
Scaling Diffusion Transformers Efficiently via µP

Chenyu Zheng1,2,3∗, Xinyu Zhang4, Rongzhen Wang1,2,3, Wei Huang5, Zhi Tian4,
Weilin Huang4, Jun Zhu6, Chongxuan Li1,2,3†

1 Gaoling School of Artificial Intelligence, Renmin University of China
2 Beijing Key Laboratory of Research on Large Models and Intelligent Governance

3 Engineering Research Center of Next-Generation Intelligent Search and Recommendation, MOE
4 ByteDance Seed 5 RIKEN AIP 6 Dept. of Comp. Sci. & Tech., Tsinghua University

Abstract

Diffusion Transformers have emerged as the foundation for vision generative mod-
els, but their scalability is limited by the high cost of hyperparameter (HP) tuning
at large scales. Recently, Maximal Update Parametrization (µP) was proposed for
vanilla Transformers, which enables stable HP transfer from small to large lan-
guage models, and dramatically reduces tuning costs. However, it remains unclear
whether µP of vanilla Transformers extends to diffusion Transformers, which differ
architecturally and objectively. In this work, we generalize standard µP to diffusion
Transformers and validate its effectiveness through large-scale experiments. First,
we rigorously prove that µP of mainstream diffusion Transformers, including DiT,
U-ViT, PixArt-α, and MMDiT, aligns with that of the vanilla Transformer, enabling
the direct application of existing µP methodologies. Leveraging this result, we
systematically demonstrate that DiT-µP enjoys robust HP transferability. Notably,
DiT-XL-2-µP with transferred learning rate achieves 2.9× faster convergence than
the original DiT-XL-2. Finally, we validate the effectiveness of µP on text-to-image
generation by scaling PixArt-α from 0.04B to 0.61B and MMDiT from 0.18B to
18B. In both cases, models under µP outperform their respective baselines while
requiring small tuning cost—only 5.5% of one training run for PixArt-α and 3%
of consumption by human experts for MMDiT-18B. These results establish µP as
a principled and efficient framework for scaling diffusion Transformers.

1 Introduction

Owing to its generality and scalability, diffusion Transformers [51; 1] have become the backbone
of modern vision generation models, with widespread applications in various tasks such as image
generation [54; 3; 16; 35; 20] and video generation [6; 79; 60; 2; 75]. As datasets grow and
task complexity increases, further scaling of diffusion Transformers has become inevitable and
is attracting increasing attention [41; 40; 29; 17; 73]. However, as model sizes reach billions of
parameters, hyperparameter (HP) tuning becomes prohibitively expensive, often hindering the model
from achieving its full potential. This underscores the urgent need for a principled approach to
efficiently identify the optimal HPs when scaling diffusion Transformers.

Maximal Update Parametrization (µP) [71; 68; 70] was recently proposed as a promising solution to
the HP selection problem for large-scale vanilla Transformer [59]. It stabilizes optimal HPs across
different model widths, enabling direct transfer of HPs searched from small models to large models
(a.k.a., µTransfer) and significantly reducing tuning costs at scale. Due to its strong transferability,
µP has been applied to the pretraining of large language models (LLMs) [71; 13; 28; 43; 42; 80].

∗Work done during an internship at ByteDance Seed.
†Correspondence to Chongxuan Li <chongxuanli@ruc.edu.cn>.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

(a) Samples produced by the MMDiT-µP-18B.

1× Train 𝝁P Search

100%
80%

⋮

20%
0%

5.5%

(i) PixArt-𝜶

(ii) MMDiT-18B

Manual
Tuning

𝝁P Search

3%

100%
80%

⋮

20%
0%

R
el
at
iv
e
FL
O
Ps

R
el
at
iv
e
FL
O
Ps

(b) Efficiency of µP search.

Figure 1: Visualization results and efficiency of HP search under µP. (a) Samples generated by the MMDiT-
µP-18B model exhibit strong fidelity and precision in aligning with the provided textual descriptions. (b) HP
search for large diffusion Transformers is efficient under µP, requiring only 5.5% FLOPs of a single training run
for PixArt-α and just 3% FLOPs of the human experts for MMDiT-18B.

Unfortunately, diffusion Transformers [51; 1; 16; 8] differ fundamentally from vanilla Transform-
ers [59]. First, their architectures incorporate additional components to integrate text information
and diffusion timesteps for final vision generation. Second, they operate under a distinct generative
framework based on iterative denoising, in contrast to the autoregressive paradigms typically used
in vanilla Transformers (e.g., LLMs) [22; 78]. As a result, existing µP theory and its associated
HP transfer properties may not directly apply to diffusion Transformers. This paper systematically
investigates this issue, as detailed below.

First, we extend the standard µP theory from vanilla Transformers to diffusion Transformers in
Section 3.1. Using the Tensor Programs technique [70; 68; 65], we rigorously prove that the µP
formulation of mainstream diffusion Transformers, including DiT [51], U-ViT [1], PixArt-α [8], and
MMDiT from Stable Diffusion 3 [16], matches that of vanilla Transformers (Theorem 3.1). This
compatibility enables us to directly apply existing practical methodologies developed for standard µP
to diffusion Transformers, as described in Section 3.2.

Based on the rigorous µP result of diffusion Transformers, we then conduct a systematic study of
DiT-µP on the image generation task using the ImageNet dataset [12], presented in Section 4. We
first verify the stable HP transferability of DiT-µP across widths, batch sizes, and training steps. We
then µTransfer the optimal learning rate searched from small models to DiT-XL-2-µP. Notably, DiT-
XL-2-µP trained with the transferred learning rate achieves 2.9× faster convergence than the original
DiT-XL-2 [51], suggesting that µP offers an efficient principle for scaling diffusion Transformers.

Finally, we further validate the efficiency of µP on large-scale text-to-image generation tasks. In
Section 5.1, we apply the µTransfer algorithm to PixArt-α [8], scaling the model from 0.04B to
0.61B. In Section 5.2, we apply it to MMDiT [16], scaling from 0.18B to 18B. In both cases, diffusion
Transformers under µP consistently outperform their respective baselines with small HP tuning cost
on proxy tasks. For PixArt-α, tuning consumes only 5.5% of the FLOPs required for a full pretraining
run, while for MMDiT, tuning uses just 3% of the FLOPs typically consumed by human experts.
These real-world experiments further confirm the scalability and reliability of µP.

2 Preliminaries

We begin by establishing the necessary background for diffusion Transformers and µP. Detailed
discussion of additional related work is placed in Appendix A.

2

Table 1: µP for (diffusion) Transformers with Adam/AdamW optimizer. We use purple text to highlight the
differences between µP and standard parameterization (SP) in practice (e.g., Kaiming initialization [25]), and
gray text to indicate the SP settings. Formal definitions of the weight type are provided in Appendix B.

Input weights Hidden weights Output weights

aW 0 0 1 (0)
bW 0 1/2 0 (1/2)
cW 0 1 (0) 0

2.1 Diffusion Transformers

Due to its superior scalability and compatibility, Transformers [51; 1; 16; 30] have replaced CNNs
(e.g., U-Net [53; 52; 61]) as the backbone for advanced diffusion models [54; 3; 16; 35; 20]. DiT [51]
introduces Transformers with adaptive layer normalization (adaLN) blocks for class-to-image gener-
ation and demonstrates strong scalability with respect to network complexity. U-ViT [1] achieves
comparable performance by applying ViT [15] with long skip connections between shallow and
deep layers. PixArt-α [8] extends DiT for text-conditional image generation by incorporating cross-
attention for text features and an efficient shared adaLN-single block. MMDiT [16] further extends
DiT by introducing two separate parameter sets for image and text modalities, along with a joint
attention mechanism to facilitate multimodal interaction. As diffusion Transformers continue to scale,
increasing attention is being paid to principled approaches for scaling [41; 40; 29; 73].

2.2 Maximal Update Parametrization

In this section, we provide a practical overview of µP, with a focus on the widely used AdamW
optimizer [47]. The comprehensive review of the theoretical foundations of µP is in Appendix B.

µP identifies a unified parameterization that applies to common architectures expressive in NE⊗OR⊤
Program [70] (e.g., vanilla Transformer [59]), offering strong guidance for practical HP transfer
across model widths, batch sizes, and training steps. Under µP, HPs can be tuned on a small proxy
task (e.g., 0.04B parameters and 6B tokens in [71]) and directly transferred to a large-scale pretraining
task (e.g., 6.7B parameters and 300B tokens in [71]), significantly reducing tuning costs at scale. As
a result, µP has been widely adopted in the pretraining of LLMs [71; 13; 28; 43; 23; 42; 80].

Concretely, µP is implemented by analytically adjusting HPs with model width, typically involving the
weight multiplier, initialization variance, and learning rate (a.k.a., abc-parameterization). Formally, let
n denote the network width, we set each weight as W = ϕWn−aW W̃ , where the trainable component
W̃ is initialized as W̃ij ∼ N (0, σ2

Wn−2bW), and its learning rate is ηWn−cW . Henceforth, we call
the width-independent parts (ϕW , σW , ηW) as base HPs. As summarized in Table 1, µP identifies
values of aW , bW , and cW that enable models of different widths to share the (approximately) same
optimal base HPs ϕ∗W , σ∗

W , and η∗W . µP adjustion for other HPs is placed in Appendix B.4.

The most related work to us is AuraFlow v0.1 [9], which applied µP empirically to an MMDiT-style
model for learning rate transfer. Compared to AuraFlow v0.1, our work makes additional non-trivial
contributions. First, we provide a rigorous theoretical proof for mainstream diffusion Transformers,
thereby justifying the validity of µP for this family of models. Second, we systematically validate the
HP transferability of diffusion Transformers under µP, across multiple widths, batch sizes, and training
steps. Finally, for MMDiT in particular, we conduct a more extensive search over multiple HPs and
scale the model up to 18B parameters, providing detailed intermediate results and comparisons.

3 Scaling Diffusion Transformers by µP

In this section, we extend the principles of µP to scale diffusion Transformers. In Section 3.1,
we prove that despite fundamental differences from vanilla Transformer, mainstream diffusion
Transformers—including DiT [51], U-ViT [1], PixArt-α [8], and MMDiT [16]—adhere to the
standard µP formulation summarized in Table 1. Then, in Section 3.2, we introduce the practical
methodology for applying µP to diffusion Transformers, as illustrated in Figure 2.

3

+

Noised
Latent

Patchify

Timestep 𝑡

𝑡-Emb 1

DiT Block

Layer Norm

Linear and Reshape

Noise Cov Σ

Label 𝑦

𝑡-Emb 2

𝑦-Emb 1

N ×

Input Tokens

Layer Norm

Scale, Shift

Multi-Head
Self-Attention

Scale

Layer Norm

Scale, Shift

Pointwise
Feedforward

Scale

Condition

adaLN

+

+

Input Weights Hidden Weights
Output Weights New in DiT

(a) Implementation of DiT-µP.

𝝁P search base HPs on
small models

HPs-1 HPs-2 HPs-3

HPs-2

Scaling to large models
with the optimal base HPs

𝝁Transfer

(b) µTransfer.

Figure 2: A overview of applying µP to diffusion Transformers. (a) We illustrate the implementation of µP
for DiT as an example. The abc-parameterization of each weight is adjusted based on its type and visualized
using different colors. Modules that differ from the vanilla Transformer are also highlighted. (b) We µTransfer
the optimal base HPs searched from multiple trials on small models to pretrain the target large models.

3.1 µP of Diffusion Transformers

As mentioned in Section 2, the existing µP results [70; 71] in Table 1 apply only to architectures
expressible as a NE⊗OR⊤ program. Therefore, it is crucial to determine whether the diffusion
Transformers can be represented in this framework. The following theorem establishes that several
prominent diffusion Transformers [51; 1; 8; 16] are compatible with the existing µP results.

Theorem 3.1 (µP of diffusion Transformers, proof in Appendix C). The forward passes of mainstream
diffusion Transformers (DiT [51], U-ViT [1], Pixart-α [8], and MMDiT [16]) can be represented
within the NE⊗OR⊤ Program. Therefore, their µP matches the standard µP presented in Table 1.

The proof of Theorem 3.1 relies on rewriting the forward pass of diffusion Transformers using the
three operators defined in the NE⊗OR⊤ Program [70]. Given that the representability of standard
Transformer [59] within the NE⊗OR⊤ Program has been established [65], we focus on demon-
strating that the novel modules specific to diffusion Transformers can also be expressed in this
formalism. These modules primarily serve to integrate text and diffusion timestep information for
vision generation; examples include the adaLN blocks of DiT [51] in Figure 2a.

Theorem 3.1 ensures that existing practical methodologies developed for standard µP apply directly
to DiT, U-ViT, PixArt-α, and MMDiT. Moreover, our analysis technique naturally extends to other
variants of diffusion Transformers [49; 7; 19; 57; 48]. To the best of our knowledge, mainstream
diffusion Transformer variants in use can be expressed within the NE⊗OR⊤ Program.

3.2 Practical Methodology of µP in Diffusion Transformers

Given the rigorous µP result for diffusion Transformers established in Theorem 3.1, this section
introduces how to apply µP to diffusion Transformers in practice. In addition, our code is available at
https://github.com/ML-GSAI/Scaling-Diffusion-Transformers-muP.

