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ABSTRACT

A primary function of back-propagation is to compute both the gradient of hid-
den representations and parameters for optimization with gradient descent. Train-
ing large models requires high computational costs due to their vast parame-
ter sizes. While Parameter-Efficient Fine-Tuning (PEFT) methods aim to train
smaller auxiliary models to save computational space, they still present computa-
tional overheads, especially in Fine-Tuning as a Service (FTaaS) for numerous
users. We introduce Collaborative Adaptation (ColA) with Gradient Learning
(GL), a parameter-free, model-agnostic fine-tuning approach that decouples the
computation of the gradient of hidden representations and parameters. In compar-
ison to PEFT methods, ColA facilitates more cost-effective FTaaS by offloading
the computation of the gradient to low-cost devices. We also provide a theoretical
analysis of ColA and experimentally demonstrate that ColA can perform on par
or better than existing PEFT methods on various benchmarks.

1 INTRODUCTION

Transfer learning with pretrained foundation models plays a crucial role in deep learning applica-
tions such as natural language processing and computer vision. Adapting these models to specific
tasks via fine-tuning has become a prevalent paradigm (Peters et al., 2018; Fedus et al., 2022; Devlin
et al., 2018). However, full Fine-Tuning (FT), which modifies all model parameters, becomes com-
putationally prohibitive because each data task requires a unique set of fine-tuned parameters. The
size of recent deep models has dramatically increased, ranging from hundreds of millions (Radford
et al., 2019; Lewis et al., 2019) to hundreds of billions (Brown et al., 2020; Muennighoff et al.,
2022) or even trillions (Fedus et al., 2022) of parameters. As these models continue to expand, de-
veloping efficient methods for adaptation and deployment becomes imperative. In response to these
challenges, Parameter-Efficient Fine-Tuning (PEFT) has been introduced (Houlsby et al., 2019; Za-
ken et al., 2021; Li & Liang, 2021; Hu et al., 2021; He et al., 2021). Specifically, PEFT methods
update only a small number of free parameters, with the amount less than 1% of the original model
parameters, while keeping the pretrained parameters frozen. These methods can achieve comparable
performance to full FT on various tasks and significantly reduce the computational cost (Hu et al.,
2021; He et al., 2021).

In an era where personalized models are increasingly in demand, we aim to develop a system to
provide Fine-Tuning as a Service (FTaaS) for numerous users. However, existing PEFT methods in-
troduce significant computational overhead because each user would require a separate set of train-
able parameters and their corresponding gradient for fine-tuning with gradient descent (Dettmers
et al., 2023). Due to the constraints of computational space in edge devices, handling these extra
parameters becomes challenging, especially when offering FTaaS to a large number of users. In this
work, we introduce Collaborative Adaptation (ColA) with Gradient Learning (GL), a parameter-free
and model-agnostic fine-tuning method that decouples the computation of the gradient of hidden
representations and parameters. Our proposed method offers a more cost-efficient FTaaS system
compared with PEFT methods, enhancing collaboration between the central server and local users.
This efficiency improvement is achieved by offloading the computation of the parameter gradient to
lower-cost devices, thereby conserving computational resources.

Our contributions are threefold:
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* We introduce Gradient Learning (GL), a new learning framework based on functional gra-
dient descent, specifically designed to decouple the computation of the gradient of hidden
representations and parameters. A theoretical analysis of GL is provided, showcasing its
equivalence to the classical gradient descent method.

* We conceptualize Fine-Tuning as a Service (FTaaS) and propose Collaborative Adaptation
(ColA) with GL as a cost-effective solution for FTaaS by offloading the computation of

the gradient to low-cost devices. ENNHIZENNEIPAAMCISTAGHEINE (ECHIGuEIoMuiiies

* Through comprehensive experiments on diverse benchmarks, we demonstrate that ColA

consistently matches or outperforms existing PEFT methods in performance. |WelConauet
We also
provide a theoretical analysis of parameter merging, present empirical results underscoring
the benefits of user collaboration, and conduct ablation studies.

2 RELATED WORKS

Parameter-Efficient Fine-Tuning (PEFT) PEFT methods aim to fine-tune large pretrained mod-
els to downstream tasks. To achieve computational efficiency, they freeze the parameters of the
pretrained network while fine-tuning a small set of tunable parameters. Previous works propose
to insert Adapter layers between existing layers in the pretrained network (Rebuffi et al., 2017;
Houlsby et al., 2019). However, this sequential nature can lead to inference latency, particularly
with small batch sizes, as the Adapter layers have to be processed sequentially and the extra compu-
tation cannot be bypassed directly (Hu et al., 2021). In contrast, Prefix Tuning (Li & Liang, 2021)
and Low-Rank Adaptation (LoRA) (Hu et al., 2021) offer parallel computations for inference. Prefix
Tuning prepends a sequence of continuous vectors, referred to as the “prefix”, to the input or hidden
layers. This prefix can be seen as the tunable instruction prompting applied to the word embeddings.
Nevertheless, it has been noted that Prefix Tuning suffers from optimization difficulty and lack of
stability (Li & Liang, 2021; Hu et al., 2021). LoRA (Hu et al., 2021) introduces two trainable low-
rank matrices to reparameterize the updates of pretrained weight matrices in downstream tasks. This
approach avoids additional inference computation by merging the fine-tuned matrices together with
the frozen pretrained weights. A unified framework of PEFT including Adapter (Houlsby et al.,
2019), Prefix Tuning (Li & Liang, 2021), and LoRA (Hu et al., 2021) has been proposed by He et al.
(2021). Specifically, it shows an alternative form of Prefix Tuning, revealing its close relationship
with Adapter tuning, and then it conceptualizes PEFT as the process of learning a modification of
hidden representations. Recent advances such as few-shot (Liu et al., 2022) and quantized (Dettmers
et al., 2023) fine-tuning methods are proposed to further enhance the computational efficiency. Ex-
isting PEFT methods primarily focus on modeling various additional tunable structures to reduce
computational cost on fine-tuning. In contrast, we propose a computationally efficient learning al-
gorithm for fine-tuning large models for downstream tasks, which is, to our best knowledge, the first
work on this focus.

Functional gradient descent Functional gradient descent generalizes gradient descent by opti-
mizing a loss function within a function space rather than a parameter space. Mason et al. (1999)
introduces an alternative view of boosting algorithms as iterative functional gradient descent algo-
rithms, which has led to the recent advanced development of Gradient Boosting (GB) (Friedman,
2001) in the area of deep learning (Nitanda & Suzuki, 2018; Huang et al., 2018; Diao et al., 2022).
TrAdaBoost (Dai et al., 2007) extends AdaBoost (Freund & Schapire, 1995) to transfer learning
with classical machine learning models. It utilizes the boosting algorithm to learn a new classifier
to adapt changes in the training data. Our work is primarily inspired by Gradient Assisted Learning
(GAL) (Diao et al., 2022), which uses GB within a decentralized collaborative learning framework.
It promotes collaboration in supervised learning without sharing local data, models, or objective
functions. Existing functional gradient descent methods like GB and GAL train a distinct model for
each non-stochastic boosting iteration, utilizing the “pseudo-residual” that approximates the gra-
dient of the model’s output. In contrast, our proposed method fine-tunes the same model at each
stochastic boosting iteration using the gradient of hidden representations, so that an ensemble of
weak learners is no longer needed. Furthermore, we concurrently apply stochastic functional gradi-
ent descent in multiple intermediate layers of pretrained large models and extend our algorithm to a
distributed setting to promote collaboration among local users.
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3 METHOD

3.1 PROBLEM

Fine-Tuning (FT) Consider a dataset of N samples, denoted by D = {(x;, yl)}fvzl where z; is
the input and y; is the corresponding target. Suppose the architecture of a deep neural network fy(-)
contains M distinct layers, each represented by fy (-) for m = 1,..., M. For each layer m, the
network processes a specific hidden input z; ,, and consequently produces a hidden representation,
denoted by h; = fo,, (zim). In subsequent notations, we omit the index ¢ for clarity. Note that
the hidden input x,,, for any layer m refers to the hidden representation of its preceding layer. In the
special case of the first layer, z; ; corresponds to the input data x; of dataset D. Given a pretrained
network fy, ,,(-), the objective is to minimize its empirical risk in order to fine-tune the model,
which can be represented by

minEN'C(yvf&:M(w))v )]
01: M
where L(-) is the loss function and Ex denotes the empirical average over the dataset D. A con-

ventional fine-tuning method utilizes gradient descent for parameter optimization by computing the
derivative of the loss with respect to the model parameters 6., written as

