
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DEMYSTIFYING GNN DISTILLATION
BY REPLACING THE GNN

Anonymous authors
Paper under double-blind review

ABSTRACT

It has recently emerged that Multilayer Perceptrons (MLPs) can achieve excellent
performance on graph node classification, but only if they distill a previously-
trained Graph Neural Network (GNN). This finding is confusing; if MLPs are
expressive enough to perform node classification, what is the role of the GNNs?
This paper aims to answer this question. Rather than suggesting a new technique,
we aim to demystify GNN distillation methods. Through our analysis, we iden-
tify the key properties of GNNs that enable them to serve as effective regularizers,
thereby overcoming limited training data. We validate our analysis by demon-
strating an MLP training process that successfully leverages GNN-like properties
without actually training a GNN.

1 INTRODUCTION

Node classification tasks naturally occur when we wish to classify graph-structured data, such as
paper citation networks (Sen et al., 2008; Namata et al., 2012) or product co-purchase networks
(Shchur et al., 2018). Most state-of-the-art node classification methods use Graph Neural Networks
(GNN) (Kipf & Welling, 2016; Hamilton et al., 2017; Velickovic et al., 2017). GNNs exploit the
context of the neighborhood of each node to determine its class. Their architecture uses message
passing to transfer information across many nodes. As GNNs consider large neighborhoods, their
training and inference times are considerably higher than methods that consider only the node fea-
tures.

Therefore, several research efforts have attempted to find simpler alternatives to GNNs that do not
require message passing. Distillation methods, starting with the seminal work by Zhang et al. (2021),
propose to replace GNNs at test time with simple node-level MLPs. These methods first train a GNN
on the training data, then use the labels predicted by the GNN as distillation targets for training a
node-level MLP. At test time, these methods only use the faster node-level MLP. Remarkably, distil-
lation methods sometimes outperform GNNs, despite MLPs not directly using the graph structure.

This study investigates the role of GNNs in the distillation process and finds that their primary
contribution lies in enforcing regularization that preserves homophily, the tendency for adjacent
nodes to share labels. Our analysis reveals that GNNs provide an effective implicit regularization
which assists in reducing overfitting, especially in datasets characterized by significant homophily
and very limited training data.

Some distillation methods also propose incorporating structure information into the input features
of the MLP student model using learnable positional embeddings. While effective, it is unclear
which structural aspects of the graph these features encode. We present an explainable alternative
descriptor that encodes the neighborhood characteristics of each node.

To validate that the GNN’s implicit regularization is key to the success of distillation methods, we
compare distillation methods to an alternative approach of training MLPs with direct regularization.
This regularization strategy consists of three key components: (i) a loss encouraging smoothness
between the label predictions of neighboring nodes, (ii) iterative pseudo-labeling of the observed
unlabeled nodes, and (iii) a neighborhood label histogram descriptor for encoding local context.
Notably, this approach does not require training or evaluating GNNs and demonstrates a high corre-
lation with the performance of distillation methods on commonly used datasets, such as citation and
co-purchase networks.
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Our key contributions are:

• Through theoretical and empirical study, we demonstrate that the role of GNNs in distilla-
tion methods is to act as regularizers rather than to increase expressivity.

• Demystifying GNN regularization by replacing it with explicit regularization terms.

• Suggesting label histogram as a more explainable alternative to positional embedding.

2 RELATED WORKS

Graph Neural Networks (GNNs) have emerged as a prominent tool in the domain of graph ma-
chine learning (Bruna et al., 2013; Defferrard et al., 2016; Li et al., 2019; Chen et al., 2020b). These
neural networks use aggregations of features from the local context of each node at successive lay-
ers. For example, Graph Convolutional Networks (GCN) (Kipf & Welling, 2016) extend traditional
convolution operations from the Euclidean domain to operations on graphs. GraphSAGE Hamilton
et al. (2017) uses arbitrary aggregation functions while also concatenating the features prior to the
aggregation. GAT (Velickovic et al., 2017), GTN (Yun et al., 2019), and HAN (Wang et al., 2019b)
generalize attention layers and transformers to graphs. Many GNNs are formulated into a unified
framework called Message Passing Neural Networks (Gilmer et al., 2017).

