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Figure 1: Demonstration of ROSE: Reconstructing Objects, Scenes, and Trajectories from
Casual Videos for Robotic Manipulation. Left: Human demonstration from a monocular casual
video. Middle: Reconstruction of objects, scenes, and trajectories. Right: Robotic manipulation
learned from the demonstration.

Abstract: In this paper, we build a real-to-sim-to-real (Real2Sim2Real) system2

for robot manipulation policy learning from casual human videos. We propose3

a new framework, ROSE, that directly leverages casual videos to reconstruct4

simulator-ready assets, including objects, scenes, and object trajectories, for train-5

ing manipulation policies with reinforcement learning in the simulation. Unlike6

existing real-to-sim pipelines that rely on specialized equipment or time-consuming7

and labor-intensive human annotation, our pipeline is equipment-agnostic and fully8

automated, facilitating data collection scalability. From casual monocular videos,9

ROSE enables the direct reconstruction of metric-scale scenes, objects, and object10

trajectories in the same gravity-calibrated coordinate for robotic data collection11

in the simulator. With ROSE, we curate a dataset of simulator-ready scenes from12

casual videos from our own capture and the Internet, and create a benchmark13

for real-to-sim evaluation. Across a diverse suite of manipulation tasks, ROSE14

outperforms the existing baselines, laying the groundwork for scalable robotic data15

collection and achieving efficient Real2Sim2Real deployment.16

1 Introduction17

This paper develops a real-to-sim-to-real system that enables robot manipulation policy learning18

from casual human videos. Human videos are useful for learning complex robot manipulation skills19
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Table 1: Comparison with existing real-to-sim pipelines. Scene mesh: 3D collision mesh of the
scene. Object Mesh: 3D collision mesh of objects. Object Traj.: The 6-DoF pose of objects to be
manipulated. Gravity Dir: The gravity direction of the reconstructed scene and objects. Metric Scale:
If the reconstructed scene is in metric space (cm). World Coord.: If the reconstructed scene is in the
world coordinate. Automation: It is a fully automated pipeline or requires human annotations (e.g.,
RialTo [1] needs expert human annotation using GUI tools). O: Unknown.
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Input / Platform

RialTo [1] ✓ ✓ ✓ ✓ ✓ ✓ ✗ RGB-Video
Video2Policy [2] ✗ ✓ ✓ ✗ ✓ ✗ ✓ MV-imgs / LiDAR
RL-GSBridge [3] ✗ ✓ ✗ ✗ ✗ ✓ ✗ MV-imgs
SplatSim [4] ✓ ✓ ✓ ✗ ✗ ✓ ✗ RGB-D
ReBot [5] ✗ ✗ ✓ ✗ ✓ ✓ ✓ Video / Mesh
Digital Cousins [6] O O ✗ ✗ O ✓ ✓ Image
Chen et al. [7] ✗ ✗ ✗ ✗ ✗ ✗ ✓ Mesh / Trajectory
URDFormer [8] ✓ ✓ ✗ ✗ ✗ ✓ ✓ MV-imgs
Ditto In the House [9] ✓ ✓ ✗ ✗ ✗ ✓ O Image / Interaction

Ours ✓ ✓ ✓ ✓ ✓ ✓ ✓ RGB-Video

efficiently, the following three knowledge must be utilized: i) Objects: Different objects pose different20

manipulation strategies according to specific shapes, sizes, textures, etc (e.g., grasping a goblet vs21

grasping a box), which is valuable for scaling up object priors. ii) Scenes: The scene plays a vital22

role in manipulation that requires scene awareness. e.g., inserting a book into the bookshelf requires23

an understanding of both the book and the bookshelf context. iii) Trajectories: The 6-DoF object24

trajectories encode the most abundant task-solving information, guiding both traditional motion25

planning and policy training.26

To fully leverage the aforementioned knowledge, one could replicate the same scene and objects in27

the real world and train a manipulation policy via reinforcement learning (RL) [10, 11] or imitation28

learning [12], as training on extensive robotic data can endow policies (e.g., vision-language-action29

models [13–15]) with broad generalization across tasks. However, this is typically infeasible and30

extremely inefficient – experimenting with robots in the real world with RL has safety risks, and31

replicating the exact same environment as human demonstrations for robotic data collection is difficult,32

especially when using casual human videos from the Internet. Moreover, learning robust behaviors33

for novel situations often demands either numerous human demonstrations or risky trial-and-error on34

physical hardware. Consequently, imitation learning alone may struggle to generalize, while direct35

reinforcement learning in the real world may require impractical amounts of unsafe interaction.36

