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ABSTRACT

The ever-growing ecosystem of LLMs has posed a challenge in selecting the
most appropriate pre-trained model to fine-tune amidst a sea of options. Given
constrained resources, fine-tuning all models and making selections afterward is
unrealistic. In this work, we formulate this resource-constrained selection task into
predicting fine-tuning performance and illustrate its natural connection with scaling
laws. Unlike pre-training, We find that the fine-tuning scaling curve includes
not just the well-known “power phase” but also the previously unobserved “pre-
power phase”. We also explain why existing scaling laws fail to capture this phase
transition phenomenon both theoretically and empirically. To address this, we
introduce the concept of “pre-learned data size” into our rectified scaling law,
which overcomes theoretical limitations and fits experimental results much better.
By leveraging our law, we propose a novel LLM selection algorithm that selects
the near-optimal model with hundreds of times less resource consumption.

1 INTRODUCTION

The explosion of open-sourced LLMs also poses a “mixed blessing”: how can we select the model
with optimal performance after fine-tuning? Given various resource constraints on time, computation
and storage, it is unrealistic to fine-tune all candidates and make selections afterward. Most existing
model selection methods (Vu et al., 2020; Dwivedi et al., 2020) fail to solve LLM fine-tuning tasks
because they were incompatible with generative LLMs (Bai et al., 2023). This brings us to the
problem of LLM selection for fine-tuning from a unified perspective.

To address this challenge, we formulate LLM Selection for fine-tuning for the first time. Our frame-
work models the challenge as a resource-constrained task to predict the full-fine-tuning performance
of a model, i.e., the performance after fine-tuning on the entire downstream task dataset. By measur-
ing the error between the predicted and the true full-fine-tuning performance, we further show that
intuitive selection methods based on model size, zero-shot performance, or fine-tuned performance
on a small subset, all fail to give a good full-fine-tuning performance prediction (Figure 1(a)). The
correlation between their prediction and the ground-truth performance is surprisingly low.
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Figure 1: (a) The Pearson correlation between the true full-fine-tuning performance and the predicted perfor-
mance of three intuitive methods, given different resource constraints denoted by γ. These baseline methods
cannot predict performance well especially under demanding constraints (small γ), and could even provide
negatively correlated predictions. (b) The phase transition phenomenon observed in the scaling of fine-tuning
loss L with training sample size D. In addition to the widely studied power phase where (L,D) are linearly
correlated under the log-log scale, we discover the pre-power phase when D is small. Previous laws fail to
fit both phases, while our proposed law fits quite well. (c) Our LLM selection algorithm that extrapolates
full-fine-tuning performance based on the new law.
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The challenge in predicting full-fine-tuning performance with limited resources naturally draws
parallels to the study of LLM scaling law (Kaplan et al., 2020), which has been successfully applied to
predict the LLM pre-training performance with at most 10,000x less compute (Achiam et al., 2023).
Similarly, can we leverage a similar scaling law to predict the performance of fine-tuning as well?

In this paper, we conduct thorough experiments on scaling behavior in fine-tuning using 30 LLMs
with sizes varying from 100M to 7B. As shown in Figure 1(b), we find a previously unobserved
phase transition pattern called “pre-power phase” on the low-data regimes where the slope gradually
decreases before the widely studied “power phase” where the test loss and number (in log) of samples
D is roughly linearly correlated. The transition is crucial for fine-tuning, as typical fine-tuning
datasets can vary from hundreds to millions of samples, covering both phases. We explain this
phenomenon via the concept of pre-learned data size, which represents the equivalent amount of
downstream task samples that the model has pre-learned from the pre-training corpus. Inspired by
this, we establish scaling law of LLM fine-tuning by incorporating this concept (Equation (4)), which
fits all experimental results much better than existing laws, aligning with our theoretical judgments.

Based on scaling law, we design an LLM selection algorithm called “Accept then Stop” (AtS,
Figure 1(c)). Starting from the maximum allowed constraints, it keeps accepting fine-tuning results
on size-decreasing subsets, stops once it detects the transition pattern, and uses all accepted results to
linearly extrapolate the full-fine-tuning performance. Extensive experiments prove its effectiveness.

2 LLM SELECTION FRAMEWORK FOR FINE-TUNING

Throughout the paper, we consider the standard supervised fine-tuning paradigm in full parameter
space of auto-regressive models that sequentially predicts each token in target y based on input x.
For a pre-trained model M and a dataset S, we use FT(M ;S) to denote the fine-tuned model on
dataset S from M . We formulate model selection task in the context of fine-tuning as follows.

Definition 2.1 (LLM Selection for Fine-tuning) Given a set of pre-trained LLMs M = {Mi}mi=1
with m models, a fine-tuning sub-dataset Ssub sampled from the complete dataset S , i.e., Ssub ⊂ S ∼
D, |Ssub| = γ|S| where γ ∈ (0, 1] is the data budget ratio, the goal of an LLM selection algorithm
A : (M ;Ssub) 7→ R is to score each model M ∈ M with access to Ssub, such that the score reflects
the loss over distribution D after fine-tuning M on S, i.e., we hope that

L(FT(M̂(Ssub);S)) = min
M∈M

L(FT(M ;S)), where M̂(Ssub) ≜ argmin
M∈M

A(M,Ssub). (1)

Here L(M) is the expectation of the average cross-entropy loss of model M on sample (x,y) over
the target token sequence y. For performance estimation consistency, we safely hold out a validation
set and always use the average loss over this set as the estimation of L(M).

Predicting L(FT(M,S)) using a subset Ssub is closely related to understanding the scaling behavior
in fine-tuning. Indeed, the scaling law on dataset size in the pre-training stage has been widely studied
(Henighan et al., 2020; Kaplan et al., 2020), and it is commonly believed to have the form below.

L̂(D) =
( B

Dβ
+ E

)α
. (2)

Here D is the number of training data, and B,E, α, β are model / task-dependent parameters. Our
LLM selection method leverages scaling law to extrapolate L(FT(M,S)) with L(FT(M,Ssub)).

3 ANALYSIS ON SCALING LAW FOR FINE-TUNING

In this section, we fine-tune 30 LLMs on three datasets with a sufficiently wide range of dataset
size, and illustrate the existence of the “phase transition” during scaling fine-tuning. We demonstrate
both theoretically and empirically why Equation (2) fail to fit the results. Based on our theoretical
analysis, we introduce the concept of pre-learned data size and establish a well-fitted scaling law by
incorporating the pre-learned data size into existing laws. The experimental details are in Appendix.

3.1 PHASE TRANSITION WITH DATASET SIZE

We plot the test loss when fine-tuned on subsets of different sizes in Figure 2. We observe a “phase
transition” pattern in scaling behaviors: when the loss is relatively large, the curve lies in “pre-power
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Figure 2: The phase transition and the fitness of different scaling laws. The x and y axes are fine-tuning dataset
size D and test loss L in log scale. Each subfigure corresponds to a dataset, and 6 models are presented (Full
results are in Appendix). Solid lines are the fitting results of our law (Eq. 4), and dash lines are the fitting results
of vanilla law (Eq. 2).

phase with the slope of the curve slowly decreases; as the training set size D increases, the loss
decreases and the curve enters the “power phase” where it is almost linear, similar to the observed
curves in the pre-training stage. For different datasets, depending on their difficulty, the size of data
each model requires to transit into the second phase is different.

The pre-power phase has been barely observed before, mainly due to the focus on large data regimes.
Indeed, for scaling behavior in pre-training, models have already entered the power phase and the
pre-power phase becomes invisible. However, many fine-tuning tasks may fall into a relatively
low-data regime, making the analysis of the behavior of the pre-power phase inevitable. Below we
show that Equation (2) does not take this phase into consideration.

Theorem 3.1 For any positive B,E, α, β, consider the log-log form of function L̂(·) in Equation (2):

f(x) = log(L̂(exp(x)) = α log
( B

exp(βx)
+ E

)
, (3)

then we have that the derivative f ′ is negative and non-decreasing.

Theorem 3.1 establishes a crucial property that the slope of f ′ cannot decrease, contradictory to
the co-existence of pre-power and power phase, since slopes decrease initially and remain roughly
unchanged afterward. As shown in Figure 2, it fits poorly with experimental results (dash lines).