Knowledge distillation of GNNs. Addressing challenges related to memory consumption and
latency, several methods have been proposed to distill knowledge from a large pre-trained GNN
teacher model to a smaller student model. The student model can be either a smaller GNN model
(Lee & Song, 2019; Yang et al., 2020; Yan et al., 2020; Tian et al., 2023; Guo et al., 2023), or
a structure-agnostic model (Wu et al., 2023a;b). One such method, GLNN (Zhang et al., 2021),
trains an MLP model to predict soft-labels obtained from a pre-trained GNN. Another approach,
NOSMOG (Tian et al., 2022), uses the same underlying method with the addition of adversarial
feature augmentation loss and Similarity Distillation of hidden features. NOSMOG also utilizes
the graph structure by concatenating positional features obtained using DeepWalk (Perozzi et al.,
2014). While NOSMOG offers better accuracy results than standard GLNN, it suffers from higher
latency induced by positional feature computation. PGKD (Wu et al., 2023c) distills graph structural
information from GNNs to MLPs via prototypes in an edge-free setting. Orthi-Reg (Zhang et al.,
2023) mitigates the dimensional collapse of MLPs by explicitly encouraging orthogonal node rep-
resentations during training. CPF (Yang et al., 2021) also uses a non-GNN student model, although
the student still relies on iterative label propagation during inference, which increases the inference
running time.

Node classification without GNN. Various techniques beyond Graph Neural Networks have been
developed. Among them is Graph-MLP (Hu et al., 2021), which trains an MLP model with a
neighbor contrastive loss. While this approach bears some resemblance to the consistency loss
employed in our work, our consistency loss encourages similarity among neighboring nodes and
is not contrastive. Another method, Correct and Smooth (C&S) (Huang et al., 2020), leverages
the correlation between neighbors’ labels to enhance a shallow MLP predictor. Unlike our study,
which focuses on the training process of MLPs, it refines predictions post-training through label
propagation. The applicability of the C&S method to the inductive case (where new nodes are added
to the graph during test time) is limited, and it focuses on supervised rather than semi-supervised
settings. Also, in contrast to the heavy reliance on labels by C&S, a significant aspect of our study
examines how GNNs address the challenges arising from a small training set in semi-supervised
scenarios.

Semi-supervised learning. SSL is an approach for leveraging unlabeled data, often used in scenar-
ios where the size of the training set is small. A popular SSL method, termed pseudo-labeling, uses
the model’s predictions as labels for training (McLachlan, 1975; Rosenberg et al., 2005; Lee et al.,
2013; Xie et al., 2020). Another prominent SSL approach is consistency regularization (Bachman
et al., 2014; Sajjadi et al., 2016; Laine & Aila, 2016), where the model is enforced to maintain con-
sistent predictions through random augmentation of its input. FixMatch (Sohn et al., 2020) combines
these ideas in a simple manner.
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Figure 1: The performance gap between vanilla MLP model (green) to GraphSAGE GNN (blue)
diminishes as the training set size increases. Our regularization (red) refers to an MLP model that
is trained with consistency loss and smoothed pseudo labels. Distillation (orange) refers to an MLP
trained with GNN distillation loss. Our regularization approach emulates the GNN distillation.

3 WHY ARE DISTILLATION METHODS SUCCESSFUL?

Distillation methods have recently challenged the existing paradigm in node classification. The stan-
dard practice with GNNs is to train the model on all the labeled nodes in the graph and use the same
model for node classification at test time. Distillation methods remove the need for using a GNN
at test time, although they still require training a GNN for teaching the student model using unsu-
pervised nodes. They train an MLP to predict the labels of each node based on node features only,
without considering the features of its neighbors. Remarkably, distillation methods are competitive
with GNNs on popular citation and co-purchase network benchmarks. This result is confusing, as
the graph structure appears beneficial during training but not during test time. This begs the question:
Why are distillation methods so successful?