Policy training and testing in simulation followed by sim-to-real (Sim2Real) policy transfer has thus37

emerged as an effective alternative, allowing robots to practice skills and explore failure with RL38

without real-world consequences [16, 17]. This motivates a promising solution – transferring the39

high-fidelity human video that encodes the three key knowledge to the simulation – a Real2Sim2Real40

approach. Modern 3D scene and object reconstruction techniques can be utilized to turn monocular41

RGB videos into detailed 3D models of the environment, dramatically simplifying virtual scene42

creation. For example, neural implicit representations like NeRF [18] and related methods are able43

to capture high-fidelity object geometry and textures from casual camera scans. Hence, one can44

rapidly produce photorealistic, physics-ready virtual replicas of real scenes that support interaction in45

a simulator through this real-to-sim (Real2Sim) procedure.46

Several recent systems demonstrate the power of this approach. As depicted in Tab. 1, existing47

methods only transfer partial knowledge [2, 3, 5, 7–9, 19, 20], lack physics alignment like gravity [2,48

3, 5, 8, 9, 20], or require significant human annotation efforts [1, 4]. For example, Torne et al. [1]49
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construct a digital twin of a real manipulation scene on-the-fly from a few camera scans, then use50

it to fine-tune an imitation-learned policy via reinforcement learning in simulation, but extensive51

human labor is required for annotating the scene information. Similarly, Fang et al. [5] replay real52

robot manipulation trajectories in a simulator to diversify object interactions, and then integrate the53

simulated motions into real image backgrounds to synthesize new realistic training videos. This54

requires a time-consuming collection of robotic data, and this approach completely overlooks the55

value in scenes and objects. As a result, these studies have not fully realized the potential value of56

human videos, leaving an automatic Real2Sim2Real pipeline that satisfies all the features deficient.57

In this paper, we propose Reconstruction of Objects, Scene and TrajEctories (ROSE), a system for58

Real2Sim 3D reconstruction from monocular videos to facilitate robotic manipulation. Given only59

a single RGB camera moving through a real scene, ROSE automatically builds an interactive 3D60

simulation of that scene, reconstructing both the geometry and appearance of objects and surfaces.61

The resulting simulation (a “digital twin” of the scene) can be used to train and evaluate manipulation62

strategies in a safe and scalable manner. By eliminating much of the manual effort required to create63

detailed simulated environments, ROSE aims to enable robots to learn and test manipulation policies64

in faithful virtual replicas of real-world settings, then execute them reliably in the physical world. We65

collect a large-scale dataset comprising diverse scenes, objects, trajectories, and physically plausible66

robotic actions for task completion. The dataset includes more than 30 scenes, 50 objects, 60067

trajectories, and 3,500 robot action samples.68

2 Related Work69

2.1 Sim-to-Real RL Policy Transfer70

Training robot policies with RL in simulation, followed by a sim-to-real (Sim2Real) policy transfer,71

has become one of the most successful robot learning strategies in wide applications, such as72

locomotion [21–25], loco-manipulation [26–29], dexterous manipulation [30, 31], etc. One advantage73

of such Sim2Real RL training lies in the low-cost, safe, and more potential in improving generalization74

through domain / dynamic randosmizations [16, 32], making it a widely adopted alternative to75

collecting real-world data that is typically time-consuming and labor-intensive. However, such a76

low-cost and safe simulation training alternative may bring a Sim2Real gap that makes it hard for77

the Sim2Real policy transfer. To address this issue, a lot of works have been proposed to mitigate78

the gap, e.g., curriculum learning of Sim2Real constraints [24, 33–35], teacher-student distillation of79

privileged information like object states or environment extrinsics [23, 35, 36], 3D awareness [37–41],80

and perception augmentation / randomization [42–47].81

2.2 Real-to-Sim Dynamic Scene and Object Transfer82

Recently, a lot of efforts in 3D vision have been devoted to creating simulated twins of the real-world83

scenes / objects from 2D videos [18, 48, 49], which is critical in enriching operating environments84

when training robot policies in simulation. Generally, transferring real-world scene videos to the 3D85

simulation that is useful for robot learning involves three key components: i) 3D scene geometry, ii)86

3D object geometry, and iii) object dynamics, which requires two key techniques as follows.87