3.2 OUR SCALING LAW WITH PRE-LEARNED DATA

To better understand the underlying mechanism of the phase transition phenomenon, we start with the
essential difference between pre-training and fine-tuning. Unlike pre-training where we train a model
from scratch, fine-tuning starts from a model that has been trained on a large corpus. Consequently,
pre-training should have provided models with some amount of information relevant to downstream
context (Hernandez et al., 2021). To capture this concept, we introduce the term pre-learned data size
(represented by Dl) that indicates how much amount of downstream data a model has learned from
pre-training. Intuitively, Dl can be integrated with the scaling term Dβ , which represents the amount
of information that fine-tuning on D samples can provide the model with. We propose the following
improved scaling law by incorporating this term, with an identical amount of parameters to be fitted.

Definition 3.2 We define the scaling law with dataset size D for fine-tuning as

L̂(D) =
B

Dl +Dβ
+ E, (4)

where Dl is the pre-learned data size, β is the power to D denoting the learning difficulty, B adjusts
the initial test loss, and E denotes the optimal loss of the model given an infinite amount of data.

This modification of Dl essentially improves the mathematical property of Theorem 3.2 as the
derivative is no longer monotonous and fits the phase transition well:
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Table 1: Model selection results (PearCorr) of four methods on three datasets in percentage. The best result
within the same dataset and budget ratio is in bold font, and the second best result is underlined.

FLAN WMT19 Gigaword
Ratio AtS ZeroShot SubTuning ModelSize AtS ZeroShot SubTuning ModelSize AtS ZeroShot SubTuning ModelSize
1/8 90.9 -10.7 60.9 -20.9 98.9 7.1 93.5 36.0 98.9 -49.2 93.2 -24.4

1/16 73.1 -10.7 46.5 -20.9 97.1 7.1 87.1 36.0 97.6 -49.2 89.3 -24.4
1/32 65.5 -10.7 36.4 -20.9 97.7 7.1 77.7 36.0 96.9 -49.2 85.4 -24.4
1/64 61.1 -10.7 29.0 -20.9 86.0 7.1 64.5 36.0 92.0 -49.2 80.9 -24.4
1/128 52.2 -10.7 24.5 -20.9 78.0 7.1 51.7 36.0 91.1 -49.2 76.2 -24.4
1/256 50.5 -10.7 20.9 -20.9 73.4 7.1 41.6 36.0 89.1 -49.2 69.9 -24.4
1/512 45.6 -10.7 16.4 -20.9 61.5 7.1 34.5 36.0 91.0 -49.2 64.8 -24.4
Avg 62.7 -10.7 33.5 -20.9 84.6 7.1 63.4 36.0 93.8 -49.2 79.9 -24.4

Theorem 3.3 For any positive B,E,Dl, β, consider the log-log form of L̂(·) in Equation (4):

f(x) = log(L̂(exp(x)) = log
( B

Dl + exp(βx)
+ E

)
, (5)

then f ′′ is negative for x ∈ (0, x0) and positive for x ∈ (x0,+∞), where x0 =
log(D2

l +BDl/E)
2β .

We quantified the fitting error of both laws on all models and datasets in Figure 3. The error of
Equation (2) is unavoidably large (with an average RMSD of 0.036). On the contrary, our law
Equation (4) has a consistently small RMSD error, with an average RMSD of 0.007.

4 LLM SELECTION

From the view of scaling law, the goal of the LLM selection is to predict subsequent curve given
points that can be computed via Ssub. we propose the “Accept then Stop” (AtS) algorithm that
distinguishes samples from two phases and extrapolates the power phase, which is approximately
linear under the log-log scale. This algorithm turns out to be more robust and accurate than fitting the
entire law directly, which can be sensitive when γ is small.

We illustrate the process of AtS in Algorithm 1. Specifically, it first fine-tunes the model on Ssub to
compute the test loss. It then continuously reduces the dataset size by half, and fine-tunes the model
on this smaller subset to get a series of loss-size pairs. AtS will initially fit a linear function on the
first k (D̂, L̂) pairs. After that, whenever a new pair (D̂, L̂) is added, AtS computes stop indicator
Istop which captures how deviated the new pair is to the linear function, i.e.,

Istop ≜ (| log L̂− f(log D̂)|)/σ. (6)

Here σ is the standard deviation of the fitting residuals. When Is is larger than a threshold δ, it
indicates the occurrence of the pre-power phase. AtS then stops fine-tuning and uses all accepted
pairs to fit a linear function f and predicts the full fine-tuning test loss as exp(f(log |S|)). We run all
experiments with k = 3 and δ = 5, and conduct ablation studies below.

As shown in Table 1, AtS outperforms baseline methods on all budget ratios γ on all datasets. Even
with access only to 1

512 fraction of S , AtS can capture the rank of the full-fine-tuning performance of
different models with Pearson Correlation coefficients (PearCorr) equaling to 66.6% in comparison
to the second best method Zeroshot with only 38.6%. For space limitation, we put the comprehensive
experimental results and ablation study in Appendix.

5 CONCLUSION

This paper focuses on two main areas: exploring the scaling laws of LLM fine-tuning and addressing
the challenge of selecting LLMs for effective fine-tuning. We reveal the inadequacy of conventional
scaling laws and propose a rectified law with much better theoretical and empirical properties by
incorporating the concept of pre-learned data size. Additionally, we present a novel framework for the
LLM selection problem and design a new algorithm that leverages the proposed law with significantly
improved performance. Our findings not only deepen the understanding of scaling laws but also offer
actionable insights for selecting LLMs in practice. We aim to provide a robust foundation for the
broader and more efficient application of LLMs across various fields.
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A FITTING RMSD OF VANILLA LAW AND OUR LAW
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Figure 3: Root-mean-square deviation (RMSD) of our law (Equation (4)) and vanilla law (Equation (2)) when
fitting fine-tuning test loss versus dataset size in log scale. Under same setting, our law achieves much lower
RMSD error.

We quantified the fitting error of both laws on all models and datasets using root-mean-square
deviation (RMSD) in Figure 3. On average, each law is required to fit fifteen size-loss pairs. The
error of Equation (2) is unavoidably large (with an average RMSD of 0.036). As it can only fit the
power phase, a more difficult task results in a later occurrence of phase transition, contributing to a
larger fitting error. On the contrary, our law Equation (4) has a consistently small RMSD error, with
an average RMSD of 0.007. Since both laws have four parameters to fit, it demonstrates that our law
captures the intrinsic scaling behavior more accurately.
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B THE DIFFERECE OF SCAILING BEHAVIOR IN PRE-TRAINING AND
FINE-TUNING
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Figure 4: The difference of scaling behavior in pre-training and fine-tuning. While in pre-training the performance
scales with model sizes independent from model shapes, in fine-tuning the performance does not. The figure is
drawn based on Figure 1 in Tay et al. (2021).

Indeed, the scaling law in the pre-training stage has been widely studied (Henighan et al., 2020;
Kaplan et al., 2020; Bahri et al., 2021), and it is commonly believed to have the form below.

Definition B.1 (Power-law in Kaplan et al. (2020)) The scaling loss L̂(·, ·) is a function of model
size N and training set size D, i.e.,

L̂(N,D) =
( A

NαN
+

B

Dβ

)α

. (7)

Here {A,B, α, αN , β} are universal parameters to be fitted, and we always use L̂ to indicate that this
is an estimated function of true losses. While it is universally observed in many tasks and domains
when training models from scratch (Ghorbani et al., 2021; Alabdulmohsin et al., 2022; Fernandes
et al., 2023), Tay et al. (2021) finds that the scaling behavior may differ in the fine-tuning phase. As
shown in Figure 4, fine-tuning loss is dependent on models not only through their sizes N , but also
through other inductive bias like model architecture, the number of layers, attention heads, hidden
dimensions and so forth.

This observation makes it highly non-trivial to select a model using existing scaling laws. For
instance, Theorem B.1 implies that models with more parameters work better under the same S,
which is contradictory to Figure 4. Fortunately, as our goal is to predict performance for each model,
a marginal version of the scaling law when the model is fixed is sufficient.

12



Under review at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

C PSEUDO CODE FOR AtS

Algorithm 1 Accept then Stop (AtS)
Input: Training subset Ssub, Model M , parameters k, δ.