To address this question, we investigate whether the power of the GNN comes from the increased
expressivity of message passing or a useful inductive bias. As a quick test, we plot the node clas-
sification accuracy of both GNNs (specifically GraphSAGE) and node-level MLPs as a function of
the training set size (Fig. 1). The observed trend indicates that with an increase in training size,
the performance gap between node-level MLPs and GNNs diminishes. This suggests that MLPs
overfit due to small training sizes on popular node classification datasets, while GNNs have better
regularization (i.e., they have a useful inductive bias).

Next, we examine the gap between GNNs and MLPs that are trained through distillation of GNNs.
Here, we observe that the gap between the two models is narrow, even for small labeled training
sets. These experimental findings lead us to conclude that: the challenge in the examined dataset
lies not in increasing model expressivity, but rather in decreasing model sample complexity. GNNs
overcome this challenge through a useful inductive bias, while distillation overcomes it by increasing
the size of the training set with GNN pseudo-labels.

We hypothesize that GNNs improve the optimization of MLPs due to two key properties:

• GNNs act as consistency regularizers due to their tendency to produce smoothed predic-
tions along edges.

• GNNs benefit from unlabeled data through the message passing mechanism.

In the following sections, we will empirically test this hypothesis. We will analyze the benefits of
these properties and examine how we can emulate their effects without the need to train a GNN.
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Table 1: Notation summary

Notation Explanation Notation Explanation

G Graph N (v) Set of immediate neighbors of v
V Set of nodes N ℓ (v) Set of nodes u ∈ V s.t. d(v,u) ≤ ℓ
Vtrain Training set, subset of V X Feature matrix in Rn×d

Vval Validation set, subset of V xi The i-th row of X
A Adjacency matrix yi One-hot label of vi in {0, 1}C
C Number of classes Ψ Student MLP
d(v,u) Length of shortest path from v to u Φ Teacher GNN

4 REPLACING GNN DISTILLATION WITH EXPLICIT REGULARIZATION

4.1 PRELIMINARIES

Notation. We are given a graph G = (V,A) where V is a set of nodes {v1, ..., vn} and A is the
adjacency matrix, i.e.,

Aij =

{
1 vi is directly connected to vj
0 else

We ignore self-loops in the graph, hence Aii = 0 for all i ∈ {1, ...,n}. In addition, we are given
a node feature matrix X ∈ Rn×d where its i-th row is the feature vector of node vi and is denoted
by xi. We define the training set Vtrain ⊂ V and the validation set Vval ⊂ V . For each vi ∈
Vtrain∪Vval, we are given a label yi ∈ {0, 1}C encoded as a one-hot vector, where C is the number
of classes. We denote by d (u, v) the length of the shortest path in G between the nodes u and v.
Furthermore, we denote the set of nodes that can be reached from v with paths of distance no longer
than ℓ by N ℓ (v), i.e, N ℓ (v) = {u ∈ V|d(v,u) ≤ ℓ}. We omit the superscript for ℓ = 1, denoting
N 1 (v) as N (v).

Task. Our goal is to predict the labels of all the nodes in V/(Vtrain ∪ Vval). Following com-
mon practices, we only use Vtrain for optimizing the model weights and Vval for hyper-parameter
selection. Note that we described the transductive settings, where all the nodes of the test set are
accessible during training. We describe the inductive setting, where some nodes of the test set are
not present during training, along with corresponding experiments in Sec. A.7.1.

4.2 THEORETICAL BACKGROUND: GNN DISTILLATION

Distillation methods, such as GLNN (Zhang et al., 2021), take a two-step training approach. First,
they train a teacher GNN model, Φ, on the training set with the standard cross-entropy loss between
the prediction of the model and the ground truth (GT) labels. Formally, the loss is given by:

LGT (Φ) =
∑

vi∈Vtrain

CE (yi, Φ (vi)) (1)

Where the Cross Entropy (CE) between two distribution vectors p (observations) and q (model’s
predictions) is CE(p, q) = −

∑C
c=1 p(c) log(q(c)).