V01:]% é Vel;MEN‘C (y7 f91:M (3}‘)) . (2)

Parameter-Efficient Fine-Tuning (PEFT) Parameter-Efficient Fine-Tuning (PEFT) has been in-
troduced to reduce the computational cost of fine-tuning large models such as Large Language Mod-
els (LLM). PEFT methods typically incorporate an auxiliary model, denoted as g,,,, (-), which is
parameterized by w,, for each layer m. During the fine-tuning process, PEFT methods freeze the
original model parameters 61.,; and only update the auxiliary parameters wi.,;. A notable advan-
tage of this approach is that the dimensionality of wy.5s tends to be considerably smaller than that of
0.1, leading to substantial savings in storage requirements of back-propagation, especially in the
memory usage of Graphics Processing Units (GPU). Low-Rank Adaptation (LoRA), one of the most
widely used PEFT methods, ingests the hidden input z; ,,, and produces a change of hidden repre-

sentation Ah; ,,,. The fine-tuned hidden representation fALi,m will be used in the original network as
a fine-tuned replacement of h,,, as described by

Ahi,m = Gw,, (xi,m)a hi,m = hi,m +a- Ahi,’mv

where « is a scaling factor that can be tuned during inference. The fine-tuned model is de-
noted by fo(z,Ahy.ps). Given a pretrained network fy (-), the objective of LoRA becomes

min,,.,, ENL(y, fo(z, Ahi.p)), and it can be optimized by computing the derivative of the loss
with respect to the auxiliary parameters wi.,s as follows

V. 2 Vo ENL(y, fo(x, Ahi:ar)). 3)

3.2 COLLABORATIVE ADAPTATION

We propose Collaborative Adaption (ColA) as a framework for providing Fine-Tuning as a Ser-
vice(FTaaS) with our novel Gradient Learning (GL) algorithm. GL is both parameter-free and
model-agnostic because it decouples the computation of the gradient of auxiliary parameters from
that of the fine-tuned hidden representations, a process we refer to as Gradient Decoupling. Mean-
while, our method can significantly improve computational efficiency and provide cost-effective
service for many users by offloading the computation of the gradient to low-cost devices.

Gradient Learning (GL) We propose Gradient Learning (GL) in order to save the storage require-
ments of back-propagation. Existing PEFT methods focus on optimizing the parameter efficiency
of the auxiliary model g, () to achieve the same goal. Specifically, PEFT methods fine-tune the
pretrained model for downstream tasks by leveraging a set of auxiliary parameters, denoted as w;. s,
while keeping the original parameters 6.5, frozen. Unlike full FT, this strategy bypasses the com-
putation of V#;.,, during the back-propagation phase. Efficiency is further enhanced by minimizing
the size of these auxiliary parameters. Without explicitly optimizing 61.,s, it has been shown that
optimizing wj.ps can still achieve satisfactory results (Hu et al., 2021; He et al., 2021). In order
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to optimize the auxiliary parameters w .y, the back-propagation procedure of PEFT methods com-
putes Vwy.ps, and consequently, the gradient of fine-tuned hidden representations through chain
rule, denoted as

Vhiar £V, ENL(y, fo(z, Ahya)). “)

On the contrary, GL is a new learning algorithm that decouples the computation of the gradient of
auxiliary parameters NAJA and fine-tuned hidden representations Vhiar. At the beginning, we
forward data x and the change of hidden representations Ahy.y; into both the pretrained base model
and the newly initialized auxiliary models to obtain the model output fp(x, Ahq.5s) and fine-tuned
hidden representations hi.ar. Then, we compute the gradient of fine-tuned hidden representations
Vhi.ar which naturally exist in the back-propagation stage of deep neural networks. |NISETWHIE]

Vhiar = Van ENL(Y, folz, Ahiar)). (&)

It is essential to note that during the back-propagation stage, GL does not compute the gradient of
either the original or the auxiliary parameters. After completing the forward and backward prop-
agation stages, we can transfer the hidden inputs x1.5; and the gradient of the fine-tuned hidden

sepresenttions '3 to multple low-cost devices, such as Central Processing Unit (CPU) o low-
BR@IGPUS] By doing so, we reduce the cost of computational space on resource-intensive devices
WhiCHIEGSTRENATEEIPaseNmioae]l. We refer to this process as Gradient Offloading. Our proposed
approach offers a significant computational advantage, PECauselhelcomputationalispaceiofthelGPU
hosting the large base model is considerably more valuable than that of low-end GPUs, CPUs and

Furthermore, computing the gradient of auxiliary parameters on low-cost devices
will not disrupt the computation of the gradient of hidden representations on the GPU, where the
large base model is hosted. As a result, we can run two decoupled gradient computations in parallel
for different batches of data.

fitting the target Ah,,, — V A, which are calculated from the last update
and treated as a fixed term. For instance, we define the auxiliary quadratic loss as follows

1 .
Lo (2, 5 0, E 9w, (xm) — (ARE — VAL )||%, where 6)

2
Aht égwt (xm) vﬁt é 8£(y,f9(if'7AhﬁM))
" Ohm Frn =hon + AR,

and w!, represents the most recent estimate of w,, at round ¢{. We then operate gradient-based
optimizations using (6). Its validity is justified by the following result.

Proposition 1 The gradient V., (2, y; W) and Vo, L(y, fo(z, Ahy.ar)) evaluated at w,, =
wt are the same for any w,,.

The gradient of the updated auxiliary model g,,,, (-) essentially moves w;,, toward the optimal di-
rection of h,, that minimizes the objective loss. Intuitively, we reconstruct the computation graph
of the auxiliary model g,,,, () with the hidden input ,,, and optimize the auxiliary parameters w,,
with the change of hidden representations Ah,,, and the gradient of fine-tuned representations V.
It is essential to note that the optimization of g,,,, (-) is decoupled from the computation of Vﬁlz M-
In practice, we can optimize g, ,, (-) by taking one step of gradient descent with a learning rate -y

on [GIGPISNGWECOSHAEVIEES in parallel without interfering with the computation of Vhi.ar on the

Existing learning algorithms compute the gradient of hidden representations and parameters con-
currently during back-propagation. However, this classical approach is significantly limited by i€

, which further restricts the training batch size, thus af-
fecting the overall training time of deep neural networks. Our approach demonstrates that we can
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train the network by computing the gradient of hidden representations and parameters separately.
Additionally, storage limitations also affect the choice of auxiliary models, impacting fine-tuning
performance. Our method allows for a broader selection of auxiliary models, as their optimization
can be done on a different device. Theoretically, our proposed Gradient Learning (GL) is related to
functional gradient descent and Gradient Boosting (GB) (Friedman, 2001). Our work is primarily
inspired by Gradient Assisted Learning (GAL), a recent advance of functional gradient descent in
distributed machine learning (Diao et al., 2022). While methods like GB and GAL use a unique
model for every non-stochastic boosting iteration at the output layer, our GL method retrains the
same model for every stochastic boosting iteration at intermediate layers.

Gradient Decoupling

Forward / Backward
pass
Base model
T Parameter merging
7

Download adaption data Upload auxiliary model

Gradient Offloading

Adpater Training
(Server)

i

O User collaboration
Adapter Training
(Local)

|
5| &
S S

Fine-Tuning as a Service (FTaaS) As illustrated in Figure 1, we propose a computationally scal-
able approach for Fine-Tuning as a Service (FTaaS) designed to prevent the cost of computational
space on the GPU from increasing proportionally with the number of users of the service. Notably,
given the constraints of computational space when fine-tuning large models on GPU, we introduce
Collaborative Adaptation (ColA) with GL through a stochastic optimization procedure as detailed
in Algorithm 1.

(Paszke et al., 2019).
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Algorithm 1 ColA: Collaborative Adaptation with Gradient Learning

Require: Training data set = and target y, a base model fy(-), M fine-tuning layers, K collabora-
tive users, M x K auxiliary models gy, ;. (-), the number of training iterations 7', the loss
function L, the training batch size B, the learning rate -, and the adaptation interval I.

