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Abstract

Machine Learning has made remarkable progress
in a wide range of fields. In many scenarios, learn-
ing is performed on datasets involving sensitive
information, in which privacy protection is essen-
tial for learning algorithms. In this work, we study
pure private learning in the agnostic model — a
framework reflecting the learning process in prac-
tice. We examine the number of users required
under item-level (where each user contributes one
example) and user-level (where each user con-
tributes multiple examples) privacy and derive
several improved upper bounds. For item-level
privacy, our algorithm achieves a near optimal
bound for general concept classes. We extend this
to the user-level setting, rendering a tighter upper
bound than the one proved by Ghazi et al. (2023).
Lastly, we consider the problem of learning thresh-
olds under user-level privacy and present an algo-
rithm with a nearly tight user complexity.

1. Introduction

Differential Privacy (DP) (Dwork et al., 2006b;a) is a math-
ematical definition for measuring the privacy of algorithms.
An algorithm is considered private if the presence or ab-
sence of a single user does not significantly affect the output.
Due to its soundness and quantifiability, DP has become
the gold standard for ensuring data privacy and has been
employed by the industry (Apple Differential Privacy Team,
2017) and the governments (Abowd, 2018).

Machine learning models are usually trained on datasets that
contain sensitive data (e.g., in medical or financial applica-
tions). Thus, it is necessary to design privacy-preserving
machine learning algorithms. Kasiviswanathan et al. (2011)
initiated the study of private learning and defined private
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PAC learning as a combination of probably approximately
correct (PAC) learning (Valiant, 1984) and differential pri-
vacy. The most important measure for the utility of a learner
is the minimum amount of data required to find a hypothe-
sis that achieves some target accuracy, which is called the
sample complexity. Subsequent work (e.g., (Feldman &
Xiao, 2014; Alon et al., 2019)) showed that the privacy con-
straint makes the sample complexity much higher than the
non-private setting.

The PAC model assumes that all the samples are labeled
by a concept in the given concept class. This is called the
realizable assumption. However, in many situations, such an
assumption could be unrealistic. For example, the collected
data may be noisy, or one may choose an inappropriate
concept class that cannot classify the samples perfectly. The
agnostic learning model, introduced by Haussler (1992)
and Kearns et al. (1994), addresses this issue by requiring
the learner to output a hypothesis within some additive error
compared to the best one in the concept class. Motivated
by this, Kasiviswanathan et al. (2011) also defined private
agnostic learning with the agnostic model replacing the PAC
model in private PAC learning.

For pure private realizable learning, tight sample complexity
bounds were shown by Beimel et al. (2019). However, for
agnostic learning, there were no such tight results. Though
several algorithms were proposed (Kasiviswanathan et al.,
2011; Beimel et al., 2015; Alon et al., 2020), none of them
achieve a sample complexity that matches the trivial lower
bound, i.e., the one combines lower bounds of private real-
izable learning and non-private agnostic learning. On the
other hand, there have been no non-trivial lower bounds
obtained in the literature. Thus, a gap exists, leading to the
following question:

What is the sample complexity of pure private
agnostic learning?

What we have discussed so far only considers the situation
in that each user contributes one example, which we refer
to as item-level DP. In practice, however, one user may
have many items (e.g., in federated learning (Kairouz et al.,
2021)). Here, the goal becomes protecting all the examples
contributed by a single user. In this user-level DP setting,
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we are more interested in the user complexity of learning
algorithms, i.e., the number of users needed to achieve the
target accuracy.

User-level pure private PAC learning was first studied
by Ghazi et al. (2021b), who showed that compared to
the item-level setting, one could learn with fewer users if
each user contributes sufficiently many examples. The work
of Ghazi et al. (2023) further tightly determines the user
complexity as a function of the number of examples per user.
They also proved upper and lower bounds for the agnostic
model. However, like the item-level setting, there is a gap
between the upper and lower bounds. Thus, it is natural to
ask:

Can we obtain tighter bounds on the user com-
plexity of pure private agnostic learning?

1.1. Our Results

In this work, we study the problem of agnostic learning with
pure differential privacy. We list our results as follows. The
formal definitions of our notions can be found in Section 2.

Item-Level DP. We show that every concept class C can

be learned up to excess error « by an e-differentially private
algorithm using 9] (RCPTQ(C) + %&C)

with private realizable learning (Beimel et al., 2019), our

) samples. Compared

result only incurs an additive term of 19) ( %&C)), which
is known to be tight up to polylogarithmic factors even
for non-private agnostic learning. In contrast, previous re-
sults (Kasiviswanathan et al., 2011; Beimel et al., 2019;
Alon et al., 2020) incur higher sample complexity than ours.

User-Level DP. We provide a generic learner that agnosti-
cally learns any C using O (Repg(c) + R\e/%);? + Vf(i?)
users, where each user holds m examples. This improves
the previous result of Ghazi et al. (2023), wherein the third
term is O (%27256)) As indicated by their lower bound,

the third term in our upper bound is optimal while a gap still
exists regarding the second term.

Thresholds with User-Level DP. For the case that C is
the class of thresholds over some domain X', we prove that
the user complexity upper bound can be further improved to

A [ log|X| log | X| 1 1
O( € +ma5+\/Rae+ma2

bound proved by Ghazi et al. (2023)".

), matching the lower

'In their work, they claimed that their algorithm can achieve
this complexity for thresholds. We have confirmed with them that
the claim made a mistake — their algorithm still has a user com-

plexity of 9] (% + bﬁT@ + mla? ), which is not optimal.

The improvement made by our results is significant in the

high-accuracy regime. To see this, fix m, e and let « — 0.
Ve(C)
ma?

Our upper bound is dominated by 9] ( ), which even

matches the cost of non-private agnostic learning (includ-
ing the item-level setting, where m = 1). In other words,
privacy is free — the privacy constraint can be satisfied with
the same number of users. In comparison, the number of
users required by the algorithm of Ghazi et al. (2023) is

0] (Rﬁi{ig@), which can be much larger than ours as sug-
gested by the results of Feldman & Xiao (2014).

We summarize the previous and new bounds in Table 1.

1.2. Technical Overview

We now provide a rough overview of our proofs.

Item-Level DP. We start by describing the algorithm pro-
posed by Beimel et al. (2019). Their algorithm first samples
a hypothesis class  with log |H| = O (RepD(C)). Then,
it applies the exponential mechanism, with the score func-
tion being the empirical error. By the utility property of the
exponential mechanism, it returns some hypothesis with a
small empirical error. To ensure that the generalization error
of the output hypothesis is also small, we have to prove

agnostic generalization for 7{. This requires O (Rciirg)(c»

samples, which is higher than our goal.

To reduce the sample complexity, we construct a surrogate
error as the score function. Consider a hypothesis h € H.
Note that by triangle inequality, for any concept c, the error
of h is no more than the error of ¢ plus the disagreement
between c and h. Thus, by taking a minimum over ¢ € C,
we get an upper bound on the error of &. This quantity is the
surrogate error of h. We then use the empirical surrogate
error as the score function of h.

The exponential mechanism finds a hypothesis hy with a
low empirical surrogate error. By our construction, we can
prove that there exists some cg s.t. both the empirical error
of ¢ and the empirical disagreement between ¢ and h are
small. To ensure they are also small on the distribution, we

need to show agnostic generalization for C and realizable
vC(C)
o2

samples, reducing the RepD(C) factor to VC(C). The latter
can be satisfied by 0] (RCPTD(C)) samples, saving a 1/«

generalization for C x H. The former needs 0] (

multiplicaive factor. We thus achieve our goal.

User-Level DP. We extend our item-level algorithm to the
user-level. The high-level idea relies on a key observation
from Adell & Jodra (2006); Liu et al. (2020), which states
that the total variation distance between two binomial distri-
butions Bin(m, p) and Bin(m, q) scales as /m|p — ¢|. We
define a notion called user-level error and use the observa-
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Table 1. Summary of our results and previous results. For user-level DP, we assume m < 1/a? for simplicity, since as shown by Ghazi
et al. (2023), increasing m won’t make the user complexity decrease when m > 1/a?.

