-IV: Comparison of the substitutability performance of EBR with baselines. Experiments performed over a subset of 4 (2
strong and 2 weak) input modalities, based on which, the average of 15 possible missingness patterns with standard deviation are reported.

among features across modalities, they may not be exactly linear. As they propagate deeper into the fusion head, it is
more likely that those non-linear dependencies would be resolved and linearized in the final representation space prior to
classification. Theoretically, the bound in Thm 2 is derived based on the AGOP, i.e., x ∈ X∇φW (x)∇φW (x)T , being a
low rank subspace in W (corresponding to an independent set of features), as discussed in (Radhakrishnan et al., 2024),
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which is also required since one-to-one dimension-to-feature mappings needed to detect the presence of multicollinearity
may exist in neural networks (De Veaux & Ungar, 1994). This aligns with the condition for regression multicollinearity that
XTX should be not a full rank matrix.

To empirically confirm this, we calculate the variance inflation factor (VIF) with increasing modalities on our trained
representation space. We report the average VIF across features in Table 7. With the increasing number of modalities,
multicollinearity (VIF) increases in all cases. However, basis reallocation encourages cross-modal features to be encoded
independently, with the explicit EBR being more efficient in controlling the level of multicollinearity relative to the implicit
KD.

# Modalities 2 3 4 5

Vanilla 1.15 2.68 3.51 4.70
w/ KD 1.09 1.90 2.30 2.68
w/ EBR 1.05 1.26 1.32 1.55

Table 7. Average variance inflation factor (VIF) across features in the representation space with increasing number of modalities.

C.6. Statistical Comparisons

In Table 8 we report the resulting p-values of performing the Wilcoxon rank test with Holm–Bonferroni correction
(significance level α = 0.05) on the Table 1 results between our proposed EBR and the other baseline methods. The null
hypothesis that the proposed EBR and the other models follow the same distribution of AUC-ROC and AUC-PRCs with the
chosen missingness rates, were rejected for the both Mortality and Readmission prediction tasks across all baselines, most
often, with significantly low p-values, which in all cases, was lower than 0.01. It further provides evidence in support of
the uniqueness of EBR in leveraging basis reallocation to free up rank bottlenecks as a novel mechanism to tackle missing
modalities.

Method Mortality Readmission

AUC-ROC AUC-PRC AUC-ROC AUC-PRC

CM-AE 0.0090 0.0077 0.0065 0.0035
SMIL 0.0066 0.0053 0.0042 0.0066
MT 0.0083 0.0082 0.0077 0.0065
Grape 0.0027 0.0057 0.0058 0.0042
M3-Care 0.0079 0.0031 0.0069 0.0039
ShaSpec 0.0085 0.0062 0.0049 0.0075
MUSE 0.0088 0.0079 0.0086 0.0089

Table 8. P-values of the Wilcoxon rank test with Holm–Bonferroni correction on the Table 1 results between EBR and other baselines.

C.7. Polysemanticity

Considering the results in Figure 5 (a) and (c), Figure 7, and Section 4.3, since there is no external source of noise in the
fusion head, and encouraging monosemanticity through basis reallocation has a denoising effect, the noise that leads to the
observed collapse must come from some cross-modal polysemantic interference.

To provide further evidence, we adapt the definition of polysemanticity based on neural capacity allocation from Scherlis
et al. (2022) to measure cross-modal polysemanticity as the amount of uncertainty in the assignment of a neuron to a
particular modality. We train a two-layer ReLU network on weights from unimodal models to classify which modality the
input models are optimized on. Next, we apply this modality-classifier on the weights of our multimodal fusion head and
record the average cross-entropy (CE) in its outputs. Higher values of cross-entropy indicate higher levels of cross-modal
polysemanticity, since the probability masses are spread out across multiple modalities. In Table 9, we report the results on
bi-modal training. The sharply lower relative CE for KD and EBR directly indicate the reduced cross-modal polysemantic
interference under basis reallocation.
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Method CE

Vanilla 5.66
KD 2.09

EBR 0.59

Table 9. Empirically measuring cross-modal polysemantic interference as average cross-entropy (CE) in the modality classifier prediction.

C.8. Comparison with Contrastive and Generative Models

Cross-Modal Polysemantic Interference in multimodal contrastive learning: We choose GMC (Poklukar et al., 2022) as
our candidate multimodal contrastive learning algorithm for analyzing cross-modal polysemantic interference in multimodal
contrastive learning. We evaluate GMC by applying their proposed contrastive objective to our baseline representation
learning setting on MIMIC-IV and report the results in terms of the lowest achieved training semantic loss in Table 10. As
we can see, trends similar to that of our original setting reported in the main manuscript, in the semantic loss gap between the
Multimodal Prefix and the Unimodal Baseline, play out when we perform a contrastive objective based fusion as reported in
Poklukar et al. (2022). It further supports the claims in Lemma 1 and Theorem 1 that as the number of modalities increase,
the modality undergoing collapse contributes less and less to the downstream representation used to encode the semantics,
irrespective of the fusion strategy.

Number of Modalities 2 3 4 5

Multimodal Prefix 27.68 52.90 91.20 167.30
Unimodal Baseline 7.97 6.55 5.33 9.55

Table 10. Lowest achieved training semantic loss with increasing number of modalities in the contrastive setting.

Rank Bottlenecks in Generative and Contrastive Models: We choose MMVAE (Shi et al., 2019) as our candidate
generative model for analyzing rank bottlenecks. Since the objective of generative modeling is somewhat different from the
downstream application that we experimented with, to analyze MMVAE, we performed the experiment on their proposed
MNIST-SVHN dataset, while for GMC (Poklukar et al., 2022), since it is for general representation learning, we applied their
proposed contrastive objective to our baseline setting on MIMIC-IV. In Table 11, we report the results of our experiment,
where the vanilla setting refers to the original model, without KD or EBR.

Method β

0 2 4 6 8

MMVAE (Unimodal Baseline) 198

MMVAE (Vanilla) 477 421 398 110 96
MMVAE + KD 482 465 390 298 270
MMVAE + EBR 485 477 431 405 395

GMC (Unimodal Baseline) 1255

GMC (Vanilla) 1877 1330 1146 930 872
GMC + KD 1905 1676 1533 1427 1390
GMC + EBR 1912 1825 1709 1600 1588

Table 11. Representation ranks with increasing β in generative (MMVAE) and contrastive (GMC) models.

We can see that in both the generative and contrastive settings, the ranks consistently drop as the strength of the modality
undergoing collapse β is increased. The drop is sharp around a critical point, where the rank goes below the unimodal
baseline, depicting a form of phase transition, a phenomenon also observed in our original experiments (Section 4.2
Observations and Analyses). Finally, the dropping rank can be counteracted by implicit (KD), and even more effectively, by
explicit basis reallocation (EBR), which results in a much more stable rank across the range of different values of β.
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