1: for each training iteration ¢ from 1 to 7" do

2: (2%, vt k) < Sample a batch of size B from the training dataset (z1.x, 1.k )
3:  (Optional) Merge M x K auxiliary models of K users to the base model

4:  Compute forward pass of fj ($§;M,1;Ka Ah’i:M)I:K), with Ahfmk — gfmk(xfn’k)
5

6

7

Gather hidden input of auxiliary models z, 1.k from forward pass
Compute backward pass of L(y{. ¢, fo(21.0s 1.5 ARG pr1.50)
Gather gradient of hidden representations
Vi = Viﬁl:M)l:Kﬁ(yf:Ka fo(@hinr1re Aar 1)
8:  (Optional) Unmerge M x K auxiliary models of K users from the base model
9:  Transfer (2%, 1.5, Vil 5/ 1.5) to low-cost devices
10:  for each adapter m of user k in parallel do

11: Save adaptation data (! ,, Vh! ) to buffer

122 iftmod=0then ’

13: Compute forward pass Ahf;i:t = G (mfn_ét)

14: Optimize g;, , (-) with (:z:f;izt, Ah;i‘t - Vﬁf;ézt) and learning rate ~*
15: Transfer auxiliary model gfﬂnﬁk (+) to the server

16: Empty buffer

Parameter merging  We study and integrate parameter merging into our algorithm to further re-
AUCENheICostIofeomputationiSpace. Previous work has demonstrated that the original parameters
60, and the auxiliary parameters w,, can be merged into one network after fine-tuning is finished .
(He et al., 2021; Mangrulkar et al., 2022). PEFT methods like LoRA offer such capability,
and its tuning factor o can adjust the contribution of the adapter to the output of the model. Addi-
tionally, this approach can also combine multiple adapters trained on different datasets. JNEipropose

1. It allows K users
to collaboratively fine-tune the auxiliary models with their local data and computation resources.

To the best of our knowledge, despite be-
ing a widely used technique, no previous work has explicitly studied the requirements of parameter
merging. For any layer m to be fine-tuned, one wishes that the fine-tuned auxiliary model g,,,, (*)
can be merged back to the original model architecture to simplify computation. The following result
shows that g, (-) must be linear in the input.

Proposition 2 Consider a linear function x +— fp(x) = 6Ox, where § C © C R%*% js the
parameter and x € R%. Assume that g : R% s R% is such a function that x + fo(x) + g(x) can
be equivalently written as x — f;(x) for some 6 € ©. Then, g must be a linear function of r and
written as wzx for some w € R2xd1

Remark 1 In the result above, fy(-) represents the function of a generic layer, and g(-) denotes the
auxiliary model. The parameterization of g(-) is not necessarily through w, as it could be a smaller
parameter that maps to w. An example is the low-rank approximation w = wy - wy where wy has a
small number of hidden sizes.

In Table 1, we compare the complexity of the computation space of FT, PEFT, and ColA. Existing
PEFT methods require significantly less computational space compared to FT, primarily because the
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size of auxiliary parameters wy.,,1.x and their gradient Vwy.s,1.x is minimal. NeVertheleSSIPEFT

As depicted in Table 1, PEFT methods would multiply
the cost of computational space on the GPU by K, whereas ColA (merged) incurs no additional
overhead on the GPU. Furthermore, our method can effectively leverage distributed low-cost devices
to optimize the auxiliary models in parallel. Thus, our method emerges as a more cost-effective and
scalable option for FTaaS compared with existing PEFT methods. While our approach introduces
additional runtime due to the transmission of adaptation data and auxiliary models from one device
to another, we consider this a technical limitation, which could potentially be mitigated with further
engineering refinements.

Table 1:

|‘

Forward Backward
Method
Representations Parameters Representations Parameters
ET Inference — 01.01 —
Learning hi:v 01.01 Vhias Va1
PEFT unmerged Inference ~_ 91:Ma Wi:M1:K , —
Learning Ay, hivi:kx 0105 WM 10K Vhia, Vhiv ik VWi, 1:x
merged  Inference — 0101 —
unmerged Inference N_ 91:M7 W1:M1:K _ —
ColA Learning  hy.ag, hivix 0101, W11 K Vhin, Vhivx  {Vwimik}
merged Inference — 01.01 —

Leaﬂling hl:M7 {Ele,l:K} '91:Ma {wI:M,lzK} Vhl:M7 {VBI:M,LK} {le:M,I:K}

Our method, rooted in a functional gradient descent learning framework, is notably model-agnostic.
The choice of auxiliary models gu,.,, .« (-) is independent of the base model fj(-). Moreover,
different model architectures can be utilized for auxiliary models at various layers. It is crucial
to recognize that the architecture of these auxiliary models significantly influences performance.
For example, rather than using low-rank approximations like LoRA, it is feasible to utilize a linear
layer or even a Multi-Layer Perceptron (MLP), because the computation of these auxiliary models
is decoupled from that of the base model and offloaded to other devices. Also, interactive auxiliary
models, such as those in ControlNet (Zhang & Agrawala, 2023), where one model’s output serves as
another’s input, may also utilize the proposed method. As depicted in Figure 1, another advantage
of our model-agnostic approach is that the users of FTaaS can locally fine-tune their adapters using
adaptation data received from the server if they have computational resources. Additionally, based
on their available computational resources, users have the flexibility to customize the optimization
of their adapters.

4 EXPERIMENTAL STUDIES

4.1 EXPERIMENTAL SETUP

We compare ColA with full fine-tuning (FT) and PEFT methods including LoRA (Hu et al., 2021),
AdalLoRA (Zhang et al., 2023), IA3 (Liu et al., 2022), Prompt Tuning (Lester et al., 2021), Prefix
Tuning (Li & Liang, 2021), and P-Tuning (Liu et al., 2023). We conduct experiments on three tasks
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including Sequence Classification (SC), Sequence to Sequence (S2S), and Causal Language Model-
ing (CLM). For the SC task, we use RoOBERTa (base) (Liu et al., 2019) as the pretrained model with
GLUE benchmark for all methods (Wang et al., 2018). In the S2S task, we use BART (base) (Lewis
et al., 2019) as the pretrained model and evaluate all methods with a range of datasets including
Financial Phrase Bank (FPB) (Malo et al., 2014), WikiSQL (Zhong et al., 2017), SAMSum (Gliwa
et al., 2019), E2E NLG (Dusek et al., 2020), WebNLG (Gardent et al., 2017), and DART (Nan et al.,
2020). For the CLM task, we utilize GPT-2 (Radford et al., 2019) and BI&f&®2 (Touvron et al.,
2023) as the pretrained model with the Dolly (Conover et al., 2023) dataset to perform instruction
tuning (Wei et al., 2021).

We conduct experiments using Low Rank, Linear, and Multi-Layer Perceptron (MLP) auxiliary
models to demonstrate the model-agnostic nature of our proposed ColA method. For the low-rank
variant of ColA, termed as ColA (Low Rank), we use a hidden dimension r = 8, identical to those of
LoRA and AdaLoRA to ensure a consistent evaluation across methods. Our Linear auxiliary model
has parameters that match the count of the weight matrix it fine-tunes, while our MLP configuration
uses a two-layer neural network with a hidden size of 128 and ReLU activation. We apply the
default configurations from the PEFT package (Mangrulkar et al., 2022) for other PEFT baselines.
We demonstrate the hyperparameters used in our experiments in Table 5.

4.2 EXPERIMENTAL RESULTS

We demonstrate the results of RoOBERTa (base) on the SC task with GLUE metric in Table 2 and the
results of BART (base) on the S2S task with ROUGE (Longest) metric in Table 3. Compared with
the existing PEFT methods, ColA consistently outperforms PEFT methods including IA3, Prompt
Tuning, Prefix Tuning, and P-Tuning. Furthermore, ColA outperforms AdalLoRA on average for
both SC and S2S tasks with fewer trainable parameters. Meanwhile, ColA performs on par with
LoRA across most datasets.

Table 2: Results of ROBERTa (base) on the Sequence Classification task with GLUE meric. The

Method Trainable Parameters MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B Avg.

FT 1252M (1000 %) 872 950 893 618 930 918 760 904 856

LoRA 8870K(07%) 867 951 894 628 930 909 751 903 854
AdaLoRA 113M@©0%) 8.5 952 82 603 931 O9l4 653 902 839

1A3 6290K (0.5%) 851 938 832 526 914 887 657 875 810

Prompt Tuning 607.5K(05%) 792 930 757 162 868 829 579 626 693
Prefix Tuning 9608K(0.8%) 853 932 723 234 906 889 617 669 728
P-Tuning RASKOIM%) 806 935 771 278 890 844 591 854 746
unmerged  {887.0K (0.7 %)} 869 946 904 611 932 909 736 902 851

ColA (Low Rank) =0 o2d [887.0K (0.7 %)) 867 945 885 623 930 908 751 901 851
ColA (Lineary  Unmerzed  {47TM(IL8%) 872 954 885 613 929 909 718 909 849
merged  [147M(11.8%)]  87.1 954 887 594 929 909 722 910 847

ColA (MLP) unmerged {8.5M (6.7 %)} 86.9 95.1 90.4 64.6 924 913 73.6 907 85.6

It is worth noting that fine-tuning for SC requires training the classifier layers from scratch due to
distinct target classes across datasets. While LoRA typically fine-tunes these classifier layers in
conjunction with the auxiliary models, Gradient Learning (GL) computes the gradient of hidden
representations during the backward pass of the base model.