After obtaining a fully trained GNN model, they freeze its weights and proceed to train a student
MLP model, Ψ. At the core of distillation methods is training Ψ with the following loss L(Ψ) 1:

Ldistill(Ψ) =
∑
vi∈V

CE(Φ(vi), Ψ(vi)) (2)

L(Ψ) = LGT (Ψ) + γ · Ldistill(Ψ) (3)

1In some literature, the KL-divergence function is used in Ldistill. However, we use cross-entropy (CE) for
convenience. Minimizing CE is equivalent to minimizing KL, since the weights of Φ are fixed during training
and we have KL(Φ(vi),Ψ(xi)) = CE(Φ(vi),Ψ(xi))−H(Φ(vi)) where H(p) is the entropy of p.
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Table 2: Optimizing MLPs with consistency loss improves accuracy by 13%, on average. Using also
iterative training with smoothed pseudo-labeling highly correlates with the performance of GNN
knowledge distillation (GLNN).

Dataset GLNN MLP MLP + Consistency MLP + Consistency + Iterations

Cora 80.54 ± 1.35 56.88 ± 4.87 79.21 ± 4.68 79.76 ± 1.48
Citeseer 71.77 ± 2.01 53.59 ± 4.46 71.12 ± 2.20 73.30 ± 2.09
Pubmed 75.42 ± 2.31 64.03 ± 2.32 71.24 ± 1.71 75.15 ± 3.56
A-computer 83.03 ± 1.87 67.32 ± 3.07 75.29 ± 1.88 80.04 ± 3.63
A-photo 92.11 ± 1.08 77.75 ± 2.45 89.06 ± 1.20 92.03 ± 1.79

Mean 80.57 ± 1.78 63.91 ± 3.59 77.18 ± 2.60 80.06 ± 2.67

where γ is a hyper-parameter.

We showed in Sec. 3 that training a simple node-level classifier tends to overfit on standard node-
classification datasets due to very limited training set sizes. However, training these models with the
distillation loss reduces overfitting significantly.

Connection between GCN and Laplacian smoothing. Prior work (Li et al., 2018; Chen et al.,
2020a) has shown that GNNs produce predictions with a high positive correlation between adjacent
nodes. For example, a GCN model shares a connection with Laplacian smoothing. In each layer of a
GCN model, the feature matrix X is transformed into Z by averaging the features of each node with
its neighbors, i.e., Z = ÂX , where Â = D̃− 1

2 ÃD̃− 1
2 is the symmetrically normalized adjacency

matrix, Ã is the adjacency matrix with self-loops, and D̃ =
∑

j Ãij is the degree matrix. After
obtaining Z, the GCN model applies a linear layer.

The matrix form of the Laplacian smoothing operation (Taubin, 1995) over X is(
(1− γ)I + γD̃−1Ã

)
X . By setting γ = 1 and using the symmetrically normalized Laplacian,

D̃− 1
2 ÃD̃− 1

2 , instead of the normalized Laplacian D̃−1Ã, we get D̃− 1
2 ÃD̃− 1

2X . This modified
Laplacian operation equals the transformed inputs Z in the GCN. Li et al. (2018) also demonstrated
that repeatedly applying Laplacian smoothing results in uniform feature vectors for each connected
component. Thus, GCNs are geared toward homophilic graphs where smoothing is beneficial.

To examine our hypothesis that the smooth predictions of the GNN act as regularization that reduces
overfitting, we take the first step in replacing the GNN in the distillation with explicit components.
We replace the term Ldistill with a direct regularization term that we call the consistency loss.

4.3 CONSTRUCTING EXPLICIT REGULARIZATION

4.3.1 CONSISTENCY LOSS

To study the distillation term, we propose incorporating an explicit regularization term instead of
the implicit one provided by the GNN. Concretely, we incorporate a homophilic prior on the node
predictions using a consistency loss. In many node classification tasks, such as predicting attributes
of academic papers in a citation network or attributes of products in a co-purchase network, neigh-
boring nodes typically have the same label. Homophilic priors enforce label consistency between
neighboring nodes. In practice, our model does not output a single label but rather a probability
distribution over the classes for each node. Therefore, to enforce consistency, we use a probability
discrepancy measure between the predictions of adjacent nodes. Specifically, we compute the aver-
age cross-entropy between the predicted label distribution for a node and each of its neighbors. This
loss term encourages the model to produce consistent predictions for adjacent nodes.