Dynamic 3D Scene Reconstruction from 2D focuses on recovering the appearance and geometry88

of scenes from 2D images or videos. Earlier methods [49–53] typically rely on dense multiview89

capture and require significant computational resources to reconstruct dynamic scenes, often using90

NeRF-based [54] or 3D Gaussian Splatting [55] representations that evolve over time. More recently,91

with advances in deep multiview stereo [56, 57] and monocular depth estimation [58, 59], a new92

line of work has emerged that better captures the geometry of dynamic scenes from casual inputs.93

Notably, approaches such as MegaSaM [60], MonST3R [61], and CUT3R [62] demonstrate robust94

and efficient dynamic 3D reconstruction from casually captured monocular videos. These methods95

mark a significant step towards scalable, large-scale scene reconstruction and asset creation for96

downstream applications like robotics.97
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Figure 2: ROSE Real2Sim pipeline illustration. (a) We leverage MegaSaM[60] and GeoCalib[68]
to reconstruct scene point cloud in the metric-scale and gravity-align world coordinates. (b) We
further use SAM-2[69] and DINO-X[70] to detect and track interactor and object mask from videos.

3D Object Dynamics from 2D provides the object-level kinematic dynamics encoded as object98

spatial translation and orientation in 3D, offering valuable priors that help both traditional motion99

planning methods and learning-based approaches. To capture such object dynamics, various object100

representations have been used as the policy tracking goal. For example, Bharadhwaj et al. [46]101

propose to use object and hand segmentation as proxy information, followed by a segmentation image102

conditioned policy that achieves better generalization.103

Meanwhile, some works utilize the point-level flow map of objects or images as the point tracking ob-104

jective and achieve great progress [63–66]. Different from relying on such proxy representations, our105

approach directly collects 6DoF trajectories through pose estimation [67], offering a scalable and effi-106

cient solution for acquiring high-quality motion data. Notably, a concurrent work, Video2Policy [2],107

also proposes to use 6DoF object trajectories as object dynamics. However, Video2Policy only108

reconstructs the object states and places objects on the same canonical tabletop in a specific robot109

frame. In contrast, our approach transfers both the dynamic scenes and the objects in the world110

coordinate, where the world frame reconstruction helps SLAM-based scene reconstruction [60].111

3 ROSE – Reconstructing Object, Scene, and Trajectory112

3.1 Object Reconstruction113

Object Grounding. As shown in the Fig. 2, given the target object label obtained from user input114

or LLM inference, we scan the video frame-by-frame until the object is first detected by DINO-X115

[70]. The detected bounding box is then passed to the SAM-2 image predictor [69] to obtain the116

target object mask. This mask is registered as the initial label in the SAM-2 video predictor, which117

subsequently propagates the segmentation through the rest of the sequence, yielding per-frame object118

masks.119

Object Mesh Reconstruction. Using the segmented masks, we leverage TRELLIS [71] to reconstruct120

the 3D mesh, which provides 3D reconstruction pipelines from both single image and multiview121

images. Since most manipulation videos are filmed from a single viewpoint, we select the first frame122

mask to reconstruct the 3D mesh. For highly occluded or feature unclear situation, we would use123

masks from multiple non-occuluded views to reconstruct.124

3.2 Scene Reconstruction125

Scene Point Cloud Reconstruction. For every video frame Ii, MegaSAM [60] supplies the cam-126

era intrinsics Ki, the camera pose Gi = [Ri|ti], and a relative depth map Drel
i . We feed Ii to127

UniDepth [58] to obtain an absolute depth estimate Dabs
i . A global scale factor α̂ and offset β̂ align128

Drel
i to metric depth Dalign

i . Each pixel u is back-projected with Ki, Ri, ti, and Dalign
i to yield 3-D129

points, which we accumulate into a raw scene point cloud P . Then we apply GeoCalib [68] on to the130
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first frame and obtain a gravity-align transformation. Then we apply this transformation to each of131

the following frame to ensure the scene is under the gravity-aligned coordinate.132

Scene Mesh Reconstruction. The sparse, hole-ridden point cloud yielded by the previous stage is first133

densified with Neural Kernel Surface Reconstruction (NKSR) [72]; its detail hyper-parameter is tuned134

to close gaps while preserving fine geometry. To satisfy simulator requirements, namely orientability,135

2-manifoldness, and self-intersection freedom, we subsequently apply an Alpha Wrapping procedure,136