2 and 3 {GHGHSHAE

that ColA (Low Rank) methods closely align with LoRA in performance, as the gradient computed
with our methods exactly matches the gradient of LoRA. In our evaluations, we also compare differ-
ent auxiliary models. The results demonstrate that the selection of an auxiliary model can influence
the model performance, as ColA (Linear) and ColA (MLP) can outperform ColA (Low Rank). No-
tably, our proposed method can fine-tune without low-rank approximation while not incurring any
additional cost of computation space, because the computation has been offloaded to separate low-
cost devices.
8
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Method Trainable Parameters FPB ~ WikiSQL SAMSum E2ENLG WebNLG DART Avg.

FT 1394 M (1000 %) 956 948 39.6 510 635 548 666

LoRA 424K (03%) 965 949 39.0 509 627 545 664
AdaLoRA 130M@©3%) 938 954 387 509 634 551 662

1A3 369K (0.03%) 714 860 34.6 497 539 499 576

Prompt Tuning 307K002%) 718 758 32.1 440 402 389 505

Prefix Tuning 1843K(0.1%) 758 836 277 336 339 331 479
P-Tuning 2447K(02%) 828 717 316 408 33 373 506
unmerged  {4424K (03 %)} 956 948 389 509 624 547 662

ColA (Low Rank) - “\ o ocd [4424K (03 %)) 965 947 38.7 51.0 625 546 663
ColA (Lineary  Unmerzed  {212M(152%)} 969 954 39.4 50.5 631 546 666
merged  [212M(152%)] 982 956 39.0 50.8 631 550 669

ColA(MLP)  unmerged {I18M(@85%)} 982 955 399 510 635 547 611

We demonstrate the results of user collaboration in Table 4. In the ‘Joint’ setup, all data is jointly
trained with the same set of auxiliary models.

OEEIREH Notably, users have the flexibility to determine local model architecture. For instance,
ColA (Low Rank-Linear) indicates that the first four subsets (Classification, Information Extraction,
Summarization, and Brainstorming) utilize ColA (Low Rank), while the remaining subsets use ColA

Information
Extraction

Trainable
Parameters

Creative Open Closed General All

Method Summarization ~ Brainstorming Wiiting Q%A Q&A Q&A

Classification - -
unmerged merged

Low ko Unmerzed (949K (02%)) 199 124 165 132 145 149 150 166 155 155
merged  [294.9K (0.2 %)] 196 128 16.7 135 148 147 150 167 156

Joint Linear  Umerged {212M(7.1%)) 218 133 172 140 1155 153 163 161 161
merged  212M(7.1%)] 226 13.4 170 149 139 155 154 166 16.4

MLP  unmerged (8.7 M (7.0 %)} 218 133 172 140 1155 153 163 157 —

Low Rank 8 x {2949K} 19.1 135 153 136 146 152 161 162 157 139

Alone Low Rank-Linear 4" {{2;14_ 5 ;ﬁ 189 12 157 137 137155 163 162 155 139

4% {2949K},

Low Rank-MLP A 214 s 155 134 140 153 169 164 159 —

. Low Rank 8 x 2949 K] 185 128 162 135 142 149 144 163 152
Collaboration 4% [2949 K]

Low Rank-Linear PN 17.7 130 166 13.1 142 152 153 167 154

We present ablation studies regarding the adaptation interval 7 in S8Efi0fi C.4. For these experiments,
we use a batch size of B = 8. By increasing the adaptation interval, such as I = 4, the effective
batch size becomes B x I. The results indicate that it is possible to achieve satisfactory convergence
with fewer updates to the auxiliary models. This extension becomes especially valuable in situations
demanding extensive computational space for computing the gradient of hidden representations for
numerous users of FTaaS.

5 CONCLUSION

In this work, we address the pressing challenge of efficiently fine-tuning pretrained models for down-
stream tasks without incurring prohibitive computational costs. As pretrained models continue to
grow in size and complexity, classical fine-tuning techniques have shown their limitations, especially
when providing Fine-Tuning as a Service (FTaaS). We introduce Collaborative Adaptation (ColA)
with Gradient Learning (GL), a parameter-free, model-agnostic fine-tuning approach that decouples
the computation of the gradient of hidden representations and parameters and offloads the compu-
tation of the gradient to low-cost devices. We provide theoretical analysis and conduct extensive
experiments to demonstrate that our method can perform on par or better than existing PEFT meth-
ods on various benchmarks . Future works can further
optimize the efficiency of the proposed method and broaden the application scope of FTaaS.
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Appendix

A LIMITATION AND FUTURE WORKS

While our method decouples and offloads gradient computation, it requires the transfer of Elliliary

. This transfer
saves computational space on the high-cost device hosting the large base model but introduces an
additional run time due to data transmission. We consider this a technical limitation that could be
addressed with engineering refinements, especially at the system level design of FTaaS.

Enhancing the computational efficiency of our method is another avenue for future work. Inte-
grating strategies from efficient and distributed machine learning, such as quantization (Dettmers
et al., 2023), pruning (Diao et al., 2023), and Federated Learning (Diao et al., 2020), may be ben-
eficial. Another exciting direction for GL could involve more advanced gradient decoupling on the
hidden representations (Huang et al., 2018), paving the way for extensive model parallelization to
improve run-time efficiency. Moreover, integrating interactive auxiliary models with ColA (Zhang
& Agrawala, 2023) also represents a promising direction. Lastly, the applications of FTaaS could
be further expanded by utilizing large language models (Touvron et al., 2023) and diffusion mod-
els (Rombach et al., 2022).

B THEORETICAL ANALYSIS

Proposition 1: The gradient V,,, {., (2, y; wy,) and Vo, L(y, fo(z, Ah1.)) evaluated at w,,, =
w!  are the same for any w?,.

Proof 1 (Proof of Proposition 1) Suppose we evaluate the gradient of {l,,(z,y;w,) and
L(y, fo(x, Ahi.ar)) at wt,, which can be an arbitrary value at round t. By the definition of {,y,
and the chain rule, we have

ol Ol O0goy A G,
= ™ = (gw, (Tm) — (Ahpy — Vhy,)) —=. 7
Owy, Oy, Owp, (G (m) = Vhm)) 0w, @
Evaluating the above equality at wt, and using % = 1, we have
. h
Ol — Vi, 09w, _ 3A£ Ohm 0¢uw,, _ oL 7 )
awm Wy =w} awm ahm agwm awm Wy =w, 6’LUm Wy =w}

where the last equality follows from the chain rule. This concludes the proof.

Proposition 2: Consider a linear function x + fg(x) = Oz, where § C © C R%*% jg the
parameter and # € R%. Assume that g : R% +— R® is such a function that z +— fp(z) + g(z) can

be equivalently written as > f;(x) for some 0 € ©. Then, g must be a linear function of z and
written as wa for some w € R92Xd1,

Proof 2 (Proof of Proposition 2) According to the assumption, there exists 6 such that
9(@) = fyla) = folz) = (0 — Oz, ©)

so g(x) can be written as wx with w = 6 — 6. This concludes the proof.
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C EXPERIMENTAL STUDIES

C.1 EXPERIMENTAL SETUP

We demonstrate the hyperparameters used in the experiments in Table 5. WelISSIANIGWeRISaming

IETgeNeIenverge! Due to computational constraints, we did not undertake extensive hyperparameter
sweeps. Further tuning of hyperparameters might yield improved results. The auxiliary models of
Llama-2 (@, V) include query and value projection layers, while the auxiliary models of Llama-2
(All) include all projection layers.

Table 5: Hyperparameters used in the experiments.