We formulate the consistency loss term as:

Lconsist(Ψ) =
∑
vi∈V

 1

|N (vi)|
∑

vj∈N (vi)

CE (Ψ (xj) , Ψ (xi))

 (4)
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Figure 2: Our analysis consists of three elements: (1) augmenting the node features by concatenating
them with the histogram of nearby node labels (Sec. 5), (2) training with consistency loss in addition
to the standard cross-entropy classification loss (Sec 4.3.1), and (3) iterative training with smoothed
pseudo-labels (Sec. 4.3.2).

The complete loss function is:

L (Ψ) = LGT (Ψ) + γ · Lconsist (Ψ) (5)

where γ is a hyper-parameter controlling the consistency regularization strength.

Theoretical connection to distillation. We present an extension of the theory discussed in Sec.
4.2. The following proposition draws a connection between consistency loss and distillation meth-
ods. A formal proof is provided in the Appendix in Sec. A.2.
Proposition 1. Let Ψ be a linear classifier with weights matrix W . Define a corresponding GNN
model, Φ, as a 1-layer GCN model2 that uses the same weights W . Then the linear model Ψ that
minimizes the lossLconsist is equivalent to the model that minimizes the GNN distillation loss, where
the GNN model Φ acts as the teacher and the linear model Ψ acts as the student.

Datasets. We use a selection of datasets commonly utilized in the graph learning community:
Cora, CiteSeer, PubMed, A-Computers, and A-Photo (Sen et al., 2008; Namata et al., 2012; Shchur
et al., 2018). Additional details and statistics are provided in the Appendix. Following previous
works (Yang et al., 2021; Zhang et al., 2021; Tian et al., 2022), we consider only the largest con-
nected component of each graph dataset and treat the edges as undirected. The datasets are parti-
tioned by randomly sampling 20 instances per class for training, 30 instances per class for validation,
and using the remaining nodes as the test set.

Evaluation. We run each experiment 10 times and report the accuracy on the test set as well as
its standard deviation. As seen in Tab. 2, incorporating the consistency loss into the optimization
process of the MLP improves its accuracy by 13%, on average. However, it still underperforms an
MLP model that was trained with GNN distillation (GLNN). Therefore, we study which additional
GNN components might be needed to provide a simple MLP with the inductive bias of the GNN.

4.3.2 PSEUDO-LABELING ITERATIONS

As demonstrated by many works in the semi-supervised regime (Rosenberg et al., 2005; Sohn et al.,
2020), using unlabeled samples is crucial when we have very limited training data. Utilizing unla-
beled nodes is particularly beneficial for distillation methods, as most standard node classification
benchmarks are effectively semi-supervised. I.e., their training set is very small (sometimes as small
as 0.3% of the total number of nodes).

Distillation methods benefit from unlabeled nodes in two ways. Firstly, during the training of the
teacher GNN, the message-passing mechanism inherently uses nodes that are not necessarily in the
training set. Secondly, the entire graph is passed through the GNN to obtain soft pseudo-labels for
all the nodes. Consequently, all the nodes of the graph are involved in the training of the student.

2This procedure is discussed by Yang et al. (2022)
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To validate that unlabeled nodes benefit MLP model training on standard benchmarks, we incor-
porate ideas inspired by semi-supervised research. To expand the effective training set, we add
predicted labels for some unlabeled nodes. Specifically, we propose using iterative training.

Before each iteration, we add to the training set the nodes on which the model made high-confidence
predictions along with the ground truth training nodes. We denote the class predictions on unlabeled
nodes on which the model was confident as the pseudo-labels. This set is used for training the model
in the following iteration. Ground-truth training nodes remain in every iteration, but high-confidence
pseudo-labeled nodes are recomputed. If a high-confidence node becomes a low-confidence node in
a later iteration, we will exclude it from the training set unless its ground-truth label was provided.
This adaptive mechanism allows the model to correct early errors as training progresses. The training
set for iteration I + 1 is defined by the following rule:

VI+1
train = Vtrain ∪ {vi| max

j=1,...,C

(
ΨI (xi)

)
j
> τ} (6)

Where ΨI is the model that was trained on the training set VI
train, and τ is the confidence threshold.