Concept Class DP Lower Bound Previous Upper Bound Our Upper Bound
p pp pp
~ [ RepD(C) RepD(C)
a (chD(C) n VC(C)) o ( ac T T az B
J oz o2 (Beimel et al., 2019) O (RepRle) 4 ¥
rotrary tem (Simon, 1996) or O ( RepR(©) , VO(€) (Theorem 3.4)
and (Beimel et al., 2019) ae aZe ’
(Alon et al., 2020)
O RepD(C) VC(C) VC(C) A [ RepD(C) RepD(C) ~ [ RepD(C) VC(C)
Arbitrary C User Q (min(l,ma)a + vVmae + ma?2 o ( Vmae + ma o Vmae maZ )
(Ghazi et al., 2023) (Ghazi et al., 2023) (Theorem 4.6)
A log | X| 1 1 A [ log |X| 1 ~ log | X| 1 1
T}E)r\?esll:lgéds User Q (min(l,ma)a + Vmae + ma2) o (\/ﬁaa + maz) o (min(l,mcx)s + vmae + ma?

(Ghazi et al., 2023)

(Ghazi et al., 2023) (Theorem 5.2)

tion to show that the user-level error amplifies the item-level
error by v/m when there are m examples per user. That is,
suppose hypothesis A has an additive error of o worse than
the best concept in C, its user-level error must be larger than
the best by Q(y/ma).

Thus, we can then apply our item-level algorithm with the
item-level error replaced by the user-level error. For a target
error , we only have to find a hypothesis with a user-
level error of O(y/ma). This explains why fewer users are
required in the user-level setting.

There are other technical issues in directly applying the
item-level algorithm, such as user-level generalization lem-
mata and estimation of the minimum error. We develop
some techniques to handle these. The details of these are
presented in Section 4.

Thresholds with User-Level DP.  Our algorithm for learn-
ing thresholds employs binary search. We start with the
entire domain. In each iteration, we select the median w.r.t.
the distribution of points in the current interval to split it into
two parts. We add Laplace noise to the minimum user-level
error of thresholds in each part and choose the one with
a smaller error to continue. After O(log(1/«)) iterations,
we will reach an interval with density at most O(«a). By

our user-level error results and the utility guarantee of the

1
vmae
threshold in the final interval to have an additive error of a.

Laplace mechanism, o) ( ) users are sufficient for any

To select the median, we exploit an observation that the

user-level setting amplifies the density by m. We use this

to design an algorithm that approximates the median with a
log | X|

user complexity of 0] (le)? which matches our target.

1.3. Related Work

As the initial work of private learning, Kasiviswanathan
et al. (2011) defined the notion of private learning and gave

algorithms for finite concept classes. Beimel et al. (2014)
showed that properly learning point functions under pure
DP requires much more samples than non-private learning,
indicating that the structure of learning becomes very dif-
ferent under the privacy restrictions. They also proposed
the idea of representation to devise algorithms for pure pri-
vate improper learning. This idea was further developed by
the work of Beimel et al. (2019), which defined the notion
of probabilistic representation dimension and showed that
it characterizes the sample complexity of (improper) pure
private learners. Feldman & Xiao (2014) showed an equiv-
alence between the representation dimension and the com-
munication complexity of the evaluation problem and used
this relation to separate the sample complexity of pure pri-
vate learning from non-private learning. For agnostic learn-
ing, Beimel et al. (2015) proposed a realizable-to-agnostic
transformation that works for proper learners. Based on
this result, Alon et al. (2020) proposed a more general one,
which works for improper learners.

Though this work only considers pure DP, it is worth men-
tioning that there were also a great number of results on
learning under approximate DP. It is a relaxed notion of
pure DP that allows privacy to be violated with a negli-
gible probability of §. The most remarkable result is the
equivalence between approximate private learning and (non-
private) online learning (Alon et al., 2019; Bun et al., 2020;
Ghazi et al., 2021a; Alon et al., 2022), which demonstrates
a strong connection between these two tasks.

The study of user-level private learning PAC learnable
classes was initiated by Ghazi et al. (2021b). They showed
that for both pure and approximate DP, if each user con-
tributes sufficiently many examples, the learning task can
be done with much fewer users than in the item-level DP
setting. Ghazi et al. (2023) improved this result by repre-
senting the user complexity as a function of the number
of samples per user. For pure DP, they showed the exact
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user complexity of private PAC learning and established
non-trivial upper and lower bounds for agnostic learning.
For approximate DP, they proposed a general transforma-
tion that can convert any item-level DP algorithm for any
statistical tasks (including but not limited to learning) to a
user-level one and yield a multiplicative saving of 1/m on
the number of users.

2. Preliminaries

Notation. We use O, € and O to hide polylog(1/c,1/3)
factors. Throughout the paper, we use m to denote the
number of samples per user. The item-level setting refers to
the case that m = 1.

We first recall the notion of DP. A dataset can be represented
as z = (Z11,--,21,m», 22,1, -5 2n,m) € Z™", where
z; = (%1, -, %2im) is the set of samples contributed by
the ¢-th user. Two datasets are neighboring if one can be
obtained from the other by adding or removing a single user.

Definition 2.1 (Differential Privacy (Dwork et al., 2006b;a)).
A randomized algorithm A is e-differentially private if for
any neighboring datasets z and z’, and any subset O of
outputs, it holds that Pr[A(z) € O] < e Pr[A(2’) € O].

2.1. Learning

Let X be an arbitrary domain® and Z = X x {0, 1} be the
domain of data samples. A conceptc : X — {0,1} is a
function that labels each (unlabeled) sample taken from X
by either 0 or 1. A concept class C is a set of concepts over
X. The VC dimension of C is denoted by VC(C). We use
D to denote a distribution over Z, and Dy to denote its
marginal distribution over X.

In this work, we focus on the agnostic learning model (Haus-
sler, 1992; Kearns et al., 1994), where the data distribution
can be arbitrary, and the goal of the learning algorithm is to
produce a hypothesis whose generalization error is close to
the best possible (by concepts in C). The generalization error
of ahypothesis h : X — {0, 1} with respect to a distribution
D over Z is defined as errp (h) = Pr, ,yp[h(x) # yl.

Definition 2.2 (Agnostic Learning). We say a learning al-
gorithm A is an («, 3)-agnostic learner for concept class C
if for any distribution D on X x {0, 1}, it takes in a dataset
z, where each z; ; is drawn i.i.d. from D, and outputs a
hypothesis h such that

errp(h) < in£ errp(c) + «
ce
with probability at least 1 — 3. The probability is over the
random choice of the samples and the coin tosses of A.

2We assume X is countable to avoid making technical measur-
ability assumptions.

In the standard PAC learning model (Valiant, 1984), it is
assumed that there is some ¢ € C s.t. errp(c) = 0. We
call this realizable learning. Another way to describe the
goal of realizable learning is finding a hypothesis h with
small generalization disagreement between / and c over Dy,
which is defined as disp,, (¢, h) = Pryop, [c(z) # h(z)].
The notion of disagreement plays a crucial role in our proofs.

2.2. Probabilistic Representation Dimension

The probabilistic representation dimension is a combinato-
rial parameter introduced by Beimel et al. (2019) to char-
acterize the sample complexity of pure private realizable
learner. Let P be a distribution on hypothesis classes. De-
fine the size of P to be size(P) = maxy csupp(p) In |H|.

Definition 2.3 (Probabilistic Representation Dimension). A
distribution P on hypothesis classes is said to be an («, /3)-
probabilistic representation of a concept class C if for any
¢ € C and any distribution D on X, with probability 1 —
over H ~ P, there exists h € H such that disp,, (¢, h) <
«. The («, 3)-probabilistic representation dimension of a
concept class C is defined as

RepD,, 5(C) min size(P).

B ‘P is an («,3)-probabilistic representation of C
Moreover, the probabilistic representation dimension of C
is defined by taking « = 5 = 1/4:

RepD(C) = RePD1/4,1/4(C)~

The following lemma (Beimel et al., 2019) shows that a
probabilistic representation with arbitrary o and 8 can be
constructed from one with « = § = 1/4.

Lemma 2.4 (Boosting Probabilistic Representation). For
any concept class C, we have RepD,, 5(C) = O(log(1/a) -
(RepD(C) + logloglog(1/a) + loglog(1/8))) for 0 <
a, B <1

2.3. Tools from Differential Privacy

We introduce some useful tools for achieving differential
privacy. We say a function f : Z* — R has sensitivity A
if |f(z) — f(2")] < A for all neighboring datasets z and
z’. Let Lap(b) denote the Laplace distribution with mean
0 and scale b. The Laplace mechanism is an algorithm that
outputs f(z) + r where r ~ Lap(A/e).