Hyperparmeter FT PEFT ColA
Epoch 40
Batch size 32
Optimizer AdamW
Weight decay 5.00E-04
Learning rate 5.00E-06 3.00E-04

Scheduler Linear decay
Warm up 0.05
Max sequence length 128

C.2 EXPERIMENTAL RESULTS

The results for GPT-2 and on the CLM task evaluated using the ROUGE (Longest)
metric are presented in Table 6 and 7. ColA (Low Rank) demonstrates performance comparable
to LoRA with the same number of trainable parameters. Notably, ColA (Linear), despite its larger
parameter count, outperforms both FT and LoRA. The sub-optimal performance of FT may be due
to a low learning rate, which results in inadequate convergence.

not fitin our 48 GB GPU as shown in Table 7

Table 6 Results of GPT-2 on the Causal Language Modeling (CLM) task with ROUGE (Longes0)
metric. The gradient of parameers in {-} can be stored in low-cost devices. Both parameters and
their gradient i || can be stored in low-cost devices.

Method Trainable Parameters  Dolly

FT 124.4 M (100.0 %) 15.6

LoRA 2949 K (0.2 %) 15.6
AdalLoRA 2.4 M (1.9 %) 14.2

1A3 36.9 K (0.03 %) 14.2

Prompt Tuning 15.4 K (0.01 %) 14.0

Prefix Tuning 368.6 K (0.3 %) 14.5
P-Tuning 229.4 K (0.2 %) 14.6
unmerged {294.9K (0.2 %)} 15.5

ColA (Low Rank) =P o ocd [2949K (02%)] 156
. unmerged  {212M (17.1 %)} 16.1

ColA (Linear) merged  [212M(17.1%)]  16.4
ColA (MLP) unmerged {8.7M (7.0 %)} 15.7
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Method Trainable Parameters  Dolly

FT 6.7 B (100.0 %) —

LoRA 4.2 M (0.06 %) 18.8
AdalLoRA 33.6 M (0.5 %) 18.9
IA3 393.2 K (0.006 %) 19.0

Prompt Tuning 81.9K (0.001 %) 18.8

Prefix Tuning 5.2 M (0.08 %) 16.3
P-Tuning 1.2 M (0.02 %) 18.0
unmerged  {4.2 M (0.06 %)} 19.3
ColA (Low Rank) = o rocd [42M (0.06 %)]  19.4
. unmerged {1.1B (159 %} 19.1
ColA (Linea) - * o ocd [11B(159%)]  19.0
ColA (MLP) unmerged  {103.0M (1.5 %)} 19.2

Method Trainable Classification  MO™M3UON g arization  Brainstorming 3?3:‘:; 8252 %‘;;d General All e,

Cow R mmerged T200M (03 %)] % 164 169 89 55 04 170 192 193 192
merged 200 M (0.3 %)] 250 16.1 18.1 190 155 205 176 192 194

Joint Lineas  Unmerged {658 961 %)) 257 153 16.1 20.1 149 203 163 192 191 192
merged [6.5 B (96.1 %)] 254 141 16.3 19.5 151 207 161 189 19.0

MLP {5027 M (7.5 %)} 240 164 17.1 196 157 206 169 185 192 —

o Tow Rank § % (200 M] 25 165 T64 o1 52 204 193 188 194 174

Low Rank-MLP 4 x {20.0 M}, 4 x {502.7 M} 232 14.2 17.2 19.0 14.3 20.5 19.2 19.4 19.2 —
< Tow Rank 8 X [200M] pEN] 137 16.0 195 55 204 162 190 158
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Figure 2: Learning curves of (a) Linear (b) MLP and (¢) CNN with the MNIST dataset of IC task
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Figure 3 Leamning curves of (2) Linear (b) MLP and (¢) CNN with the CIFAR10 dataset of IC task
and Accuracy metric.

Tuble 9: Results of learning Linear, MLP, and CNN from seratch on the Image Classification (IC)
task with Accuracy metric. The gradient of parameters in {-} can be stored in low-cost devices. Both
parameters and their gradient in [] can b stored in low-cost devices.

Model Method Trainable Parameters MNIST CIFAR10
FT 7.9 K (100.0 %) 92.8 406
LoRA 6.4k (80.9 %) 92.4 39.0
Linear unmerged {64k (80.9 %)} 92.4 392
ColA (Low Rank) =/ oed [6.4k (80.9 %)] 92.4 392
. unmerged  {7.9 K (100.0 %)} 92.7 40.7
ColA (Linear) merged [7.9 K (100.0 %)] 92.7 40.7
ColA (MLP) unmerged  {136.1K (1733.4 %)} 98.4 64.7
FT 136.1K (1000 %)  98.4 64.7
LoRA 125K (92 %) 96.8 50.1
MLP unmerged {125K (9.2 %)} 96.8 49.6
ColA (Low Rank) = "o ocd [12.5K (9.2 %)] 96.8 50.2
. unmerged  {136.1 K (100.0 %)} 983 64.1
ColA (Linear) = oroed  [136.1 K (100.0 %) 98.3 64.6
ColA (MLP)  unmerged {3502K (2574 %)) 984 63.9
FT 1555K (1000 %)  99.4 88.3
LoRA 442K (28 %) 99.1 82.9
CNN unmerged {442K (2.8 %)} 99.2 84.0
ColA (Low Rank) "0 ocd [44.2K (2.8 %)] 99.3 84.4
. unmerged  {155.5 K (100.0 %)} 99.4 88.3
ColA (Linear) " oroed  [155.5K (1000 %)]  99.5 88.1
ColA (MLP)  unmerged {538.1K (34.6 %)}  98.9 84.5
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C.4 ADAPTATION INTERVAL
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Figure 6: Ablation studies of adaptation interval  on (a) RTE and (b) STS-B datasets of SC task
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Table 10:

Memory Run Time (s)
Batch Size Method Trainable Parameters Offload to CPU _ Offload to GPU
Base Offload Base Offload Base Offload
FT 125.2 M (100.0 %) 3.6 GB 0.037
LoRA 887.0 K (0.7 %) 1.1GB 0.037
AdaLoRA 11.3 M (9.0 %) 13GB 0.093
1A3 629.0K (0.5 %) 1.1GB 0.030
Prompt Tuning 607.5K (0.5 %) 1.1GB 0.029
1 Prefix Tuning 960.8 K (0.8 %) 1.1GB 0.028
P-Tuning 821.5 K (0.7 M %) 1.1GB 0.028
unmerged  {887.0K (0.7%)} 1.1GB 30MB 0091 0002 0034  0.001
ColA (Low Rank)  “\ o ocd [887.0K(07%)] 1.1GB  40MB 0081 0002 0066 0001
ColA (Lineary  Wnmerzed  {I47M(I18%)} 12GB 1200MB 0055 0003 0035 0001
merged  [147M(11.8%)] L1GB 1800MB 0071 0002 0073 0001
ColA(MLP)  unmerged  {85M(67%) 1IGB 60.0MB 0063 0006 0039 0002
FT 125.2 M (100.0 %) 3.6 GB 0.040
LoRA 887.0K (0.7 %) 1.6GB 0.043
AdaLoRA 11.3 M (9.0 %) 2.1 GB 0.108
1A3 629.0K (0.5 %) 1.7GB 0.032
Prompt Tuning 607.5 K (0.5 %) 1.8GB 0.026
8 Prefix Tuning 960.8 K (0.8 %) 1.6 GB 0.034
P-Tuning 821.5 K (0.7 M %) 1.8 GB 0.026
unmerged  {887.0K (0.7%)} 16GB 128MB  0.166 0.003 0037  0.001
ColA (Low Rank) = = o ocd [887.0K(0.7%)] 1.6GB  52MB  0.146 0003 0077 0001
ColA (Lineary  \nmereed  {147M(I18%)}  17GB 1308MB 0132 0007 0035 0001
merged  [147M(118%)] 1.6GB 2120MB 0159 0006 0062 0001
ColA(MLP)  unmerged  {85M(67%) 17GB 708MB 0157 0009 0041 0002
FT 125.2 M (100.0 %) 55GB 0.093
LoRA 887.0K (0.7 %) 3.3GB 0.033
AdaLoRA 11.3 M (9.0 %) 44GB 0.099
1A3 629.0K (0.5 %) 3.7GB 0.028
Prompt Tuning 607.5 K (0.5 %) 3.8GB 0.021
3 Prefix Tuning 960.8 K (0.8 %) 3.4 GB 0.024
P-Tuning 821.5K (0.7 M %) 3.8 GB 0.029
unmerged  {887.0K (0.7 %)} 32GB  40MB 0273 0005 0052  0.003
ColA (Low Rank) = = o ocd [887.0K (0.7 %)) 32GB  10.0MB 0264 0.004 0081  0.004
ColA (Lineary  \nmereed  {147M(IL8%)} 33GB 1320MB 0300 0012 0047 0003
merged  [147M(11.8%)] 32GB 2000MB 0281 0009 0078  0.004
ColA(MLP)  unmerged  {85M(6.7%)} 34GB 620MB 0273 0013 0045 0003
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Table 11: Computation evaluation of $25 task with BART (base) model and FPB dataset, where the