[73] producing a watertight, validity-guaranteed surface. Finally, color is restored by a point-to-vertex137

transfer: each mesh vertex inherits the distance-weighted average RGB of its three nearest neighbours138

in the processed point cloud, yielding a textured, simulation-ready scene mesh.139

3.3 Trajectory Reconstruction140

Improved Foundation Pose. Given the segmentation masks, we apply FoundationPose [67] in a141

model-based setup to estimate the object’s 6 DoF Pose Q. The model takes as input the trellis mesh,142

the camera intrinsic K, and depth map d. We obtain K and d from MegaSAM [60].143

For the masked region M , we compute the maximum pairwise 3D distance:144

Dimage = max
(i1,j1),(i2,j2)∈M

∥p(i1, j1)− p(i2, j2)∥ (1)

where pi,j denotes the 3D location in camera space. We similarly compute Dmesh, the maximum145

distance between mesh vertices, and define the initial scale ratio as ρ = Dimage/Dmesh. Due to noise146

in depth, intrinsics, and occlusions, we refine the scale by searching within [ 1α , α] at step size t,147

selecting the scale that minimizes the IoU loss:148

LIoU = 1−
∑N

i=1 m̂imi∑N
i=1 (m̂i +mi)− m̂imi

,

where N is the number of pixels, m̂i is the predicted mask value, and mi is the ground-truth mask149

value at pixel i.150

3.4 Robot Action Collection151

Building on the object trajectories reconstructed by the pipeline described above, we further explain152

how we collect robotic action data to enable the object to follow the trajectory and complete the task.153

With the reconstructed scene and object, we first load them into the simulator. Given the object’s154

motion, our goal is to control the robot to interact appropriately with the object and guide it along the155

desired trajectory. We primarily utilize two baseline approaches for diverse robotic action collection:156

motion planning-based and reinforcement learning-based methods.157

Motion Planning. For the motion planning-based algorithm, we first predict an appropriate grasping158

pose for the object. Once a stable grasp is achieved, the robot follows the object’s trajectory using end-159

effector control based on cuRobo[74]. If the object remains stable and the trajectory is successfully160

followed, a data sample is considered successfully collected. For this method, we only consider the161

parallel-jaw gripper setting. In detail, we use GSNet [75] to predict grasp poses based on the point162

cloud generated in the simulation. After executing a planned trajectory to successfully grasp the163

object, the robot then follows the trajectory obtained from our vision pipeline to collect valid data.164

Reinforcement Learning. Although the motion planning-based method is efficient and easy to165

implement, it is not sufficient for all scenarios. For example, when using high-dimensional robotic166

hands, as opposed to simple parallel-jaw grippers, predicting an appropriate grasping pose becomes167

significantly more challenging. In such cases, reinforcement learning (RL) allows the robot to explore168

and learn effective grasping strategies to complete the task.169

Our RL baseline consists of two stages: object grasping and object manipulation. In the first stage,170

we design a reward function composed of three terms: a reaching reward rreach, a grasping reward171

rgrasp. In the second stage, we follow the object trajectory generated by our previous pipeline to172
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(a) Pick Pepsi (b) Place Pepsi

(c) Flip Magic Cube (d) Rotate Stapler

(e) Pick Yellow Cube (f) Pick Croissant

(g) Move Mouse In Triangle (h) Pick Yellow Cube

Image Trajectory TrajectoryImage

Figure 3: Qualitative ROSE Real2Sim results.

complete the task. To achieve this, we use CuRobo to control the end-effector and track the trajectory173

accurately.174

It is also worth noting that we explored an end-to-end RL approach without the two-stage setting.175

While we carefully designed a reward function for trajectory following, we found that it was difficult176

for the policy to accurately replicate the generated motion, particularly in cases involving complex177

rotations. This limitation arises from the inherent nature of RL: since learning relies heavily on178

exploration, it is challenging for a policy to acquire precise trajectory-following behavior, especially179

when the robot is simultaneously required to grasp and manipulate the object.180

3.5 Sim-to-real Transfer181

With action data collected, we further train a model for sim-to-real transfer. A key advantage of182

our vision pipeline is its ability to generate high-quality, simulation-ready scene and object meshes,183

along with corresponding object trajectories. This enables fast and accurate robotic data collection184

in simulation. Using this data, we can leverage a high-quality renderer to produce realistic visual185

datasets. This allows us to train a vision-based robotic model capable of directly transferring to186

real-world scenarios.187

4 Experiments188

4.1 Experiment Setup189

Our model is able to collect robotic data from diverse datasets from various sources, including190

outdoor, indoor environments. We benchmarked our real-to-sim method in RoboVerse[76] simulation191

environment and validated it in both simulation and real-world settings using the Franka arm and192

Unitree G1 humanoid robots.193

4.2 Benchmark Construction194

We construct a new benchmark to evaluate the fidelity of real-to-sim-to-real pipeline scene recon-195

structions from casual monocular videos as shown in Tab. 2. Because existing metrics treat scene196

layout, object shape, and motion separately, our benchmark fuses them into one holistic evaluation. It197

provides five simulated environments with full ground-truth geometry, appearance, and trajectories,198
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Task Avg. Scene
Chamfer Dist.