1: Initialize loss-size pair set P = {}.
2: while Ture do
3: Fine-tune M on Ssub and get its loss L̂.
4: if |P | ≥ k then
5: Fit a linear regression model f on P .
6: break if Is > δ.
7: end if
8: Add pair {log |Ssub|, log L̂} to P .
9: Sample new Ssub with half size from Ssub.

10: end while
Return: Score of M as negative predicted log-loss on S, −f(log(|S|).
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D ABLATION STUDY OF LLM SELECTION
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Figure 5: Failure cases for the three baseline methods. The horizontal dashlines denote the zero-shot performance,
and each point denotes the test loss when fine-tuning the corresponding model on Ssub with size D. LaMini-
GPT-124M has the best full-fine-tuning performance, but its performance on small D is bad.

Why do other algorithms fail? We illustrate why intuitively reasonable methods fail to make
predictions in Figure 5. Assume we have 4 models and |Ssub| is roughly 104. ModelSize selects
the largest model in M regardless of the properties of the downstream task and the models. The
assumption behind this is that performance grows with model size, which has been demonstrated
to be inaccurate in the fine-tuning stage. ZeroShot and SubTuning both leverage the performance
on the downstream dataset. However, they only capture the performance under a specific dataset
size, while ignoring the global trend of performance with data size. In fact, these methods give
Cerebras-GPT-256M the highest score, but eventually, LaMini-GPT-124M outperforms.
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Figure 6: (a) PearCorr of AtS on Gigaword with γ = 1/512 under different memory budgets (different M).
Full results are presented in Appendix J.2. (b) Impact of δ and k on PearCorr(%) on Gigaword with γ = 1/512.
Full results are presented in Appendix J.1.

AtS on stratified M. We also consider different model sets M to simulate the constraints of GPU
memory. Specifically, we create three subsets of M with different model size thresholds including
2B, 1.4B and 700M . The results are presented in Figure 6 (a), where AtS outperforms other baselines
on all subsets by a large margin.

Influence of k and δ. To illustrate the influence of the outlier tolerance δ and the minimum accepted
rate k, we conduct ablation studies on the choice of hyper-parameters and present the results in
Figure 6 (b). Overall, AtS is not sensitive to hyper-parameters values, indicating its robustness under
various circumstances.
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Table 2: PearCorr(%) of three scaling-law-based selection methods on three datasets (γ = 1/512). Full results
are presented in Appendix J.3.

FLAN WMT19 Gigaword Avg.

AtS 45.6 61.5 91.0 66.0
OurFit 36.8 61.5 78.5 58.9

VanillaFit 20.7 56.5 79.3 52.1

LLM selection by fitting scaling Law. AtS essentially leverages the proposed scaling law to estimate
the trend of fine-tuning loss. Here we additionally consider two variants of using scaling laws: (1)
OurFit fine-tunes each model on a sequence of subsets {Ssub,S1

sub, ...} where Si
sub ⊂ Ssub, |Si

sub| =
2−i|Ssub| until |Ssub| < 200. It fits parameters in our law (Equation (4)) using all data-loss pairs,
and predicts the performance on S using the fitted law. (2) VanillaFit follows a similar procedure,
except that it fits the previous law (Equation (2)) rather than ours. As shown in Table 2, while all
variants outperform the three intuitive methods above, AtS is better than OurFit and VanillaFit thanks
to the robustness and stability brought by linearity.
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E FITTING SCALING LAWS: OPTIMIZATION

E.1 FITTING OF VANILLA LAW

Previous works (Kaplan et al., 2020; Hernandez et al., 2021; Tay et al., 2021) propose scaling laws
sharing the following form:

L̂(D) =
( B

Dβ
+ E

)α
, (8)

where D is the number of training data, B,E, α, β are non-negative parameters that are model/task-
dependent. Following Hoffmann et al. (2022), we estimate {B,E, α, β} for each model by minimiz-
ing the following optimization problem,

min
B,E,α,β

∑
Run i

Huberδ(α · LSE(logB − β logDi, logE)− logLi) (9)

where Li denotes the test loss of fine-tuning on the data size Di, LSE denotes the log-exp-sum
operator, Huber denotes the Huber loss with δ = 0.001. We find the local minima of the objective
above with the standard python package scipy (Virtanen et al., 2020) starting from 50 random
initialization of parameters. We choose the best one for reports.

E.2 FITTING OF OUR LAW

Here we repeat the equation of our proposed fine-tuning scaling law for clarity:

L̂(D) =
B

Dl +Dβ
+ E, (10)

where Dl represents the amount of data the model has pre-learned, β denotes the learning difficulty,
B adjusts the initial test loss, and E denotes the optimal loss of the model given an infinite amount
of data. They are all model/task-dependent. Similar with the fitting of vanilla law, we estimate
{B,E,Dl, β} for each model by minimizing the Huber loss,

min
B,E,α,β

∑
Run i

Huberδ(LSE(logB − log(Dl +Dβ), logE)− logLi) (11)

We also repeat optimization for 50 times and choose the best run for reports.

E.3 FIT QUALITIES OF VANILLA LAW AND OUR LAW

We fit both our law and the vanilla law on the fine-tuning performance of 30 models (See Appendix I
for details). The root-mean-square deviation (RMSD) of fitted laws on each model is presented in
Table 3. The results demonstrates the superior fit quality of our proposed law over the vanilla law
during the fine-tuning stage.
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Table 3: Comparison of root-mean-square deviation (RMSD) for fitting different scaling laws. ∆ = Vanilla −
Ours demonstrates the superior fit quality of our proposed law over the vanilla law.

FLAN WMT19 Gigaword
Model Name Ours Vanilla ∆ Ours Vanilla ∆ Ours Vanilla ∆
GPT2 0.0075 0.0697 0.0623 0.0089 0.1007 0.0918 0.0030 0.0190 0.0160
GPT2-medium 0.0038 0.0676 0.0639 0.0059 0.0991 0.0932 0.0020 0.0044 0.0024
GPT2-large 0.0056 0.0593 0.0537 0.0152 0.0893 0.0740 0.0035 0.0076 0.0041
GPT2-xl 0.0064 0.0614 0.0550 0.0410 0.1281 0.0871 0.0047 0.0104 0.0057
LaMini-GPT-124M 0.0027 0.0679 0.0652 0.0108 0.1150 0.1043 0.0037 0.0198 0.0161
LaMini-GPT-774M 0.0054 0.0638 0.0584 0.0093 0.1074 0.0981 0.0019 0.0074 0.0055
LaMini-GPT-1.5B 0.0055 0.0664 0.0609 0.0150 0.1353 0.1202 0.0063 0.0104 0.0041
Cerebras-GPT-111M 0.0096 0.0601 0.0505 0.0098 0.1129 0.1032 0.0038 0.0219 0.0181
Cerebras-GPT-256M 0.0105 0.0517 0.0412 0.0095 0.0874 0.0780 0.0022 0.0137 0.0115
Cerebras-GPT-1.3B 0.0038 0.0188 0.0150 0.0131 0.0618 0.0488 0.0048 0.0159 0.0111
Cerebras-GPT-2.7B 0.0030 0.0033 0.0003 0.0114 0.0123 0.0009 0.0020 0.0022 0.0002
Phi-1.5 0.0112 0.0363 0.0251 0.0110 0.0366 0.0256 0.0029 0.0030 0.0001
Phi-2 0.0060 0.0197 0.0137 0.0101 0.0317 0.0216 0.0040 0.0049 0.0008
OPT-350m 0.0078 0.0478 0.0400 0.0135 0.0848 0.0712 0.0045 0.0055 0.0010
OPT-1.3b 0.0024 0.0165 0.0141 0.0150 0.0709 0.0558 0.0024 0.0034 0.0010
OPT-2.7b 0.0052 0.0072 0.0020 0.0229 0.0602 0.0373 0.0012 0.0018 0.0006
OPT-6.7b 0.0025 0.0026 0.0002 0.0073 0.0090 0.0016 0.0028 0.0030 0.0002
ai-forever/mGPT 0.0035 0.0050 0.0015 0.0049 0.0153 0.0104 0.0119 0.0119 0.0000
BART-base 0.0073 0.0506 0.0433 0.0201 0.1075 0.0873 0.0194 0.0247 0.0053
BART-large 0.0129 0.0388 0.0259 0.0123 0.1070 0.0947 0.0055 0.0054 -0.0001
BART-large-cnn 0.0115 0.0302 0.0187 0.0115 0.0747 0.0632 0.0053 0.0059 0.0006
BART-large-xsum 0.0090 0.0357 0.0267 0.0089 0.1011 0.0922 0.0039 0.0046 0.0006
T5-small 0.0039 0.0241 0.0202 0.0135 0.0141 0.0007 0.0079 0.0235 0.0156
T5-base 0.0078 0.0316 0.0238 0.0144 0.0151 0.0007 0.0026 0.0134 0.0108
mT5-base 0.0035 0.0136 0.0101 0.0066 0.0155 0.0088 0.0055 0.0277 0.0221
mT5-large 0.0027 0.0118 0.0091 0.0045 0.0249 0.0204 0.0024 0.0071 0.0046
T5-v1.1-base 0.0069 0.0456 0.0386 0.0117 0.0358 0.0241 0.0056 0.0056 0.0000
switch-base-8 0.0073 0.0298 0.0225 0.0098 0.0104 0.0006 0.0096 0.0110 0.0014
switch-base-16 0.0088 0.0284 0.0195 0.0154 0.0171 0.0017 0.0082 0.0074 -0.0008
switch-base-32 0.0103 0.0307 0.0204 0.0048 0.0058 0.0009 0.0109 0.0131 0.0022