3.2.1 Implementation of µP

The width of a multi-head attention layer is determined by the product of the head dimension and
the number of attention heads. Thus, there are two degrees of freedom when scaling the width of
diffusion Transformers. Theoretically, recent theoretical advances [5] reveal an important difference:
when the head dimension tends to infinity, multi-head self-attention can collapse to single-head
self-attention, losing the diversity of attention patterns. In contrast, scaling the number of heads
avoids this degeneracy and preserves the expressivity of the multi-head mechanism. Empirically,
well-known models in real-world large-scale practice [71; 22; 43; 28] favor increasing the number of

4

https://github.com/ML-GSAI/Scaling-Diffusion-Transformers-muP

heads rather than the head dimension. Given these theoretical and empirical insights, we fix the head
dimension and scale the number of heads in this work.

Given scaling the number of heads, we implement the µP of diffusion Transformers following the
standard procedure in [71].3 Specifically, we replace the vanilla width n in the abc-parameterization
(see Section 2) with the width ratio n/nbase when standard parameterization (SP) and µP differ in
Table 1, where nbase is a fixed base width. This implementation remains consistent with Table 1
since nbase is a constant. For example, for a hidden weight matrix W with width n and base HPs
ϕW , σ2

W , η (maybe searched from proxy model), we set W = ϕWW̃ with initial W̃ ∼ N (0, σ2
W /n),

as in SP. In contrast, its learning rate is ηnbase/n rather than η/n, where µP differs from SP. Finally,
we also follow the suggestion from [71] to initialize the output weights by zero (i.e., σ2

out = 0).

3.2.2 Base Hyperparameter Transferability of µP

Prior work has shown that µP provides strong guidance for base HP transferability in image classifi-
cation and language modeling tasks [71; 28; 62; 4; 24; 58; 13]. Building on the rigorous µP form
for diffusion Transformers in Theorem 3.1, we further validate its HP transferability in the context
of visual generation. We summarize the methodology for verifying base HP transferability across
widths, batch sizes, and training steps in Algorithm 1, 2, and 3 in Appendix D, respectively. We
describe how to verify HP transfer across widths below; those for batch size and step are similar.

For simplicity, we describe how to evaluate the transferability of the base learning rate η across
widths; similar procedures apply to other HPs, such as the multiplier ϕ. We define {ni}Pi=1 and
{ηj}Rj=1 as the sets of widths and base learning rates used in the evaluation. Given a fixed batch size
B and training iterations of T , we train PR diffusion Transformers, each parameterized by µP with
base width nbase, true width ni, and base learning rate ηj . Finally, given evaluation metrics, if models
at different widths (approximately) share the same optimal base learning rate, we conclude that
learning rate transferability holds for diffusion Transformers. In Section 4, we verify that diffusion
Transformers under the µP exhibit robust transferability of base HPs.

3.2.3 µTransfer from Proxy Task to Target Task

Once base HP transferability is validated for diffusion Transformers, we can directly apply the
µTransfer algorithm [71] (see Algorithm 4 in Appendix D) to zero-shot transfer base HPs from a
proxy task to a target task. Specifically, both the proxy model with width nproxy and the target model
with width ntarget are parameterized by µP using the same base width nbase. We first search for an
optimal combination of base HPs using various proxy models trained with a small batch size Bproxy

and a limited training steps Tproxy. These optimal base HPs are then used to train the large target
model with a larger batch size Btarget and longer training iteration Ttarget. Experimental results in
Section 5 show the superior performance of the µTransfer in real-world vision generation.

4 Systematic Investigation for DiT-µP on ImageNet

In this section, we first empirically verify the base HP transferability of DiT [51] under µP. We then
µTransfer the optimal learning rate to train DiT-XL-2-µP, which achieves 2.9× faster convergence.

4.1 Basic Experimental Settings

To ensure a fair comparison between DiT-µP and the original DiT [51], we adopt the default
configurations from [51] and describe the basic setup in detail below.

Dataset. We train DiT and DiT-µP on the ImageNet training set [12], which contains 1.28M images
across 1,000 classes. All images are resized to a resolution of 256× 256 during training, following
standard practice in generative modeling benchmarks [51; 1; 49].

Architecture of DiT-µP. The architecture of DiT-µP models is identical to that of DiT-XL-2, except
for the width. We fix the attention head dimension at 72 (as in DiT-XL-2) and vary the number of
heads. The base width nbase in the µP setup corresponds to 288, which uses 4 attention heads.

3To scaling head dimension, Yang et al. [71] additionally change the calculation of attention logit from
q⊤k/

√
d to q⊤k/d, where query q and key k have dimension d. We do not use this modification [5].

5

(a) HP transfer across widths. (b) HP transfer across batch sizes. (c) HP transfer across iterations.

Figure 3: DiT-µP enjoys base HP transferability. Unless otherwise specified, we use a model width of 288, a
batch size of 256, and a training iteration of 200K. Missing data points indicate training instability, where the
loss explodes. Under µP, the base learning rate can be transferred across model widths, batch sizes, and steps.

Training. We train DiT and DiT-µP using the AdamW [47]. Following the original DiT setup [51],
we do not apply any learning rate schedule or weight decay, and constant learning rates are used in
all experiments. The original DiT-XL-2 is trained with a learning rate 10−4 and a batch size of 256.

Evaluation metrics. To comprehensively evaluate generation performance, we report FID [26],
sFID [50], Inception Score [55], precision, and recall [34] on 50K generated samples without
classifier-free guidance (cfg), as in Table 4 of [51]. In the main text, we present the FID results, while
the remaining metrics are provided in Appendix E.2.

4.2 Base Hyperparameters Transferability of DiT-µP

In this section, we evaluate the HP transferability of DiT-µP across different widths, batch sizes,
and training steps. We focus primarily on the base learning rate, as it has the most significant
impact on performance [71; 28; 13; 43]. Similar results for other HP (weight multiplier) are
provided in Appendix E.2. We sweep the base learning rate over the set {2−13, 2−12, 2−11, 2−10, 2−9}
across various widths, batch sizes, and training steps. FID-50K results are shown in Figure 3, and
comprehensive results for other metrics are presented in Tables 8, 9, and 10 in Appendix E.2.

As presented in Figure 3, the optimal base learning rate 2−10 generally transfers across scaling
dimensions when some minimum width (e.g. 144), batch size (e.g., 256), and training steps (e.g.,
150K) are satisfied, which verifies the base HP transferability of DiT-µP. Interestingly, we observe
that neural networks with µP tend to favor a large learning rate close to the maximum stable value
(e.g., see Figure 3a). This aligns with empirical findings and theoretical insights reported for standard
neural networks trained for multiple epochs [63; 44; 37; 38; 10], which suggest that larger learning
rates introduce beneficial gradient noise to help guide optimization towards flatter minima that
generalize better. Our empirical results suggest that the optimization landscape of µP shares certain
similarities with that of SP, offering a direction for future theoretical investigation.

4.3 Scaling Performance of DiT-µP

Figure 4: µP accerlates the train-
ing of diffusion Transformers. Con-
sidering FID-50K, DiT-XL-2-µP with
transferred learning rate achieves 2.9×
faster convergence than the original
DiT-XL-2 and a slightly better result.

We µTransfer the optimal base learning rate of 2−10 to train
DiT-XL-2-µP with a width of 1152. The batch size is set to
256, following [51]. We evaluate DiT-µP every 400K steps
without using cfg. Training continues until DiT-µP surpasses
the best performance reported by the original DiT at final 7M
steps [51]. To enable a detailed comparison throughout the
training, we also reproduce the original DiT training using
its official codebase. Complete evaluation results throughout
training are provided in Table 14 in Appendix E.2.

As shown in Figure 4, DiT-XL-2-µP with the transferred base
learning rate performs effectively, achieving 2.9× faster con-
vergence (2.4M steps) compared to the original DiT (7M steps).
These results suggest that µP offers a simple and promising
approach to improve the pretraining of large-scale diffusion
Transformers. In the following sections, we further validate this
claim through text-to-image generation tasks.

6

5 Large-Scale Text-to-Image Generation

In this section, we verify the efficiency of µTransfer algorithm on real-world text-to-image generation
tasks. Diffusion Transformers under µP outperform the baselines while requiring small tuning cost.

5.1 Scaling PixArt-α-µP on SA-1B

In this section, we perform µTransfer experiments on the PixArt-α [8], scaling from 0.04B to
0.61B parameters. Using the same pretraining setup, PixArt-α-µP with the transferred learning rate
outperforms the original PixArt-α, while incurring only 5.5% FLOPs of one full pretraining run.

5.1.1 Experimental Settings

To ensure the fairest possible comparison between PixArt-α-µP and the original PixArt-α [8], we
mainly adopt the original setup [8] and summarize the key components below.

Dataset. We use the SAM/SA-1B dataset [33], which contains 11M high-quality images curated
for segmentation tasks with diverse object-rich scenes. For text captions, we use the SAM-LLaVA
annotations released in [8]. All images are resized to a resolution of 256× 256 during training.

Architecture of PixArt-α-µP models. The target PixArt-α-µP model adopts the same architecture
as PixArt-α (0.61B parameters). The proxy model also follows the same architecture, differing only
in width. To construct the proxy PixArt-α-µP model, we fix the attention head dimension at 72 (as in
PixArt-α) and reduce the number of heads from 16 to 4 (0.04B parameters). In the µP framework,
the base width nbase (see Section 3.2.1) is set to the proxy width of 288.

Training. PixArt-α is implemented using the official codebase and original configuration. We train
the original PixArt-α and the target PixArt-α-µP model for 30 epochs with a batch size of 176× 32
(approximately 59K steps).4 The small proxy PixArt-α-µP models are trained for 5 epochs with a
batch size of 176× 8 (approximately 39K steps). Notably, the model width, batch size, and training
steps are all smaller than those used in the target pretraining setting.

Hyperparameter search. In this section, we focus solely on the base learning rate. We search over
the candidate set {2−13, 2−12, 2−11, 2−10, 2−9} as in Section 4, resulting in five proxy training trials.

Ratio of tuning cost to pretraining cost. We consider the FLOPs as the metric for the computational
cost, then the ratio of tuning cost to pretraining cost can be estimated as

ratio =
RSproxyEproxy

StargetEtarget
=
RSproxyBproxyTproxy
StargetBtargetTtarget

, (1)

where R is the number of HP search trials, S is the number of parameters, E is the training epochs, B
is the batch size and T is the training iteration. The ratio ≈ 5.5% here, as detailed in Appendix E.3.

Evaluation metrics. We evaluate text-to-image generation performance following standard prac-
tice [8; 16; 64; 1], including FID, CLIP Score, and GenEval [21]. Both FID and CLIP Score are
computed on the aesthetic MJHQ-30K [39] and real MS-COCO-30K [45] datasets. MJHQ-30K
contains 30K images generated by Midjourney, while MS-COCO-30K is a randomly sampled subset
of the MS-COCO [45] dataset. GenEval evaluates text-image alignment using 533 test prompts.
Following the official implementation [8], we use a cfg of 4.5 to generate samples.

5.1.2 Experimental Results of PixArt-α-µP

We begin by conducting a base learning rate search using the PixArt-α-µP proxy models. The
evaluation results for different base learning rates are summarized in Table 2. Details of GenEval
results can be found in Table 15 in Appendix E.3. Since overfitting is not observed in this setting, we
include training loss as an additional evaluation metric. Overall, the base learning rate of 2−10 yields
the best performance. Interestingly, this optimal learning rate matches that of DiT-µP (see Figure 3a).
We hypothesize that this consistency arises from the architectural similarity between the two models
and the fact that both the ImageNet and SAM datasets consist of real-world images. This observation
suggests that optimal base HPs may exhibit some degree of transferability across different datasets
and architectures.

4We confirmed with the authors that this setup is reasonable; longer training may result in overfitting.

7

Table 2: Results of base learning rate search on PixArt-α-µP proxy tasks. 0.04B proxy models with different
base learning rates are trained for 5 epochs on the SAM dataset. Overall, the base learning rate 2−10 is optimal.

log2(lr) Training loss ↓ GenEval ↑ FID-30K (MS-COCO) ↓ FID-30K (MJHQ) ↓

-9 NaN NaN NaN NaN
-10 0.1493 0.083 47.46 47.71
-11 0.1494 0.078 49.24 46.31
-12 0.1504 0.030 66.77 63.36
-13 0.1536 0.051 60.28 60.93

Table 3: Comprehensive comparison between PixArt-α-µP and PixArt-α. Both models are trained on the
SAM dataset for 30 epochs. PixArt-α-µP (0.61B), using a base learning rate transferred from the optimal 0.04B
proxy model, consistently outperforms the original baseline throughout the training process.