Lemma 2.5 (The Laplace Mechanism). The Laplace mech-
anism is e-differentially private. Moreover, it holds that
|r| < 1n(1/B)A/e with probability at least 1 — [3, where
r ~ Lap(A/e)

We next describe the exponential mechanism (McSherry
& Talwar, 2007), which has been widely used in design-
ing differentially private learning algorithms (e.g., (Ka-
siviswanathan et al., 2011; Beimel et al., 2019; Alon et al.,
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2020)). Let H be a finite set and ¢ : Z* x H — R be a score
function. We say ¢ has sensitivity A if maxpe |q(2, h) —
q(2’,h)| < A for any neighboring datasets z and 2z’. The
exponential mechanism outputs an h € H with probability

exp(—¢ - q(z,h)/2A)
Zfe?—t exp(—¢-q(z, f)/24)
Lemma 2.6 (The Exponential Mechanism). The exponen-

tial mechanism is e-differentially private. Moreover, it out-
puts an h s.t.

oz 1) < mina(z, )+ 22 (il /5)

with probability at least 1 — [3.

3. Item-Level Privacy

In this section, we give a nearly tight characterization of
the sample complexity of agnostic learning under item-level
privacy.

The work of Beimel et al. (2019) has shown that the
sample complexity of pure private realizable learning is
5) (RQPT[;(C)). Combining with the well-known Q <VC(C))

a2

lower bound on non-private agnostic learning (Vapnik &
Chervonenkis, 1974; Simon, 1996), we get a lower bound

of Q (RepD(c) + %(QC)) on the sample complexity of pure

ag

private agnostic learning.

For the upper bound, the first result was given by Ka-
siviswanathan et al. (2011). In their work, they proposed
Icl . I€]
e T o2

VC(©)log | ¥ | VO(C)log |X|
ae a?

an algorithm using 9] ( ) samples for finite con-

cept class C and 0] ) samples

for finite domain &X’. Their analysis can be applied to the
realizable learner of Beimel et al. (2019) by proving the
generalization property for the hypothesis class H sampled
from representation P. This leads to a sample complexity of

19) (ch;lz(c) + RC}?B(C) ), which exceeds the lower bound

since the representation dimension can be much larger than
the VC dimension (Feldman & Xiao, 2014).

Another existing approach is to use the realizable-to-
agnostic transformation (Beimel et al., 2015; Alon et al.,
2020), which states that every private realizable learner can
be transformed into a private agnostic learner. Applying it
to the algorithm of Beimel et al. (2019) gives a sample com-

plexity of 0] (REPTD(C) + %@) for constant privacy pa-
rameter. For an arbitrary €, one has to use the amplification-

by-subsampling trick (Kasiviswanathan et al., 2011), re-
VC(C))

sulting in a sample complexity of 0 (Rel;iz(c) + =
Though here the second term depends on the VC dimension,
it involves a 1/e multiplicaive factor, which does not appear

in the lower bound. Thus, this method is still suboptimal.

To obtain a tighter result, we propose a new algorithm
whose sample complexity matches the lower bound. Before
presenting our algorithm, we first introduce some defini-
tions. Let z = (z1,...,2%,) be the input dataset, where
zi = (x4,9;) € X x {0,1}. Weuse & = (x1,...,2,) tO
denote the corresponding unlabeled dataset. For a hypothe-
sis h, define

erry(h) = %Z 1[h(xs) # i)

to be the empirical error of h on z. For two hypotheses ¢
and h, define their empirical disagreement on x as

n

disg(c, h) = % > Afe(xi) # h(w:)).

=1

Our algorithm follows the steps of the learner proposed
by Beimel et al. (2019): first samples an H from some
probabilistic representation P, then runs the exponential
mechanism on H. But unlike their algorithm, which uses
err (h) as the score function, we adopt the following:

q(z,h) = melg err,(c) + disg(c, h).

The sensitivity of the above score function is 2/n because
each term may change by at least 1/n when moving to an
adjacent dataset. Therefore, we can still apply the exponen-
tial mechanism to ensure privacy. The benefit of adopting
such a score function is that it reduces the number of sam-
ples needed so that every hypothesis in H with a low score
must have a small generalization error. Proving this for the
algorithm of Beimel et al. (2019) requires agnostic gener-
alization for all h € H, resulting in a sample complexity
of O (Re‘;ie(c)). When applying our score function, we
instead only need agnostic generalization for all ¢ € C and
realizable generalization for the disagreement between all
¢ € C and h € H. The former can be ensured by the follow-
ing agnostic generalization result (Talagrand, 1994; Anthony

& Bartlett, 1999), which requires 19) (%ﬁc)) samples only.

Lemma 3.1 (VC Agnostic Generalization Bound). Let C

be a concept class over X, D be a distribution over Z =
X x{0,1}, and

976

n>—
az

(4VC(C) +1In(8/3)) .

Suppose z € Z" is a dataset with each z; drawn i.i.d from
D, then

Pr[3c € C s.t. lerrp(c) — errz(c)| > a] < S.
For the latter one, we can apply the following realizable gen-

eralization bound (Vapnik & Chervonenkis, 1971; Blumer
etal., 1989) to C U H.
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Lemma 3.2 (VC Realizable Generalization Bound). Let C
be a concept class and Dy be a distribution over domain
X. Let

n> % (2VC(C) In(384/r) + In(4/0)) .

Suppose x € X" is an unlabeled dataset with each x;
drawn i.i.d. from Dy, then

Jde,h € C s.t.errp, (¢, h) > «

Pr and errg(c,h) < /2 <8

Note that realizable generalization saves a 1/« factor com-
pared to agnostic generalization. This saving is crucial for
our tighter upper bound. To identify the VC dimension of
C U H, we need the following bound on the VC dimension
of the union.

Lemma 3.3 ( (Shalev-Shwartz & Ben-David, 2014)). Let
‘H1 and Ho be two hypothesis class. Then VC(H1 UHz) =
O(VC(H1) + VC(H2)).

This lemma suggests that the VC dimension of C U H is
O(RepD(C)). Thus, the realizable generalization property

RepD(C) )

requires 9] ( samples to hold. Combining with the

0 (RepD(C)

— ) cost incurred by the exponential mechanism,

we achieve the desired upper bound.

Theorem 3.4. Let C be a concept class. In the item-level

setting, © (R’ep;i]g((f) + VC(C)) samples are necessary and
sufficient to («, 8)-agnostically learn C with e-differential
privacy.

4. User-Level Privacy

In this section, we study the user complexity of pure
private agnostic learning under user-level privacy. The

work of Ghazi et al. (2023) gives an upper bound of
O (RepD(C) + RepD(C) + RepD(C)

) and a lower bound

Vmae ma?
of (RepD(c) + ‘\//%(52 + Vﬁéﬁ)) We present an algo-

rithm that improves the last term in their upper bound to
19) (VC(C) ), matching that in their lower bound.

ma?

Our algorithm works in the same way as the item-level one
(Section 3), but with the empirical error and disagreement
replaced by their user-level analogies. For a concept c and a
dataset z € Z"™, define the user-level empirical error

1 n
errl — Z 1[m - erry,(c) > t]
i=1

:

for some ¢ € {0,...,m}. Thatis, err’(c) is the fraction
of users on whose examples ¢ makes more than ¢ mistakes.

Also, we can define the user-level generalization error of ¢
on distribution D™:

Pr [m-erry,(c) > t].

t _

errpm(c) = L

Similarly, let ; be the corresponding unlabeled dataset held

by user ¢. For two hypotheses ¢ and h, define their user-level

empirical disagreement on unlabeled dataset x € X™™ to
be

1 n
dis; (¢, h) = — Z 1[m - disg, (¢, h) > 3]
=1

3

and their user-level generalization disagreement on distribu-
tion DY to be

dispm (c,h) = Pr  [m-disg,(c,h) > s].

o NDQL

The advantage of adopting user-level error is that it amplifies
the additive error by a multiplicaive factor of y/m. This is
due to the following property of binomial distribution (Adell
& Jodra, 2006; Liu et al., 2020).

