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ABSTRACT

Despite the efficiency of data collecting for depth estimation in the synthetic en-
vironment, we cannot take full advantage of such benefit due to the distribution
gap between the synthetic and the real world. In this paper, we introduce a new
unsupervised domain adaptation framework, CD-Depth, for depth estimation to
alleviate domain shift by extracting structure-consistent and domain-agnostic la-
tents using following methods. (1) We propose domain-agnostic latent mapping
which projects images from different domains to the shared latent space by remov-
ing redundant domain features for estimating monocular depth. (2) We also fuse
visual signals from both RGB and latent domains to fully exploit multi domain in-
formation with adaptive-window-based cross-attention. Our proposed framework
achieves state-of-the-art results in unsupervised domain adaptation for depth es-
timation both on indoor and outdoor datasets and produces better generalization
performance on an unseen dataset.

1 INTRODUCTION

Training a depth estimation network in a supervised manner produces outstanding results with high
accuracy, but it requires a large number of images paired with densely annotated depth labels. So, in
recent depth estimation, self-supervised approaches have become mainstream, either utilizing stereo
images or monocular sequences. However, self-supervised methods usually rely on photometric
reprojection loss, which is only applicable to the static scene and susceptible to illumination change,
dynamic objects, and so on.

Fortunately, we can easily obtain a large number of accurate depth labels in a synthetic world to train
a neural network in a supervised setting. The problem is that it is difficult to render a photorealistic
scene in the synthetic environment, resulting in the domain gap between the synthetic and the real
world. Previous Unsupervised Domain Adaptation (UDA) methods for depth estimation (Atapour-
Abarghouei & Breckon (2018); Zheng et al. (2018); Zhao et al. (2019; 2020b); Akada et al. (2022))
leverage unpaired style transfer networks with cyclic consistent loss, e.g. CycleGAN (Zhu et al.,
2017), to generate photorealistic images from synthetic data and overcome domain shift while keep-
ing their geometric structure. However, they cannot perfectly fetch images from one domain to
another, and some undesired distortion occurs during style transfer. It is due to the unsupervised
setting during training and the trade-off between geometric consistency and domain fidelity when
utilizing cyclic consistency loss. Also, most of the UDA approaches for depth estimation exploit
geometric features from a single domain, e.g. transferred target domain, which leads to imperfect
depth results due to the inaccurate structural information during domain transfer or domain-specific
irrelevant features for depth estimation.

In this paper, we introduce a Cross-Domain Depth estimation network (CD-Depth), which is the
UDA framework with two main contributions, Domain-Agnostic Latent Mapping (DALM) and
Cross-Domain Disparity Network (CD-DispNet). (1) DALM alleviates the domain shift by de-
touring the direct domain transfer from one to the other but instead projecting images from different
domains to a single shared latent domain Z as shown in Figure 1. There exist some prior arts
(PNVR et al. (2020); Chen et al. (2021)) which also attempt to learn domain-generalized repre-
sentation. However, the generalized representation from PNVR et al. (2020) remains within RGB

1



Under review as a conference paper at ICLR 2023

fS→Z gT →Z

1

fS→T
gT →S

1

(a) (b)

Figure 1: (a) Style transfer methods cannot perfectly transfer image from one to the other domain
with its geometric structure consistent. (b) DALM maps the image from other domain to the shared
latent space by removing domain relevant features.

domain which leads to little change between input and output images. Chen et al. (2021) learns
domain-generalized representation for depth estimation, but it requires the encoder pre-trained with
data that contains various image styles and densely annotated depth labels. On the contrary, our
proposed DALM only requires unpaired images from the source (synthetic, S) and the target (real,
T ) domain to learn domain-agnostic projection via self-reconstruction and feature-level adversarial
loss.

(2) CD-DispNet fuses visual signals from two different domains, the latent domain Z and the real
domain T , to reinforce cross-domain interaction and effectively exploit structural representation
from both domains using cross-attention mechanism. We also utilize non-overlapping window-
based attention for computation and memory efficiency due to the high resolution input. Previous
models with window-based attention, e.g. Swin Transformer (Liu et al., 2021) and HRFormer (Yuan
et al., 2021), fix the size of the attention window. However, the attention window with the fixed size
has difficulty in capturing global context which induces performance degradation. Therefore, we
propose an adaptive attention window whose size changes according to the feature map resolution.
By doing so, the attention mechanism enables learning both local and global correlation between
two different domains.

To sum up, our contribution can be summarized as below:

• We introduce an unsupervised domain adaptation framework for depth estimation, CD-
Depth, which achieves high performance both in domain generalization and monocular
depth estimation.