Epoch Method GenEval ↑ MJHQ MS-COCO
FID-30K ↓ CLIP Score ↑ FID-30K ↓ CLIP Score ↑

10
PixArt-α [8] 0.19 38.36 25.78 34.58 28.12

PixArt-α-µP (Ours) 0.20 33.35 26.25 29.68 28.87

20
PixArt-α [8] 0.20 35.68 26.54 30.13 28.81

PixArt-α-µP (Ours) 0.23 33.42 26.83 29.05 29.53

30
PixArt-α [8] 0.15 42.71 26.25 37.61 28.91

PixArt-α-µP (Ours) 0.26 29.96 27.13 25.84 29.58

We then apply µTransfer by transferring the searched optimal base learning rate of 2−10 to train the
target PixArt-α. A comparison between PixArt-α and PixArt-α-µP throughout training is provided
in Table 3 (with the complete results shown in Table 16 in Appendix E.3). The results demonstrate
that PixArt-α-µP consistently outperforms PixArt-α across all evaluation metrics during training,
supporting µP as an efficient and robust approach for scaling diffusion Transformers. Furthermore,
we observe that the benchmark performance of PixArt-α degrades after 20 epochs, primarily due to
overfitting. In contrast, PixArt-α-µP continues to improve, suggesting that µP enhances the model’s
generalization ability, which offers an interesting direction for future theoretical investigation.

Specifically, we emphasize that our current experimental results validate that µP works well without
cfg (DiT) and with cfg (PixArt-α). Because cfg is an important factor during inference and affects
the optimal hyperparameters, we strongly recommend practitioners align the evaluation of proxy
models and that of the target model. In the following section, we further extend the current method to
large-scale applications.

5.2 Scaling MMDiT to 18B

In this section, we validate the efficiency of µP in the large-scale setup. We scale up the MMDiT [16]
architecture from 0.18B to 18B. Under the same pretraining setup, MMDiT-µP-18B with the trans-
ferred base HPs outperforms the MMDiT-18B tuned by human algorithmic experts.

5.2.1 Experimental Settings

Dataset. We train models on an internally constructed dataset comprising 820M high-quality image-
text pairs. All images are resized to a resolution of 256× 256 during training.

Baseline MMDiT-18B. The width and depth of MMDiT-18B are 5,120 and 16, respectively. The
training objective combines a flow matching loss [46; 49] and a representation alignment (REPA)
loss [74]. The model is optimized by AdamW [47], with a batch size of 4,096 and 200K training
iterations. The learning rate schedule is constant with a warm-up duration. The HPs were tuned by
algorithmic experts, requiring roughly 5 times the cost of full pretraining, as detailed in Appendix E.4.

8

(a) Base learning rate. (b) Base gradient clip. (c) Base REPA loss weight. (d) Base Warm-up steps.

Figure 5: Results of base HP search on proxy MMDiT-µP tasks. We train 0.18B MMDiT-µP proxy models
with 80 different base HPs settings. The optimal base HPs are transferred to the training of 18B target model.

Architecture of MMDiT-µP models. The target MMDiT-µP-18B model shares the same architecture
as MMDiT-18B. The proxy model also follows this architecture, differing only in width by reducing
the number of attention heads. It contains 0.18B parameters (1% of the target model) with a width
of 512. In the µP setup, the base width nbase is set to 1,920 (see Section 3.2.1 for definition of nbase).

Training of MMDiT-µP models. The training procedure for the target MMDiT-µP-18B is identical
to that of the baseline MMDiT-18B models, except for the selected HPs. The proxy models are trained
for 30K steps with a batch size of 4,096. We conduct 80 searches over four base HPs. Concretely,
we uniformly sample base learning rate from 2.5× 10−5 to 2.5× 10−3, gradient clipping from 0.01
to 100, weight of REPA loss from 0.1 to 1, and warm-up iteration from 1 to 20K. To further verify
that 30K iterations are enough for the proxy task, we conducted five proxy training runs (100K steps
each) using the searched optimal HPs and different learning rates, as detailed in Appendix E.4.

As derived in Appendix E.4 based on Equation (1), the total tuning FLOPs under µP amounts to
14.5% of one full pretraining cost, and thus only 3% of the human-tuned cost. We think the batch
size and iterations used during the base HP search could be further reduced to lower the tuning cost.
However, due to limited resources, we are unable to explore additional setups in this work.

Evaluation metrics. We use training loss to select base HPs on proxy tasks, as the dataset is
passed through only once, and overfitting does not occur. We follow the standard practice in the µP
literature [71; 28; 13], where the base hyperparameter is typically selected by identifying the value that
aligns with the lowest envelope of the training loss plot. To assess the final text-to-image generation, in
addition to the standard GenEval benchmark [21], we also created an internal benchmark comprising
150 prompts to comprehensively evaluate text-image alignment. Each prompt includes an average of
five binary alignment checks (yes or no), covering a wide range of concepts such as nouns, verbs,
adjectives (e.g., size, color, style), and relational terms (e.g., spatial relationships, size comparisons).
Ten human experts conducted the evaluation, with each prompt generating three images, resulting in
a total of 22,500 alignment tests. The final score is computed as the average correctness across all
test points. The details can be found in Appendix E.4.

5.2.2 Analyzing the Results of the Random Search

The visualization of the results of the base HP search is shown in Figure 5. First, the base learning
rate has the most significant impact on training loss. In our case, we observed that the envelope near
2.5×10−4 was stable and close to optimal, so we chose 2.5×10−4 as the optimal value. Interestingly,
unlike the DiT and PixArt setups, the optimal learning rate here is not close to the maximum stable
value. This highlights a key difference between multi-epoch training in traditional deep learning and
the single-epoch training in large model pretraining [63]. Intuitively, since the gradient signal for
any individual sample is not revisited, the training must be more conservative to maintain stability.
Second, the optimal gradient clipping value is 1, which deviates from the common practice of using
a small value (e.g., 0.1) to stabilize pretraining. Intuitively, µP favors a larger clipping value, as
aggressive clipping can undermine the maximal update property central to µP. Third, the optimal
weight for the REPA loss is determined to be around 0.5, consistent with the experience from existing
works [74]. Finally, the warm-up iteration has a negligible impact on the training loss, so we adopt
the default value of 1K in the pretraining of the target model.

5.2.3 µTransfer Results of MMDiT-µP

The comparisons of training losses, GenEval results, and human evaluations are shown in Figure 6,
Table 4, and Table 5, respectively. In addition, the complete comparison of training losses and detailed

9

Table 4: GenEval results of pretrained MMDiT-18B and MMDiT-µP-18B models. MMDiT-µP-18B achieves
better benchmark results with only 3% of the manual tuning cost.

Method Overall ↑ Single Two Counting Colors Position Color Attribution

MMDiT-18B 0.8154 99.38 93.69 81.88 88.03 57.5 68.75
MMDiT-µP-18B 0.8218 99.38 94.44 79.69 88.83 62.25 68.5

Figure 6: MMDiT-µP-18B achieves consistently
lower training loss than baseline after 15K steps.

Table 5: Results of human evaluation for text-
image alignment. The alignment accuracy (acc.)
is computed as the average over 22,500 human
alignment tests. MMDiT-µP-18B achieves supe-
rior results with only 3% of the manual tuning cost.

Method Alignment acc. ↑

MMDiT-18B 0.703
MMDiT-µP-18B (Ours) 0.715

visualizations are provided in Figure 8 and Figure 10 in Appendix E.4. As a result, MMDiT-µP-18B
outperforms the baseline MMDiT-18B in all cases, achieving this with only 3% FLOPs of the standard
manual tuning cost. These results demonstrate that µP is a reliable principle for scaling diffusion
Transformers. As models grow larger and standard HP tuning becomes prohibitively expensive, µP
offers a scientifically grounded framework to unlock the full potential of large models.

6 Discussion

There are several promising research directions building on this work. First, the principles of µP
could be extended to diffusion models with more advanced and efficient architectures, such as
linear transformers [64] and mixture-of-expert models [17]. Second, µP can be applied to more
sophisticated optimization algorithms, including the Muon optimizer [31] and the warmup-stable-
decay learning schedule [28]. Third, while our experiments suggest that a proxy model width of
256–512 and a proxy dataset size of 1/10–1/6 of the full pretraining data are sufficient for stable HP
transfer in diffusion Transformers, determining the optimal proxy task size that balances tuning cost
and target model performance remains an important avenue for future work. Finally, developing a
learning-theoretic framework to explain the optimization dynamics, generalization behavior, and
downstream performance [77; 76] of diffusion Transformers under µP would be both meaningful and
impactful. In summary, this provides the vision community with an initial principled approach for
scaling diffusion Transformers efficiently.

Broader Impacts and Limitations. Our work has the potential to accelerate progress in generative
modeling applications using diffusion Transformers, including text-to-image and video generation.
However, improvements in scaling diffusion Transformers could also facilitate the creation of
deepfakes for disinformation. Regarding the limitations of this work, although we demonstrate
the efficiency of µP in large-scale applications, we do not identify the optimal proxy task size that
balances HP tuning cost and target model performance, due to limited computational resources.

7 Conclusion

In this paper, we extend µP from standard Transformers to diffusion Transformers. By proving
that mainstream diffusion Transformers share the same µP form as vanilla Transformers, we enable
direct application of existing µP practice and verify the reliable base HP transfer from small to
large diffusion Transformers. This leads to practical performance gains on DiT-XL-2, PixArt-α, and
MMDiT-18B, while requiring a small fraction of the usual tuning effort (e.g., 3% for MMDiT-18B).
Our results establish µP as a principled and efficient scaling strategy for diffusion Transformers.

10

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 92470118); the
Beijing Natural Science Foundation (No. L247030); the Beijing Nova Program (No. 20230484416);
the ByteDance Seed Research Fund; the Public Computing Cloud of Renmin University of China; and
the fund for building world-class universities (disciplines) of Renmin University of China. Chenyu
Zheng was also supported by the Outstanding Innovative Talents Cultivation Funded Programs 2024
of Renmin University of China. Finally, the authors thank Enze Xie for his helpful discussion on the
experimental setup of PixArt-α.

References
[1] Fan Bao, Shen Nie, Kaiwen Xue, Yue Cao, Chongxuan Li, Hang Su, and Jun Zhu. All are worth

words: A vit backbone for diffusion models. In CVPR, pages 22669–22679, 2023.

[2] Fan Bao, Chendong Xiang, Gang Yue, Guande He, Hongzhou Zhu, Kaiwen Zheng, Min
Zhao, Shilong Liu, Yaole Wang, and Jun Zhu. Vidu: a highly consistent, dynamic and skilled
text-to-video generator with diffusion models. arXiv preprint arXiv:2405.04233, 2024.

[3] James Betker, Gabriel Goh, Li Jing, Tim Brooks, Jianfeng Wang, Linjie Li, Long Ouyang,
Juntang Zhuang, Joyce Lee, Yufei Guo, et al. Improving image generation with better captions.
Computer Science. https://cdn. openai. com/papers/dall-e-3. pdf, 2(3):8, 2023.

[4] Charlie Blake, Constantin Eichenberg, Josef Dean, Lukas Balles, Luke Y. Prince, Björn Deis-
eroth, Andrés Felipe Cruz-Salinas, Carlo Luschi, Samuel Weinbach, and Douglas Orr. u-µp:
The unit-scaled maximal update parametrization. CoRR, abs/2407.17465, 2024.

[5] Blake Bordelon, Hamza Tahir Chaudhry, and Cengiz Pehlevan. Infinite limits of multi-head
transformer dynamics. In NeurIPS, 2024.

[6] Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr,
Joe Taylor, Troy Luhman, Eric Luhman, et al. Video generation models as world simulators.
OpenAI Blog, 1:8, 2024.

[7] Junsong Chen, Chongjian Ge, Enze Xie, Yue Wu, Lewei Yao, Xiaozhe Ren, Zhongdao Wang,
Ping Luo, Huchuan Lu, and Zhenguo Li. Pixart-Σ: Weak-to-strong training of diffusion
transformer for 4k text-to-image generation. In ECCV, volume 15090, pages 74–91, 2024.

[8] Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Zhongdao Wang, James T.
Kwok, Ping Luo, Huchuan Lu, and Zhenguo Li. Pixart-α: Fast training of diffusion transformer
for photorealistic text-to-image synthesis. In ICLR, 2024.

[9] cloneofsimo and Team fal. Introducing auraflow v0.1: An open exploration of large rectified
flow models. https://blog.fal.ai/auraflow/, 2024.

[10] Jeremy Cohen, Simran Kaur, Yuanzhi Li, J. Zico Kolter, and Ameet Talwalkar. Gradient descent
on neural networks typically occurs at the edge of stability. In ICLR, 2021.

[11] Katherine Crowson, Stefan Andreas Baumann, Alex Birch, Tanishq Mathew Abraham, Daniel Z.
Kaplan, and Enrico Shippole. Scalable high-resolution pixel-space image synthesis with
hourglass diffusion transformers. In ICML, 2024.

[12] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In CVPR, pages 248–255, 2009.

[13] Nolan Dey, Gurpreet Gosal, Zhiming Chen, Hemant Khachane, William Marshall, Ribhu
Pathria, Marvin Tom, and Joel Hestness. Cerebras-gpt: Open compute-optimal language models
trained on the cerebras wafer-scale cluster. CoRR, abs/2304.03208, 2023.

[14] Prafulla Dhariwal and Alexander Quinn Nichol. Diffusion models beat gans on image synthesis.
In NeurIPS, pages 8780–8794, 2021.

11

https://blog.fal.ai/auraflow/

[15] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image
recognition at scale. In ICLR, 2021.