Lemma 4.1. Given m € Nandp,q € [0,1]. Let

K = min (mp ql, vmlp —d| 1) .
p(1—p)
Then we have

ﬁK < dry(Bin(m, p), Bin(m, q)) < K,
where Bin(m, p) is the binomial distribution with m trials
and succeed probability p, and drv is the total variation
distance. Moreover, there exists an ¢ such that

> 1k

Pr|Bi
[Pr{Bin(m, p) > £ =

— Pr[Bin(m, q) > /]|

Let n be the minimum achievable item-level error. Then the
minimum achievable user-level error can be represented by
1 = Pr[Bin(m,n) > t]. Consider a hypothesis h whose
item-level error is greater than 17 + .. Lemma 4.1 suggests
that the user-level error of h is at least ¢ + Q(y/ma) for
some appropriate ¢. Thus, if we wish the error of our output
hypothesis to be at most 1 + «, it is sufficient to find a
hypothesis whose user-level error is less than ¢ + O (y/ma).

The above discussion focuses on user-level generalization
error, i.e., user-level error on the underlying distribution D.
Since our algorithm only has access to the dataset, we have
to show generalization properties for user-level error and
disagreement as in the item-level setting. We will make use
of the following relative uniform convergence lemma (An-
thony & Bartlett, 1999).
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Lemma 4.2. Let C be a concept class over X and D be a
distribution over Z = X x {0,1}. Suppose z € Z" is a
dataset with each z; drawn i.i.d. from D, then for -~y € (0,1)
and & > 0, we have

Pr[3c € C s.t. errp(c) > (1 + vy)errz(c) + ¢

< 4TT¢(2n) exp (%) .

The II¢(2n) term in the above lemma is the growth func-
tion, which represents the maximum number of labelings
of 2n samples by some concept in C (see Appendix A for
the exact definition). Note that this lemma naturally ex-
tends to the user-level setting: for agnostic generalization,
one could pack each user’s samples as a whole, which can
be regarded as a single data drawn from the distribution
D™ over domain Z™. Thus, Lemma 4.2 holds with the
II¢(2n) term increases to Il (2nm) since there are nm
samples in total. Sauer’s Lemma (Sauer, 1972) suggests
that this only raises the number of users required by roughly
VC(C)In(m)/a?. Standard argument (see, e.g., the book
of Anthony & Bartlett (1999)) gives the following general-
ization bound on user-level error.

Lemma 4.3 (User-Level Agnostic Generalization). Let C
be a concept class over X, D be a distribution over Z =
X x {0,1}, and m be the number of samples per user. Let

64
n> = (VC(C)In(128m/a”) + In(8/3)) .
Suppose z € Z"" is a dataset with each z; j drawn i.i.d.
from D, then

Pr [3c € C s.t. |errpm (c) — errl(c)| > o] < B.

For the realizable case, we can similarly prove the following
bound by setting y and £ appropriately. Like the item-level
setting, the bound is proportional to 1/«, as opposed to
1/a? in the agnostic case.

Lemma 4.4 (User-Level Realizable Generalization). Let C
be a concept class, Dx be a distribution over domain X,
and m be the number of samples per user. Let

n> 9076 (2VC(C) In(384m /o) + In(4/8)) .

Suppose x € X™™ is an unlabeled dataset with each x; ;
drawn i.i.d. from Dy, then

de,h € C s.t. dispm (¢, h) > a

Pr and disy, (¢, h) < /2

<B.

Now, we still have one missing piece: what are the values of
t and s? It is easy to choose the value of s since we only have
to separate Bin(m, 0) and Bin(m, C«a) for predetermined

constant C'. Thus, s is a predetermined constant (indeed,
s = 0). However, for ¢ we have to select a value that
separates Bin(m, n) and Bin(m, n + O(«)). Therefore, the
choice of ¢ depends on the minimum achievable error 7,
which is unknown since D is unknown.

We resolve this issue by using an approximate value of n
to decide the value of ¢. It can be shown that an estimation
within error O(«) suffices. We design an algorithm that
estimates n privately. Our idea is based on binary search.
Suppose in each iteration, we can compare 7 to the midpoint
of the current interval. Then we can obtain an estimation of
71 within error O(«) after O(log(1/«)) iterations.

In each iteration, we have to compare 7 to some guessed
value 7] (the midpoint). Due to agnostic generalization,
the comparison can be done by calculating the minimum
empirical user-level error with some t, where the parameter
t can be derived from 7. To ensure privacy, we have to add
Laplace noise to the error.

As illustrated before, the user-level error provides a /m
amplification. Thus, the binary search yields a reduced user
complexity, as stated in the following lemma.

Lemma 4.5. Let C be a concept class and D be a distribu-
tion over Z. Suppose each user holds m samples. Let

VC(C) 1
ma? \/ﬁof)

and z € Z"" be a dataset with each z; j drawn i.i.d from
D. Then there exists an e-differentially private algorithm
that returns some 1) s.t. |j — n| < « with probability 1 — f3,
where n = inf.cc errp(c).

n26<i+VC(C) +

Now, we are ready to prove our main result. We first use
Lemma 4.5 to compute 7}, which is an estimation of 7 within
error O(«v). Then, we construct an appropriate parameter
t from 7). Finally, we run the exponential mechanism as
in the item-level (Theorem 4.6), but with a score function
constructed from the user-level empirical error and disagree-
ment. We state the result in the following theorem.

Theorem 4.6. Let C be a concept class and m be the num-
ber of samples per user. There exists an e-differentially
private algorithm that (o, B)-agnostically learns C using

~ (RepD(C) |, RepD(C) , VC(C)
O (RerR(@) 4 Bepp(@) . VOS

) users.

5. Learning Thresholds with User-level
Privacy

In this section, we focus on learning thresholds with user-
level DP and give a nearly tight bound on the user complex-
ity. In the problem of learning thresholds, the domain is
X ={1,...,]|X|}, and the concept class C is the collection
of all thresholds on X'. More formally, a threshold function
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fu is specified by an element v € {0} UX so that f,, () =1
ifx >wand f,(z) =0if x < wuforz € X. The concept
class C = {f, | u e {0} U X}

The class of thresholds on X has VC dimension 1 (see
e.g., (Shalev-Shwartz & Ben-David, 2014)) and representa-
tion dimension O(log | X|) (Feldman & Xiao, 2014). Thus,
directly applying Theorem 4.6 gives a user complexity of

A (log|X| | log|X]| 1
o ( € + Vmae + ma?

the second term is still larger than the lower bound proved
by Ghazi et al. (2023). We will show how to reduce this

A 1
term to O ( Toaz )

Our method is based on binary search. We start with the
entire range [0, | X'|]. In each iteration, we pick some point
to split the current interval into two parts. We then examine
the minimum achievable error of the thresholds in each part
and choose the smaller one to continue. This can be done by
injecting Laplace noise to the minimum empirical user-level
error, which saves the user complexity by a \/m factor as
demonstrated in Section 4.

). As discussed in Section 4,

Suppose we naively select the middle point of the current
interval in each iteration, then the binary search has to run
for O(log | X|) rounds. This incurs a user complexity of

maoe
tory. Thus, we need to reduce the number of iterations.

0] <l°g X ) by the basic composition, which is not satisfac-

Our key insight is that, instead of simply picking the middle
point, we choose a point in the middle of the distribution
(i.e., the median) in each iteration. Though we cannot hope
to find the exact median since D is unknown, a constant
approximation is sufficient. Suppose for a given interval
[I, 7], we can choose some mid such that

max ( Pr [z € [l,mid —1]], Pr [z € [mid+ 1,7‘]])

x~Dx z~Dx

<0- zePgX[x e [l,r]]

for some constant # < 1. Then we only have to run the
binary search for O(log(1/a)) rounds. After that, the dis-
agreement between any two thresholds in the final interval
is O(a). Thus, we can output any one in the final interval.

Note that mid should not be included in any part. Otherwise,
the above property may be impossible to hold since the
distribution can concentrate at a single point. However, we
cannot simply ignore f,,;4 since it may be the only threshold
that achieves our target error. Thus, in each iteration, we also
calculate the error of f,,,;4. Our algorithm will terminate and
output f,;4 if it has the smallest error among all thresholds
in the current interval. We describe the steps in Algorithm 1.