• We propose Domain-Agnostic Latent Mapping to alleviate domain shift between synthetic
and real data by projecting images to the shared latent space without any additional data.

• We propose Cross-Domain Disparity Network with adaptive-window-based cross-attention
mechanism so that the network can effectively fuse signals from different domains for depth
estimation.

• Our CD-Depth outperforms the state-of-the-art unsupervised domain adaptation for depth
estimation both in indoor and outdoor datasets and also generalize well in an unseen dataset
compared to prior arts.

2 RELATED WORK

2.1 MONOCULAR DEPTH ESTIMATION

Monocular Depth Estimation (MDE) plays a critical role in various computer vision applications
such as AR (Augmented Reality), VR (Virtual Reality), autonomous driving, and robotics. In recent
years, MDE has achieved satisfactory performance thanks to the exceptional development in deep
learning. Especially, depth estimators trained in a supervised manner (Fu et al., 2018; Bhat et al.,
2021) produce high-quality results with a huge amount of densely annotated depth labels. However,
it is both expensive and inefficient to collect a large amount of data with paired depth labels for
supervised learning. Fortunately, due to the large-scale virtual environment, it becomes popular to
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train the depth estimation network with high-quality synthetic data in s supervised setting (Zheng
et al., 2018; Zhao et al., 2019; PNVR et al., 2020; Chen et al., 2021). T2Net (Zheng et al., 2018)
adopts cyclic consistency loss from CycleGAN (Zhu et al., 2017) and transfer the synthetic data to
the realistic target domain. Following, GASDA (Zhao et al., 2019) exploits stereo images in the
real-world for additional cues to improve the geometric consistency. Rather than transferring the
synthetic image to the target domain, SharinGAN (PNVR et al., 2020) and S2R-DepthNet (Chen
et al., 2021) transfer both synthetic and real-world images to the generalized space with pre-trained
encoders.

The difference between aforementioned approaches and our method can be summarized into the
following: whether they train the depth estimator in the target domain or the generalized domain,
they exploit information only from a single domain. On the other hand, our proposed CD-Depth
leverages geometric features of the data from both domains, i.e. target and generalized domain,
with Cross-Domain Disparity Network (CD-DispNet) to generate structural-consistent latent vectors
without domain-specific redundant features.

2.2 UNSUPERVISED DOMAIN ADAPTATION

Unsupervised Domain Adaptation (UDA) has been developed along with Generative Adversarial
Networks (GAN) and cyclic consistency loss (Zhu et al., 2017; Kim et al., 2017; Hoffman et al.,
2018). CycleGAN (Zhu et al., 2017) firstly proposes cyclic consistency loss with min-max opti-
mization in the adversarial loss for unpaired image-to-image translation. Cycle consistency loss
makes it possible to transfer image domain without paired data, but it is too restrictive that there
exists only a difference in the color tone between input and output images with little change in
the entire image. Following, CUT (Park et al. (2020)) points out such limitation in cyclic con-
sistency and only employs contrastive learning based PatchNCE loss. StyleGAN (Karras et al.,
2019; 2020; 2021) firstly proposes style-based image generation in the disentangled latent space
and manipulates (or conditions) images on semantic levels. Recently, Denoising Diffusion Proba-
bilistic Models (DDPM, Ho et al. (2020)) synthesize images iteratively with superior quality both
in unconditional and conditional settings. ILVR (Choi et al., 2021) and SDEdit (Meng et al., 2022)
introduce unpaired image-to-image translation leveraging only unconditional DDPM pre-trained on
the source domain and the single reference image from the target domain. ILVR utilizes High-pass
Filter (HPF) to remove low-frequency signals which contain semantic information in the DDPM and
add low-frequency information from the reference image. SDEdit leverages generative Stochastic
Differential Equation (SDE) to inject signals from the reference image via stroke-based guiding.

Unfortunately, it is not possible to perfectly transform the image from one domain to another while
keeping its structural information due to the trade-off between the scene consistency and the domain
fidelity. Therefore, rather than directly transferring the image from one to the other domain, we
alternatively project the image to the shared latent space in which the distribution distance between
the source domain is much closer than the distance between the source and the target RGB domains.

3 CD-DEPTH

In this section, we introduce our proposed unsupervised domain adaptation framework for depth es-
timation called, CD-Depth. CD-Depth consists of three different modules, Domain-Agnostic Latent
Mapping, Single-Domain Disparity Network, and Cross-Domain Disparity Network. Each com-
ponent takes part in generalizing domain representation, estimating depth, and fusing signals from
individual domains, i.e., source S, target T , and latent domain Z . The diagram of the overall frame-
work is illustrated in Figure 2.