[16] Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini,
Yam Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, Dustin Podell, Tim Dockhorn, Zion
English, and Robin Rombach. Scaling rectified flow transformers for high-resolution image
synthesis. In ICML, 2024.

[17] Zhengcong Fei, Mingyuan Fan, Changqian Yu, Debang Li, and Junshi Huang. Scaling diffusion
transformers to 16 billion parameters. CoRR, abs/2407.11633, 2024.

[18] Peng Gao, Le Zhuo, Dongyang Liu, Ruoyi Du, Xu Luo, Longtian Qiu, Yuhang Zhang, Chen Lin,
Rongjie Huang, Shijie Geng, et al. Lumina-t2x: Transforming text into any modality, resolution,
and duration via flow-based large diffusion transformers. arXiv preprint arXiv:2405.05945,
2024.

[19] Shanghua Gao, Pan Zhou, Ming-Ming Cheng, and Shuicheng Yan. Masked diffusion transformer
is a strong image synthesizer. In ICCV, pages 23107–23116, 2023.

[20] Yu Gao, Lixue Gong, Qiushan Guo, Xiaoxia Hou, Zhichao Lai, Fanshi Li, Liang Li, Xi-
aochen Lian, Chao Liao, Liyang Liu, et al. Seedream 3.0 technical report. arXiv preprint
arXiv:2504.11346, 2025.

[21] Dhruba Ghosh, Hannaneh Hajishirzi, and Ludwig Schmidt. Geneval: An object-focused
framework for evaluating text-to-image alignment. In NeurIPS, 2023.

[22] Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian,
Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama
3 herd of models. arXiv preprint arXiv:2407.21783, 2024.

[23] Ishaan Gulrajani and Tatsunori B. Hashimoto. Likelihood-based diffusion language models. In
NeurIPS, 2023.

[24] Moritz Haas, Jin Xu, Volkan Cevher, and Leena Chennuru Vankadara. µp2: Effective sharpness
aware minimization requires layerwise perturbation scaling. In NeurIPS, 2024.

[25] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. In ICCV, pages 1026–1034,
2015.

[26] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. In Advances
in Neural Information Processing Systems, pages 6626–6637, 2017.

[27] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Comput., 9(8):
1735–1780, 1997.

[28] Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu Cui, Xiang Long, Zhi Zheng, Yewei
Fang, Yuxiang Huang, Weilin Zhao, Xinrong Zhang, Zhen Leng Thai, Kai Zhang, Chongyi
Wang, Yuan Yao, Chenyang Zhao, Jie Zhou, Jie Cai, Zhongwu Zhai, Ning Ding, Chao Jia,
Guoyang Zeng, Dahai Li, Zhiyuan Liu, and Maosong Sun. Minicpm: Unveiling the potential of
small language models with scalable training strategies. CoRR, abs/2404.06395, 2024.

[29] Zhongzhan Huang, Pan Zhou, Shuicheng Yan, and Liang Lin. Scalelong: Towards more stable
training of diffusion model via scaling network long skip connection. In NeurIPS, 2023.

[30] Jiarui Jiang, Wei Huang, Miao Zhang, Taiji Suzuki, and Liqiang Nie. Unveil benign overfitting
for transformer in vision: Training dynamics, convergence, and generalization. Advances in
Neural Information Processing Systems, 37:135464–135625, 2024.

12

[31] Keller Jordan, Yuchen Jin, Vlado Boza, You Jiacheng, Franz Cecista, Laker Newhouse, and
Jeremy Bernstein. Muon: An optimizer for hidden layers in neural networks, 2024. URL
https://kellerjordan. github. io/posts/muon, 6, 2024.

[32] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun, editors, ICLR, 2015.

[33] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloé Rolland, Laura Gustafson,
Tete Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and Ross B.
Girshick. Segment anything. In ICCV, pages 3992–4003, 2023.

[34] Tuomas Kynkäänniemi, Tero Karras, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Improved
precision and recall metric for assessing generative models. In Advances in Neural Information
Processing Systems, pages 3929–3938, 2019.

[35] Black Forest Labs. Flux. https://github.com/black-forest-labs/flux, 2024.

[36] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proc. IEEE, 86(11):2278–2324, 1998.

[37] Jaehoon Lee, Samuel S. Schoenholz, Jeffrey Pennington, Ben Adlam, Lechao Xiao, Roman
Novak, and Jascha Sohl-Dickstein. Finite versus infinite neural networks: an empirical study.
In NeurIPS, 2020.

[38] Aitor Lewkowycz, Yasaman Bahri, Ethan Dyer, Jascha Sohl-Dickstein, and Guy Gur-Ari. The
large learning rate phase of deep learning: the catapult mechanism. CoRR, abs/2003.02218,
2020.

[39] Daiqing Li, Aleks Kamko, Ehsan Akhgari, Ali Sabet, Linmiao Xu, and Suhail Doshi. Playground
v2.5: Three insights towards enhancing aesthetic quality in text-to-image generation. CoRR,
abs/2402.17245, 2024.

[40] Hao Li, Shamit Lal, Zhiheng Li, Yusheng Xie, Ying Wang, Yang Zou, Orchid Majumder,
R. Manmatha, Zhuowen Tu, Stefano Ermon, Stefano Soatto, and Ashwin Swaminathan. Efficient
scaling of diffusion transformers for text-to-image generation. CoRR, abs/2412.12391, 2024.

[41] Hao Li, Yang Zou, Ying Wang, Orchid Majumder, Yusheng Xie, R. Manmatha, Ashwin
Swaminathan, Zhuowen Tu, Stefano Ermon, and Stefano Soatto. On the scalability of diffusion-
based text-to-image generation. In CVPR, pages 9400–9409, 2024.

[42] Xiang Li, Yiqun Yao, Xin Jiang, Xuezhi Fang, Xuying Meng, Siqi Fan, Peng Han, Jing Li,
Li Du, Bowen Qin, Zheng Zhang, Aixin Sun, and Yequan Wang. FLM-101B: an open LLM
and how to train it with $100k budget. CoRR, abs/2309.03852, 2023.

[43] Xiang Li, Yiqun Yao, Xin Jiang, Xuezhi Fang, Chao Wang, Xinzhang Liu, Zihan Wang, Yu Zhao,
Xin Wang, Yuyao Huang, Shuangyong Song, Yongxiang Li, Zheng Zhang, Bo Zhao, Aixin Sun,
Yequan Wang, Zhongjiang He, Zhongyuan Wang, Xuelong Li, and Tiejun Huang. Tele-flm
technical report. CoRR, abs/2404.16645, 2024.

[44] Yuanzhi Li, Colin Wei, and Tengyu Ma. Towards explaining the regularization effect of initial
large learning rate in training neural networks. In NeurIPS, pages 11669–11680, 2019.

[45] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James Hays, Pietro Perona, Deva Ramanan,
Piotr Dollár, and C. Lawrence Zitnick. Microsoft COCO: common objects in context. In ECCV,
volume 8693, pages 740–755, 2014.

[46] Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
matching for generative modeling. In ICLR, 2023.

[47] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In ICLR. OpenRe-
view.net, 2019.

[48] Zeyu Lu, Zidong Wang, Di Huang, Chengyue Wu, Xihui Liu, Wanli Ouyang, and Lei Bai. Fit:
Flexible vision transformer for diffusion model. In ICML, 2024.

13

https://github.com/black-forest-labs/flux

[49] Nanye Ma, Mark Goldstein, Michael S. Albergo, Nicholas M. Boffi, Eric Vanden-Eijnden,
and Saining Xie. Sit: Exploring flow and diffusion-based generative models with scalable
interpolant transformers. In ECCV, volume 15135, pages 23–40, 2024.

[50] Charlie Nash, Jacob Menick, Sander Dieleman, and Peter W. Battaglia. Generating images with
sparse representations. In ICML, volume 139, pages 7958–7968. PMLR, 2021.

[51] William Peebles and Saining Xie. Scalable diffusion models with transformers. In ICCV, pages
4172–4182. IEEE, 2023.

[52] Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
synthesis. arXiv preprint arXiv:2307.01952, 2023.

[53] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for
biomedical image segmentation. In MICCAI, volume 9351, pages 234–241, 2015.

[54] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L. Denton, Seyed
Kamyar Seyed Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans,
Jonathan Ho, David J. Fleet, and Mohammad Norouzi. Photorealistic text-to-image diffusion
models with deep language understanding. In NeurIPS, 2022.

[55] Tim Salimans, Ian J. Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. In Advances in Neural Information Processing Systems,
pages 2226–2234, 2016.

[56] Kyle Sargent, Kyle Hsu, Justin Johnson, Li Fei-Fei, and Jiajun Wu. Flow to the mode: Mode-
seeking diffusion autoencoders for state-of-the-art image tokenization. CoRR, abs/2503.11056,
2025.

[57] Yuchuan Tian, Zhijun Tu, Hanting Chen, Jie Hu, Chao Xu, and Yunhe Wang. U-dits: Down-
sample tokens in u-shaped diffusion transformers. In NeurIPS, 2024.

[58] Leena Chennuru Vankadara, Jin Xu, Moritz Haas, and Volkan Cevher. On feature learning in
structured state space models. In NeurIPS, 2024.

[59] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Informa-
tion Processing Systems, pages 5998–6008, 2017.

[60] Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu, Haiming Zhao,
Jianxiao Yang, Jianyuan Zeng, et al. Wan: Open and advanced large-scale video generative
models. arXiv preprint arXiv:2503.20314, 2025.

[61] Rongzhen Wang, Yan Zhang, Chenyu Zheng, Chongxuan Li, and Guoqiang Wu. A theory for
conditional generative modeling on multiple data sources. arXiv preprint arXiv:2502.14583,
2025.

[62] Mitchell Wortsman, Peter J. Liu, Lechao Xiao, Katie E. Everett, Alexander A. Alemi, Ben
Adlam, John D. Co-Reyes, Izzeddin Gur, Abhishek Kumar, Roman Novak, Jeffrey Pennington,
Jascha Sohl-Dickstein, Kelvin Xu, Jaehoon Lee, Justin Gilmer, and Simon Kornblith. Small-
scale proxies for large-scale transformer training instabilities. In ICLR, 2024.

[63] Lechao Xiao. Rethinking conventional wisdom in machine learning: From generalization to
scaling. CoRR, abs/2409.15156, 2024.

[64] Enze Xie, Junsong Chen, Junyu Chen, Han Cai, Haotian Tang, Yujun Lin, Zhekai Zhang,
Muyang Li, Ligeng Zhu, Yao Lu, and Song Han. SANA: efficient high-resolution image
synthesis with linear diffusion transformers. CoRR, abs/2410.10629, 2024.

[65] Greg Yang. Wide feedforward or recurrent neural networks of any architecture are gaussian
processes. In NeurIPS, pages 9947–9960, 2019.

[66] Greg Yang. Tensor programs II: neural tangent kernel for any architecture. CoRR,
abs/2006.14548, 2020.

14

[67] Greg Yang. Tensor programs III: neural matrix laws. CoRR, abs/2009.10685, 2020.

[68] Greg Yang and Edward J. Hu. Tensor programs IV: feature learning in infinite-width neural
networks. In Marina Meila and Tong Zhang, editors, ICML, volume 139, pages 11727–11737.
PMLR, 2021.

[69] Greg Yang and Etai Littwin. Tensor programs iib: Architectural universality of neural tangent
kernel training dynamics. In ICML, volume 139, pages 11762–11772, 2021.

[70] Greg Yang and Etai Littwin. Tensor programs ivb: Adaptive optimization in the infinite-width
limit. CoRR, abs/2308.01814, 2023.

[71] Greg Yang, Edward J. Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi, Nick
Ryder, Jakub Pachocki, Weizhu Chen, and Jianfeng Gao. Tensor programs V: tuning large
neural networks via zero-shot hyperparameter transfer. CoRR, abs/2203.03466, 2022.

[72] Greg Yang, Dingli Yu, Chen Zhu, and Soufiane Hayou. Tensor programs VI: feature learning in
infinite depth neural networks. In ICLR, 2024.

[73] Yuanyang Yin, Yaqi Zhao, Mingwu Zheng, Ke Lin, Jiarong Ou, Rui Chen, Victor Shea-Jay
Huang, Jiahao Wang, Xin Tao, Pengfei Wan, Di Zhang, Baoqun Yin, Wentao Zhang, and Kun
Gai. Towards precise scaling laws for video diffusion transformers. CoRR, abs/2411.17470,
2024.

[74] Sihyun Yu, Sangkyung Kwak, Huiwon Jang, Jongheon Jeong, Jonathan Huang, Jinwoo Shin,
and Saining Xie. Representation alignment for generation: Training diffusion transformers is
easier than you think. CoRR, abs/2410.06940, 2024.

[75] Min Zhao, Guande He, Yixiao Chen, Hongzhou Zhu, Chongxuan Li, and Jun Zhu. Riflex: A free
lunch for length extrapolation in video diffusion transformers. arXiv preprint arXiv:2502.15894,
2025.

[76] Chenyu Zheng, Guoqiang Wu, Fan Bao, Yue Cao, Chongxuan Li, and Jun Zhu. Revisiting
discriminative vs. generative classifiers: Theory and implications. In International conference
on machine learning, pages 42420–42477. PMLR, 2023.