Our method for finding the meadian requires an observation
from Lemma 4.1 by letting p = c; v and ¢ = coax for some

Algorithm 1 PrivateThreshold
Input: dataset z € Z"'™, privacy parameter €, number
of iterations 7', user-level error parameter ¢, algorithm
PrivateMedian, decaying factor 6.
1+ 0,r+ |X]
e’ < ¢e/(4T)
for k < 1to T do
if [ = r then
break
end if
mid < PrivateMedian(z, &', 1,7, 08~ 1)
Umid < €1t (fmia) + Lap(1/ne’)
Uy 4= Milye g, mia—1) errs(fu) + Lap(l/ne’)
Vp minue{mid+1,...,r} errtz(fu) + Lap(l/ns’)
% The min operator returns +oo if the range is empty.
if ;g < min(vy, v,.) then
return f mid
else if v; < v,. then
r < mid — 1
else
L+ mid+1
end if
end for
return f;

constant ¢; and co:
dry (Bin(m, c1a), Bin(m, coa)) = ©(ma)

when m = O(1/«a). Thus, it provides an amplification
factor of m when p and ¢ are small. Such an observation was
also utilized by Liu et al. (2020) to derive upper bounds on
the problem of learning discrete distributions and by Ghazi
et al. (2023) to characterize the user complexity of user-level
pure private realizable learning. We did not elaborate on this
in Section 4 since the \/m amplification is sufficient there.
However, for median selection, the v/m amplification only

produces an undesirable user complexity of 9] (log ] )
maoe

The above observation implies that, for the probability den-
sity in [I, 7] to be less than «, we only need the probability
that one user has more than £ points in [/, 7] to be O(ma).
By the realizable generalization property, we can use the em-
pirical counterpart as an alternative and apply the exponen-
tial mechanism to select an approximate median privately.

Lemma 5.1. Let z € Z™™ be a dataset, where each z; j is
drawn i.i.d. from some distribution D, and m be the number
of samples per user. Suppose Pry.p, [z € [I,r]] < a and

n25<log|»c| +log|»c|>_

9 maoe

Then there exists an e-differentially private algorithm that
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takes z,e,l,r, a as input and output some ug such that
max ( Pr [z e€[l,up—1]], Pr [z € [uo+ 1,r]]>
x~Dx x~Dx

< -«

Wl o

with probability at least 1 — .

Now, let us summarize the entire algorithm. We first use
Lemma 4.5 to determine the value of t. Then we run
Algorithm 1 with PrivateMedian being the algorithm in
Lemma 5.1. Note that though the % = Reniizic) term
does not explicitly appear in the lower bound presented
by Ghazi et al. (2023), they also show that this term is nec-
essary even for pure private realizable learning. Thus, we

obtain the following nearly tight user complexity bound.

Theorem 5.2. Let C be the concept class of thresholds over
X and m be the number of samples per user. Then

~ (log|X| logl|X| 1 1
©
( € * mae * Vmag * ma?

users are necessary and sufficient to («, 3)-agnostically
learn C with e-differential privacy in the user-level setting.

6. Conclusion

This work investigates private agnostic learning under item-
level and user-level pure DP. In the item-level setting, we
devise an algorithm that achieves the optimal sample com-
plexity up to polylogarithmic factors. In the user-level set-
ting, we propose a generic learner for arbitrary concept
classes, with an enhanced user complexity than the best-
known result in (Ghazi et al., 2023). For the specific task of
learning thresholds, we develop a near-optimal upper bound
and conjecture that such improvement can also be made in
the generic case. We leave the problem of closing the gap
for general concept classes as future work. Another interest-
ing direction for future work is to investigate the scenario
where different users may hold different amounts of data.
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A. Additional Preliminaries
A.1. The Vapnik-Chervonenkis Dimension

The Vapnik-Chervonenkis dimension (VC dimension) is a combinatorial measure of concept classes, which characterizes
the sample complexity of (non-private) PAC learning and agnostic learning. Consider a concept class C over domain
X. Let x € X™ be an unlabeled dataset of size n. The set of all dichotomies on x that are realized by C is denoted by
Ie(x) = {(c(x1),...,c(xn)) | ¢ € C}. The growth function of C is defined as

le(n) = max [Ie(x)].

Definition A.1. The VC dimension of a concept class C is defined as the largest number d such that II¢(d) = 2¢ (or infinity,
if the maximum does not exist).

Though the number of binary vectors of length n is 2", Sauer’s Lemma states that the growth function is polynomially
bounded.

Lemma A.2 (Sauer’s Lemma). Ler C be a concept class with VC dimension d. Then for n > d we have Il¢(n) < (ﬂ)d

d

The following technical inequality from (Anthony & Bartlett, 1999) is useful in deriving sample/user complexity bounds:

Ina <ab+1In(1/b) —1forall a,b > 0. (1)

Applying Sauer’s lemma usually gives an inequality of the form A + BIlnn < n. To find an n that satisfies this inequality,
let a = n and b = 1/2B in inequality (1), we get

A+ Blnn< A+ B(n/2B+In(2B)—1) = A+n/2+ Bln(2B/e).
Thus, it suffices to find an n s.t. A+ BIn(2B/e) < n/2 or, equivalently, 2A + 2B In(2B/e) < n.

A.2. Concentration Bounds

Let X4, ..., X, be independent Bernoulli random variables with probability p of being 1. The expected value of their sum
isE[X; +...X,] = np. The following inequalities bound the probability that the summation deviates from the its expected
value:

Pr|> X > (1+0)np

Li=1

< exp(—6%np/(2 4 6)) for § > 0,

Pr X, <(1- 5)np] < exp(—6%np/2) for0 < § < 1,

Li

Pr

B
Z X; —np
i=1

> 5] < 2exp(—262/n) for § > 0.

The first two inequalities are knowns as the Chernoff bounds (Chernoff, 1952) and the last one is kowns as Hoeffding’s
inequality (Hoeffding, 1963).
B. Proof of Theorem 3.4

Proof. The lower bound can be shown by combining the Q ( lower bound on private realizable learning (Beimel

RepD(C))
et al., 2019) and the Q (%&c)) lower bound on agnostic learning (Vapnik & Chervonenkis, 1974; Simon, 1996).

Now, let us focus on the upper bound. Our algorithm A works as follows: first samples H ~ P, where P is a («/18, 3/5)-
probabilistic representation of C with size(P) = RepD,, 15 5/5(C). then runs the exponential mechanism on H with privacy
parameter &, sensitivity parameter A = 2/n, and score function ¢(z, h) defined as

q(z,h) = HlGIél err,(c) + disg(c, h).

11
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Note that each term in the minimization will change by at most 1/n when moving to a neighboring dataset. This implies that
the sensitivity of ¢ is at most 2/n. Thus, the privacy guarantee of the exponential mechanism ensures that A is e-differentially
private.

Now it remains to show that A is an (o, 8)-agnostic learner. Let = inf.cc errp(c), then there exists some ¢’ € C s.t.
errp(¢) < 1+ o/18. By Lemma 3.1, for n > O (VC(C)> we have |errp(c) — erry(c)| < a/18 for all ¢ € C with
probability 1 — 3/5. Thus,

err,(c') <errp(d) + /18 < n+ /9.

Since P is an (a/18, 3/5)-probabilistic representation, we know that with probability 1 — 3/5, there exists some A’ s.t.
disp, (¢/,h’) < a//18. Then by the Chernoff bound, for n > O (1/«), with probability 1 — 8/5, we have

disg(c', h') < 2disp, (¢, h') < a/9.

Therefore, by Lemma 2.6, for n > O (Reiili(c)) , the exponential mechanism chooses some hg s.t.

q(z, ho) < J}Iéig q(z, f) +a/18

<q(z,h)+a/18
<erry(c) +disg (', h') + a/18
<1+ 50/18

with probability at least 1 — 3/5.
Suppose ¢(z, hg) = errz(co) + disg(co, ho), we have

erry(co) < q(z,ho) <n+ 5 /18.
Then by agnostic generalization, we can bound the generalization error of cy:

errp(cy) < erry(co) + /18 < n+ /3.

Since every concept in C has error at least 17 on D, agnostic generalization also implies that
erry(co) > errp(co) — /18 > n— a/18.
Thus, we can bound the empirical disagreement between ¢ and hy:

dis (co, ho) = q(z, ho) — errz(co)
<n+5a/18 — (n— a/18)
=a/3.