3.1 DOMAIN-AGNOSTIC LATENT MAPPING

Previously, a priority of unsupervised domain adaptation approaches for depth estimation (Zheng
et al., 2018; Zhao et al., 2019; 2020b; Akada et al., 2022) was synthesizing the source domain im-
age IS indistinguishable from the target domain images IT . The aforementioned methods mostly
adopt unpaired image-to-image translation algorithms with cyclic consistency loss proposed in Cy-
cleGAN (Zhu et al., 2017). Unfortunately, the constraint from cyclic consistency is too strong that
it is insufficient to perfectly overcome discrepancy between two data distribution. Rather than trans-
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Figure 2: Overall CD-Depth Framework. It consists of three main parts: (1) domain mapping from
RGB to latent, (2) single-domain depth estimation, and (3) cross-domain signal fusion and depth
estimation. More details are demonstrated in Section 3.

ferring the domain from source to target domain, we propose Domain-Agnostic Latent Mapping
(DALM), which projects images from both domains to a single shared latent space Z . Unlike previ-
ous approaches which also generalize domain representation, (PNVR et al., 2020; Chen et al., 2021),
DALM does not require additional data or depth labels, but it only employs images from the source
and the target domain. For structural (scene) consistency, we leverage self-reconstruction loss so
that the latent z from DALM represents intact structural information of the image to produce the
same depth outputs. We design encoder-decoder architecture for self-reconstruction without skip-
connection, and only the encoder E is leveraged during depth estimation. DALM adopts the shared
encoder to remove domain-relevant features while maintaining the geometric context, and domain-
specific decoders to recover the input image. The self-reconstruction loss Lrecon is formulated as:

ÎS = DS(E(IS)), ÎT = DT (E(IT )),

Lrecon =
1

2
(|ÎS − IS |1 + |ÎT − IT |1),

(1)

where DS and DT are domain-specific decoders for image reconstruction.

Along with self-reconstruction loss, we also utilize feature-level adversarial loss where the discrim-
inator D distinguishes whether the latent z comes from the source or the target domain. With the
feature-level adversarial loss, the encoder E can project the images from different domains to the
same distribution and remove the domain-relevant image features which are redundant for estimat-
ing depth.

zS = E(IS), zT = E(IT )
Lgan = E[logD(zT )] +E[log (1−D(zS))]

(2)

Taken together, the objective loss for traing DALM is:
Lz = Lrecon + αzLgan (3)

where αz is a hyperparameter to balance the projected latent between geometric consistency and
domain indistinguishability.

3.2 SINGLE-DOMAIN DISPARITY NETWORK

For domain-agnostic depth estimation, we first project the input image to the latent space Z with
DALM. Then, the projected image propagates to the latent encoder ψZ to extract geometric fea-
tures for depth estimation. With the output of ψZ , Single-Domain Disparity Network (SD-DispNet)
produces multi-scale depth outputs. As we have acquired synthetic images IS paired with densely
annotated depth labelDS , we train SD-DispNet in a supervised manner. A synthetic supervised loss
Lsyn for single-domain disparity network fθ is as below:

zS = E(IS), D̂S = fθ(ψZ(zS)),

Lsyn = |D̂S −DS |1.
(4)

4



Under review as a conference paper at ICLR 2023

Cross Attention

k
QKV

Embedding ⊗

QKV
Embedding

v

Cross-Domain Window Attention Module

Self Attention

Latent
Encoder

Single-Domain
DispNet

Skip Connection

Skip Connection

Single-Domain DispNetU
ps

am
pl

e

Skip Connection

C
on

v 
3x

3

©∗

C
on

v 
3x

3

Si
gm

oi
d

(a) Cross-Domain DispNet

(b) Residual Connection

(c) Single-Domain DispNet

⊕

⊕

Cross Attention

Self Attention

⊕

⊕

LayerNorm

CWAM

MLP

LayerNorm

⊕

LayerNorm

⊕

Single-Domain
DispNet

RGB
Encoder

q

⊗
k

v
q

k
QKV

Embedding ⊗

QKV
Embedding

v
q

⊗
k

v
q

· · ·

Figure 3: (a) Illustration of Cross-Domain Disparity Network with sequential cross-attention and
self-attention functions. (b) Residual connection inside the Cross-Domain Window Attention Mod-
ule. (c) The model architecture of Single-Domain Disparity Network.