18



Under review at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

F DETAILS OF STUDIED LLMS

Table 4: This table summarizes all the models we used in experiments. The Arch. is short for model architecture,
De-only, En-De and Moe stands for Decoder-only, Encoder-Decoder and Mixture of Experts respectively. The
last few columns summarize the configuration of different language models, including number of parameters,
number of layers, dimension of hidden states, number of attention heads, dimension of feed-forward layers, and
dimension of key/value head.

Model Name Arch. Training Data Source N Nlayer dmodel Nhead dff dkv
GPT-2

De-only

WebText

124M 12 768 12 3072 64
GPT-2-medium 354M 24 1024 16 4096 64

GPT-2-large 774M 36 1280 20 5120 64
GPT-2-xl 1.5B 48 1600 25 6400 64

LaMini-GPT-124M
Finetuned GPT-2-XL

124M 12 768 12 3072 64
LaMini-GPT-774M 774M 36 1280 20 5120 64
LaMini-GPT-1.5B 1.5B 48 1600 25 6400 64

Cerebras-GPT-111M

The Pile

111M 10 768 12 3072 64
Cerebras-GPT-256M 256M 14 1088 17 4352 64
Cerebras-GPT-1.3B 1.3B 24 2048 16 8192 128
Cerebras-GPT-2.7B 2.7B 32 2560 32 10240 80

Phi-1.5 Mixed Real&Synthetic Data 1.4B 24 2048 32 8192 64
Phi-2 2.7B 32 2560 32 10240 80

OPT-350m
BookCorpus, CC-Stories,

The Pile, Pushshift.io, CCNewsV2

331M 24 1024 16 4096 64
OPT-1.3b 1.3B 24 2048 32 8192 64
OPT-2.7b 2.7B 32 2560 32 10240 80
OPT-6.7b 6.7B 32 4096 32 16384 128

ai-forever/mGPT Multilingual Wikipedia and C4 1.4B 24 2048 16 8192 128
BART-base

En-De

BookCorpus, CCNews,
OpenWebText, STORIES

96M 12/12 768 12 3072 64
BART-large 254M 12/12 1024 16 4096 64

BART-large-CNN BART finetuned on CNN 254M 12/13 1024 16 4096 64
BART-large-XSUM BART fInetuned on XSUM 254M 12/14 1024 16 4096 64

T5-small C4, Wiki-DPR, finetuned on CoLA, SST-2,
MRPC, STS-B, QQP, MNLI, QNLI etc.

60M 6/6 512 8 2048 64
T5-base 223M 12/12 768 12 3072 64

mT5-base mC4 582M 12/12 768 12 2048 64
mT5-large 1.2B 24/24 768 12 2816 64

T5-v1.1-base C4 247M 12/12 768 12 2048 64
switch-base-32

En-De MoE C4
2B 12/12 768 12 3072 64

switch-base-16 1B 12/12 768 12 3072 64
switch-base-8 619M 12/12 768 12 3072 64

GPT-2 Series (Radford et al., 2019) GPT-2 series are transformer-based language models created
and released by OpenAI. The models are pre-trained on WebText with 40GB of English text that
is not publicly released. The texts are tokenized using a byte-level version of Byte Pair Encoding
(BPE) and a vocabulary size of 50,257. The pre-training objective is causal language modeling
(CLM). In this paper, we studied all the released versions of GPT-2, which includes GPT2 (124M),
GPT2-Medium (355M), GPT2-Large (774M), and GPT2-XL (1.5B).

OPT Series (Zhang et al., 2022) Open Pre-trained Transformers (OPT) is a suite of decoder-only
pre-trained transformers released on May 3rd 2022 by Meta AI. OPT was predominantly pre-trained
with English text, but a small amount of non-English data is present within the training corpus via
CommonCrawl. The training data of OPT contains 180 tokens corresponding to 800GB of data, which
is composed of texts from BookCorpus, CC-Stories, The Pile, Pushshift.io Reddit, and CCNewsV2.
The texts are tokenized using the GPT2 byte-level version of BPE and a vocabulary size of 50,272. In
this paper, we studied 5 versions of OPT, including OPT-350M, OPT-1.3B, OPT-2.7B, and OPT-6.7B.

Phi Series (Li et al., 2023c) Phi are transformer-based language models created and released by
Microsoft to investigate the ability of smaller models. Their main goal is to answer “how small can
a LLM be to achieve certain capabilities”. Its training involved a variety of data sources related to
code produced by humans and LLMs. Phi series includes 3 pre-trained models without fine-tuning
or RLHF: Phi-1 (1.3B), Phi-1.5 (1.3B), and Phi-2 (2.7B). They have shown nearly state-of-the-art
performance among models much larger than them. In this paper, we studied Phi-1.5 and Phi-2.

LaMini-LM Series (Wu et al., 2023) To alleviate the resource-intensive problem, Wu et al. (2023)
explored new ways of distilling knowledge from large models into smaller ones. They designed a new
pipeline that combines synthetic data with existing instructions to produce a wide variety of instruction
training datasets consisting of over 2.58 million examples. Based on these instructions, they finetuned
a diverse herd of language models including encoder-decoder and decoder-only families and named
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them “LaMini-LMs”, with parameters ranging from 61M to 1.5B. We chose the LaMiniGPT series in
our experiments, which are some of the largest models available in the LaMini family.

Cerebras-GPT (Dey et al., 2023) The cerebras-GPT family is inspired by the Chinchilla Scaling
laws which state that a ratio of 20 training tokens per model parameter is optimal for computational
cost. These models share similar architecture to GPT-3, but only pre-trained on The Pile. Cerebras-
GPTs use Byte Pair Encoding and have a vocabulary of 50257 words. In this paper, we studied
Cerebras-GPT-111M, Cerebras-GPT-256M, Cerebras-GPT-1.3B, and Cerebras-GPT-2.7B.

T5, T5 V1.1 and mT5 Series (Raffel et al., 2020; Xue et al., 2020) T5(text-to-text transfer
Transformers) is an encoder-decoder language model, first introduced in Raffel et al. (2020). T5 was
pre-trained on C4 and fine-tuned on several downstream datasets, which achieved state-of-the-art on
many benchmarks including question answering, text classification, and machine translation. T5-V1.1
shares a similar architecture with T5, except for adopting GeGLU as nonlinearities and scaling down
both dmodel and dff . In contrast to T5, T5-V1.1 was only pre-trained on C4. mT5 is a multilingual
variant of t5-V1.1 which was pre-trained on unlabeled multilingual Common-Crawl (mC4) dataset
without dropout. mT5’s training corpus consisted of 101 languages, which makes it directly applicable
to multilingual settings. We chose T5-small, T5-base, T5-V1.1-base, mT5-base and mT5-large in our
experiments.