We now show the realizable generalization property. By Lemma 2.4 and 3.3, we have

VC(CUH) =0(VC(C) + VC(H))

C(C)
VC(C) + log, |H|)

VC(C) + RepD,, /15 5/5(C))
O(VC(C) + RepD(C))
O(RepD(C)).

Then applying Lemma 3.2, for n > O (RPTD(C)) with probability 1 — 3/5 it holds that disp,, (¢, h) < 2a/3 for all
(¢,h) € C x H s.t. disg(c, h) < a/3. Thus, disp,, (co, ho) < 2a/3.

12
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By the union bound, we can conclude that

errp(ho) < errp(co) + disp, (co, ko)
<n+a/3+2a/3
= 77+a

with probability 1 — (3 for some n = 0] (M + VC(C)).

ag

C. Proofs from Section 4
C.1. Proof of Lemma 4.3

Proof. For a concept ¢ € C, define a concept . : Z™ — {0, 1} such that ¢.(2zg) = 1[m - err,,(c) > t] for zg € Z™. Let
C, = {¢c | c € C}, D' be adistribution on Z™ x {0, 1} s.t.

Pr m | Z B = O,
%ﬂ(zo,yo)]:{ ozl v

07 Yo = 17
and 2’ = (21,...,2},) € (2™ x {0,1})™ be a dataset with z} = (z;,0), where z = (z1, ..., 2, is a dataset sampled from
D™™. We have
errp (pe) =  Pr [pe(z0) #yo] = Pr [m-erry,(c) > t] = erthy.(c)
(z0,90)~D’ zo~D™
and

n
Z m - erry, (c) > t] = errl (c).

3\'—‘

erry (¢e) li 1pe(zi) £0] =

3

Moreover, each z; can be seen as i.i.d. drwan from D’. Applying Lemma 4.2 with concept class C,,, distribution D’, dataset
z',and v = £ = /2, we have
Pr[3c € C s.t. erthy. (c) > errl(c) + af
=Pr[3p. € C, s.t. errp/ () > erry (ve) + af
<Pr[3p. € C, s.t. errpr(pe) > (14 a/2)err (@) + /2]

<4lle, (2n) exp (M)

<4l (2nm) exp (—a’n/32)

where the last inequality is due to the fact that

e, (2n) = max |He,(2)|
= ZGI%aZ'}fm { (1 [Zl 1 [C(l‘l’i) #+ yu] > t] R | [Zl 1 [C(I'Qn’i) =+ ygn,i] > t]) c e C}‘
< H%gfjfm |{( [ (-Tl,l) 7’é yl,l], ey 1[C($2n,m) 7é an,m]) | ce C}|

= 11
Jax |Te(w)]

= II¢(2nm).

By Sauer’s Lemma, we have II¢(2nm) < (26”"‘) if 2nm > d, where d = VC(C). We want the above quantity to be at
most 3/2. Thus, it suffices to show

n > % (dlnn + dIn(2em/d) + 1n(8/8)) .

13
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By inequality (1), we have

82d, 32 (64d
a? -2 a2 ea? )’
Therefore,
64
n>— (dIn(128m/a®) +1n(8/3)) )

suffices. We still need to prove the other side. For a concept ¢, define ¢~ (z) = 1 — ¢(x). Let C~ = {¢~ | ¢ € C} and
t~ =m —t— 1. Itis easy to verify that VC(C~) = VC(C), erry, (¢7) =1 — errl(c), and errl,. (¢7) = 1 — errhy (c).
Applying the above conclusion to C~ and ¢t~ gives

Pr[3c € C s.t. erthyn (¢) + a < errl(c)]
=Pr[Hc” €C™ st. 1 —erthn(c) +a<1—errl (¢7))

P
=Pr[Fc” € C s.t.ertlym(c) > el (¢7) +q]

if n satisfies inequality (2). Applying the union bound completes the proof. O

C.2. Proof of Lemma 4.4

Proof. For any c, h € C, define a concept ¢, 5, : X™ — {0, 1} such that . (o) = 1[m - disg, (¢, h) > s] for ¢y € X™.
Let C, = {¢cn | ¢, h € C}, D’ be a distribution on XY™ x {0,1} s.t.

Prpw [xo], yo =0,
Pr((xq, = x
Dﬂ( 0> %0)] {0, vo =1,

and 2z’ € (X™ x {0,1})™ be a dataset with z; = («;,0). Similar to the proof of Lemma 4.3, we have errp:(¢¢) =
dispm (¢, h) and errzr (pc,n) = disg(c, h). By Lemma 4.2, let v = 1/2 and { = «/4, we have
Pr [Ec, h € C s.t. dispm (¢, h) > avand disg (¢, h) < a/Z}
<Pr [Hc, h € C s.t. dispm (c, h) > 3/2disz (c, h) + a/4}

=Pr[Fp.n € Cy, s.t. errp(@en) > 3/2erry (@en) + /4]

—-1/2-an/4
<dllc, (2n) exp (4(1+1/2)>

<4 (Ilg(2nm))? exp(—an/48),
where the last inequality comes from the fact that

e, (2n) = max e, ()]
max

weXInm
Lohax { (1 [Z 1[6(1’1’2') 75 h(xlyl)] > S‘| AU | [Z 1[0(1’27171') 7é h(l’gnl)] > S‘|>
i=1 i=1

max |[{(Le(z11) # P(z1a)]s - He(@onm) 7 P(@on,m)]) | ¢ h € CY

xreX2nm

11, - [T
Jax [Te()] - [ ()]

(He (2nm))>.

c,hGCH

IN

A

Let d = VC(C), Sauer’s Lemma ensures that the above quantity is at most 3 if 2nm > d and

n > % (2dInn + 2dIn(2em/d) + 1n(4/8)) .

14
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By inequality (1), we have

96d n  96d 192d
—Inhn<—-—+—In
o 2 ex
Thus,
96
n> - (2d1n(384m/a) +1n(4/5))

suffices. ]
C.3. Proof of Lemma 4.5

The key insight behind Lemma 4.5 is that we can decide whether a given value 7] is greater or lees than the minimum error 7
up to an error of O(«), as demonstrated in the following lemma.

Lemma C.1. Let C be a concept class, D be a distribution over Z, m be the number of samples per user, and n =
inf.cc errp(c). Suppose

nZé(i-ﬁ-VC(C)-i—VC(C) - )

ma? Vmae

and z € Z™" be a dataset with each z; j drawn i.i.d. from D. Then there exists an c-differentially private algorithm that
takes z,e,1], a as input and outputs some o € {0, 1}, such that with probability 1 — j3:

1. Ifoc=0,thenty>n— a2
2. Ifoc=1,thent] <n+a/2

ve(e
mao?

Proof. We will assume m < 1/a? and prove an upper bound of 9] ( ) ¢ L ) When m > 1/a?, the result simply

Vmae
holds by discarding the extra samples.

By Lemma 4.1, there exists some ¢ s.t.
Pr[Bin(m,7) > t] + v/ma/1400 < Pr[Bin(m, 5 + «/2) > t].

Let A be an algorithm that returns 0 if min.cc errl (¢) + r < Pr[Bin(m, 77) > t] + v/ma/2800, where r ~ Lap(1/en),
and otherwise returns 1. By Lemma 2.5, A is e-differentially private and |r| < v/ma/5600 with probability 1 — 5/2 if

n>0(Ao).

The agnostic generalization bound (Lemma 4.3) shows that if n > 0 (‘&%(gg ) , then with probability 1 — §/2 it holds

that |err’ (¢) — errhy. (¢)] < /ma /5600 for all ¢ € C. For the remainder of the proof, we condition on the event that
|r| < v/ma/5600 and |err’ (c) — errhy.. (¢)| < /ma/5600 for all ¢ € C. By the union bound, this happens with probability

1-5.
First consider the case that 7 < 7). We have
rcneigerri(c) + 7 < Pr[Bin(m,n) > t] + v/ma /5600 + r
< Pr[Bin(m, 7)) > t] + v/ma/5600 + v/ma/5600
< Pr[Bin(m, ) > t] + v/ma;/2800.

Thus, A must return 0 in this case. Equivalently, it guarantees that p > 77 > 7] — /2 if A returns 1.