3.3 CROSS-DOMAIN DISPARITY NETWORK

Aside from synthetic depth labels, we also employ monocular sequences from T and Z as addi-
tional geometric cues. To leverage monocular sequences from different domains, we propose Cross-
Domain Disparity Network (CD-DispNet), which produces domain-specific depths, D̂T and D̂Z .
We also utilize two pose estimation networks with the same architecture, pT and pZ , for learning
Structure-from-Motion (SfM) in different domains. Photometric reproejction loss Lphoto (and latent
reprojection loss Llatent) calculates per-pixel intensity error between the warpped images (latents)
and the adjacent frames (latents from adjacent frames). Each loss function is formulated as:

It′→t = It′ ⟨proj(D̂T ), RT , tT , K⟩
zt′→t = zt′ ⟨proj(D̂Z), RZ , tZ , K⟩

(5)

Lphoto = αphoto

(
1− SSIM(It, It′→t)

2

)
+ (1− αphoto)(|It − It′→t|1)

Llatent = |zt − zt′→t|1
Lproj = Lphoto + αprojLlatent

(6)

where R, t denote rotation and translation from each domain-specific pose network, and K indicates
intrinsic parameter of the camera. proj(·) and ⟨·⟩ indicate 2D coordinates of input and sampling
operator respectively. αphoto and αproj are set to 0.85 and 0.001 respectively.

CD-DispNet consists of two modules, Cross-domain Window Attention Module (CWAM) and SD-
DispNet, each for aggregating information from two different domains and estimating depth using
features from CWAM as shown in Figure 3.

Images IT from T and latents zT from Z separately pass through the RGB encoder ψT and the
latent encoder ψZ . These two encoders are followed by CWAM, which encourages cross-domain
learning for depth estimation by utilizing a sequential attention mechanism. First, the cross-attention
effectively fuses the visual signals from ψT and ψZ to enforce the interaction between two differ-
ent domains. Then, the output of the cross-attention function sequentially propagates to the self-
attention for exploring the inner-domain representation. The cross-attention and the self-attention
are implemented with Attn(Q,K, V ) = softmax

(
QK⊤
√
d

)
· V as:

CrossAttnRGB = Attn(QRGB ,KZ , VRGB),CrossAttnZ = Attn(QZ ,KRGB , VZ)

SelfAttnRGB = Attn(QRGB ,KRGB , VRGB), SelfAttnZ = Attn(QZ ,KZ , VZ)
(7)
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where
QRGB =WQ · ψT (IT ),KRGB =WK · ψT (IT ), VRGB =WV · ψT (IT ),

QZ =WQ · ψT (zT ),KZ =WK · ψZ(zT ), VZ =WV · ψT (zT ),
(8)

(b) Adaptive window

(a) Fixed window

Figure 4: Fixed window vs
Adaptive window

and d indicates the number of attention head for normalization. We
note that the linear transformations for query, key, and value are not
distinguished for notation simplicity, but they are specific for the
input domain in the actual implementation.

Additionally, we deploy non-overlapping window-based attention
(Huang et al., 2019) rather than full attention to harness computa-
tional and memory efficiency for the high-resolution input image.
Unfortunately, naı̈ve window-based attention suffers from perfor-
mance degradation due to the insufficiency of capturing global con-
text. So, we utilize two different mechanisms, i.e. Shifted window
and Adaptive window, to alleviate such undesired property. (1) We
leverage the shifted window partitioning strategy (Liu et al., 2021)
so that the attention window can interact with adjacent windows
and broadcast information from one window to another. (2) We
propose an adaptive attention window in which the size of the
attention window changes according to its feature map resolution.
The choice for the size of the fixed attention window (Liu et al.,
2021; Yuan et al., 2021; Li et al., 2022a;b) is quite limited in that
it should be the common divisor of the width and the height of the smallest feature map. On the
other hand, in the proposed method, the size of the adaptive attention window grows as the feature
map gets larger. Specifically, the adaptive attention window grows by keeping the ratio of the area
of the attention window to the area of the feature map the same as shown in Figure 4. Adaptive
attention window democratizes the window size from the smallest feature map and leads to larger
attention field, which enables learning the representation of both local and global correlation within
the window.

3.4 INFERENCE

During the inference phase, we aim to estimate depth from both a single monocular image IT in
the real world and its corresponding projected latent zT with resultant models, SD-DispNet fθ and
CD-DispNet gθ. The final prediction is the weighted sum of outputs from each function as below:

D̂SZ = fθ(ψZ(zT )), D̂CT , D̂CZ = gθ(ψT (IT ), ψZ(zT )),

D̂ = α1D̂SZ + α2D̂CT + α3D̂CZ ,
(9)

where α1 + α2 + α3 = 1.