[77] Chenyu Zheng, Guoqiang Wu, and Chongxuan Li. Toward understanding generative data
augmentation. Advances in neural information processing systems, 36:54046–54060, 2023.

[78] Chenyu Zheng, Wei Huang, Rongzhen Wang, Guoqiang Wu, Jun Zhu, and Chongxuan Li.
On mesa-optimization in autoregressively trained transformers: Emergence and capability.
Advances in Neural Information Processing Systems, 37:49081–49129, 2024.

[79] Zangwei Zheng, Xiangyu Peng, Tianji Yang, Chenhui Shen, Shenggui Li, Hongxin Liu, Yukun
Zhou, Tianyi Li, and Yang You. Open-sora: Democratizing efficient video production for all.
arXiv preprint arXiv:2412.20404, 2024.

[80] Yutao Zhu, Kun Zhou, Kelong Mao, Wentong Chen, Yiding Sun, Zhipeng Chen, Qian Cao,
Yihan Wu, Yushuo Chen, Feng Wang, et al. Yulan: An open-source large language model. arXiv
preprint arXiv:2406.19853, 2024.

15

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our abstract and introduction accurately reflect the theoretical contribution in
Section 3.1 and experimental contribution in Section 4 and 5.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See details in Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

16

Justification: Assumption used to simplify the proof can be found in Assumption C.1, and
the completed proof can be found in Appendix C.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We introduce the necessary configurations in Section 4, Section 5 and Ap-
pendix E. We also open-source our code at https://github.com/ML-GSAI/Scaling-Diffusion-
Transformers-muP.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

17

https://github.com/ML-GSAI/Scaling-Diffusion-Transformers-muP
https://github.com/ML-GSAI/Scaling-Diffusion-Transformers-muP

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We also open-source our code at https://github.com/ML-GSAI/Scaling-
Diffusion-Transformers-muP for DiT and PixArt-α experiments. However, the data for the
MMDiT experiments is not available now because it is an internal dataset. We will try to
release it in the future.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We introduce the necessary configurations in Section 4, Section 5 and Ap-
pendix E. We also open-source our code at https://github.com/ML-GSAI/Scaling-Diffusion-
Transformers-muP for DiT and PixArt-α experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Error bars are not reported because it would be too computationally expensive.
expensive
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

18

https://github.com/ML-GSAI/Scaling-Diffusion-Transformers-muP
https://github.com/ML-GSAI/Scaling-Diffusion-Transformers-muP
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://github.com/ML-GSAI/Scaling-Diffusion-Transformers-muP
https://github.com/ML-GSAI/Scaling-Diffusion-Transformers-muP

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See details in Appendix E.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We confirm the research conducted in the paper satisfies the NeurIPS Code of
Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: See details in Section 6.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

19

https://neurips.cc/public/EthicsGuidelines

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: See details in Table 7 in Appendix E.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

20

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [No]
Justification: The internal dataset and 18B models are not available to the public now. We
will try to release them in the future.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: See details in human evaluation in Appendix E.4.5.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our human evaluation process is safe, and the generated images are legal.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

21

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We only use the LLMs to polish our writing.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

22

https://neurips.cc/Conferences/2025/LLM

Contents of Appendix

A Additional Related Work 24

A.1 Scaling Diffusion Transformers . 24

A.2 Applications of µP in AIGC . 24

B Theoretical Background of µP 24

B.1 abc-Parameterization Setup . 24

B.2 NE⊗OR⊤ Program . 24

B.3 µP of Any Representable Archtecture . 25

B.4 Extensions to Other HPs . 26

C Proof of Theorem 3.1 26

C.1 Proof of DiT . 26

C.2 Proof of PixArt-α . 29

C.3 Proof of U-ViT . 30

C.4 Proof of MMDiT . 30

D Additional Details for Section 3 31

E Additional Experimental Details and Results 32

E.1 Assets and Licenses . 32

E.2 Additional Details of DiT Experiments . 33

E.2.1 Evaluation Implementation . 33

E.2.2 Additional Results of Base HP transferability 33

E.2.3 Additional Results of DiT-XL-2 Pretraining 38

E.2.4 Computational Cost . 38

E.3 Additional Details of PixArt-α Experiments . 39

E.3.1 FLOPs ratio of HP Search on Proxy Models 39

E.3.2 Additional Results of Base Learning Rate Search 39

E.3.3 Additional Results of PixArt-α Pretraining 39

E.4 Additional Details of MMDiT Experiments . 40

E.4.1 HPs Tuned by Human Experts . 40

E.4.2 Additional Details of Base HP Search . 40

E.4.3 FLOPs ratio of HP Search on Proxy Models 40

E.4.4 Additional Results of Training Loss Comparison 40

E.4.5 Additional Details of Human Evaluation 40

E.4.6 Additional Results of Visualization Comparison 41

23

Appendix A Additional Related Work

A.1 Scaling Diffusion Transformers

HourglassDiT [11] introduces a hierarchical architecture with downsampling and upsampling in DiT,
reducing computational complexity for high-resolution image generation. SD3 [16] scales MMDiT
to 8B parameters by increasing the backbone depth. Large-DiT [18] incorporates LLaMA’s text
embeddings and scales the DiT backbone, demonstrating that scaling to 7B parameters improves
convergence speed. DiT-MoE [17] further scales diffusion Transformers to 16.5B parameters using a
mixture-of-experts architecture. Li et al. [40] empirically investigate the scaling behavior of various
diffusion Transformers, finding that U-ViT [1] scales more efficiently than cross-attention-based
DiT variants. Yin et al. [73] systematically analyze scaling laws for video diffusion Transformers,
enabling the prediction of optimal hyperparameters (HPs) for any model size and compute budget.
We note that all these works adopt standard parameterization (SP), which prevents the transfer of
optimal HPs across different model sizes, and thus suffer from heavy tuning costs at scale.

A.2 Applications of µP in AIGC

Recently, µP has been successfully applied to the pretraining of large language models (LLMs) [71;
13; 28; 43; 23; 42; 80], reducing HP tuning costs and stabilizing training. For diffusion Transformers,
in addition to AuraFlow v0.1 [9], some works have also employed µP. For example, Gulrajani and
Hashimoto [23] searches for the base learning rate under µP and transfers it to a 1B-parameter
diffusion language model, while Sargent et al. [56] uses µP to tune the HPs of a Transformer-based
diffusion autoencoder, achieving state-of-the-art image tokenization across multiple compression
rates. However, these studies differ fundamentally from ours. First, while they assume the HP
transferability property of original µP (even though it may not hold in their setups), our work provides
rigorous theoretical guarantees for the µP of diffusion Transformers and systematically verifies its
HP transferability. Second, we validate the scalability of µP at up to 18B parameters, significantly
larger than the models used in prior work.

Appendix B Theoretical Background of µP

In this section, we review the theoretical foundations of µP. For simplicity, we mainly focus on the
Adam/AdamW optimizer widely used in practice. Besides, the ϵ in the optimizer is assumed to be
zero, which is very small in practice (e.g., 10−8).

B.1 abc-Parameterization Setup

For completeness, we restate the abc-parameterization from Section 2, which underpins typical
µP theory. The abc-parameterization specifies the multiplier, initial variance, and learning rate for
each weight [68; 71]. Specifically, let n denote the network width, we parameterize each weight as
W = ϕWn−aW W̃ , where the trainable component W̃ is initialized as W̃ij ∼ N (0, σ2

Wn−2bW).
The learning rate for W̃ is parameterized as ηWn−cW . The width-independent quantities ϕW , σW ,
and ηW are referred to as base HPs and can be transferred across different widths.

B.2 NE⊗OR⊤ Program

µP is originally proposed by Tensor Programs [65; 66; 69; 67; 68; 70; 72], which is a theoretical
series mainly developed to express and analyze the infinite-width limits of neural networks both at
initialization and during training. The latest and most general version among them is the NE⊗OR⊤
Program [70], which is formed by inductively generating scalars and vectors, starting from initial
matrices/vectors/scalars (typically the initial weights of the neural network) and applying defined
operations, including vector averaging (Avg), matrix multiplication (MatMul), and nonlinear outer
product transformations (OuterNonlin). We introduce these operators, where n is the model width
tending to be infinite.

24

Table 6: µP for (diffusion) Transformers with Adam/AdamW optimizer. We use purple text to highlight the
differences between µP and standard parameterization (SP) in practice (e.g., Kaiming initialization [25]), and
gray text to indicate the SP settings. We do not contain the scalar weights in the main text because they do not
exist in DiT.

Input weights Hidden weights Output weights Scalar weights

aW 0 0 1 (0) 0
bW 0 1/2 0 (1/2) 0
cW 0 1 (0) 0 0

Avg We can choose a existing vector x ∈ Rn and append to the program a scalar

1

n

n∑
α=1

xα ∈ R.

MatMul We can choose a matrix W ∈ Rn×n and vector x ∈ Rn existing in the program, and append
to the program a vector

Wx ∈ Rn or W⊤x ∈ Rn.

OuterNonlin For any integer k, l ≥ 0, we can aggregate k existing vectors and l existing scalars
to X ∈ Rn×k and c ∈ Rl, respectively. With an integer r ≥ 0 and a pseudo-Lipschitz
function ψ : Rk(r+1)+l → R (e.g., SiLU, GeLU), we append to the program a vector

y ∈ Rn, yα =
1

nr

n∑
β1,...,βr=1

ψ(Xα:;Xβ1:; ...;Xβr:; c
⊤),

where the r + 1 is called the order of ψ.

While the above operators do not directly instruct to transform scalars into scalars, previous work [70]
has proved that this can be done by combining the above operators. This can be formed as follows.
Lemma B.1 (Scalars-to-scalars transformation is representable by the NE⊗OR⊤ Program, Lemma
2.6.2 in [70]). If ψ : Rl → R is a pseudo-Lipschitz function and c are the collected scalars in a
NE⊗OR⊤ program, then ψ(c) ∈ R can be introduced as a new scalar in the program.

B.3 µP of Any Representable Archtecture

The seminal work of Yang and Littwin [70] systematically studies the dynamics of common neural
architectures trained with adaptive optimizers (e.g., Adam [32], AdamW [47]), where the forward
pass of neural network can be expressed as a NE⊗OR⊤ program (e.g., MLPs, CNNs [36], RNNs [27],
standard Transformers [59]). In this setting, Yang and Littwin [70] prove the existence of a unique,
optimal scaling rule—Maximal Update Parametrization (µP)—under which features in each layer
evolve independently of width and at maximal strength. Otherwise, feature evolution in some layers
will either explode or vanish in the infinite-width limit, rendering large-scale pretraining ineffective.

Concretely, µP is implemented by analytically adjusting HPs with model width, typically involving the
weight multiplier, initialization variance, and learning rate considered in abc-parameterization. The µP
formulation of any architecture whose forward pass can be expressed as a NE⊗OR⊤ program follows
the same scaling rules presented in Table 6 (equivalent to Table 1 in the main text). Specifically,
it adjusts the abc-parameterization of each weight according to its type, where the weights are
categorized into four types: input weights, hidden weights, output weights, and scalar weights. The
definitions are as follows: input weights satisfy din = Θ(1) and dout = Θ(n); hidden weights
satisfy din = Θ(n) and dout = Θ(n); output weights satisfy din = Θ(n) and dout = Θ(1); and
scalar weights satisfy din = Θ(1) and dout = Θ(1), where n, din, dout denotes the model width,
fan-in dimension and fan-out dimension, respectively. The µP result is formally summarized in the
following lemma.
Lemma B.2 (µP of representable architecture, Definition 2.9.12 in [70]). If the forward pass of an
architecture can be represented by a NE⊗OR⊤ program, its µP formulation follows the scaling rules
in Table 6 (equivalent to Table 1 in the main text).

25

B.4 Extensions to Other HPs

The µP principle can be extended to other HPs, such as common optimization-related HPs (e.g.,
warm-up iteration). We refer the reader to [71; 70] for a comprehensive discussion. We mainly focus
on the HPs that occur in the main text.

• Gradient clip: The clip value should be held constant with respect to width.
• Warm-up iteration: The warm-up iteration should be held constant with respect to width.
• Weights of different losses (e.g., REPA loss, noise schedule): The weights of different losses

should be held constant with respect to width.
• Weight decay: For coupled weight decay (e.g., Adam [32]), the weight decay value can not

be transferred. For decoupled weight decay (e.g., AdamW [47]), the weight decay value
should be held constant with respect to width.

Appendix C Proof of Theorem 3.1

Elementary notations. We use lightface (e.g., a, A), lowercase boldface (e.g., a), and uppercase
boldface letters (e.g., A) to denote scalars, vectors, and matrices, respectively. For a vector a, we
denote its i-th element as ai. For a matrix A, we use Ak:, A:k and Aij to denote its k-th row, k-th
column and (i, j)-th element, respectively. We define [n] = {1, 2, . . . , n}.
For the reader’s convenience, we restate Theorem 3.1 as follows.
Theorem C.1. The forward passes of mainstream diffusion Transformers (DiT [51], U-ViT [1],
Pixart-α [8], and MMDiT [16]) can be represented within the NE⊗OR⊤ Program. Therefore, their
µP matches the standard µP presented in Table 6 (equivalent to Table 1 in the main text).