Object
Chamfer Dist.

Translation
APE

Rotation
RPE

Translation
RPE

Unstack 0.6211 0.02158 0.003242 3.724 0.001649
Place 0.6945 0.01060 0.02629 3.804 0.02269
Lift 0.6696 0.02786 0.02208 9.065 0.004374
Push 0.7513 0.01516 0.01086 4.229 0.002170
Rotate 0.6513 0.01394 0.008418 3.508 0.003301

Average 0.6776 0.01782 0.01418 4.866 0.006837

Table 2: Benchmark comparison across tasks. ROSE’s performance metrics from our benchmark.
Avg. Chamfer distance is computed for scene reconstructions, while object metrics include Chamfer
distance, Absolute Pose Error (APE), and Relative Pose Error (RPE).

plus a casually captured video that serves as the pipeline’s input. Evaluation uses four metrics:199

per-frame Chamfer distance between scene point clouds, Chamfer distance for object geometry, and200

APE/RPE (translation and rotation) for object trajectories. Scores are averaged across frames to201

yield stable measures. Together, these metrics reveal how well a method recovers both the static202

environment and the dynamics of the objects within it.203

(a) Hand Rose (Human)

(b) Hand Rose

(c) Grasp Plant Toy

(d) Lift Cyan Cube
Figure 4: Qualitative ROSE real-world results.

4.3 Qualitative Results for Scene, Object and Trajectory Reconstruction204

We present qualitative results on Fig. 3, demonstrating how our pipeline reconstructs geometrically205

accurate scene, object and object trajectory from casual videos to enable policy training.206

4.4 Robotic Dataset Collection207

Leveraging our scene, object, and trajectory reconstruction results, along with our robotic data208

collection pipeline, we construct a robotic manipulation dataset from monocular video. In the end,209

we collect 3.5k valid robotic datasets with diverse task settings and environment variation.210
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4.4.1 Simulation Environment Setup211

Leveraging the RoboVerse platform [76], we develop a pipeline for generating simulation environ-212

ments. Specifically, we use a standardized configuration file to process scene layouts and object213

meshes. After loading the target robot into the simulation, we perform unit tests to ensure proper214

setup and collision-free initialization. We then follow the data collection pipelines to gather robotic215

manipulation data.216

4.4.2 Manipulation Benchmark in Simulation217

We establish a simulation benchmark to evaluate the performance of different robotic data collection218

methods. Specifically, we compare our proposed motion-planning-based approach and a two-stage219

reinforcement learning (RL) method against an end-to-end RL baseline. Our results show that the220

motion planning-based and two-stage RL methods perform differently across various settings—each221

demonstrating strengths in different scenarios. Comparing with strong baselines, including the222

concurrent work Video2Policy [2], Our method achieves the best performance on three out of four223

tasks as well as on the average score as shown in Tab. 3.224

Method PickPepsi StackBlock PlaceBowl MoveTriangle Average

End-to-End RL 1.00 0.00 1.00 0.00 0.50
Video2Policy [2] 0.00 0.00 0.40 0.00 0.10
Ours (Motion Planning) 0.80 1.00 0.40 0.80 0.75
Ours (Two-stage RL) 1.00 0.60 1.00 1.00 0.90

Table 3: Task completion rate in simulation.