4 EXPERIMENT

In this section, we present the effectiveness of our proposed framework, CD-Depth, on the chal-
lenging datasets for a single-view depth estimation. We perform an extensive experiment on KITTI
(Geiger et al., 2012) dataset and NYU Depth v2 (Nathan Silberman & Fergus, 2012) dataset as
outdoor and indoor environments, respectively. In terms of domain generalization, we experiment
CD-Depth on the unseen real-world dataset, Make3D (Saxena et al., 2008). We also validate that
(1) DALM outperforms previous unpaired domain adaptation (UDA) and unpaired domain general-
ization (UDG) methods, (2) cross-attention generates better performance in multi-domain settings
than self-attention, and (3) adaptive attention window achieves high-quality depth outputs com-
pared to fixed attention window.

4.1 KITTI DATASET

In the outdoor scenario, we adopt KITTI dataset as a realistic target domain and Virtual KITTI
(vKITTI) (Gaidon et al., 2016) as a synthetic source domain for evaluating unpaired domain adap-
tation performance for depth estimation. For fair evaluation, all the images in KITTI are resized to
640× 192, and the regions with the ground truth depth over the max value (80 m) are masked out.
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Table 1: Quantitative Result on KITTI. Best results are in bold, and the second best are underlined.
Sup column indicates the supervision level during training and Data column denote D: Depth Super-
vision, M: Monocular self-supervision, S: Stereo self-supervision, vK: synthetic supervision with
virtual KITTI respectively. Methods with unsupervised domain adaptation are shaded in gray.

Method Sup Data Lower is Better Higher is Better
Abs Rel Sq Rel RMSE RMSElog δ < 1.25 δ < 1.252 δ < 1.253

Fu et al. (2018) Yes D 0.072 0.307 2.727 0.120 0.932 0.984 0.994
Lee et al. (2019) Yes D 0.096 - 2.756 0.059 0.956 0.993 0.998
Zhou et al. (2017) No M 0.215 1.515 7.156 0.270 0.678 0.885 0.957
Godard et al. (2019) No M 0.115 0.882 4.701 0.190 0.879 0.961 0.982
Guizilini et al. (2020) No M 0.111 0.785 4.601 0.189 0.878 0.960 0.982
Shu et al. (2020) No M 0.109 0.923 4.819 - 0.886 - 0.981
Wang et al. (2021) No M 0.109 0.779 4.641 0.186 0.883 0.962 0.982
Hui (2022) No M 0.108 0.710 4.513 0.183 0.884 0.964 0.983
Kundu et al. (2018) Semi vK+D 0.167 1.275 5.578 0.237 0.771 0.922 0.971
Zheng et al. (2018) No vK 0.174 1.410 6.046 0.253 0.754 0.916 0.966
Zhao et al. (2019) No vK+S 0.149 1.003 4.995 0.227 0.824 0.941 0.973
Zhao et al. (2020b) No vK 0.145 1.003 5.333 0.229 0.811 0.934 0.972
PNVR et al. (2020) No vK+S 0.116 0.939 5.068 0.203 0.850 0.948 0.978
Chen et al. (2021) No vK 0.165 1.351 5.695 0.236 0.781 0.931 0.972
Guizilini et al. (2021) No vK+M 0.114 0.875 4.808 - 0.871 - -
Akada et al. (2022) No vK 0.168 1.228 5.498 0.235 0.771 0.921 0.973
Ours No vK+M 0.106 0.771 4.520 0.182 0.890 0.964 0.983

RGB ARC OursS2R-DepthGASDA

Figure 5: Qualitative Results. Our CD-Depth produces better results with distinct boundaries com-
pared to prior state-of-the-art domain adaptation methods (GASDA (Zhao et al., 2019), ARC (Zhao
et al., 2020b), and S2R-Depth (Chen et al., 2021)).

In Table 1, we report results of our prposed method compared to prior state-of-the-art algorithms
in self-supervised depth estimation and unpaired domain adaptation on 697 test images from Eigen
et al. (2014) train/test split. We observe that CD-Depth produces convincing improvements over
both self-supervised and unpaired domain adaptation algorithms in most of the metrics. Specifi-
cally, our model achieves 13% better Sq Rel error and 7% better RMSE error compared to Guizilini
et al. (2021) which also utilizes both synthetic depth labels from vKITTI and monocular sequences
from KITTI for domain adaptation in depth estimation. Apart from quantitative results, we present
qualitative results on KITTI compared to the recent domain adaptation algorithms in Figure 5. Our
method exhibits relatively edge-consistent, smooth invariant depth outputs with fewer holes in re-
flective surface.

4.2 ABLATION STUDY

For better understanding, we ablate the components of CD-Depth one by one to figure out how each
component contributes to the model performance.
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Table 2: Comparison on FID score. DALM produces the smallest image distribution distance be-
tween two domains compared to state-of-the-art UDA (CycleGAN (Zhu et al., 2017), CUT (Park
et al., 2020), ILVR (Choi et al., 2021), and SDEdit (Meng et al., 2022)) and UDG (SharinGAN
(PNVR et al., 2020) and S2R-Depth (Chen et al., 2021)) algorithms. In the sampling hyperparame-
ters for diffusion-based models, we set the downsampling factor N for ILVR as 4, and t0 for SDEdit
as 0.4.