Following the standard practice in the literature [68; 70; 72; 24] to simplify the derivation, we adopt
the following assumption in all of our proofs.
Assumption C.1. We assume that constant dimensions (fixed during scaling the width of neural
networks) are 1, which includes data dimension, label dimension, patch size, frequency embedding
size of time embedding, dimension of attention head, and so on. We also assume the width of different
layers is the same n and do not consider bias parameters here.

In principle, the proof technique naturally extends to any finite fixed dimension (≥ 1) and to
hidden layers with different widths (non-uniform infinite-width setting) [65; 70; 24]. We refer the
readers to Section 2.9 in Yang and Littwin [70], which provides a detailed discussion of both these
generalizations and shows how the tensor program framework naturally accommodates them.

C.1 Proof of DiT

Proof. By Lemma B.2, we can prove the theorem by proving the forward pass of DiT can be
represented by the NE⊗OR⊤ Program.

The DiT architecture includes an embedder for the input latent x ∈ R, an embedder for the diffusion
timestep t ∈ R, an embedder for the label y ∈ R, Transformer blocks with adaLN, and a final layer
with adaLN. In the following, we use the NE⊗OR⊤ Program to represent the forward computation of
these modules in sequence.

Embedder for the input latent x. The embedder for the x is a one-layer CNN, which is known to be
representable by the NE⊗OR⊤ Program (e.g., see Program 7 in [65] for general CNNs with pooling).
We write the program for clarity here. In our case, the one-layer CNN’s parameters can be denoted
by wCNN ∈ Rn, and the operation can be implemented by

xembed
α := ψ(wCNN

α ;x), (OuterNonlin)
where ψ(wCNN

α ;x) = wCNN
α x.

Positional embedding. Given a number of patches (1 in our simplified case), the positional em-
bedding is initialized with the sine-cosine version and fixed during the training. We use the xpos to
denote the positional embedding, and adding it to the xembed can be written as

xembed
α := ψ([xembed,xpos]α:), (OuterNonlin)

26

where ψ([xembed,xpos]α:) = xembed
α + xposα . Here, we reuse the notation of xembed of the final

embedding for the input latent x without confusion.

Embedder for the diffusion timestep t. The embedder for the diffusion timestep t is a frequency
embedding (one dimension here) followed by a two-layer MLP. First, for the frequency embedding,
we can represent it as

tfreq := ψ(t). (Lemma B.1)

Second, the MLP is known to be representable by the NE⊗OR⊤ Program (e.g., Program 1 in [65]).
We write it here for completeness. We use w(1) ∈ Rn and W (2) ∈ Rn×n to denote the weights in
the first layer and the second layer of the MLP, respectively. We can derive

t(1)α := ψ1(w
(1)
α ; tfreq), (OuterNonlin)

h(1)α := ψ2(t
(1)
α), (OuterNonlin)

tembed := W (2)h(1), (MatMul)

where ψ1(w
(1)
α ; tfreq) = w

(1)
α tfreq and ψ2(t

(1)
α) = SiLU(t

(1)
α).

Embedder for the label y. Denoting the weights of embedding as wembed ∈ Rn, then its computa-
tion can be written directly as

yembed
α := ψ(wembed

α ; y), (OuterNonlin)

where ψ(wembed
α ; y) = wembed

α y.

Merging the embeddings of t and y. In DiT, we sum the embeddings of t and y as the condition c
for the following calculation, which can be written as

cα := ψ([tembed,yembed]α:), (OuterNonlin)

where ψ([tembed,yembed]α:) = tembed
α + yembed

α .

Transformer block with adaLN. First, the adaLN block maps the condition c to the
gate, shift, and scale values (θattn,βattn,γattn,θmlp,βmlp,γmlp) for attention layer and
MLP layer in the Transformer block. We denote the parameters of the adaLN block by
(W θ−attn,W β−attn,W γ−attn,W θ−mlp,W β−mlp,W γ−mlp), each of them is in Rn×n. Then
the forward pass of adaLN block can be written as

c̃α := ψ(cα), (OuterNonlin)

θattn := W θ−attnc̃, (MatMul)

βattn := W β−attnc̃, (MatMul)

γattn := W γ−attnc̃, (MatMul)

θmlp := W θ−mlpc̃, (MatMul)

βmlp := W β−mlpc̃, (MatMul)

γmlp := W γ−mlpc̃, (MatMul)

where ψ is the SiLU activation.

Now, we denote the input feature of the Transformer block as x ∈ Rn. A layer norm without
learnable parameters first normalizes it, which is also known to be representable by the NE⊗OR⊤
Program (e.g., Program 9 in [65]). We rewrite it in our simplified case.

E[x] :=
1

n

n∑
α=1

xα, (Avg)

x̄2α := ψ1(xα;E[x]), (OuterNonlin)

V[x] :=
1

n

n∑
α=1

x̄2α, (Avg)

xnormα := ψ2(xα; [E[x],V[x]]), (OuterNonlin)

27

where ψ1(xα;E[x]) = (xα − E[x])2, ψ2(xα; [E[x],V[x]]) = (xα − E[x])/
√
V[x] + ϵ.

After that, the normalized feature interacts with the condition information via the output of adaLN
(βattn,γattn), which can be represented as follows.

x̃normα := ψ([xnorm,βattn,γattn]α:), (OuterNonlin)

where ψ([xnorm,βattn,γattn]α:) = γattnα xnormα + βattn
α .

Now, the processed feature x̃norm is put to the multi-head attention layer, which is known to be
representable by the NE⊗OR⊤ Program (e.g., see Program 10 in [65]). We write it for completeness
here. We denote WK ,WQ,W V ∈ Rn×n the attention layer’s key, query, and value matrix, each
row representing a head with dimension 1. The forward pass can be written as follows.

k := WK x̃norm, (MatMul)

q := WQx̃norm, (MatMul)

v := W V x̃norm, (MatMul)

xattnα := ψ([k, q,v]α:), (OuterNonlin)

where ψ([k, q,v]α:) = kαqαvα.

Before discussing the MLP layer, we still have a residual connection and interaction from the gate
value θattn, which can be represented by

hα := ψ([xattn,θattn,x]α:), (OuterNonlin)

where ψ([xattn,θattn,x]α:) = xα + θattnα xattnα .

The remaining part is very similar to the above, which includes the layer norm, interaction with the
outputs of adaLN, the MLP layer, and the residual connection. We write them in sequence for clarity.

For the layer norm, we can write

E[h] :=
1

n

n∑
α=1

hα, (Avg)

h̄2α := ψ1(hα;E[h]), (OuterNonlin)

V[h] :=
1

n

n∑
α=1

h̄2α, (Avg)

hnormα := ψ2(hα; [E[h],V[h]]), (OuterNonlin)

where ψ1(hα;E[h]) = (hα − E[h])2, ψ2(hα; [E[h],V[h]]) = (hα − E[h])/
√
V[h] + ϵ.

For the interaction with scale and shift value from adaLN, we have

h̃normα := ψ([hnorm,βmlp,γmlp]α:), (OuterNonlin)

where ψ([hnorm,βmlp,γmlp]α:) := γmlp
α hnormα + βmlp

α .

For the two-layer MLP in the Transformer block, we use W (1),W (2) ∈ Rn×n to denote the weights
in its first layer and the second layer, respectively. We have

h(1)
α := W (1)h̃norm, (MatMul)

h̃(1)α := ψ(h(1)α), (OuterNonlin)

hmlp := W (2)h̃(1), (MatMul)

where the ψ is the GeLU activation function.

For the final residual connection, it can be represented by

hTblock
α := ψ([hmlp,θmlp,h]α:), (OuterNonlin)

28

where ψ([hmlp,θmlp,h]α:) = hα + θmlp
α hmlp

α .

Final layer with adaLN. The final layer includes the adaLN, layer norm, and a linear projection. We
discuss them in sequence.

The adaLN block has parameters (W β−final,W γ−final) and receive the condition c. Its forward pass
can be written as follows.

c̃α := ψ(cα), (OuterNonlin)

βfinal := W β−finalc̃, (MatMul)

γfinal := W γ−finalc̃, (MatMul)

where ψ is the SiLU activation.

The layer norm layer normalizes the output of the transformer block hTblock, which is the same as the
above layer norm. We omit the derivation here for simplicity. We denote the output of the layer norm
by znorm ∈ Rn and the parameter of the linear projection by wfinal, then the remains calculation can
be derived as

z̃normα := ψ1([z
norm,βfinal,γfinal]α:), (OuterNonlin)

z̃finalα := ψ2([w
final, z̃norm]α:), (OuterNonlin)

zfinal =
1

n

n∑
α=1

z̃finalα , (Avg)

where ψ1([z
norm,βfinal,γfinal]α:) := γfinalα znormα + βfinal

α and ψ2([w
final, z̃norm]α:) = wfinal

α z̃norm.
Therefore, the forward pass from the inputs (x, y, t) to output zfinal can be represented by the
NE⊗OR⊤ Program, which means that The µP of DiT is the same as the standard µP in Table 6. The
proof is completed.

C.2 Proof of PixArt-α

Proof. Since most parts of the PixArt-α are the same as those in DiT, we only discuss the different
modules from DiT for simplicity. These modules are mainly induced from the condition process.

Embedder for the diffusion timestep t. The embedder for the diffusion timestep t not only
outputs tembed but also gate, shift, and scale values based on tembed (named adaLN-single in [8]),
which are shared by the following Transformer block. We denote the additional parameters by
(W θ−tattn,W β−tattn,W γ−tattn,W θ−tmlp,W β−tmlp,W γ−tmlp), each of them is in Rn×n. Then
its forward pass can be written as

t̃α := ψ(tembed
α), (OuterNonlin)

θtattn := W θ−tattnt̃, (MatMul)

βtattn := W β−tattnt̃, (MatMul)

γtattn := W γ−tattnt̃, (MatMul)

θtmlp := W θ−tmlpt̃, (MatMul)

βtmlp := W β−tmlpt̃, (MatMul)

γtmlp := W γ−tmlpt̃, (MatMul)

where ψ is the SiLU activation.

Transformer block with gate-shift-scale table. PixArt-α replaces the adaLN
block in DiT block with the gate-shift-scale table, which parameters are denoted by
θxattn,βxattn,γxattn,θxmlp,βxmlp,γxmlp ∈ Rn. The gate-shift-scale table interacts with
the shared embeddings of t in the following way.

θattnα := ψ([θxattn,θtattn]α:), (OuterNonlin)

βattn
α := ψ([βxattn,βtattn]α:), (OuterNonlin)

29

γattnα := ψ([γxattn,γtattn]α:), (OuterNonlin)

θmlp
α := ψ([θxmlp,θtmlp]α:), (OuterNonlin)

βmlp
α := ψ([βxmlp,βtmlp]α:), (OuterNonlin)

γmlp
α := ψ([γxmlp,γtmlp]α:), (OuterNonlin)

where ψ(a, b) = a+ b. The above outputted gate, shift, and scale values are used in the following
attention layer and MLP layer, just like DiT.

One more difference between the Transformer block of PixArt-α and DiT is the existence of the
additional cross-attention layer, which integrates the output of the self-attention layer h and the
text embedding yembed. We denote its parameters by W cK ,W cQ,W cV ,W proj ∈ Rn×n It can be
written as follows.

k := W cKyembed, (MatMul)

q := W cQh, (MatMul)

v := W cV yembed, (MatMul)
hvα := ψ([k, q,v]α:), (OuterNonlin)

hcross := W projhv, (MatMul)

where ψ([k, q,v]α:) = kαqαvα. The following pre-LN MLP with gate-shift-scale table is a trivial
extension of the pre-LN MLP layer in the DiT block, like what we did above, so we omit them here.

Final layer with shift-scale table. The only difference is that we replace the adaLN block with a
shift-scale table, just like what we did for the attention layer, so we omit the derivation here.

C.3 Proof of U-ViT

Proof. We only discuss the modules that do not occur in DiT and PixArt-α. We find that the only new
operator in U-ViT is the long skip connection, which concatenates the current main branch hm ∈ Rn

and the long skip branch hs ∈ Rn, and then performs a linear projection to reduce the dimension.
We denote the parameters of the linear layer by W = [Wm,W s], where Wm,W s ∈ Rn×n, then
the long skip connection can be represented by

h̃m = Wmhm, (MatMul)

h̃s = W shs, (MatMul)

hα = ψ([h̃m, h̃s]α:), (OuterNonlin)

where ψ([h̃m, h̃s]α:) = h̃mα + h̃sα. Because other operators in U-ViT (CNN embeddings/decoder,
layer norm, attention layer, MLP layer, residual connection) have been studied in DiT, we finish the
proof.