BART Series (Lewis et al., 2019) BART is a sequence-to-sequence model with a bidirectional
encoder and an auto-regressive decoder. It was trained by two steps: (1) introducing noise to the pre-
train text with an arbitrary function, and (2) learning to reconstruct the original text. BART was trained
on a mixture of corpora consisting of BookCorpus, CCNews, OpenWebText, and STORIES. In this
work, we chose BART-base, BART-large, BART-large-CNN, and BART-large-xsum for experiments.
The last two models are BART-large finetuned on CNN and XSUM datasets respectively, making
them suitable for text summary tasks.
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G DETAILS OF DATASETS

We mainly conducted experiments on three datasets, WMT-19, Gigaword, and FLAN. The first two
tasks (Machine Translation and Summarization) are traditional sequence-to-sequence NLP tasks. The
FLAN dataset consists of different generation tasks in many formats, which is an ideal benchmark
for evaluating LLMs’ performance in day-to-day situations. The statistics of the three datasets are
shown in Table 51.

FLAN (Longpre et al., 2023) The Flan Collection consolidates datasets from Flan 2021, P3,
Super-Natural Instructions, and dozens of others into a single repository. It then formats them into a
variety of templates, including zero-shot, few-shot, and chain-of-thought formats. In our experiments,
we use the FLAN Collection provided by Huggingface 2 and we choose the no-option split which
requires the model to generate a free-form answer.

WMT19 (Foundation, 2019) WMT-19 is a public machine translation dataset commonly used
for evaluating sequence-to-sequence models. We initiated our experiments on WMT-19 En-Zh.
Considering the instruction-tuned models within our model set (e.g. LaMini-GPTs), we prepend an
additional instruction “Translate to Chinese:” at the beginning during fine-tuning.

Gigaword (Graff et al., 2003) Gigaword is a widely used resource in the field of text summarization,
comprising billions of words from a vast collection of news articles like the New York Times and the
Associated Press. Each news document in the dataset is paired with a professionally written headline,
serving as a compact summary of the main ideas within the article. We also prepend an additional
instruction “Generate a summary: ” to input sequences in the dataset.

Table 5: Statistics of fine-tuning datasets

Dataset Input length (Avg/Max) Target length (Avg/Max) Dataset Size (Train/Valid/Test)
FLAN 23 / 117 12 / 96 2,320,656 / 10,000 / 10,000

WMT19 32 / 249 40 / 446 25,982,455 / 3,981 / 3,981
Gigaword 36 / 70 8 / 19 3,795,957 / 8,000 / 8,000

Examples from FLAN

Input: What is the solution? Solve 134*c - 143 + 2957 = 0 for c.
Target: -21

Input: Translate the following sentence to Czech: Let us finish it.
Target: Dokončeme to.

Input:
Premise: Our world has what is for them a normal gravity, but because of our much higher
gravitational potential, our atmosphere is too dense to support them comfortably over sus-
tained periods.
Hypothesis: Your world has the same type of gravity as theirs.
Does the premise entail the hypothesis?
Target: Yes.

Input:
How are binary trees extended?
How do I insert a new node on a binary tree (not search binary tree)?
Do those questions have the same meaning?
Target: no

1We re-partition datasets into train/validation/test subsets due to the unavailability of the WMT19 test set and
the imbalance in the split between the validation and test sets within Gigaword. We only sub-sample a subset
from FLAN since the full dataset is too large.

2https://huggingface.co/datasets/Open-Orca/FLAN
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Examples from WMT19

Input: Translate to Chinese: When the mother sheep saw him pick up her baby sheep and
ran away, she followed him out of the field.
Target: 当羊妈妈看见她的羊宝宝被人抱走了，赶快跟在李雷后面跑出了田地。

Input: Translate to Chinese: South Africa’s Draft White Paper on Energy Policy promotes
energy efficiency and use of renewable sources of energy.
Target: 南非的《能源政策白皮书草案》提倡提高能源效率和使用可再生能源。

Input: Translate to Chinese: Political scientists like Janine Mossuz-Lavau says there is being
a woman this election season may be an asset.
Target: 政治学家如詹南·摩萨斯－拉瓦说，在这季奄中，身为女性也许就是资本。

Input: Translate to Chinese: The Secretary-General condemned the excessive and
disproportionate use of force and the killing of civilians.
Target: 秘书长谴责这种不成比例地过度使用武力和杀害平民的行为。

Examples from Gigaword

Input: Generate a summary: china is to hold the third international expo of necessities for
students in nanning city in south china ’s guangxi zhuang autonomous region from october to
november.
Target: china to hold expo of student equipment

Input: Generate a summary: the gold price in hong kong rose ## hk dollars on wednesday to
close at #,### hk dollars a tael , according to po sang bank , one of the major gold dealers in
hong kong.
Target: gold price in hong kong up

Input: Generate a summary: riot police used water cannons friday to disperse protesters
demanding that the philippines lift its ban on the deployment of workers to war-ravaged iraq .
Target: police violently disperse protest against ban on workers deployment to iraq

Input: Generate a summary: british prime minister john major thursday hailed the re-election
of russian president boris yeltsin as a sign that “ democracy has taken firm root in russia .
Target: major delighted over yeltsin victory

22



Under review at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

H DETAILS OF FINE-TUNING EXPERIMENTS

H.1 SETUP

These settings are shared across the study of scaling law and LLM selection.

LLM Set To ensure the comprehensiveness of our study, we choose a wide range of open-sourced
LLMs released by different organizations in the wild, with various architectures, pre-trained corpus,
training strategies, and model sizes. In total, 30 models with the number of parameters ranging from
100 million to 7 billion are selected to form the model set M. We include both encoder-decoder
models such as T5 (Raffel et al., 2020) and decoder-only models such as GPT2 (Radford et al., 2019).
We also include some multilingual models (Xue et al., 2021) and instruction-tuned models (Wu et al.,
2024) for diversity.

Fine-tuning Datasets. We consider machine translation (WMT19 English-Chinese (En-Zh) (Kocmi
et al., 2022)), paragraph summarization (Gigaword (Rush et al., 2015)), and multi-task instruction
tuning (FLAN (Wei et al., 2021)) as the downstream fine-tuning tasks. These tasks are representative
and well-established in NLP with rich amount of data, allowing us to study the scaling behavior under
a wide range of dataset size. Details of the processing of each dataset are presented in Appendix G.

Dataset Size. To study the scaling behavior extensively, for each dataset S, we randomly select
subsets with D samples where D ∈ {200, 400, 800, · · · , 1638400} which cover a wide range of data
scales in practical scenarios. We fine-tune models on each subset and test them on a held-out test
set with samples to ensure the estimated performance is unbiased. For each setting, we fine-tune the
model three times to remove the randomness of subset sampling.

LLM Selection Baselines. Notice that we use the data budget ratio γ = |Ssub|
D ∈ (0, 1] to represent

the difficulty of a selection task. It can also capture how much faster we want the selection algorithm
to be when compared with full-fine-tuning. We set γ = { 1

512 ,
1

256 , · · · ,
1
8}. For comparison, we

choose three baseline algorithms A: (1) ModelSize uses the logarithm of the number of model
parameters log(N) as the selection score. (2) ZeroShot adopts the zero-shot performance as the
selection score; (3) SubTuning uses the performance of the subset fine-tuned model FT(M,Ssub) as
the selection score. All the performance is tested on a held-out validation set.

LLM Selection Evaluation Metrics. All selection algorithms give a score to each model M ∈ M,
and we hope that models with higher scores have better performance when fine-tuned on S. We
consider two metrics below: (1) Pearson correlation coefficient (PearCorr) between scores and
full-fine-tuning performance, which measures how we can use the predicted score to rank models. (2)
Relative Accuracy (RelAcc), which is defined as the performance gap between the selected model
and the best model over the gap between the worst model and the best model, i.e.,

RelAcc(A) ≜
maxL(M)− L(argmaxA(M,Ssub))

maxL(M)−minL(M)
.

H.2 IMPLEMENTATION DETAILS

We continue training each model initialized from the pretrained checkpoint with the standard cross-
entropy loss on each target token. For decoder-only models, we concatenate the input sequence and
the target sequence together through the decoder. For encoder-decoder models, we forward the input
sequence and the target sequence through the encoder and the decoder respectively. The cross-entropy
loss is calculated over the target tokens.