Type UDA UDG
Method CycleGAN CUT ILVR SDEdit SharinGAN S2R-Depth Ours
FID (↓) 98.39 62.27 82.91 81.78 101.39 47.00 43.96

Table 3: Ablation. The comparison between different modifications of CD-Depth in (a) domain
adaptation strategies and (b) attention mechanisms.

Method Lower is Better Higher is Better
Abs Rel Sq Rel RMSE RMSElog δ < 1.25 δ < 1.252 δ < 1.253

(a) RGB Only 0.115 0.873 4.747 0.191 0.881 0.962 0.982
+CycleGAN 0.109 0.783 4.537 0.182 0.885 0.964 0.983
+CUT 0.109 0.806 4.603 0.185 0.886 0.963 0.982
+DALM 0.106 0.771 4.520 0.182 0.890 0.964 0.983

(b) Baseline 0.109 0.803 4.581 0.185 0.884 0.963 0.983
+WSA (fixed) 0.108 0.796 4.538 0.183 0.886 0.963 0.983
+CDWA (fixed) 0.108 0.796 4.556 0.183 0.888 0.964 0.983
+CDWA (adaptive) 0.106 0.771 4.520 0.182 0.890 0.964 0.983

DALM. First, we demonstrate how DALM generalizes the domain well compared to both the pre-
vious unpaired domain adaptation (UDA) and unpaired domain generalization (UDG) methods.
We quantitatively evaluate the domain adaptation/generalization performance by leveraging FID
(Fréchet Inception Distance) score (Heusel et al., 2017) which estimates the visual quality and cal-
culates the distance between two image distributions. Table 2 reports FID score of UDA and UDG
algorithms compared to our DALM. We measure the FID score in the target domain T for UDA
methods and in the generalized domain Z for UDG methods. Our method achieves the best result
in FID score compared to state-of-the-art domain adaptation/generalization approaches. It indicates
that generalizing the domain with DALM is much effective than directly transferring the source do-
main S to the target domain T . In Table 3(a), we experiment how domain adaptation/generalization
performance is relevant to the depth estimation performance. We observe that our DALM, which
achieves the highest score in domain adaptation/generalization, also shows the best result in depth
estimation. Interestingly, CUT achieves better results in FID score compared to CycleGAN, but it
cannot outperform CycleGAN-based depth estimation because of the distortion in structural infor-
mation during domain transfer. It indicates that not only the domain similarity but also the geometric
consistency plays an important role in depth estimation with different domain data.

Cross Domain Window Attention. In Table 3(b), we manipulate the attention module in Cross-
Domain Window Attention (CDWA) by setting Baseline as DALM domain generalization and no
attention module in the depth decoder. To verify how effective the cross-attention is compared
to self-attention, we replace the cross-attention mechanism in CDWA with Window-based Self-
Attention (WSA). We report the quantitative performance drop when we utilize self-attention rather
than the cross-attention module. It is due to the restricted feature propagation as the signals from two
different domains, T and Z , cannot interact with each other when we solely leverage self-attention
module. We also demonstrate that the performance of the adaptive attention window achieves better
results compared to the fixed attention window. It is attributed to the property of adaptive win-
dow which represents global context information from the larger receptive field within the attention
window. To sum up, the model which combines the proposed concepts, i.e. DALM, cross domain
attention and adaptive attention window, altogether achieves the best results.

4.3 NYU V2 DATASET

For evaluating CD-Depth on the indoor environment, we choose Scene-RGBD (McCormac et al.,
2017) as synthetic dataset, and NYU Depth v2 (Nathan Silberman & Fergus, 2012) as real-world
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Table 4: Quantitative results on NYU Depth v2 dataset.

Method Lower is Better Higher is Better
Abs Rel RMSE δ < 1.25 δ < 1.252 δ < 1.253

Zhou et al. (2017) 0.208 0.712 0.674 0.900 0.968
Godard et al. (2019) 0.160 0.601 0.767 0.949 0.988
Bian et al. (2019) 0.147 0.536 0.804 0.950 0.986
Zhao et al. (2020a) 0.189 0.686 0.701 0.912 0.978
Ji et al. (2021) 0.134 0.526 0.823 0.958 0.989
Ours 0.133 0.498 0.831 0.959 0.989

RGB GT Monodepth2 SC-Depth Ours

Figure 6: Qualitative results on NYU Depth v2 compared to state-of-the-art indoor self-supervised
depth estimation algorithms, i.e. Monodepth2 (Godard et al., 2019) and SC-Depth (Bian et al.,
2019).

dataset. The results of the Figure 6 and Table 4 are reported on the NYU Depth v2 official test split,
and the input images are resized to 320×256 during training and inference for a fair evaluation. Our
CD-Depth outperforms existing indoor self-supervised depth estimation algorithms in all the metrics
in quantitative results. Also, in qualitative results, our method produces the best results which are
the most similar to the ground truth depth labels with distinct boundaries between the object and the
background.