Pseudo-label smoothing. As discussed in Sec. 4.2, GNNs tend to produce similar predictions to
neighboring nodes. Accordingly, we observed that on many popular datasets, manually smoothing
the model predictions on the target node with the predictions on the neighboring nodes improves its
performance. As GNN distillation methods aim to avoid using the graph structure during inference,
we also want to avoid using it. Therefore, we perform prediction smoothing (that relies on the graph
structure) to the pseudo-labels only during the iterative training. We found that with this strategy, the
model achieves similar final accuracy to that achieved through test-time smoothing, without actually
smoothing at test time. This observation suggests that the model learns to integrate the homophilic
prior into its predictions.

The smoothing technique applied to pseudo-labels involves generating predictions Ŷ ∈ Rn×C for
all nodes after each training iteration. Each row of Ŷ represents the predicted distribution vector
for a specific node. Subsequently, an adjusted prediction Y ∗ is computed for each node by taking
a weighted average between its own prediction and the average prediction of its neighbors. The
weighting factor λ, determined empirically using the validation set, is introduced in the smoothing
process through the equation:

Y ∗ = λ · Ŷ + (1− λ) · ÂŶ (7)

Here, Â denotes the normalized adjacency matrix, such that the i-th row of ÂŶ represents the
average prediction of the neighbors of node i. The resulting Y ∗ serves as the refined prediction used
in the pseudo-labeling strategy described above.

As seen in Tab. 2, the proposed strategy for explicitly using the unlabeled nodes matches the perfor-
mance of an MLP that was trained with GNN distillation.

5 EXPLICIT GRAPH STRUCTURE FEATURES FOR MLP CLASSIFIERS

Some distillation methods have proposed incorporating structural information into the input features
of the MLP student model. For example, NOSMOG (Tian et al., 2022) incorporates a positional
embedding, DeepWalk (Perozzi et al., 2014), in its features. This embedding allows the classifier
to learn a connection between a node’s position in the graph and the labels of the nodes around it.
While effective, it is unclear which structural aspects of the graph these features encode. In this
section, we propose an explicit approach for incorporating structural information.

5.1 HISTOGRAMS OF NEIGHBORING LABELS

The neighborhood of a node may help infer further information about its label. To utilize this,
we propose concatenating a descriptor of neighboring labels to the input of the predictor, thereby
incorporating positional data. Specifically, for each node v, the descriptor is a weighted histogram
of the labels of all nodes with a path to v of length at most ℓ. The weight assigned to each node in
the histogram is determined by the minimal path length to v.

7
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Table 3: Our label-histograms closely match distillation methods, while utilizing the structural fea-
tures in a more explainable way. Results show accuracy (higher is better).

Dataset SAGE GLNN NOSMOG Ours

Cora 80.52 ± 1.77 80.54 ± 1.35 83.04 ± 1.26 82.92 ± 1.15
Citeseer 70.33 ± 1.97 71.77 ± 2.01 73.78 ± 1.54 75.64 ± 1.68
Pubmed 75.39 ± 2.09 75.42 ± 2.31 77.34 ± 2.36 77.22 ± 2.49
A-computer 82.97 ± 2.16 83.03 ± 1.87 84.04 ± 1.01 81.03 ± 1.60
A-photo 90.90 ± 0.84 92.11 ± 1.08 93.36 ± 0.69 93.06 ± 1.56

Arxiv 70.92 ± 0.17 72.15 ± 0.27 71.65 ± 0.29 71.35 ± 0.25
Products 78.61 ± 0.49 77.65 ± 0.48 78.45 ± 0.38 81.71 ± 0.26

Mean 78.52 ± 1.56 78.95 ± 1.52 80.24 ± 1.27 80.42 ± 1.49

Unlike GNN message passing, which requires computing hidden features for the entire neighbor-
hood, this descriptor only requires simple counting of the neighborhood labels. This is a much
weaker requirement than running a GNN over the entire neighborhood.