C.4 Proof of MMDiT

Proof. For simplicity, we only discuss the modules that do not occur in the above models. The
new module that emerges in the MMDiT is the joint attention with the QK-Norm for the latent
feature x and text condition c. For the latent feature, we denote the key/query/value parameters by
WKx,WQx,W V x ∈ Rn×n, the parameters of QK-norm by γKx,γQx ∈ Rn, and the parameters
of linear projection by WOx ∈ Rn×n. We can define the similar parameters for the text condition c
as WKc,WQc,W V c,γKc,γQc,WOc. The forward pass of the joint attention layer can be written
as follows.

kx := WKxx, (MatMul)

qx := WQxx, (MatMul)

vx := W V xx, (MatMul)

kc := WKcc, (MatMul)

30

qc := WQcc, (MatMul)

vc := W V cc, (MatMul)

kxnormα := ψ1([k
x,γKx]α:), (OuterNonlin)

qxnormα := ψ1([q
x,γQx]α:), (OuterNonlin)

kcnormα := ψ1([k
c,γKc]α:), (OuterNonlin)

qcnormα := ψ1([q
c,γQc]α:), (OuterNonlin)

ṽx := ψ2([q
xnorm,kxnorm,vx,kcnorm,vc]α:), (OuterNonlin)

ṽc := ψ2([q
cnorm,kxnorm,vx,kcnorm,vc]α:), (OuterNonlin)

vxout := WOxṽx, (MatMul)

vcout := WOcṽc, (MatMul)

where ψ1(a, b) = ab/|a| and ψ2(a, b, c, d, e) = abc+ ade. The proof is completed.

Appendix D Additional Details for Section 3

In this section, we summarize the methodology for verifying base HP transferability across widths,
batch sizes, and training steps in Algorithms 1, 2, and 3, respectively. We also present the µTransfer
algorithm [71] in Algorithm 4 for the completeness.

Algorithm 1 Validate the base HP Transferability of µP across widths

1: Input: set of widths {ni}Pi=1, set of base HP to validate {λj}Rj=1, other fixed base HPs θ, batch
size B, training iteration T , base width nbase

2: Output: whether model with µP enjoy base HP transferability across widths
3: for i = 1 to P do
4: for j = 1 to R do
5: λij ← µP(λj , nbase, ni) ▷ actual HP for ni-width model
6: θi ← µP(θ, nbase, ni) ▷ actual HP for ni-width model
7: Mij ← train ni-width model with b.s. B, iter. T , HPs λij ,θi
8: sij ← evaluate score forMij

9: end for
10: λ∗i ← argmaxλj

({sij}Rj=1) ▷ Obtain the optimal base HP for ni-width model
11: end for
12: return whether λ∗i s are approximately same

Algorithm 2 Validate the base HP Transferability of µP across batch sizes

1: Input: set of batch sizes {Bi}Pi=1, set of base HP to validate {λj}Rj=1, other fixed base HPs θ,
width n, training iteration T , base width nbase

2: Output: whether model with µP enjoy base HP transferability across batch sizes
3: for i = 1 to P do
4: for j = 1 to R do
5: λij ← µP(λj , nbase, n) ▷ actual HP for n-width model
6: θi ← µP(θ, nbase, n) ▷ actual HP for n-width model
7: Mij ← train n-width model with b.s. Bi, iter. T , HPs λij ,θi
8: sij ← evaluate score forMij

9: end for
10: λ∗i ← argmaxλj

({sij}Rj=1) ▷ Obtain the optimal base HP for n-width model
11: end for
12: return whether λ∗i s are approximately same

31

Algorithm 3 Validate the base HP Transferability of µP across training steps

1: Input: set of training steps {Ti}Pi=1, set of base HP to validate {λj}Rj=1, other fixed base HPs θ,
batch size B, width n, base width nbase

2: Output: whether model with µP enjoy base HP transferability across training steps
3: for i = 1 to P do
4: for j = 1 to R do
5: λij ← µP(λj , nbase, n) ▷ actual HP for n-width model
6: θi ← µP(θ, nbase, n) ▷ actual HP for n-width model
7: Mij ← train n-width model with b.s. B, iter. Ti, HPs λij ,θi
8: sij ← evaluate score forMij

9: end for
10: λ∗i ← argmaxλj

({sij}Rj=1) ▷ Obtain the optimal base HP for n-width model
11: end for
12: return whether λ∗i s are approximately same

Algorithm 4 µTransfer (Algorithm 1 in [71])

1: Input: base/proxy/target width nbase/nproxy/ntarget, proxy/target batch size Bproxy/Btarget,
proxy/target training steps Tproxy/Ttarget, set of base HPs to search {θi}Rj=1

2: Output: Trained target modelMtarget

3: for j = 1 to R do
4: θproxy,j ← µP(θj , nbase, nproxy) ▷ actual HPs of proxy model
5: Mj ← train nproxy-width model with batch size Bproxy, training steps Tproxy, HPs θproxy,j
6: sj ← evaluate score forMj

7: end for
8: θ∗ ← argmaxθj

({sj}Rj=1)

9: θtarget ← µP(θ∗, nbase, ntarget) ▷ actual HPs of target model
10: Mtarget ← train ntarget-width model with batch size Btarget, training steps Ttarget, HPs θtarget
11: returnMtarget

Appendix E Additional Experimental Details and Results

In this section, we present the additional experimental details and results which are neglected by the
main text.

E.1 Assets and Licenses

All used assets (datasets and codes) and their licenses are listed in Table 7.

Table 7: The used assets and licenses.

URL Citation License

https://www.image-net.org/ [12] non-commercial
https://ai.meta.com/datasets/segment-anything/ [33] Apache-2.0
http://images.cocodataset.org/zips/val2014.zip [45] Commons Attribution 4.0

https://huggingface.co/datasets/playgroundai/MJHQ-30K [39] -
https://github.com/djghosh13/geneval [21] MIT

https://github.com/facebookresearch/DiT [51] Link
https://github.com/openai/guided-diffusion [14] MIT

https://github.com/PixArt-alpha/PixArt-alpha [8] Apache-2.0
https://github.com/microsoft/mup [71] MIT

32

https://github.com/facebookresearch/DiT/blob/main/LICENSE.txt

E.2 Additional Details of DiT Experiments

E.2.1 Evaluation Implementation

Following the Table 4 in original DiT paper [51], we use the codebase of ADM [14] to obtain the
results of FID, sFID, IS, precision, and recall without cfg.

E.2.2 Additional Results of Base HP transferability

Base learning rate. Comprehensive results of base learning rate transferability across widths, batch
sizes, and training steps are presented in Tables 8, 9, and 10, respectively.

Table 8: DiT-µP enjoys base learning rate transferability across widths. We use a batch size of 256 and
200K training iterations. NaN data points indicate training instability, where the loss explodes. Under µP, the
base learning rate can be transferred across model widths.

Width log2(lr) FID-50K ↓ sFID-50K ↓ Inception Score ↑ Precision ↑ Recall ↑

144 -9 NaN NaN NaN NaN NaN
144 -10 88.89 16.19 14.24 0.30 0.437
144 -11 91.88 16.79 13.73 0.29 0.431
144 -12 93.61 17.94 13.41 0.28 0.406
144 -13 102.99 21.26 11.93 0.25 0.366

288 -9 NaN NaN NaN NaN NaN
288 -10 61.65 9.06 20.60 0.41 0.563
288 -11 63.85 10.32 20.59 0.40 0.561
288 -12 65.99 10.79 19.73 0.38 0.544
288 -13 79.17 13.04 15.92 0.33 0.503

576 -9 NaN NaN NaN NaN NaN
576 -10 43.73 6.65 28.82 0.51 0.611
576 -11 45.00 7.22 28.61 0.50 0.606
576 -12 50.30 7.87 25.67 0.47 0.602
576 -13 66.20 9.67 18.91 0.39 0.562

Base output multiplier. Likewise that for the base learning rate, we also sweep the base multiplier
of the output weight over the set {2−6, 2−4, 2−2, 20, 22, 24, 26} across various widths, batch sizes
and training steps. FID-50K results are shown in Figure 7, and comprehensive results for other
metrics are presented in Tables 11, 12, and 13, respectively. As presented in Figure 7, the optimal
base output multiplier is approximately transferable across different widths, batch sizes, and training
iterations.

(a) HP transfer across widths. (b) HP transfer across batch sizes. (c) HP transfer across iterations.

Figure 7: DiT-µP enjoys base HP transferability. Unless otherwise specified, we use a model width of 288, a
batch size of 256, and a training iteration of 200K. Missing data points indicate training instability. Under µP,
the base output multiplier can be transferred across model widths, batch sizes, and steps.

33

Table 9: DiT-µP enjoys base learning rate transferability across batch sizes. We use a width of 288 and
a training iteration of 200K. NaN data points indicate training instability, where the loss explodes. We bold
the best result and underline the second-best result. Under µP, the base learning rate can be (approximately)
transferred across batch sizes.

Batch size log2(lr) FID-50K ↓ sFID-50K ↓ Inception Score ↑ Precision ↑ Recall ↑

128 -9 NaN NaN NaN NaN NaN
128 -10 74.54 10.32 16.70 0.358 0.513
128 -11 73.47 10.33 16.83 0.366 0.523
128 -12 76.98 12.12 16.50 0.343 0.498
128 -13 88.79 14.63 14.10 0.293 0.453

256 -9 NaN NaN NaN NaN NaN
256 -10 61.65 9.06 20.60 0.407 0.563
256 -11 63.85 10.32 20.59 0.398 0.561
256 -12 65.99 10.79 19.73 0.383 0.544
256 -13 79.17 13.04 15.92 0.327 0.503

512 -9 53.90 8.52 24.18 0.452 0.585
512 -10 53.72 9.27 24.66 0.448 0.592
512 -11 54.36 9.33 24.96 0.442 0.587
512 -12 57.60 10.13 23.37 0.420 0.577
512 -13 72.09 12.15 17.81 0.356 0.537

Table 10: DiT-µP enjoys base learning rate transferability across training steps. We use a width of 288 and
a batch size of 256. NaN data points indicate training instability, where the loss explodes. Under µP, the base
learning rate can be transferred across training steps.

Iteration log2(lr) FID-50K ↓ sFID-50K ↓ Inception Score ↑ Precision ↑ Recall ↑

100K -9 74.40 11.37 16.75 0.363 0.504
100K -10 75.35 10.67 16.61 0.363 0.514
100K -11 78.57 11.69 16.17 0.338 0.495
100K -12 84.74 12.97 14.78 0.315 0.474
100K -13 102.79 18.37 11.74 0.243 0.363

150K -9 70.44 10.07 18.03 0.396 0.534
150K -10 67.48 9.45 18.83 0.387 0.553
150K -11 69.61 10.51 18.45 0.380 0.533
150K -12 72.72 11.33 17.52 0.357 0.515
150K -13 88.05 14.07 14.34 0.296 0.455

200K -9 NaN NaN NaN NaN NaN
200K -10 61.65 9.06 20.60 0.407 0.563
200K -11 63.85 10.32 20.59 0.398 0.561
200K -12 65.99 10.79 19.73 0.383 0.544
200K -13 79.17 13.04 15.92 0.327 0.503

34

Table 11: DiT-µP enjoys base output multiplier transferability across widths. We use a batch size of 256
and a training iteration of 200K. NaN data points indicate training instability, where the loss explodes. Under µP,
the base output multiplier can be (approximately) transferred across model widths.

Width log2(ϕout) FID-50K ↓ sFID-50K ↓ Inception Score ↑ Precision ↑ Recall ↑

144 -6 168.81 62.70 6.30 0.157 0.061
144 -4 119.38 27.05 10.77 0.185 0.300
144 -2 104.26 15.65 12.17 0.262 0.419
144 0 88.89 16.19 14.24 0.297 0.437
144 2 89.01 16.83 13.97 0.294 0.433
144 4 88.68 15.71 14.19 0.303 0.441
144 6 100.03 19.33 12.48 0.262 0.386

288 -6 134.82 41.52 9.44 0.184 0.186
288 -4 63.93 8.98 20.31 0.395 0.552
288 -2 63.65 9.15 20.23 0.401 0.563
288 0 61.65 9.06 20.60 0.407 0.563
288 2 64.64 9.44 19.30 0.398 0.555
288 4 59.85 9.39 20.95 0.415 0.566
288 6 NaN NaN NaN NaN NaN

576 -6 167.14 69.32 5.04 0.130 0.051
576 -4 44.82 6.66 29.47 0.510 0.592
576 -2 42.75 6.68 30.73 0.526 0.600
576 0 43.73 6.65 28.82 0.509 0.611
576 2 41.93 6.68 29.45 0.537 0.600
576 4 46.87 6.74 26.78 0.501 0.594
576 6 52.93 7.30 24.07 0.455 0.584

35

Table 12: DiT-µP enjoys base output multiplier transferability across batch sizes. We use a width of 288
and a training iteration of 200K. NaN data points indicate training instability, where the loss explodes. Under µP,
the base output multiplier can be (approximately) transferred across batch sizes.