Now suppose 1 > 7]. Note that if > 77 + «/2, it holds that
Pr[Bin(m, ) > t] + v/m/1400 < Pr[Bin(m,n) > t] = in£ err’. (c).
ce
Thus, if inf.cc errhy.. (¢) < Pr[Bin(m, ) > t] + /m/1400 we must have n < 77+ «/2.

15
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Algorithm 2 PrivateMinError
Input: dataset z € Z™™, privacy parameter €, accruacy parameter «, confidence parameter (3, algorithm PrivateCompare.
[+ 0,r+1
T « [logy(2/a)]
e «—¢e/T,p + p/T
for k < 1toT do
mid <~ (I 4+1)/2
if PrivateCompare(z,¢’, mid, o, ') = 1 then
r < mid
else
I + mid
end if
end for
return [

Suppose A returns 0. Let ¢ € C s.t. err (co) = min.cc errl (c). Then we have

errhm (co) < errl(co) + v/ma/5600
< Pr[Bin(m, 7)) > t] + v/ma/2800 — r + v/ma /5600
< Pr[Bin(m, 1) > t] + v/ma;/1400.
Therefore, inf.cc errk,,.. (¢) < Pr[Bin(m, ) > t] + /ma/1400, which implies that n < 77 + /2.
In summary, with probability 1 — 3, we have 7 > n — «/2 if A returns 0, and 77 < 1 + «/2 if A return 1. O

Now we can accurately estimate the value of 7 by binary research. The details are described in Algorithm 2.

Proof of Lemma 4.5. We execute Algorithm 2 with PrivateCompare being the algorithm in Lemma C.1.

Let Iy, 7, be the endpoints after the k-th iteration. Initially, we have [y = 0 and 7y = 1. Then after T iterations, the length
of [ZT,’I“T] is rr — lT < 1/2T < 04/2.

We now show that if every call of PrivateCompare succeeds, then [Iy, 7] N [n — «/2, 1 + /2] # O for all k. We prove
this by induction. At the beginning, we have [lo, o] N [ — a/2,n + /2] # () since n € [0,1] = [lg, r0]- Suppose
le—1,76—1] N [n — a/2,n + /2] # (. In the k-th iteration, we set mid = (lx—1 + 7k—1)/2. Let o be the return value of
PrivateCompare. By Lemma C.1, with probability 1 — 8’ = 1 — 3/T, we have:

1. If o = 0, then mid > n — «/2. Thus, [lx—1,mid] N [n — /2,7 + /2] # @ since n + /2 > l_1.
2. If o = 1, then mid < n+ «/2. Thus, [mid, rx—1] N [n — a/2,n+ /2] # B since n — /2 > ry_1.

For both cases, we have [, 7] N [n — a/2,n + «/2] # 0.

By the union bound, it holds with probability 1 — /3 that |n — x| < «/2 for some = € [I7, r7]. This implies |l — 7| <
llr — x| + |z — n| < a, which completes the proof. O

C.4. Proof of Theorem 4.6

Proof. We will assume that m < 1/a? and show an upper bound of O (R\e}%)ég) + Vﬁ%‘;)) When m > 1/a?, the

0] <Repr(C)) term becomes the dominated term and the user complexity can be achieved by discarding the extra samples.
Let n = inf.cc errp(c). We first run the algorithm in Lemma 4.5 with privacy parameter £/2. For n > 9] (M + = ),

ma? mae

it returns some 7 s.t. |fj — n| < a/6 with probability 1 — 3/7.
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By Lemma 4.1, there exists some ¢ s.t.

Pr[Bin(m, ) + a/6) > t] + v/ma /4200 < Pr[Bin(m, /) + a/3) > t].

Let 1) = Pr[Bin(m,n) > t] and ¢ = Pr[Bin(m, 7} + «/6) > t]. Then we have 1 < 1 since n < 7 + a /6.

For any concept ¢ with errp(c) > n + «/2, we have errp(c) > 7 + «/3 by the triangle inequality. Thus,
errlym (¢) > Pr[Bin(m, i) + «/3) > t] > ¢ 4 /ma/4200.

Thus, for any concept ¢ with errt,. (¢) < ¢ + v/ma/4200 it must hold that errp(c) < 7 + /2.

Again by Lemma 4.1, there exists some s (actually, s = 0) s.t.
Pr[Bin(m, a/3) > s| > Pr[Bin(m, 0) > s] + v/ma/2100 = v/ma,/2100.
Thus, for any hypotheses c and & with dispm (¢, h) < v/ma/2100, it holds that disp, (¢, h) < a/3.

Our algorithm then works as follows: first samples H ~ P, where P is a («/134400+/m, 3/7)-probabilistic representation
of C with size(P) = RepD,, /134400,/m,8,7(C), then run the exponential mechanism on H with parameter £/2, sensitivity
parameter A = 2/n, and score function
q(z,h) = minerr’ (c) + dis, (c, h).
ceC

The privacy is satisfied by the composition property of DP. The proof of the utility guarantee is similar to that of Theorem 3.4.
Firstly, there exists some ¢’ € C s.t. errh,, (¢/) < 1 + /ma/134400. By Hoeffding’s inequality, for n > O (=15), we
have errl (¢') < errh.. (¢) + +/ma /134400 < ¢ + /ma/67200 with probability 1 — 3/7.

Since P is an («/134400+/m, [3/7)-probabilistic representation, with probability 1 — 3/7 there exists some b’ € H s.t.
disp, (¢, h') < @/134400y/m. By the upper bound in Lemma 4.1, dispm (¢/, h') < v/ma;/134400. Then by the Chernoff

bound, for n > O ( ) it holds that dis}, (¢/, ') < 2dlst (¢, h') < v/ma/67200 with probability at least 1 — 3/7.

Ta

So, q(z, k) < errt(c/) + diss (¢, ') < ¢ + /ma/33600. By Lemma 2.6, for n > O (M\/ILTDOES))’ the exponential

mechanism chooses some hg s.t.
q(z,hg) < ;Iél,}{l q(z, f) + vVma /16800 < q(z,h') + /ma /16800 < 1) + /ma/8400

with probability 1 — 3/7.

Let q(z,ho) = errl(co) + dis,(co, ho). Then we have err (co) < q(z,ho) < ¥ + /ma/8400. By Lemma 4.3, for
n>0 (VC(C)) we have |errh,. (¢) — errl (¢)| < v/ma/8400 for all ¢ € C with probability 1 — 3/7. Thus,

ma?

errlym (co) < errl (o) + v/ma /8400 < o + v/mor /4200 < ) + /ma/4200

and errt (co) > 1 — /ma,/8400. The former implies errp(cy) < 7 + /2 and the latter implies
dis;, (co, ho) = q(2z, ho) — errz(co) < ¥ + vV/ma /8400 — (¢ — /ma/8400) < v/ma/4200.

As shown in the proof of Theorem 3.4, the VC dimension of C U H is O (RepD(C)). Then by Lemma 4.4, for n >

9] (1%\;)»7712(6» it holds with probability 1 — 3/7 that dlst (e, h) < /ma/2100 forall ¢ € C and h € H with dis, (¢, h) <

V/ma/4200. Thus, we have dispm (co, ho) < /ma;/2100, which further indicates disp, (co, ho) < /3.

By the union bound, we have

errp(ho) < errp(co) + disp, (co, ho) <N+ a/2+a/3 <n+«

with probability 1 — 8 for n > O (RCPD 9 4 VC(C))' -

mae ma?
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D. Proofs from Section 5
D.1. Proof of Lemma 5.1

We first prove an corollary of Lemma 4.1 by taking p = /2 and ¢ = 2«/3, which states that the total variation distance
between Bin(m, p) and Bin(m, ¢) scales linearly with m.

Corollary D.1. Suppose 0 < o < 1 and m < 1/c. Then there exists an £ such that
Pr[Bin(m, a/2) > {] + ma,/4200 < Pr[Bin(m, 2a/3) > ¢].
Proof. Letp = /2 and ¢ = 2«/3. Then by Lemma 4.1, there exists an £ s.t.

Pr[Bin(m, a/2) > ¢] + K/700 < Pr[Bin(m, 2a/3) > {],

where
K = min <mp —ql, %, 1) = min(ma/6,/m/(p(1 —p)) - ¢/6) = ma/6.
since m/(p(1 — p)) > m/p = 2m/a > 2m?2. O

log | X|
maoe

Proof of Lemma 5.1. We will assume m < 1/« and prove an upper bound of 9] ( ) When m > 1/, the conclusion

follows by discarding the extra samples.