The histogram descriptor hi for a node vi is calculated by first computing h′
i as follows:

h′
i =

∑
vj∈N ℓ(vi)∩Vtrain

(
αd(vi,vj) · yj

)
(8)

Here, α ∈ [0, 1] is a hyper-parameter controlling the relative importance of far away nodes. Since
yj is a one-hot vector in {0, 1}C , h′

i represents a weighted sum of labels from nodes within a local
context of vi, with the size of the context determined by ℓ.

Subsequently, to obtain a normalized histogram, hi, we divide h′
i by its sum. This descriptor is

concatenated to the original input vector xi.

hi =
h′
i∑C

j=1 h′
ij

(9)

Approximating label histograms in large graphs. The requirement of determining the distance
between each node in the training set and all other nodes in the graph is a task with a computational
complexity of O(|Vtrain| · |E|), where |E| is the number of edges in the graph (in the case of more
edges than nodes). In the standard setting for node-level classification tasks, the size of Vtrain is
often very small, so computing the histograms is feasible. We include in our evaluation two larger
graphs from the Open Graph Benchmark (Hu et al., 2020): ogbn-arxiv (169K nodes) and ogbn-
products (2.4M nodes). As these datasets have larger training sets, we use a modified approximation
of Eq. 8 for them. This approximation is much faster to compute using graph convolution operations.
Further implementation details and ablations are provided in the Appendix in Sec. A.3.

5.2 EVALUATION

We evaluate the effectiveness of label histograms combined with our approach for optimizing MLPs,
i.e., with consistency loss and iterative training. As seen in Tab. 3, using the label-histogram achieves
results similar to distillation methods that leverage learnable positional features. We compare it to
two state-of-the-art methods: (1) GLNN, a standard distillation method, and (2) NOSMOG, which
adds an adversarial feature augmentation loss, similarity distillation of hidden features, and fuses
positional encoding to the input. We also compare to the teacher used in KD methods - GraphSAGE
with a GCN aggregation strategy. As in previous experiments, we use common benchmarks, running
each experiment 10 times and reporting the accuracy and its standard deviation. Additionally, we
assess the model in an inductive setting, where specific nodes in the test set are not included during
the training phase. The results of this evaluation are provided in Section A.7.1

6 DISCUSSION

Mechanistic explanation. Our analysis examines the role of GNNs in training MLPs with knowl-
edge distillation by replacing implicit components with explicit ones. This provides a way to obtain
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a mechanistic understanding of a complex, black-box approach. Specifically, we trained the MLP
with 3 components inspired by GNNs, and the results indicate that our explicit components behave
similarly to distillation methods that use GNNs. While other factors may contribute to the effec-
tiveness of distillation methods, the high correlation between their results and those of our explicit
approach suggests that we uncover some of their key properties. Furthermore, the components we
identified are beneficial on their own.

Table 4: Leveraging the homophily prior, through consistency loss and pseudo-label smoothing,
improves the model’s accuracy by 2.4% on average.

Dataset W.o. Homophily Prior ∆ Edge Homophily Node Homophily

cora 79.64 -3.28 84.3% 86.2%
citeseer 73.97 -1.67 79.5% 80.3%
pubmed 76.61 -0.61 83.8% 86.5%
a-computer 79.21 -1.82 78.3% 81.7%
a-photo 87.44 -5.62 83.2% 86.1%
Arxiv 71.35 0 67.8% 70.7%
Products 78.07 -3.64 80.8% 81.7%

Mean 78.04 -2.38

Homophily prior. The use of the homophily prior, which posits that neighboring nodes has pos-
itively correlated labels, is reflected in our analysis in two ways: (1) The inclusion of a consis-
tency loss, which encourages the model to maintain correlation among neighboring nodes, and (2)
smoothing the pseudo-labels used during iterative training, further incentivizing the model to pro-
vide smoothed predictions across edges. Here, we study the advantages of incorporating this prior.