To ensure the best fine-tuning performance without interference from the choice of hyper-parameters,
we conduct hyper-parameter searching for important ones including learning rate and batch size. We
also conduct each experiment with the searched hyper-parameters three times and report the average
performance. All the experiments are implemented using transformers package (Wolf et al., 2020).
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Hyper-parameter Values

learning rate search on {1e− 4, 3e− 4, 5e− 4, 1e− 3} for small models < 700M ,
{3e− 5, 5e− 5, 1e− 4, 3e− 4} for large models > 700M

batch size search on {64, 128, 256}
training epoch 20 with early stopping (patience=3)

optimizer AdamW
weight decay 0.01

scheduler cosine
warmup ratio 0.03

Table 6: Hyper-parameter settings of fine-tuning experiments.

H.3 HARDWARE AND SOFTWARE

We run most of the experiments on clusters using NVIDIA A100s. We implemented our experiments
using PyTorch (Paszke et al., 2017) and the HuggingFace library. For each model, we randomly
sampled seeds for 3 runs and controlled the number of training samples. The total vocabulary size
and tokenizer used varied from case to case. Overall, we estimated that a total of 20,000 GPU hours
were consumed.
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I RESULTS OF FINE-TUNING EXPERIMENTS

Here we present the experimental results of 30 models fine-tuned on various sizes of subsets from
WMT19, Gigaword, and FLAN. The subsets are randomly sampled from the original datasets. We
repeat each experiment three times with different random seeds and report the average.

Table 7: Test loss of 30 models fine-tuned on various sizes of subsets ranging from 0 to 1638400 derived from
FLAN dataset.

Model 0 200 400 800 1600 3200 6400 12800 25600 51200 102400 204800 409600 819200 1638400

GPT-2 4.857 4.386 4.288 4.191 4.060 3.890 3.826 3.546 3.272 2.988 2.686 2.449 2.193 1.978 1.791
GPT-2-medium 4.375 3.782 3.714 3.614 3.518 3.390 3.249 3.076 2.880 2.673 2.428 2.207 1.966 1.771 1.610
GPT-2-large 4.165 3.525 3.493 3.412 3.285 3.157 3.044 2.898 2.736 2.543 2.324 2.115 1.913 1.739 1.601
GPT-2-xl 3.929 3.306 3.254 3.169 3.058 2.999 2.889 2.774 2.632 2.451 2.270 2.058 1.878 1.693 1.555
LaMini-GPT-124M 4.891 4.248 4.188 4.087 3.946 3.808 3.645 3.421 3.165 2.916 2.653 2.383 2.152 1.917 1.743
LaMini-GPT-774M 4.215 3.497 3.458 3.361 3.257 3.140 3.033 2.878 2.712 2.529 2.329 2.120 1.887 1.731 1.559
LaMini-GPT-1.5B 4.046 3.293 3.240 3.202 3.094 2.990 2.881 2.751 2.628 2.446 2.270 2.061 1.851 1.687 1.530
Cerebras-GPT-111M 4.495 3.763 3.689 3.593 3.489 3.407 3.325 3.237 3.108 2.991 2.827 2.638 2.435 2.226 1.968
Cerebras-GPT-256M 4.097 3.393 3.319 3.230 3.127 3.054 2.974 2.898 2.817 2.708 2.572 2.409 2.211 2.037 1.880
Cerebras-GPT-1.3B 3.388 2.791 2.713 2.646 2.587 2.492 2.412 2.325 2.243 2.131 2.042 1.960 1.881 1.786 1.683
Cerebras-GPT-2.7B 2.914 2.231 2.151 2.088 2.046 1.979 1.925 1.872 1.831 1.779 1.733 1.681 1.631 1.589 1.544
Phi-1.5 4.620 4.063 3.929 3.664 3.462 3.213 3.056 2.895 2.686 2.463 2.237 2.022 1.831 1.671 1.542
Phi-2 3.368 2.538 2.515 2.452 2.424 2.397 2.386 2.330 2.292 2.216 2.146 2.076 2.009 1.944 1.882
OPT-350m 3.729 3.203 3.132 3.020 2.943 2.848 2.767 2.686 2.577 2.453 2.292 2.131 1.964 1.805 1.663
OPT-1.3b 3.022 2.447 2.379 2.317 2.268 2.189 2.110 2.042 1.973 1.902 1.821 1.742 1.672 1.596 1.513
OPT-2.7b 2.793 2.337 2.287 2.240 2.170 2.109 2.031 1.953 1.917 1.873 1.800 1.746 1.689 1.635 1.579
OPT-6.7b 4.442 2.021 1.980 1.973 1.935 1.921 1.895 1.865 1.838 1.812 1.790 1.770 1.741 1.720 1.697
ai-forever/mGPT 3.227 2.623 2.587 2.512 2.478 2.391 2.339 2.292 2.215 2.150 2.096 2.051 1.989 1.942 1.894
BART-base 8.502 4.159 3.990 3.850 3.685 3.532 3.344 3.181 2.979 2.711 2.457 2.251 2.051 1.858 1.685
BART-large 7.533 3.372 3.328 3.106 2.950 2.827 2.712 2.617 2.500 2.337 2.172 2.006 1.853 1.688 1.550
BART-large-cnn 6.026 3.591 3.445 3.213 3.037 2.894 2.757 2.606 2.471 2.338 2.164 1.999 1.829 1.674 1.555
BART-large-xsum 4.908 3.493 3.335 3.168 3.023 2.893 2.755 2.627 2.476 2.350 2.171 2.008 1.836 1.677 1.557
T5-small 3.983 3.021 2.931 2.838 2.757 2.681 2.601 2.508 2.411 2.309 2.208 2.085 1.978 1.857 1.756
T5-base 3.539 2.642 2.585 2.480 2.412 2.344 2.281 2.201 2.131 2.041 1.947 1.837 1.715 1.600 1.520
mT5-base 12.925 3.191 3.121 3.010 2.892 2.758 2.656 2.514 2.413 2.308 2.178 2.069 1.969 1.879 1.799
mT5-large 20.843 2.596 2.528 2.470 2.389 2.311 2.220 2.138 2.051 1.966 1.890 1.810 1.741 1.675 1.601
T5-v1.1-base 28.836 4.012 3.891 3.723 3.503 3.312 3.101 2.903 2.727 2.525 2.328 2.119 1.930 1.727 1.528
switch-base-8 29.484 4.129 3.892 3.689 3.469 3.285 3.132 2.896 2.728 2.536 2.368 2.168 1.988 1.799 1.654
switch-base-16 18.770 3.812 3.620 3.451 3.290 3.101 2.919 2.796 2.633 2.497 2.329 2.163 2.000 1.817 1.684
switch-base-32 24.522 3.652 3.502 3.312 3.181 3.014 2.836 2.704 2.572 2.434 2.304 2.116 1.950 1.780 1.650
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Figure 7: The test losses of 30 models fine-tuned on various sizes of subsets derived from FLAN dataset. The
point size reflects the corresponding model size.
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Table 8: Test loss of 30 models fine-tuned on various sizes of subsets ranging from 0 to 1638400 derived from
WMT19 dataset.