Memory Run Time (s)
Batch Size Method Trainable Parameters Offload to CPU _ Offload to GPU
Base Offload Base Offload Base Offload
FT 139.4 M (100.0 %) 3.9GB 0.054
LoRA 442.4K (0.3 %) 1.1 GB 0.049
AdaLoRA 13.0 M (9.3 %) 1.4 GB 0.116
1A3 36.9 K (0.03 %) 1.2GB 0.039
Prompt Tuning 30.7 K (0.02 %) 1.1 GB 0.028
1 Prefix Tuning 184.3 K (0.1 %) 1.1GB 0.028
P-Tuning 244.7 K (0.2 %) 1.1 GB 0.028
unmerged  {4424K (03 %)} 11GB 20MB 0099 0002 0054 0.001
ColA (Low Rank)  *\ o ocd [4424K(03%)] 11GB 60MB 0095 0001 0053 0001
ColA (Linear)  U0merged  {212M(1529%)}  1.2GB 1800MB 0078 0004 0045 0.0l
merged  [212M (152%)] 11GB 2600MB 0.137 0003 0078  0.001
ColA (MLP)  unmerged {11.8M(85%)} 12GB 90.0MB 0091 0006 0068  0.002
FT 139.4 M (100.0 %) 3.9GB 0.037
LoRA 4424 K (0.3 %) 1.5GB 0.044
AdaLoRA 13.0 M (9.3 %) 1.9 GB 0.120
IA3 36.9 K (0.03 %) 1.5GB 0.037
Prompt Tuning 30.7 K (0.02 %) 1.5GB 0.029
8 Prefix Tuning 184.3 K (0.1 %) 1.2GB 0.030
P-Tuning 244.7 K (0.2 %) 1.5GB 0.034
unmerged  {4424K (03%)} 14GB 40MB  0.155 0003 0058 0.0l
ColA (Low Rank) = oo cd [4424K (03%)] 14GB 60MB 0.118 0002 0061  0.001
ColA (Lineary  UMmerzed  {212M(152%)}  1.6GB  1840MB 0142 0005 0047 0001
merged  [212M (152 %)] 14GB 3040MB 0.132 0004 0092  0.001
ColA (MLP)  unmerged {I1.8M(85%)} 15GB 900MB 0152 0007 0057  0.002
FT 139.4 M (100.0 %) 45GB 0.069
LoRA 442.4K (0.3 %) 2.6 GB 0.055
AdaLoRA 13.0 M (9.3 %) 33 GB 0.129
1A3 36.9 K (0.03 %) 2.8 GB 0.034
Prompt Tuning 30.7 K (0.02 %) 2.8 GB 0.033
32 Prefix Tuning 184.3 K (0.1 %) 1.5GB 0.024
P-Tuning 2447 K (0.2 %) 2.8 GB 0.029
unmerged  {4424K (03 %)} 25GB 40MB 0255 0003 0059  0.001
ColA (LowRank) = “\oroed [4424K (03%)] 2.5GB  60MB 0256 0003 0066  0.001
ColA (Linear)  Unmerzed  {212M(1529%)}  26GB  1840MB 0258 0007 0051 0001
merged  [212M(152%)] 25GB 2720MB 0271 0007 0.092  0.002
ColA (MLP)  unmerged {11.8M(85%)} 2.6GB 90.0MB 0234 0009 0065  0.002
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Table 12 Computation evaluation of CLM task with GPT-2 model and Dolly dataset, where the

Memory Run Time (s)
Batch Size Method Trainable Parameters Offload to CPU _ Offload to GPU
Base Offload Base Offload Base Offload
FT 124.4 M (100.0 %) 3.6 GB 0.031
LoRA 294.9 K (0.2 %) 1.3 GB 0.027
AdaLoRA 24 M (1.9 %) 1.3GB 0.032
1A3 36.9 K (0.03 %) 1.3 GB 0.023
Prompt Tuning 15.4 K (0.01 %) 1.3 GB 0.021
1 Prefix Tuning 368.6 K (0.3 %) 1.3 GB 0.023
P-Tuning 229.4 K (0.2 %) 1.3 GB 0.028
unmerged  {2949K (02%)} 13GB 20MB 0063 0002 0033  0.001
ColA (Low Rank)  *\ o ocd [2949K(02%)] 13GB  40MB 0078 0002 0047 0001
ColA (Lineary  Umerged  {212M(17.1%)}  1.3GB 2320MB 0066 0005 0034 0.0l
merged  [212M(17.1%)] 13GB 3120MB 0066 0004 0.042  0.001
ColA (MLP)  unmerged  {87M(7.0%)} 13GB 640MB 0080 0007 0035  0.002
FT 124.4 M (100.0 %) 4.4 GB 0.029
LoRA 294.9 K (0.2 %) 3.1GB 0.027
AdaLoRA 24M (1.9 %) 3.2GB 0.033
IA3 36.9 K (0.03 %) 32GB 0.027
Prompt Tuning 15.4 K (0.01 %) 3.4GB 0.025
8 Prefix Tuning 368.6 K (0.3 %) 3.0GB 0.024
P-Tuning 229.4 K (0.2 %) 34 GB 0.026
unmerged  {2949K (02%)} 3.1GB 20MB 0.31 0003 0043  0.001
ColA (Low Rank) = oo cd [2049K (02%)] 3.1GB 20MB 0.140 0004 0052  0.001
ColA (Lineary  "Mmerzed  {212M(7.1%)}  32GB  1960MB 0158 0012 0035 0001
merged  [212M (17.1%)] 31GB 2760MB 0.174 0010 0062  0.001
ColA (MLP)  unmerged  {87M(7.0%)} 3.1GB 120MB 0146 0015 0038  0.002
FT 124.4 M (100.0 %) 10.7 GB 0.150
LoRA 294.9 K (0.2 %) 9.2GB 0.050
AdaLoRA 24 M (1.9 %) 9.2 GB 0.057
1A3 36.9 K (0.03 %) 9.6 GB 0.046
Prompt Tuning 15.4 K (0.01 %) 10.5 GB 0.055
32 Prefix Tuning 368.6 K (0.3 %) 8.8 GB 0.048
P-Tuning 229.4K (0.2 %) 10.5 GB 0.056
unmerged  {2949K (02%)} 9.0GB 40MB 0998 0015 0080 0.007
ColA (Low Rank) =0 ocd [2949K(02%)] 9.0GB 160MB 0955 0025 0083 0009
ColA (Linary  UMmerged  {212M(7.1%)} 9.1 GB 0B 1012 0.027 0089  0.007
merged  [212M(17.1%)] 9.0GB 920MB 0959 0034 0081  0.008
ColA (MLP)  unmerged  {87M(7.0%)} 9.1GB 120MB 1026 0032 0092 0.008
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Table 13- Computation evaluation of CLM task with Llama-2 (Q, V') model and Dolly dataset,
where the number of auxiliary models M = 64. The auxiliary models of Liama-2 (@, V') include
query and value projection layers.

Run Time (s)