4.5 Sim-to-Real Transfer225

To validate the usefulness of our collected data, we conduct experiments to demonstrate the effective-226

ness of both the dataset and the trained policy.227

4.5.1 Zero-shot Robotic Manipulation and Data Collection228

We evaluate our collected robotic data and data collection pipeline in real-world settings. Specifically,229

we deploy the motion-planning-based method in a physical environment to assess its capability for230

zero-shot data collection and task execution using only a single demonstration. We test the data231

collection system across 13 different scenarios, achieving success in 11 of them—resulting in an232

84.6% success. The failure is primarily due to incorrect grasp poses and joint limit violations during233

motion planning.234

4.5.2 Policy Sim-to-Real Transfer235

We further train an RGB-based policy in simulation and demonstrate that, using the assets generated236

by our vision pipeline, the action data collected in simulation, and high-quality rendering based on237

RoboVerse [76], the resulting policy can zero-shot generalize to the real world.238

5 Conclusion239

We have introduced a fully automated real–to–sim framework that lifts casual monocular videos240

into simulator-ready assets—metric-scale, gravity-aligned scenes, watertight textured meshes, and241

object trajectories—without specialised sensors or manual annotation. Leveraging our pipeline, we242

delivers valid, photorealistic environments that satisfy modern simulators’ geometric constraints.243

Experiments on a newly curated benchmark and diverse manipulation tasks demonstrate consistent244

improvements over prior Real2Sim baselines in scene fidelity, pose accuracy, and zero-shot policy245

transfer. By lowering the barrier to scalable data curation, our work lays a foundation for large-scale,246

task-agnostic robot learning and opens avenues toward richer video-driven Real2Sim2Real research.247
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6 Limitation248

Our current pipeline focuses solely on the reconstruction and manipulation of rigid objects. Extending249

this approach to more challenging materials and deformable objects is left for future work. While250

our large-scale dataset, collected from casual videos, holds significant potential for pretraining251

a foundation model, exploring this direction is beyond the scope of this paper due to resource252

constraints.253
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A Implementation Details520

In this section, we introduce the implementation details of ROSE. To be specific, we present the521

details of the Real2Sim transfer of human videos, Sim2Real policy training, and real-world setup in522

Appendix A.1, Appendix A.2, and Appendix A.3, respectively.523

A.1 Real-to-Sim Transfer524

We use the videos with a resolution of 512× 288 containing 60∼300 frames in 30 FPS (spanning 2s525

to 10s). We first reconstruct the 3D point clouds by running MegaSaM [60], detailed as follows.526

Point Cloud Reconstruction For every frame, we follow MegaSaM [60] to get the affine-invariant527

monocular disparity map with Depth-Anything V2 [77], a camera pose in the world coordinate, and528

the focal length estimation obtained with UniDepth V2 [58]. With this information, we align the529

disparity to the metric scale, which is converted to the pixel-aligned 3D point clouds coordinated530

in the world frame. Afterwards, we use GeoCalib [68] on the first frame to estimate the scene’s531

gravity direction. We then rotate the camera rig so that the estimated gravity is to the negative of532

the z-axis in a right-hand coordinate system, resulting in gravity-aligned point clouds in the world533

frame. To further avoid residual artifacts, we apply edge dilation to remove colors at boundaries534

and depth-gradient pruning to remove point clouds with corresponding gravity exceeding a certain535

threshold of 0.8 for reducing depth discontinuities.536

For every image, we use Ground-SAM-2 [69] with DINO-X-Track[70] to obtain binary masks of537

objects in the scene, used for object removal and reconstruction. For the scene point cloud, we fuse538

the point clouds by random sampling over the video to leverage complementary information to reduce539

the inaccurate point clouds caused by occlusions and partial scenes after object removal. The random540

sampling is used for balancing every frame’s contribution. On average, the point cloud reconstruction541

would take 3 minutes to process a 5-second casual video.542

3D Mesh Reconstruction For the object mesh, we use TRELLIS [71] to reconstruct the 3D543

mesh, and we set the α channel’s threshold to 0.2 to help reconstruct dark objects. For the scene544

mesh, we use a three-stage method. In the first stage, we run Neural Kernel Surface Reconstruction545

(NKSR) [72] for surface fitting. To close the small gaps created by mask removal while preserving546

high-frequency geometry, we set the detail level to 0.4 and use a single MISE iteration. Afterwards,547

to make the mesh orientable, two-manifold, and self-intersection-free for simulator usage, we wrap548

the resulting mesh with CGAL alpha-wrapping algorithm [73]. The α value is set to 400. Finally,549

each mesh vertex v of Mwrap inherits the RGB value c(·):550

c(v) =
∑

p∈Nk(v)

w(p, v) c(p), w(p, v) ∝ 1

∥p− v∥2
.