Batch Size log2(ϕout) FID-50K ↓ sFID-50K ↓ Inception Score ↑ Precision ↑ Recall ↑

128 -6 148.06 51.95 7.76 0.170 0.126
128 -4 74.74 10.21 17.23 0.357 0.513
128 -2 77.62 11.55 16.20 0.346 0.511
128 0 74.54 10.32 16.70 0.358 0.513
128 2 73.55 10.24 16.68 0.365 0.514
128 4 73.19 9.93 16.93 0.375 0.514
128 6 83.48 11.79 14.92 0.323 0.464

256 -6 134.82 41.52 9.44 0.184 0.186
256 -4 63.93 8.98 20.31 0.395 0.552
256 -2 63.65 9.15 20.23 0.401 0.563
256 0 61.65 9.06 20.60 0.407 0.563
256 2 64.64 9.44 19.30 0.398 0.555
256 4 59.85 9.39 20.95 0.415 0.566
256 6 NaN NaN NaN NaN NaN

512 -6 82.00 14.83 16.13 0.325 0.468
512 -4 53.99 8.83 24.49 0.447 0.585
512 -2 53.85 9.11 24.88 0.443 0.584
512 0 53.72 9.27 24.66 0.448 0.592
512 2 54.62 9.14 23.97 0.449 0.593
512 4 55.68 8.49 23.29 0.441 0.597
512 6 NaN NaN NaN NaN NaN

36

Table 13: DiT-µP enjoys base output multiplier transferability across training steps. We use a width of 288
and a batch size of 256. NaN data points indicate training instability, where the loss explodes. Under µP, the
base output multiplier can be (approximately) transferred across training steps.

Iteration log2(ϕout) FID-50K ↓ sFID-50K ↓ Inception Score ↑ Precision ↑ Recall ↑

100K -6 194.59 87.88 4.38 0.084 0.016
100K -4 75.87 10.28 16.64 0.350 0.508
100K -2 72.09 9.43 17.15 0.352 0.523
100K 0 75.35 10.67 16.61 0.363 0.514
100K 2 75.43 9.87 16.57 0.361 0.529
100K 4 72.26 9.47 17.08 0.378 0.514
100K 6 NaN NaN NaN NaN NaN

150K -6 150.86 48.06 8.17 0.163 0.143
150K -4 68.94 9.26 18.57 0.377 0.541
150K -2 68.24 9.77 18.78 0.386 0.535
150K 0 67.48 9.45 18.83 0.387 0.553
150K 2 68.67 9.29 17.96 0.383 0.545
150K 4 67.32 9.08 18.17 0.397 0.539
150K 6 NaN NaN NaN NaN NaN

200K -6 134.82 41.52 9.44 0.184 0.186
200K -4 63.93 8.98 20.31 0.395 0.552
200K -2 63.65 9.15 20.23 0.401 0.563
200K 0 61.65 9.06 20.60 0.407 0.563
200K 2 64.64 9.44 19.30 0.398 0.555
200K 4 59.85 9.39 20.95 0.415 0.566
200K 6 NaN NaN NaN NaN NaN

37

E.2.3 Additional Results of DiT-XL-2 Pretraining

Complete benchmark results of DiT-XL-2 and DiT-XL-2-µP throughout the training are provided in
Table 14. DiT-XL-2-µP, using a base learning rate transferred from small proxy models, consistently
outperforms the original DiT-XL-2 throughout the training process.

Table 14: Benchmark results of DiT-XL-2 and DiT-XL-2-µP without classifier-free guidance. Both models
are trained on the ImageNet 256×256 dataset. Results with * are reported in the original paper [51], and others
are reproduced by us. DiT-XL-2-µP, using a base learning rate transferred from small proxy models, consistently
outperforms the original baseline throughout the training process.

Iteration Method FID-50K ↓ sFID-50K ↓ Inception Score ↑ Precision ↑ Recall ↑

0.1M
DiT-XL-2 [51] 48.17 7.33 26.61 0.49 0.595
DiT-XL-2-µP 44.15 6.72 28.54 0.54 0.575

0.4M
DiT-XL-2 [51] 20.38 6.37 65.02 0.63 0.635
DiT-XL-2-µP 18.63 5.49 67.74 0.66 0.606

0.8M
DiT-XL-2 [51] 14.73 6.37 85.03 0.66 0.638
DiT-XL-2-µP 12.91 5.48 89.46 0.68 0.634

1.2M
DiT-XL-2 [51] 12.78 6.41 95.13 0.66 0.644
DiT-XL-2-µP 11.25 5.56 99.89 0.68 0.638

1.6M
DiT-XL-2 [51] 11.79 6.49 100.88 0.67 0.651
DiT-XL-2-µP 10.16 5.59 107.58 0.69 0.649

2M
DiT-XL-2 [51] 10.97 6.45 105.86 0.67 0.657
DiT-XL-2-µP 9.72 5.62 111.23 0.69 0.651

2.4M DiT-XL-2 [51] 10.75 6.59 108.23 0.67 0.665
7M DiT-XL-2 [51] 9.62* - - - -

2.4M DiT-XL-2-µP 9.44 5.66 112.98 0.68 0.653

E.2.4 Computational Cost

It takes 104 (13×8) A100-80GB hours to train the DiT-µP with a width of 288, a batch size of
256, and a train iteration of 200K steps. The computational cost of other DiT-µP proxy models can
be inferred based on this situation. It takes around 224 (32×7) A100-80GB days to reproduce the
pretraining of DiT-XL-2-µP.

38

E.3 Additional Details of PixArt-α Experiments

E.3.1 FLOPs ratio of HP Search on Proxy Models

Based on Equation (1) in the main text, we can derive that

ratio =
RSproxyEproxy

StargetEtarget
=

5× 0.04B × 5

0.61B × 30
≈ 5.5%.

Therefore, the HP tuning requires only 5.5% FLOPs of a single training run for PixArt-α.

E.3.2 Additional Results of Base Learning Rate Search

We present the detailed GenEval results [21] of different base learning rates in Table 15. Overall, the
base learning rate 2−10 achieves the best GenEval performance.

Table 15: GenEval results of base learning rate search on PixArt-α-µP proxy models. 0.04B models with
different learning rates are trained for 5 epochs on the SAM dataset. Overall, the base learning rate 2−10 achieves
the best GenEval performance.

log2(lr) Overall ↑ Single Two Counting Colors Position Color Attribution

-9
-10 0.083 30.63 4.04 2.5 12.23 0.5 0
-11 0.078 29.38 5.05 1.25 9.57 1.5 0.25
-12 0.030 12.81 0 0.31 4.79 0.25 0
-13 0.051 20.62 3.54 0.31 5.59 0.25 0

E.3.3 Additional Results of PixArt-α Pretraining

We present the complete comparison between PixArt-α and PixArt-α-µP throughout training in
Table 16. The results demonstrate that PixArt-α-µP consistently outperforms PixArt-α across all
evaluation metrics during training.

Table 16: Benchmark comparison between PixArt-α-µP and PixArt-α. Both models are trained on the SAM
dataset for 30 epochs. PixArt-α-µP with transferred base learning rate from the optimal 0.04B proxy model
consistently outperforms the original baseline throughout the training process.

Epoch Method GenEval ↑ MJHQ MS-COCO
FID-30K ↓ CLIP Score ↑ FID-30K ↓ CLIP Score ↑

6
PixArt-α [8] 0.14 43.19 25.16 42.25 27.02

PixArt-α-µP (Ours) 0.17 34.24 25.99 32.62 28.16

10
PixArt-α [8] 0.19 38.36 25.78 34.58 28.12

PixArt-α-µP (Ours) 0.20 33.35 26.25 29.68 28.87

16
PixArt-α [8] 0.22 36.19 26.21 33.71 28.35

PixArt-α-µP (Ours) 0.23 32.28 26.67 28.03 29.45

20
PixArt-α [8] 0.20 35.68 26.54 30.13 28.81
PixArt-α-µP 0.23 33.42 26.83 29.05 29.53

26
PixArt-α [8] 0.18 38.39 26.44 34.98 29.17

PixArt-α-µP (Ours) 0.28 32.34 27.17 27.59 29.83

30
PixArt-α [8] 0.15 42.71 26.25 37.61 28.91

PixArt-α-µP (Ours) 0.26 29.96 27.13 25.84 29.58

39

E.4 Additional Details of MMDiT Experiments

E.4.1 HPs Tuned by Human Experts

Algorithmic experts take roughly 5 times the cost of full pretraining to tune HPs based on their
experience. The best HPs are a learning rate of 2E-4, a gradient clip of 0.1, a REPA loss weight of
0.5 and a warm-up iteration of 1K.

E.4.2 Additional Details of Base HP Search

Based on the optimal base HPs searched from 80 trials trained for 30K steps, we further evaluate the
HP transferability across iterations. We conducted an additional 5 proxy training runs (100K steps
each) using the searched optimal HPs and five different base learning rates, as detailed in Table 17.

Table 17: Iteration of 30K is enough for proxy task. The base learning rate of 2.5E-4 is optimal when proxy
models are trained for 100K steps, consistent with the results observed at 30K steps.

Base learning rate 1E-4 2E-4 2.5E-4 4E-4 8E-4

Training loss 0.185028 0.184505 0.184423 0.184436 0.185562

E.4.3 FLOPs ratio of HP Search on Proxy Models

Based on Equation (1) in the main text, we can derive the ratio of tuning cost to single pretraining
cost as

ratio =
RSproxyEproxy

StargetEtarget
=

80× 0.18B × 30K + 5× 0.18B × 100K

18B × 200K
= 14.5%.

Besides, as algorithmic experts take roughly 5 times the cost of full pretraining, the ratio of µP tuning
cost to standard human tuning cost is approximately 3%.

E.4.4 Additional Results of Training Loss Comparison

We present the complete comparison between the training loss of MMDiT-18B and MMDiT-µP-18B
in Figure 8. MMDiT-µP-18B achieves consistently lower training loss than the baseline after 15K
steps, and the advantage is gradually increasing.

Figure 8: Comparision between training loss. We present the training loss of MMDiT-µP-18B minus that of
MMDiT-18B. The training loss gap less than 0 means that MMDiT-µP-18B is better. MMDiT-µP-18B achieves
consistently lower training loss than the baseline after 15K steps, and the advantage is gradually expanding.

E.4.5 Additional Details of Human Evaluation

In this section, we provide the details about the user study in Section 5.2. To evaluate the text-image
alignment, we created an internal benchmark comprising 150 prompts, where each prompt includes
an average of five binary alignment checks (yes or no), covering a wide range of concepts such
as nouns, verbs, adjectives (e.g., size, color, style), and relational terms (e.g., spatial relationships,
size comparisons). Ten human experts conducted the evaluation, with each prompt generating three

40

images, resulting in a total of 22,500 alignment tests. The final score is computed as the average
correctness across all test points. We present two examples in Figure 9.

Alignment EvaluationImagePrompt

1. Wine glass:✅
2. One (wine glass):✅
3. Bottles of wine:✅
4. Two (bottles of wine):✅
5. Cans of beer:✅
6. Three (cans of beer):❌

One wine glass, two bottles of
wine, three cans of beer

1. Sydney Opera House: ✅
2. Eiffel tower: ✅
3. Right: ✅
4. Mount Everest: ✅
5. Rising above:✅

The Sydney Opera House with the
Eiffel tower sitting on the right,
and Mount Everest rising above

Figure 9: Examples of text-image alignment test evaluated by human. Ten human experts conducted the
evaluation, with each prompt containing an average of five test points and generating three images, resulting in
22,500 alignment test points. The final score is computed as the average correctness across all test points.

E.4.6 Additional Results of Visualization Comparison

In this section, we provide visual comparisons between MMDiT-µP-18B and MMDiT-18B baseline
in Figure 10.

41

The word 'START' a white rabbit in blue jogging clothes,
a turtle wearing a red tank top

A huge whale soars through the
clouds, with a colorful unicorn

standing on its back, and a little girl
riding the unicorn

Horses are pulling a carriage on the
lunar surface. The background is the

Statue of Liberty and the Great
Pyramid. The Earth and two

spaceships can be seen in the sky

Seen from above the sea surface, a
girl in a swimsuit is diving

underwater with a group of whales
circling around her, in a long shot,

cinematic, realistic style

A tall terracotta warrior wielding a
spear is confronting a Western
knight in metallic armor, both

holding their weapons. In between
them, a modern person stands with

arms outstretched, trying to mediate.

Baseline 𝜇P Baseline 𝜇P

Figure 10: Visual comparison between MMDiT-µP-18B and MMDiT-18B baseline. The configurations for
generating images (e.g., random seed, cfg value) of two models are the same. MMDiT-µP-18B shows better
text-image alignment than the baseline model.

42

	Additional Related Work
	Scaling Diffusion Transformers
	Applications of P in AIGC

	Theoretical Background of P
	abc-Parameterization Setup
	NexorT Program
	P of Any Representable Archtecture
	Extensions to Other HPs

	Proof of Theorem 3.1
	Proof of DiT
	Proof of PixArt-
	Proof of U-ViT
	Proof of MMDiT

	Additional Details for Section 3
	Additional Experimental Details and Results
	Assets and Licenses
	Additional Details of DiT Experiments
	Evaluation Implementation
	Additional Results of Base HP transferability
	Additional Results of DiT-XL-2 Pretraining
	Computational Cost

	Additional Details of PixArt- Experiments
	FLOPs ratio of HP Search on Proxy Models
	Additional Results of Base Learning Rate Search
	Additional Results of PixArt- Pretraining

	Additional Details of MMDiT Experiments
	HPs Tuned by Human Experts
	Additional Details of Base HP Search
	FLOPs ratio of HP Search on Proxy Models
	Additional Results of Training Loss Comparison
	Additional Details of Human Evaluation
	Additional Results of Visualization Comparison