4.4 MAKE3D DATASET

Table 5: Quantitative results on Make3D.

Method Train Lower is Better
Abs Rel Sq Rel RMSE

Karsch et al. (2014) Yes 0.398 4.723 7.801
Laina et al. (2016) Yes 0.198 1.655 5.461
Kundu et al. (2018) Yes 0.452 5.71 9.559

Zhao et al. (2019) No 0.403 6.709 10.424
PNVR et al. (2020) No 0.377 4.900 8.388
Zhao et al. (2020b) No 0.516 8.009 10.031
Chen et al. (2021) No 0.656 11.664 12.917
Ours No 0.306 3.098 6.884

In Table 5, we report the domain generaliza-
tion performance for depth estimation on the
unseen outdoor dataset, Make3D. Train col-
umn indicates whether the model is trained on
Make3D dataset with the depth labels in a su-
pervised manner. We observe that our CD-
Depth achieves the best result in every error
metrics compared to state-of-the-art UDA al-
gorithms and shows on par performance with
supervised approaches.

5 CONCLUSION

In this paper, we introduce a new unsupervised domain adaptation framework for depth estimation,
CD-Depth. It enables producing structurally consistent and domain-agnostic features from differ-
ent domains and effectively integrate them with the following ideas. We present DALM which
projects images from multiple domains to a single shared latent space for alleviating the domain
shift by removing domain-specific redundant components for depth estimation. We also propose
an adaptive-window-based cross-attention module to effectively fuse signals from different domains
and reinforce their interaction. Our CD-Depth outperforms prior state-of-the-art methods for depth
estimation on both outdoor and indoor environments and achieves the best result on the unseen
dataset.
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A EVALUATION PROTOCOL

A.1 MEDIAN SCALING

During evaluation, we recover the scale of the predicted depth maps with the ratio of median values
of the prediction D̂ and its corresponding ground truth labels Dgt because the monocular self-
supervised methods do not contain the absolute scale information.

D̂ = D̂ ×median(Dgt)/median(D̂) (10)

A.2 EVALUATION METRICS

We use the standard error and accuracy metrics defined below in order to quantitatively evaluate the
depth performance of the network. ”Lower is better” for the four error metrics (Abs Rel, RMSE,
Sq Rel, RMSE log), and ”higher is better” for the three accuracy metrics (δ < 1.25, δ < 1.252,
δ < 1.253).

• Abs Rel: 1
|D|Σd∈D|d∗ − d|/d∗;

• RMSE:
√

1
|D|Σd∈D||d∗ − d||2;

• Sq Rel: 1
|D|Σd∈D||d∗ − d||2/d∗;

• RMSE log:
√

1
|D|Σd∈D||log d∗ − log d||2;

• δ < 1.25i: 1
|D| |maxd∈D( d

d∗ ,
d∗

d ) < 1.25i| i ∈ {1, 2, 3};

where D indicates a set of all the predicted depth maps of an image. d and d∗ denote the predicted
depth maps and ground truth depth labels respectively, and |·| represents the number of the elements.

B MODEL ARCHITECTURE

layer input res win size feat size

1 6× 20 2 256
2 12× 40 4 128
3 24× 80 8 64
4 48× 160 16 32
5 96× 320 32 16

Table 6: Model Specification of CD-DispNet

In this section, we demonstrate the details of the network architecture of CD-Depth. We adopt
ResNet 50 (He et al., 2016) as feature extractor for Domain Agnostic Latent Mapping (DALM) en-
coder, RGB and latent encoder to extract domain-agnostic and structural consistent features from the
shared latent space. Features from the image and the latnet encoder propagates to the Cross-Domain
Disparity Network (CD-DispNet) which is composed of Adaptive Window-based Cross Attention
(A-WCA), Shifted Adaptive Window-based Self Attention (SA-WSA), Layer Normalization (LN)
and MLP layer. Each layer in the CD-DispNet is residually connected as below,