This is the inverse-distance-weighted average of its k-nearest neighbours Nk(v) in the point cloud.551

In this work, we use k = 3 with a maximum distance of 5cm.552

Improved Foundation Pose Foundation pose [67] requires that the scale of the mesh and the scale,553

unprotected from the depth map, be the same in order to ensure accurate pose estimation. Therefore,554

we align the trellis mesh Mtrellis with the scene mesh Mscene by the following transformation:555

Mtrellis-align = G0QsMtrellisf, (2)

where s is the scale factor, G0 is the camera pose, Q is the object pose, and f is the focal length.556

For pose tracking, we begin by using the scale s estimated in the first frame to adjust the scale557

of Mtrellis. We then follow the approach outlined in FoundationPose [67]. The object pose Qi is558

initialized using the previously estimated pose Qi−1, and the refinement network is applied to further559

refine Qi, yielding the final estimation of the object pose for the current frame.560
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A.2 Sim-to-Real Policy561

Simulation Environment Setup We use RoboVerse [76] as our simulation platform to establish562

the data collection pipeline. Specifically, we adopt the IsaacGym branch for mesh loading, policy ex-563

ecution, and reinforcement learning, while leveraging the IsaacLab branch for high-fidelity rendering564

and vision-based policy training.565

Simulation and control parameters follow the default settings provided by RoboVerse. For both566

objects and scenes, we set the friction coefficient to 0.5. To ensure accurate collision detection and567

reliable physics simulation, we apply convex decomposition to the scene geometry.568

Robotic Data Collection based on Motion Planning We utilize GSNet [75] and cuRobo [74]569

as the core components of our motion planning pipeline, and conduct all simulations within the570

Isaac Gym environment. After reconstructing the scene (as described in Appendix A.1), we load the571

reconstructed environment and the target object mesh into the simulator. The object is represented572

using a high-resolution mesh, preserving geometric detail necessary for accurate grasp prediction and573

motion planning.574

Using GSNet, we extract both the surface point cloud and a predicted grasp pose for the target object.575

These predictions are then used to initialize an inverse kinematics (IK) solver provided by cuRobo,576

which computes a feasible trajectory for the robot’s end effector to reach the designated grasping577

configuration. During this process, we account for kinematic constraints, joint limits, and potential578

collisions in the environment.579

Upon reaching the grasp pose, the robot executes a grasp based on a set of hand-crafted heuristics,580

which evaluate grasp stability using factors such as contact normals and finger placement. Once581

the grasp is completed, the robot follows a trajectory generated by a previously introduced motion582

prediction model, which guides the object to a specified goal position or task-specific location.583

Robotic Data Collection based on Reinforcement Learning Our method adopts a two-stage584

policy for robotic manipulation. In the first stage, we employ a reinforcement learning (RL) approach585

to train a policy that guides the robot’s end effector toward the object and performs a grasp once586

proximity is sufficiently close. To facilitate generalization across different grippers or robotic hands,587

we design a simple yet broadly applicable reward function. This reward encourages the end effector588

to reduce its distance to the target object and penalizes undesired motions, without relying on589

gripper-specific parameters, making it adaptable to a wide range of hardware configurations.590

During deployment, we execute the learned grasping policy for a fixed horizon of 50 steps, under591

the assumption that a successful grasp is achieved by the end of this phase. In the second stage, we592

switch to a motion planning phase using cuRobo [74]. The robot follows a precomputed trajectory593

that guides the grasped object to its goal location or completes the assigned task. This two-stage594

setup decouples grasp acquisition from subsequent manipulation, allowing each component to be595

optimized independently while ensuring end-to-end effectiveness.596

A.3 Real-World Experimental Setups597

Franka Setting For our real-world experiments, we use a Franka Emika Panda robotic arm equipped598

with a Robotiq 2F-85 adaptive gripper. This setup provides a reliable and widely used platform for599

evaluating grasping and manipulation policies in physical environments. The robot is controlled via a600

high-level interface that integrates seamlessly with our planning and control pipeline.601

To reconstruct the environment, we capture RGB-D data using both an iPhone 16 Pro and a DJI Osmo602

Pocket 3. These consumer-grade devices offer high-resolution color and depth sensing capabilities,603

allowing for efficient and accessible scene scanning.604
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B Real-to-sim Benchmark605

B.1 benchmark evaluation metric details606

Our proposed benchmark is based on three primary evaluations: scene reconstruction similarity,607

object reconstruction similarity, and object trajectory reconstruction.608

Uniform Sampling. Uniform sampling extracts a point cloud from a mesh by taking N points609

drawn i.i.d. over the surface of the mesh M. Unless stated otherwise, N = 10,000 in all our610

experiments.611

Symmetric Chamfer Distance. Given two point clouds A and B, symmetric chamfer distance is612

defined as:613

ChamferDist(A,B) =
1

|A|
∑
a∈A

min
b∈B

∥a− b∥22 +
1

|B|
∑
b∈B

min
a∈A

∥b− a∥22.