Model 0 200 400 800 1600 3200 6400 12800 25600 51200 102400 204800 409600 819200 1638400

GPT-2 3.403 3.079 3.037 2.955 2.867 2.757 2.521 2.276 1.966 1.713 1.502 1.296 1.131 1.020 0.929
GPT-2-medium 3.148 2.891 2.874 2.735 2.663 2.547 2.369 2.122 1.886 1.645 1.424 1.225 1.068 0.943 0.855
GPT-2-large 2.937 2.888 2.740 2.764 2.589 2.515 2.362 2.128 1.837 1.618 1.401 1.254 1.094 0.948 0.887
GPT-2-xl 2.888 2.646 2.614 2.508 2.461 2.393 2.297 2.143 1.940 1.701 1.477 1.278 1.278 0.896 0.800
LaMini-GPT-124M 3.253 3.061 3.014 2.976 2.916 2.781 2.669 2.473 2.130 1.847 1.606 1.376 1.210 1.062 0.958
LaMini-GPT-774M 2.813 2.680 2.669 2.661 2.536 2.471 2.309 2.072 1.825 1.600 1.373 1.189 1.044 0.921 0.838
LaMini-GPT-1.5B 2.742 2.710 2.660 2.653 2.580 2.490 2.408 2.327 2.001 1.725 1.451 1.230 1.050 0.913 0.790
Cerebras-GPT-111M 3.348 3.034 2.943 2.878 2.796 2.716 2.607 2.455 2.249 2.012 1.792 1.595 1.393 1.170 0.957
Cerebras-GPT-256M 3.109 2.891 2.801 2.664 2.632 2.502 2.364 2.178 1.951 1.786 1.563 1.393 1.229 1.054 0.919
Cerebras-GPT-1.3B 2.610 2.789 2.628 2.521 2.388 2.315 2.238 2.097 1.926 1.732 1.595 1.459 1.316 1.156 1.030
Cerebras-GPT-2.7B 2.192 1.959 1.892 1.842 1.771 1.739 1.705 1.650 1.608 1.540 1.442 1.429 1.410 1.372 1.331
Phi-1.5 2.641 2.883 2.652 2.428 2.361 2.152 1.961 1.802 1.634 1.468 1.317 1.201 1.088 0.981 0.901
Phi-2 1.857 2.272 2.137 1.987 1.941 1.799 1.631 1.507 1.364 1.264 1.123 1.024 0.935 0.858 0.799
OPT-350m 3.199 3.117 2.972 2.972 2.784 2.621 2.438 2.157 1.890 1.637 1.426 1.271 1.119 1.004 0.881
OPT-1.3b 2.727 2.761 2.650 2.615 2.497 2.342 2.148 1.963 1.777 1.563 1.433 1.295 1.162 1.014 0.883
OPT-2.7b 2.495 2.480 2.441 2.391 2.331 2.277 2.106 1.987 1.817 1.652 1.530 1.391 1.289 1.188 1.081
OPT-6.7b 2.262 1.987 1.984 1.979 1.961 1.957 1.945 1.917 1.881 1.864 1.831 1.812 1.787 1.761 1.738
ai-forever/mGPT 2.285 2.089 2.086 2.093 2.071 2.043 2.018 2.007 1.996 1.941 1.919 1.867 1.833 1.786 1.753
BART-base 6.781 3.368 3.366 3.163 3.030 2.874 2.787 2.330 1.991 1.691 1.411 1.254 1.070 0.932 0.859
BART-large 4.145 3.214 3.202 3.056 2.953 2.689 2.490 2.121 1.796 1.524 1.296 1.105 0.957 0.828 0.758
BART-large-cnn 6.028 3.223 3.103 3.029 2.829 2.602 2.285 1.963 1.739 1.485 1.270 1.104 0.962 0.858 0.771
BART-large-xsum 4.263 3.161 3.093 2.973 2.847 2.643 2.371 2.092 1.806 1.510 1.310 1.129 0.980 0.857 0.774
T5-small 4.384 1.251 1.223 1.135 1.048 0.991 0.958 0.903 0.845 0.803 0.781 0.749 0.717 0.664 0.641
T5-base 4.798 1.174 1.060 1.037 0.950 0.885 0.835 0.776 0.745 0.734 0.684 0.644 0.626 0.591 0.575
mT5-base 16.143 2.879 2.822 2.781 2.722 2.692 2.671 2.578 2.471 2.451 2.388 2.322 2.245 2.162 2.079
mT5-large 21.711 2.841 2.814 2.776 2.711 2.687 2.648 2.560 2.472 2.412 2.290 2.211 2.129 2.032 1.941
T5-v1.1-base 10.500 1.389 1.261 1.225 1.176 1.123 1.053 0.991 0.930 0.868 0.808 0.743 0.680 0.622 0.561
switch-base-8 27.451 1.561 1.472 1.374 1.251 1.223 1.125 1.050 0.981 0.923 0.849 0.791 0.741 0.689 0.651
switch-base-16 21.009 1.389 1.290 1.203 1.187 1.094 1.044 0.991 0.913 0.866 0.807 0.756 0.745 0.666 0.631
switch-base-32 18.065 1.351 1.262 1.172 1.112 1.042 0.962 0.901 0.847 0.788 0.733 0.681 0.642 0.601 0.567
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Figure 8: The test losses of 30 models fine-tuned on various sizes of subsets derived from the WMT19 dataset.
The point size reflects the corresponding model size.
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Table 9: Test loss of 30 models fine-tuned on various sizes of subsets ranging from 0 to 1638400 derived from
Gigaword dataset.

Model 0 200 400 800 1600 3200 6400 12800 25600 51200 102400 204800 409600 819200 1638400

GPT-2 4.147 2.691 2.596 2.516 2.429 2.329 2.204 2.099 1.983 1.883 1.777 1.690 1.597 1.508 1.431
GPT-2-medium 3.723 2.298 2.214 2.130 2.050 1.965 1.891 1.810 1.742 1.672 1.602 1.530 1.465 1.398 1.349
GPT-2-large 3.613 2.154 2.103 2.018 1.961 1.887 1.799 1.750 1.671 1.603 1.540 1.479 1.408 1.354 1.305
GPT-2-xl 3.411 2.044 2.010 1.954 1.880 1.814 1.773 1.702 1.634 1.577 1.521 1.468 1.413 1.356 1.286
LaMini-GPT-124M 4.414 2.645 2.546 2.457 2.384 2.300 2.203 2.110 1.996 1.888 1.790 1.694 1.595 1.511 1.438
LaMini-GPT-774M 4.161 2.142 2.085 2.015 1.942 1.873 1.814 1.746 1.673 1.603 1.541 1.480 1.422 1.358 1.308
LaMini-GPT-1.5B 4.053 2.041 2.000 1.927 1.877 1.824 1.766 1.703 1.645 1.570 1.518 1.459 1.439 1.354 1.299
Cerebras-GPT-111M 5.108 3.505 3.362 3.217 3.080 2.939 2.780 2.658 2.507 2.354 2.208 2.048 1.914 1.796 1.677
Cerebras-GPT-256M 4.574 3.043 2.934 2.823 2.686 2.576 2.473 2.350 2.225 2.112 1.994 1.888 1.785 1.683 1.586
Cerebras-GPT-1.3B 3.834 2.401 2.324 2.257 2.193 2.139 2.082 2.008 1.924 1.851 1.770 1.682 1.618 1.550 1.482
Cerebras-GPT-2.7B 3.400 2.125 2.054 1.983 1.933 1.866 1.806 1.745 1.692 1.637 1.576 1.533 1.480 1.440 1.391
Phi-1.5 4.169 2.354 2.266 2.157 2.069 1.992 1.905 1.834 1.761 1.679 1.607 1.540 1.483 1.410 1.361
Phi-2 3.245 1.788 1.747 1.705 1.674 1.639 1.602 1.574 1.534 1.478 1.453 1.431 1.389 1.354 1.319
OPT-350m 3.848 2.422 2.312 2.227 2.149 2.078 2.013 1.928 1.858 1.768 1.712 1.635 1.574 1.512 1.450
OPT-1.3b 3.163 1.879 1.828 1.772 1.722 1.686 1.638 1.588 1.543 1.491 1.446 1.403 1.368 1.327 1.290
OPT-2.7b 2.971 1.734 1.697 1.658 1.620 1.576 1.541 1.502 1.462 1.429 1.391 1.363 1.330 1.301 1.270
OPT-6.7b 2.862 1.694 1.656 1.623 1.582 1.549 1.506 1.460 1.428 1.400 1.368 1.339 1.308 1.276 1.245
ai-forevermGPT 3.676 2.379 2.386 2.238 2.186 2.034 1.939 1.863 1.802 1.732 1.651 1.586 1.530 1.452 1.379
BART-base 8.663 3.299 3.120 2.884 2.710 2.535 2.391 2.021 1.894 1.797 1.696 1.630 1.548 1.469 1.408
BART-large 4.727 2.211 2.102 1.984 1.895 1.809 1.734 1.666 1.610 1.537 1.483 1.420 1.361 1.303 1.257
BART-large-CNN 4.619 2.268 2.172 2.063 1.949 1.842 1.737 1.670 1.594 1.524 1.472 1.403 1.364 1.306 1.255
BART-large-XSUM 4.486 2.204 2.128 2.030 1.934 1.839 1.751 1.686 1.613 1.546 1.484 1.412 1.371 1.311 1.261
T5-small 3.675 2.078 2.061 2.028 1.911 1.863 1.804 1.743 1.680 1.624 1.554 1.484 1.406 1.322 1.250
T5-base 2.880 1.758 1.725 1.679 1.638 1.597 1.542 1.492 1.444 1.395 1.351 1.301 1.247 1.196 1.146
mT5-base 11.509 2.810 2.689 2.589 2.432 2.292 2.167 2.024 1.851 1.721 1.599 1.482 1.371 1.253 1.148
mT5-large 10.154 2.567 2.462 2.331 2.212 2.110 1.987 1.890 1.781 1.679 1.588 1.492 1.418 1.332 1.259
T5-v1.1-base 9.205 2.582 2.451 2.283 2.123 1.979 1.870 1.717 1.614 1.502 1.414 1.326 1.241 1.151 1.071
switch-base-8 20.602 2.672 2.573 2.286 2.124 1.991 1.859 1.726 1.619 1.512 1.430 1.356 1.275 1.206 1.149
switch-base-16 17.835 2.641 2.443 2.253 2.035 1.916 1.789 1.675 1.583 1.480 1.395 1.334 1.260 1.196 1.123
switch-base-32 14.677 2.430 2.309 2.187 1.967 1.881 1.734 1.625 1.563 1.457 1.383 1.305 1.246 1.186 1.106
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Figure 9: The test losses of 30 models fine-tuned on various sizes of subsets derived from the Gigaword dataset.
The point size reflects the corresponding model size.
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J FULL ANALYSIS STUDIES