ẑl =A-WCA(LN(zl−1),LN(z′l−1)) + zl−1,

zl =MLP(LN(zl)) + ẑl,

ẑl+1 =SA-WSA(LN(zl)) + zl,

zl+1 =MLP(LN(ẑl+1)) + ẑl+1,

(11)

where ẑ, z and z′ indicate the outputs of attention module, the MLP layer and the feature from
the other domain respectively. The input resolution, the window size and the attention feature size
following the layer are shown in the Table 6. These features are passed to the Single Domain
Disparity Network (SD-DispNet) which consists 2 layers of ConvNet with the kernel size of 3 and
sigmoid activation function to produce scaled depth outputs.
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C ODOMETRY EVALUATION

Method Seq. 09 Seq. 10 Mean # frames

ORB-SLAM (full) 0.014 0.012 0.013 -

ORB-SLAM (short) 0.064 0.064 0.063 5
Mean Odom. 0.032 0.028 0.030 -
SfMLearner (Zhou et al., 2017) 0.021 0.020 0.021 5
Mahjourian et al. (2018) 0.013 0.012 0.012 3
GeoNet (Yin & Shi, 2018) 0.012 0.012 0.012 5

SfMLearner (Zhou et al., 2017) 0.050 0.034 0.042 2
Monodepth2 (Godard et al., 2019) 0.017 0.015 0.016 2
Ours (CD-Depth) 0.015 0.015 0.015 2

Table 7: Absolute Trajectory Error (ATE) on KITTI Odometry dataset in meters.

We additionally evaluate the performance of the pose estimation network which is the byproduct
of estimating depth with Structure-from-Motion (SfM) and consecutive monocular images. The
depth and pose esitmation networks are simultaneously trained with the 00-08 image sequences
from KITII Odometry dataset and tested with 09, 10 sequences. In Table 7, we report the quantitative
results of visual odometry performance with Absolute Trajectory Error (ATE) in meters. Following
evaluation protocol in Zhou et al. (2017), ATE is calculated over average value of all overlapping
5 frame snippets in test sequences for a fair evaluation. Similar to Godard et al. (2019), we only
leverage two image frames as input and produce a single transformation matrix T between the two
images pair. As shown in the Table 7, our method outperforms other SfM methods which leverages
2 input frames in average. In indicates that the domain adaptation with CD-Depth also improves and
preserves the pose estimation performance in the real-world while significantly increases the depth
estimation performance in the real-world.

D QUALITATIVE RESULTS ON MAKE3D

We prove that our CD-Depth generalizes well to the unseen dataset Make3D (Saxena et al., 2008)
compared to other state-of-the-art unsupervised domain adaptation for depth estimation algorithms
in the Table 5 from the main paper. To strengthen our claim, we also provide qualitative results in
Figure 7. CD-Depth produces the most similar depth outputs to the ground truth from unseen envi-
ronment. Also, our method distinguishes the objects from the background better than competitive
models.

RGB GT GASDA ARC Ours

Figure 7: Qualitative results on Make3D
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E EFFECT OF ADAPTIVE WINDOW IN QUALITATIVE RESULT

To clarify the effectiveness of adaptive attention window compared to prior fixed window, we not
only evaluate the effectiveness of the shape of the attention window quantitatively in the Table
3 from the main paper, but also visualize the depth outputs from each ablated models in Figure
8. We compare three different ablated models which are the same as Table 3, i.e. self-attention
mechanism with fixed-size window (F-WSA), cross-attention with fixed-size window (F-WCA),
and cross-attention with adaptive window (A-WCA). By leveraging adaptive attention window, the
network is able to capture small, but important objects during driving such as traffic light and the
traffic signs as shown in Figure 8.

F-WSA F-WCA A-WCARGB

Figure 8: Qualitative results on KITTI test split. We demonstrate the effectiveness of cross-attention
and adaptive window by comparing self-attention with fixed size window (F-WSA), cross-attention
with fixed size window (F-WCA), and cross-attention with adaptive window (A-WCA)

F TRAINING DETAILS

We implement our model in official deep learning framework PyTorch, trained with 20 epochs by
Adam optimizer. We use the batch size of 12 and the input image resolution is fixed to 640 × 192.
We adopt learning rate of the optimizer as 10−4 for initial 15 epochs and becomes 10 times lower for
the rest of the iterations. An image augmentation strategy of random horizontal flip is applied with
the probability of 0.5, and color jittering, random brightness, contrast, saturation, and hue jittering,
is also adopted with 50% of chance. All the experiments have been done on a single Nvidia RTX
A6000 GPU, AMD Ryzen Threadripper 3960X, 6*32GB DDR4 RAM, and 1TB M.2 NVMe SSD.
These specifications are sufficient to run all the experiments with the same configuration we have
elaborated in the text.
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