Scene Reconstruction Similarity. To evaluate scene reconstruction similarity, we first construct a614

point cloud Pscene through uniform sampling the reconstructed mesh. We then align Pscene with each615

frame’s ground-truth point cloud Pgt-scene
i (i = 1, . . . , F ) by optimizing an SE(3) transformation to616

yield P̂scene. Finally, we compute the average chamfer distance across the aligned frame point cloud617

P̂scene and the ground-truth scene point clouds.618

Escene =
1

F

F∑
i=1

ChamferDist(Pgt-scene
i , P̂scene)

Object Reconstruction Similarity. Similarly to scene reconstruction similarity, we construct point619

clouds Pgt-obj and Pobj by uniformly sampling the ground-truth and reconstructed object meshes620

respectively. We then align the point clouds by optimizing an SE(3) transformation to yield P̂obj.621

Finally, we evaluate object reconstruction similarity as the chamfer distance between the aligned622

point clouds.623

Eobj = ChamferDist(Pgt-obj, P̂obj)

Trajectory Reconstruction. We evaluate object trajectory reconstruction using three metrics: abso-624

lute pose error translation (APEtrans), relative pose error translation (RPEtrans) and relative pose625

error rotation (RPErot). We compute these between the ground truth trajectory Qgt-obj and the recon-626

structed trajectory Qobj, after aligning the reconstructed trajectories scale and SE(3) transformations.627

The absolute pose error (APE) measures the deviation between corresponding poses and is defined as:628

eape(Q
gt-obj,Qobj) =

1

N

N∑
i=1

∥∥∥Qgt-obj
xyz − Q̂obj

xyz

∥∥∥
2

where Qxyz denotes the translation component of pose Qi and Q̂ denotes the aligned trajectory.629

The relative pose error (RPE) measures the local consistency of motion between consecutive poses.630

For an interval ∆ = 1, we define the relative transformations as:631

Tgt-rel
i = (Qgt-obj

i )−1Qgt-obj
i+∆

Tobj-rel
i = (Q̂obj

i )−1Q̂obj
i+∆

The translation component of the RPE at time i is given by:632

erpe,trans(i) =
∥∥∥trans

(
(Tgt-rel

i )−1Tobj-rel
i

)∥∥∥
2

where trans(·) extracts the translation part of a transformation.633
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The rotation component of the RPE is given by:634

erpe,rot(i) = arccos

 trace
(

rot
(
(Tgt-rel

i )−1Tobj-rel
i

))
− 1

2


where rot(·) extracts the rotation matrix component of a transformation.635

B.2 Data Details636

We select 5 representative tasks from CALVIN [78] implemented in RoboVerse [76], covering the637

basic manipulation tasks on rigid objects: lift, push, rotate, “pick and place”, and unstack blocks.638

These tasks are performed on top of a delicate desk, allowing for evaluating the proposed pipeline by639

reconstructing both the scene (desk) and the objects in interest (blocks).640

B.3 Qualitative Results641

Figure 5: Qualitative examples of our real-to-sim benchmark.

C Additional Results642

C.1 Additional Results on Real-to-Sim Pipeline643

We present additional qualitative results for our real-to-sim pipeline in Fig. 6. Our method reconstructs644

the scene mesh, object mesh, and object trajectory in the same world coordinate reliably, across645

diverse platforms and interaction objects.646

C.2 Additional Results on Real-World Deployment647

For real-world deployment, we evaluate our method across a diverse set of task scenarios drawn648

from our dataset. In each test case, objects are placed in the same position and orientation as in the649

initial frame of the corresponding video. Using our vision pipeline, we extract the 3D scene mesh,650

object mesh, and object motion trajectory from the recorded demonstrations. Leveraging a real-to-651

sim-to-real pipeline, we train control policies in simulation with the motion planning approach and652

deploy them directly on the physical robot. In total, we conduct 18 real-world trials, of which 12 are653

successfully completed. These results in Fig. 7. highlight the robustness and practical effectiveness654

of our proposed method in transferring from simulation to real-world execution.655

656
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Figure 6: Additional results on real-to-sim pipeline.
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Figure 7: Additional results on real-world deployment.
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