J.1 INFLUENCE OF HYPER-PARAMETERS
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Figure 10: Performance of AtS with varied hyper-parameters δ and k across FLAN, WMT19 and Gigaword
datasets. Each block presents an ablation analysis, delineating the impact of hyper-parameter settings on specific
subsets.
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J.2 AtS ON STRATIFIED M

Here, we present comprehensive results demonstrating the efficacy of AtS on stratified M across
four distinct memory budgets: 7B, 2B, 1.4B, and 700M , as depicted in Figure 11. Each of these
memory budgets corresponds to different subsets of the M, comprising 30, 25, 21, and 15 individual
models, respectively. Notably, AtS consistently demonstrates superior performance across all memory
budgets, affirming its practical viability for real-world deployment scenarios.
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Figure 11: Performance of AtS on stratified M with varied memory budgets measured by PearCorr.
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J.3 LLM SELECTION BY FITTING SCALING LAW

Here, we present the full selection results of three scaling-law-based selection methods on three
datasets in Table 10. Examining both metrics, we observe that the AtS method consistently outper-
forms the other two methods (OurFit and VanillaFit) across all datasets and budget ratios. It again
demonstrates the robustness and stability of our proposed method.

Table 10: Model selection results (PearCorr, RelAcc) of three scaling-law-based methods on three datasets
(FLAN, WMT19, Gigaword) in percentage. The best result within the same dataset and budget ratio is in bold
font, and the second best result is underlined.

FLAN WMT19 Gigaword
Metric Ratio AtS OurFit VanillaFit AtS OurFit VanillaFit AtS OurFit VanillaFit

PearCorr (%)

1/8 90.9 77.9 34.7 98.9 95.0 94.4 98.9 97.0 95.1
1/16 73.1 67.4 58.1 97.0 93.6 83.7 97.6 90.7 92.8
1/32 65.5 54.4 43.1 97.7 91.1 79.6 96.9 88.3 91.0
1/64 61.1 47.6 46.7 86.0 83.9 30.9 92.0 83.6 84.3
1/128 52.2 54.9 41.4 78.0 78.9 35.2 91.1 83.6 47.3
1/256 50.5 41.1 45.0 73.4 72.9 41.1 89.1 81.5 85.8
1/512 45.6 36.8 20.7 61.5 61.5 56.5 91.0 78.5 79.3

RelAcc (%)

1/8 93.6 100.0 39.0 99.1 84.9 99.6 100.0 100.0 100.0
1/16 93.2 100.0 93.2 99.1 84.9 80.7 91.4 100.0 100.0
1/32 93.2 100.0 93.2 99.6 78.5 99.6 94.3 100.0 100.0
1/64 93.2 100.0 90.7 99.1 81.8 99.1 100.0 94.3 100.0
1/128 85.3 85.3 93.2 99.1 78.5 99.1 94.3 94.3 94.3
1/256 93.2 85.3 85.3 99.1 77.6 99.1 94.3 87.2 94.3
1/512 93.2 85.3 93.2 99.1 77.6 99.1 91.4 91.4 87.3
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K LIMITATION

Although AtS can outperform other baselines significantly as shown in Table 1, it also suffers
performance degradation when data budget ratio γ is extremely small, and all points we observed are
in the pre-power phase. However, a mixed blessing is that in real applications, it is feasible to detect
which stage the curve is in by monitoring the residual errors. Proposing a new algorithm that can
make accurate predictions with observations only from the pre-power phase is an interesting direction
to pursue. In addition, it will be interesting to see if the benefit of scaling laws can be extended to
other fine-tuning strategies such as RLHF (Rafailov et al., 2023; Christiano et al., 2017), LoRA (Hu
et al., 2021), or more resource constraint types such as FLOPs and time. Another limitation is a
lack of a more comprehensive understanding of the mechanism of the pre-power phase. It will be
interesting to see if it also appears under situations outside standard fine-tuning, and whether the
behavior in this phase is similar to that in fine-tuning.

31



Under review at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

L RELATED WORKS AND OUTLOOK

Model selection. Early model selection methods require that all models share identical architectures
and differ only in pre-trained datasets (Cui et al., 2018; Tran et al., 2019). Those similarity-based
methods (Vu et al., 2020; Dwivedi et al., 2020) fine-tune a model on a target dataset, and use the
feature similarity between this model and candidate models to predict the fine-tuning performance
for each model. Ye et al. (2021) extends the feature-based method to model selection under the
out-of-distribution setting. Another line of works design training-free metrics to examine whether
pre-trained features are easily transferred to target tasks (P’andy et al., 2021; Ibrahim et al., 2021).
More recently, there has been attempts to formulate the problem as learning to recommend (Li et al.,
2023b) or rank (Zhang et al., 2023). One reason for not adopting existing model selection methods
outside LLM is that they focus mainly on classification or regression tasks (Deshpande et al., 2021;
Li et al., 2023a). These methods either rely on features of inputs (Lin et al., 2023) or consider a fixed
label set (Nguyen et al., 2020), which is not appropriate in the open-world text generation setting and
could lead to the one-to-many problems (Bao et al., 2019). The ever-growth of open-sourced LLM
models urgently calls for the investigation of LLM selection.

Scaling law. Laws between model performance and variables like model size or data size during pre-
training have been widely studied (Aghajanyan et al., 2023; Fernandes et al., 2023; Frantar et al., 2023),
and are applied to estimate an optimal allocation of compute for pre-training LLMs (Kaplan et al.,
2020; Hoffmann et al., 2022). Recently, more fine-grained scaling laws have been proposed, such as
data-constrained scaling (Muennighoff et al., 2023) and hyper-parameter scaling (Bi et al., 2024).
For LLM fine-tuning, Hernandez et al. (2021) compared the scaling effect between transfer learning
and pre-training, and Tay et al. (2021) observed the inconsistency of model size scaling between
pre-training and fine-tuning. A concurrent work (Anonymous, 2023) suggested a multiplicative
law in fine-tuning scaling. However, none of them found the pre-power phase in low-data regime
fine-tuning, and their laws cannot fit the phase transition pattern. Our paper establishes a more precise
and explainable scaling law that is validated through experiments, and also opens a new application
direction for scaling laws.

Outlook. We are now in a so-called “post-LLM era”, where LLMs are revolutionizing various
domains, such as human-like chatbot (Team et al., 2023), clinical applications (Singhal et al., 2022),
programming optimization (Romera-Paredes et al., 2023), and geometric proofing (Trinh et al., 2024).
Scaling laws may be the key to unlocking the huge power of LLMs, since they tell us how can
we make progress by investing more resources. However, research on scaling laws is extremely
expensive, and issues like environmental protection have to be concerned (Muennighoff et al., 2023).
We believe the research on this domain should be conducted in a collaborative and decentralized
manner, where the community can share the observed results and better utilize idle computational
resources.
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