Batch Size Method Trainable Parameters Memory Offload to CPU _ Offload to GPU
Base Offload Base Offload Base Offload
FT 6.7 B (100.0 %) — —
LoRA 4.2 M (0.06 %) 142 GB 0.105
AdaLLoRA 33.6 M (0.5 %) 14.8 GB 0.146
IA3 393.2 K (0.006 %) 142 GB 0.107
Prompt Tuning 81.9K (0.001 %) 14.0 GB 0.082
1 Prefix Tuning 5.2M (0.08 %) 14.1 GB 0.086
P-Tuning 1.2 M (0.02 %) 142 GB 0.084
unmerged 4.2 M (0.06 %) 140GB 32.0MB 0274 0.003 0.135 0.001
ColA (Low Rank) - =0 ocd {[4.2 M (0.06 %)]} 140GB  1200MB  3.097 0002 —
ColA (Linear) unmerged {1.1B (159 %} 18.0 GB 8.2GB 0.213  0.095 0.153 0.001
merged [1.1 B (15.9 %)] 140GB 122GB 2675 0.040 —
ColA (MLP) unmerged {103.0 M (1.5 %)} 144GB 790.0MB 0.248 0.007 0.157 0.002
FT 6.7 B (100.0 %) — —
LoRA 4.2 M (0.06 %) 21.8 GB 0.197
AdaLLoRA 33.6 M (0.5 %) 224 GB 0.204
IA3 393.2 K (0.006 %) 223 GB 0.190
Prompt Tuning 81.9K (0.001 %) 223 GB 0.207
8 Prefix Tuning 5.2M (0.08 %) 21.0 GB 0.177
P-Tuning 1.2 M (0.02 %) 22.3GB 0.205
unmerged 4.2 M (0.06 %) 20.6GB 32.0MB 0.607 0.004 0.277 0.002
ColA (Low Rank) - =0 ocd {[4.2 M (0.06 %)]} 208GB  680MB 2294 0.004 —
ColA (Linear) unmerged {1.1B (159 %} 24.6 GB 8.0GB 0.683  0.113  0.360 0.005
merged [1.1 B (15.9 %)] 208GB 12.0GB  1.598  0.052 —
ColA (MLP) unmerged {103.0 M (1.5 %)} 21.3GB 798.0MB 0.640 0.015 0.279 0.002
FT 6.7 B (100.0 %) — —
LoRA 4.2 M (0.06 %) 46.6 GB 0.762
AdaLLoRA 33.6 M (0.5 %) 47.3 GB 0.856
1A3 393.2 K (0.006 %) — —
Prompt Tuning 81.9K (0.001 %) — —
32 Prefix Tuning 5.2M (0.08 %) 43.1 GB 0.686
P-Tuning 1.2 M (0.02 %) — —
unmerged 4.2 M (0.06 %) 427GB  320MB 8.893  0.063 —
ColA (Low Rank) - =0 ocd {[4.2 M (0.06 %)]} 427GB  520MB 8069 008 —
ColA (Linear) unmerged {1.1 B (159 %} 467GB  >13GB 9260 0.244 —
merged [LIB(159%)] 427GB >53GB 7392 0233 —
ColA (MLP) unmerged {103.0 M (1.5 %)} 434GB 842.0MB 8.789  0.075 —
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Tuble 14: Computation evaluation of CLM task with Llama-2 (All) model and Dolly dataset, where

Run Time (s)

. . Memory
Batch Size Method Trainable Parameters Offload to CPU __ Offload to GPU
Base Offload Base  Offload Base Offload
FT 6.7 B (100.0 %) — —

LoRA 20.0 M (0.3 %) 15.0 GB 0.130

AdaLoRA 160.0 M (2.4 %) 17.7 GB 0.285
1 unmerged {20.0 M (0.3 %)} 141GB 160.0MB  0.618 0.002  0.395 0.002

302.0MB  14.938  0.002 —

ColA (Low Rank) =0 02d [200M (03 %)]  14.1 GB
0.163 —

. unmerged  {65B (9.1%)}  382GB >98GB  0.579
ColA (Linear) " o oed [65B(96.1%)] 141GB  >339GB 13311  0.064 —
ColA (MLP)  unmerged {5027 M (7.5%)} 160GB 40GB 0529 0009 0217  0.002
FT 6.7B (100.0 %) — —
LoRA 200 M (0.3 %) 25.6 GB 0.257
AdaLoRA 160.0 M (2.4 %) 282 GB 0.359
8 unmerged  {200M (03 %)}  208GB  160.0MB 4308  0.007 —
13768 0.008 —

ColA (Low Rank) " oocd [200M (03%)]  209GB  160.0 MB

ColA (Lineay  Unmerzed  {65B(96.1%)}  449GB  >31GB 4708  0.189 —
merged  [6.5B(96.1%)]  209GB >27.1GB 13217 0.107 _
ColA(MLP)  unmerged  {5027M (75%)} 232GB 39GB 4412 0019 0847 0003
FT 6.7 B (100.0 %) _ —
LoRA 20.0 M (0.3 %) — —
AdaLoRA 160.0 M (2.4 %) — —
unmerged  {200M (0.3 %)}  432GB  160.0MB 41.026  0.083 =
ColA (Low Rank) = o ocd [200M (03 %)  428GB  3200MB 38714  0.103 —

. unmerged {6.5B (96.1 %)} —
ColA (Linear) "o ocd [65B(9.1%)]  428GB  >52GB 36571 0352 —
S21GB  40.676  0.099 —

ColA (MLP) unmerged  {502.7M (7.5 %)} 459 GB
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Table 15 Computation evaluation of IC task with Linear, MLP, CNN models and MNIST dataset.

Memory Run Time (s)
Model Batch Size Method Trainable Parameters Offload to CPU _ Offload to GPU
Base Offload Base Offload Base Offload
FT 7.9 K (100.0 %) 545.8 MB 0.001
LoRA 6.4k (30.9 %) 545.8 MB 0.001
| unmerged {64k (809 %)}  5378MB  8O0MB 0001 000l 0001  0.001
ColA (Low Rank) = oo 2d [64k (80.9%)]  537.8MB 80MB 0001 0001 0001  0.001
4 unmerged  {79K (100.0%)} 5378 MB  80MB 0001 0001 0001  0.001
ColA (Lincar) merged [79K (1000 %)] 537.8MB 8O0MB 0002 0001 0001 0.0l
ColA (MLP)  unmerged {136.1K (17334 %)} 537.8MB 100MB 0001 0002 0001  0.002
FT 7.9 K (100.0 %) 545.8 MB 0.001
Linear LoRA 6.4k (30.9 %) 545.8 MB 0.002
- 8 unmerged {64k (809 %)}  537.8MB__ 80MB 000l 0001 000l 0001
ColA (Low Rank) = ocd [64k 80.9%)]  537.8MB 8O0MB 0002 0001 0001 000l
. unmerged  {7.9K (100.0%)}  5378MB  80MB 0001 0001 0001  0.001
ColA (Linear) ") o oed  [7.9K(1000%)]  537.8MB  80MB 0001 0001 000 000
ColA (MLP)  unmerged {136.1K (17334 %)} 537.8MB 100MB 0001 0002 0001  0.002
FT 79K (100.0 %) 5458 MB 0.001
LoRA 6.4k (30.9 %) 5458 MB 0.001
0 unmerged {64k 809 %)} 5378 MB  SOMB 0002 0013 0001  0.001
ColA (Low Rank) = ocq [6.4k 80.9%)]  537.8MB 80MB 0001 0001 0002  0.002
A unmerged  {7.9K(1000%)}  537.8MB  80MB 000l 0001 0001 0.0
ColA (Linear) "/ oed  [7.9K(1000%)] 537.8MB  80MB 0001 0001 0002 0001
ColA (MLP)  unmerged {136.1K (1733.4 %)} 537.8MB 10.0MB 0001 0002 0001  0.002
FT 136.1 K (100.0 %) 547.8 MB 0.001
LoRA 125K (92 %) 545.8 MB 0.001
| unmerged  {125K(92%))  5458MB OB 0001 0001 0002 000l
ColA (Low Rank) = oo 2d [125K(©2%)] 5458MB OB 0003 0001 0003  0.002
, unmerged {1361 K (100.0 %)} 5478 MB OB 0002 0001 0003  0.001
ColA (Lincar) "o oed  [136.1K (100.0%)] 545.8MB  20MB 0002 0001 0002 0001
ColA (MLP)  unmerged {3502K (2574 %)} 5478 MB 20MB 0002 0002 0003  0.002
FT 136.1 K (100.0 %) 547.8 MB 0.001
A“;Lp»g LoRA 12.5K (9.2 %) 545.8 MB 0.002
- 8  unmerged  {125K(92%)]  5458MB 0B 0.002 0001 0002  0.001
ColA (Low Rank) = ocq [125K(©02%)] 5458MB OB 0002 0001 0003 0001
A unmerged  {136.1 K (100.0 %)} 547.8MB OB 0002 0001 0002  0.002
ColA (Linear) " ooed  [136.1K (100.0%)] 545.8MB  20MB 0002 0001 0003  0.002
ColA(MLP)  unmerged {3502K (2574 %)} 547.8MB 20MB 0002 0002 0003  0.003
FT 136.1 K (100.0 %) 547.8 MB 0.001
LoRA 125K (92 %) 545.8 MB 0.002
n unmerged  {125K (92%)}  5458MB OB 0002 0001 0002  0.001
ColA (Low Rank) = ocd [125K(92%)] 5458 MB 0B 0.002 0.001 0003  0.002
onte T (STKGOD) SHN Wb G s o
ColA (MLP)  unmerged {3502K (257.4 %)} 5478MB 20MB 0003 0002 0004 0003
FT 155.5 K (100.0 %) 503.8 MB 0.003
LoRA 442K 28 %) 721.8 MB 0.006
1  unmerged  {#42K(28%)  7198MB  20MB 0009 0002 0005  0.002
ColA (Low Rank) = ocq [442K(28%)]  S91.8MB 1320MB 0011 0002 0005  0.004
ColA (Lineay  Umereed  {ISSSK (10009} SOLSMB  220MB 0007 0003 0005  0.002
merged  [155.5K (100.0%)] 5918MB 220MB 0009 0002 0005  0.002
ColA(MLP)  unmerged {538.1K(346%)] S593.8MB 40MB 0007 0003 0006 0.002
FT 155.5 K (100.0 %) 615.8 MB 0.004
JENN’5 LoRA 442K (2.8 %) 859.8 MB 0.004
= 8 ColA (Low Ranky Unmereed (42K (28%)  7258MB GOMB 0008 0026 0005  0.002
W mereed  [442K(28%)] 5938 MB 1380MB 0007 0002 0006  0.005
. unmerged {1555 K (100.0 %)} 6138 MB  20MB 0013 0004 0005  0.002
ColA (Linear) "o oed  [155.5K (100.0%)] 5938 MB 22.0MB 0021 0003 0006  0.002
ColA(MLP)  unmerged {538.1K (34.6%)} 6178 MB 20MB 0016 0007 0007  0.003
FT 155.5 K (100.0 %) 615.8 MB 0.003
LoRA 442K (28 %) 831.8 MB 0.005
3 unmerged  {442K 2.8 %)) 7658 MB  40MB 0035 0022 0005  0.002
ColA (Low Rank) = © e [442K (28%)]  6338MB 2660MB 0022 0006 0005  0.004
4 unmerged {1555 K (100.0 %)} 6338 MB  22.0MB 0019 0005 0006  0.002
ColA (Linear)
merged  [155.5 K (100.0%)] 633.8MB 20MB 0020 0005 0006 0002
ColA (MLP)  unmerged {5381 K (346%)} 6958 MB 80.0MB 0012 0017 0007 0002
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Table 16:

Run Time (s)

. . Memory
Batch Size Method Trainable Parameters Offload to CPU _ Offload to GPU
Base Offload Base Offload Base Offload
Low Rank unmerged 8 x {2949 K} 1.3GB 10.0MB 0.073  0.004 0.040 0.004
merged 8 x [294.9 K] 1.3GB 700MB 0.075 0.003 0.050 0.007
1 unmerged 4 x {2949K}, 4 x {212M} 1.6GB 7220MB 0.061 0.017 0.035 0.002

Low Rank-Linear o024 4 x[2049K]. 4 x [212M] 13GB 1IGB 0064 0004 0053 0006

Low Rank-MLP  unmerged 4 x {2949K},4 x {87M} 14GB 196.0MB 0.066 0.012 0.041 0.005

Low Rank unmerged 8 x {2949 K} 31GB  18.0MB 0.190 0.013 0.075  0.022

merged 8 x [2949 K] 31GB  240MB 0.095 0010 0.051 0.019

8 Low Rank Linear UnMerzed 4 x {2049K},4 x {212M} 36GB  600.0MB 0135 0031 0065 0019
merged 4 x[2949K], 4 x [21.2M] 3.1GB 1.1 GB 0.129  0.020  0.050 0.023

Low Rank-MLP  unmerged 4 x {2949K},4 x {87M} 32GB 2540MB 0.178 0.024  0.080 0.024

Low Rank unmerged 8 x {2949 K} 90GB 180MB 1.000 0.017 0.205 0.032

merged 8 X [294.9 K] 90GB 40.0MB 0.899 0.017 0.079 0.042

32 unmerged 4 x {2949K}, 4 x {21.2M} 94GB 7900MB 1.059 0.034 0.186  0.038

Low Rank-Linear = o0 0q 4 x [2949K].4 x [212M] 90GB LIGB 0971 0030 0075 0017
Low Rank-MLP  unmerged 4 x {2049 K),4 x {87M} 92GB 580MB 1076 0031 0212 0037

Memory Run Time (s)
Batch Size Method Trainable Parameters Offload to CPU _ Offload to GPU
Base Offload Base Offload Base  Offload
Low Rank unmerged 8 x {42M} 141GB 12800MB 0244 0.004 0.202  0.005
merged 8 x [42M] 14.0 GB 1.1 GB 1.655  0.003 —
1 Low Rank-Linear unmerged 4 x {42M}, 4 x {1.1 B} 301GB  >79GB 0252 0223 —
merged 4 x [42M],4 x [1.1 B] 140GB >340GB 1.737 0.038 —
Low Rank-MLP  unmerged 4 x {4.2M},4 x {103.0M} 15.6 GB 1.7 GB 0216  0.011 0356  0.005
Low Rank unmerged 8 x {42M} 20.7GB 256.0MB 0.735 0.013 0.383  0.021
merged 8 x [42M] 208GB 828.0MB 1.283 0.013 —
8 unmerged 4 x {42M},4 x {1.1 B} 36.8GB  >112GB 0.724 0.301 —

Low Rank-Linear - = o odd 4 x[42ML4x[L.1B]  208GB >272GB 1439 0.111 —

Low Rank-MLP  unmerged 4 x {4.2M},4 x {103.0M} 22.6 GB 3.1GB 0.844  0.030  0.465 0.018

Low Rank unmerged 8 x {42M} 428GB 256.0MB 9.243  0.035 —
merged 8 x [4.2M] 427GB  406.0MB 6316 0.030 —
32 unmerged 4 x {42M},4 x {1.1 B} — —

Low Rank-Linear - = o odd 4 x[42ML4x[L.1B] 427GB >53GB 6569 0231 —

Low Rank-MLP  unmerged 4 x {4.2M},4 x {103.0M} 446GB >34GB 9216 0.065 —

) ) Memory Run Time (s)
Batch Size Method Trainable Parameters Offload to CPU __ Offload to GPU
Base Offload Base  Offload Base Offload
Low Rank unmerged 8 x {20.0 M} 146GB  962.0MB  0.627 0.004 0305 0.002
merged 8 x [20.0 M] 14.1 GB 45GB 8.918 0.003 —
1 unmerged 4 x {20.0 M}, 4 x {6.5B} — —

Low Rank-Linear "/ 0ld 4 x [200ML.4 x [65B]  141GB >339GB 8959 0051 0356  0.003
Low Rank-MLP  unmerged 4 x {20.0 M}, 4 x {502.7M} 222GB 11.7GB 0.635  0.017 —

Low Rank_ unmerzed 8 x {200 M} 216GB  12GB 4583 0015 1133 0.007
merged 8 x [20.0 M] 209GB >27.1GB 7956 0016 —
8 . unmerged 4 x {20.0 M}, 4 x {6.5B} — —
Low Rank-Linear = o004 4x[200M].4x [65B] 209GB  40GB 6949  0.171 —
LowRank-MLP  unmerged 4 x {200M}, 4 x {5027M} 297GB 159GB 5588 0044 1311 0008
Low Rank_ unmerged 8 x {20.0 M} 442GB  12GB 41893  0.058 —
merged 8 x [20.0 M] 428GB  35GB 30033 0.060 —
32 unmerged 4 x {20.0 M}, 4 x {6.5B} — —

Low Rank-Linear "o 02d 4% [200ML.4 x [65B]  42.8GB  >52GB 30818  0.440 —
Low Rank-MLP  unmerged 4 x {20.0 M}, 4 x {502.7 M} — —
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Figure 16: Learning curves of (a) E2E NLG (b) WebNLG, and (¢) DART datasets of 825 task and
ROUGE (Longest) meiric.

AV
// \ -~ e S
/, e 7‘"’ A 0.175
FT
J/ -~ LoRA
,/ e A o 0150
1724 B Rl <)
[ - Promp Tnlring 2 0.125 —— Promp Tmring
T * Prefix Tuning ] + Prefix Tuning
I F P-Tuning &~ P-Tuning
'I_' ColA (Low Rank, unmerged) 0.100 ColA (Low Rank, unmerged)
i ColA (Linear, unmerged) ColA (Linear, unmerged)
]l —  ColA (MLP, unmerged) —  ColA (MLP, unmerged)
{ — = ColA (Low Rank, merged) 0.075 ~ = ColA (Low Rank, merged)
- ColA (Linear, merged) - ColA (Linear, merged)
0 10 20 30 40 0 10 20 30 40
Epoch Epoch
(a) GPT-2 (b) Lllam-2

Figure I7: Learning curves of (a) GPT-2 and (b) Llama-2 (Q, V) on Dolly dataset of CLM task and
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