Let « be the corresponding unlabeled dataset of z. By Corollary D.1, there exists some s .s.t.

Pr[Bin(m, a/2) > s] + ma /4200 < Pr[Bin(m, 2a/3) > s.

Let dis;, (fqa—1, f») be the fraction of users that have more than ms samples lie in [a, b]. Define score function

q(z,u) = max (dis (fi-1, fu-1), disz.(fu, fr)) -

The sensitivity of ¢(z, u) is 1/n. Thus, we can run the exponential mechanism on {l, ..., r} with privacy parameter ¢ and
A = 1/n. Lemma 2.6 proves the privacy guarantee. To analyze the accuracy, we start with the claim that there exists some
u’ € {l,...,r} such that

max( Pr [ze[l,u'—1]], Pr [z € [u'—i—l,r]}) < a/2.
INDX xNDX
To show this, let u’ be the greatest number in {l,...,7} s.t. Pryop,[z € [[,4' — 1]] < /2. We will prove that

Prywp.[r € [v' 4+ 1,7]] < «/2. Suppose this does not hold, namely, Pr,p, [z € [v' + 1,7]] > «/2. Then by the
definition of u’ we have Pr,.p,. [z € [I,u']] > «/2. Thus,

a> Przell,r]]= Pr ze[,W]]+ Pr [z€[u+1,7]>a,

:ENDX IN'DX INDX
a contradiction.

Thus, we have

max ( P%m[dismo(fl,l, fur—1) > s],molz% [disgy (furs fr) > 8]) < Pr[Bin(m, a/2) > s].

o Z.l

Moreover, by the upper bound in Lemma 4.1, the right-hand side of the above is at most ma,/2. Now apply the Chernoff
bound, forn > O (—a) with probability 1 — 3/3, we have

1
q(z,u") = max (Pr(dis, (fi—1, fur—1)], Pr(disg, (fu, fr)])
< Pr[Bin(m, a/2) > s](1 + 1/6300)
< Pr[Bin(m, a/2) > s] + ma/12600.
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By Lemma 2.6, for n > O (%), the exponential mechanism returns a mid s.t.

q(z,mid) < min }q(z,u) +ma /12600 < g(z,u') + ma /12600 < Pr[Bin(m, /2) > s] + ma/6300

with probability at least 1 — 5/3. By the Chernoff bound, when n > 0] (%) it holds with probability 1 — 3/3 that

6303
dispr (fu, fo) < (Pr[Bin(m, a/2) > s] + ma/6300) - 5302

for all u,v € {0} U X with dis}, (fu, fo) < Pr[Bin(m, a/2) > s] + ma/6300. Therefore, we have

s s : 6303
max (dls‘DZ} (fi—1, frnid—1)s dlS;D?(fmid+1,7')) < (Pr[Bin(m, a/2) > s] + ma/6300) - 5302

1
< Pr[Bin(m, a/2) > s] + ma /6300 4+ (ma/2 + ma/6300) - 6302
= Pr[Bin(m, a/2) > s] + ma/4200
< Pr[Bin(m, 2a/3) > s].

Thus, we got

max (mfprx[aj € I, mid — 1]], INPng[x € [mid + 1, ’I“H) = max (disp,, (fi—1, frmid—1), dispy (frnid+1,7)) < 2a/3.
By the union bound, the above happens with probability at least 1 — 3, which completes the proof. O
D.2. Proof of Theorem 5.2

RepD(C) RepD(C)
ps + nI;as

Proof. As proved by Ghazi et al. (2023), private realizable learning requires 2 ( ) users and private

X%gi + ) . By the fact that the class of thresholds has VC dimension 1 (see, e.g., (Shalev-

Shwartz & Ben-David, 2014)) and representation dimension ©(log |X|) (Feldman & Xiao, 2014), the lower bound is proved.

VC(C)
ma?

agnostic learning requires §2 (

For the upper bound, we assume that m < 1/a?2. The bound for m > 1/a? follows by discarding the extra samples.
Let7) = infecc errp(c) and T = logy s (2) = O(log(1/a)).We first run the algorithm in Lemma 4.5 with parameter & /2.

Forn > O (ﬁ + ﬁ), it returns some 7 s.t. | — n| < a/6 with probability 1 — 3/4. By Lemma 4.1, there exists
some ¢ s.t.
Pr[Bin(m, n + «/6) > t] + v/ma /4200 < Pr[Bin(m, /) + «/3) > t]

Let ¢ = Pr[Bin(m,n) > t] and ¢) = Pr[Bin(m, 7 + a/6)]. Since n < 7} + a/6, we have ¢ < ). Thus, for any u s.t.
errhym (fu) < ¥ + /ma /4200, it holds that errp (f,) < 7+ /3 < n+ a/2.

We then run Algorithm 1 with dataset z, privacy parameter £/2, T and ¢ as declared before, algorithm PrivateCompare
as the one in Lemma 5.1, and § = 2/3. The privacy guarantee of this part direcly follows from the property of Laplace
mechanism (Lemma 2.5) and the basic composition. Thus the privacy of the entire algorithm is ensured by applying the
basic composition again.

We now consider the utility. Let [, 7 be the endpoints after the k-th iteration and T’ be the number of finished iterations
during the execution. Then there are three possible cases:

o T" < T and the algorithm returns f,,;q during the (7" 4 1)-th iteration
* 7" < T and the algorithm returns f;_, = f_,

o T’ =T and the algorithm returns f;..
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We first prove that
min _errl (u) < 9 + /ma/12600 + kv/ma/(12600T) 3)

wE{lp,...,Tk }

for 0 < k < T’ by induction.

Letn > 0] ( \/mlae) , then by Lemma 2.5 and the union bound, with probability 1 — /3/4, in each iteration the absolute

value of the generated Laplace noise is no larger than ay/m/(252007"). At the beginning, we have [y = 0 and 7o = |X|.
By agnostic generalization (Lemma 4.3), for n > O (=15, we have |erry (f,) — errh,. (f.)| < /ma/12600 for all

ma?

u € {0,...,|X[} with probability 1 — 3/4. This implies min,c ... 7o} 1% (fu) < ¥ + /ma/12600.

Now suppose (3) holds for some k < T”. Since the algorithm does not return during the (k + 1)-th iteration, we thus have

min err’ (f,) < min(vy, vy, Vmia) + vVma/ (252007

UWE{ g 1see s Tl }

< min erry(f,) + vma/(252007) + /ma/(252007)

u€{lp,...,r }

< 4+ /ma /12600 + (k + 1)v/ma/(12600T).

Thus, we prove (3). Now, let’s consider the three cases one by one. If the algorithm returns f,,,;4 during the (7" + 1)-th
iteraiton, then we have

ert’ (fnia) < min(vy, vy, Vmia) + vVma/(25200T)
< min }errtz (fu) + Vma/(25200T) + v/ma/(252007)

wE{lpr,...,rpr

< ap + vVma /12600 + T - v/ma/(12600T) + /ma/(12600T)
< 1 + /ma/6300.

Otherwise if the algorithm returns f;,, due to I7» = r7/ after T" iterations, we also have
errl (f1,,) < ¥+ vma /12600 + T - /ma/(12600T) < ¢ + v/ma/6300.
Thus by agnostic generalization, for both of these two cases, the algorithm returns some f,,, s.t.
errpm (fuy) < 1 + V/ma/6300 + v/ma/12600 < 9 + /ma,/4200.

This implies errp(fu,) < n+a/2 <n+a.

Now consider the remaining case that the algorithm returns f;, after 7" iterations. The same argument shows that
there exists some I < u' < rp s.t. errp(fy) < 7+ «/2. By Lemma 5.1 and the union bound, we know that for

n>0 (M + 10575«\) it holds with probability 1 — /4 that Pryp, [z € [, r7]] < (2)" < a/2. Thus,

errp(fi) < errp(fur) + Plg [ €lr,rr])] <n+a/2+a/2 <n+ a.

maoe ma?

All in all, when n > O (logs‘x‘ + log | ¥| + \/ﬁlaa + 1 ), the algorithm is an («, 3)-agnostic learner with e-differential
privacy. O
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