As depicted in Tab. 4, incorporating these two elements resulted in an average improvement of 2.4%.
This can be explained by the homophilic tendencies of the dataset sources. For instance, in citation
networks, it is reasonable to expect that papers in the same field may cite each other. Similarly, in
co-purchasing networks, it is plausible that customers tend to buy items from the same category at
the same time. The ogbn-arxiv dataset is an outlier as it is not positively affected by the homophily
prior. Notably, this dataset has the largest proportion (53.7%) of labeled training nodes. As the
number of labels is sufficient, the advantage of using additional priors such as homophily decreases.

Computational efficiency. While our primary objective is to understand the mechanisms of dis-
tillation methods, our analysis also provides strategies to optimize MLPs for more efficient node
classification in graphs, eliminating the need for GNNs. This approach has the potential to inspire
future research focused on developing more efficient methods. Furthermore, the label histograms
utilized in our analysis to evaluate the benefits of local context can be computed on a CPU and do
not necessitate the learning of embeddings, in contrast to our baseline approach.

Influence of node degree. The label histogram and consistency loss in our approach rely on neigh-
borhood data. To assess the impact of node degree on model performance, we evaluated nodes with
varying degrees, as illustrated in App. Fig 5. The results indicate that our optimization process
for MLPs closely aligns with the patterns observed in GNN distillation. In the a-computer dataset,
the accuracy appears to exhibit a stronger positive correlation with node degree compared to other
datasets. Yet, generally there is no strong connection between the performance and the node degree
across datasets.

7 LIMITATIONS

Heterophilic graphs. Current methods of GNN knowledge distillation have demonstrated success
mostly with homophilic datasets. Consequently, our analysis is focused on leveraging homophily
within graphs. Yet, some graph datasets (Lim et al., 2021; Platonov et al., 2023) are heterophilic. In
such datasets, while the label of each node does not tend to be similar to the label of its neighbors,
the labels of neighboring nodes may still carry valuable information. Some of our analysis may

9
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Table 5: On heterophilic graphs, distillation methods do not improve over standard MLP.

Dataset GCN GLNN MLP

penn94 80.45 81.22 83.60
pokec 75.09 61.33 68.66

apply to heterophilic graphs. E.g., neighborhood histograms may carry information about the labels
of the node, even when neighbors belong to different classes.

In Tab. 5, we evaluate our approach on the two heterophilic datasets used in the GLNN paper. We
find that with no regularization a standard MLP outperforms reported distillation results. Further-
more, we found that regularization and label histograms did not improve upon the vanilla MLP. This
supports our claim that current distillation methods are geared toward homophilic graphs, and that
their performance is correlated with our explicit regularization.

Dataset-specific variability. While our explicit GNN-free components for optimizing MLPs show
a high positive correlation to the performance of distillation methods, there are cases where they
underperform. This variation suggests that different approaches might be influenced by dataset-
specific characteristics. Further investigation into specific cases may allow future research to develop
methods that enjoy the best of all worlds.

8 CONCLUSION

In this paper, we demystified the effectiveness of graph distillation methods. Our investigation
centered on the hypothesis that GNNs enhance the optimization process of MLPs due to two factors:
(1) GNNs serve as consistency regularizers, and (2) GNNs leverage unlabeled data effectively. To
test this hypothesis, we devised a methodology that directly incorporates these properties without
the utilization of GNNs, employing consistency loss and iterative pseudo-labeling. Moreover, we
introduced an explicit method for incorporating structural features and demonstrated its comparable
efficacy to learnable features.

9 SOCIETAL IMPACTS

This paper aims to advance the field of machine learning on graphs. It may improve social network
analysis, recommendations, and the analysis of academic citation networks. However, similar to
other works, risks include potential misuse for surveillance or privacy violations.

10 REPRODUCIBILITY

To ensure reproducibility, we ran each experiment 10 times and report the standard deviation. We
describe the datasets we used in App. Sec. A.1, and provide implementation details in App. Sec.
A.6. Additionally, we include our entire source code in the supplementary materials and will publish
it on GitHub upon acceptance. The proof for Proposition 1, introduced in Sec. 4.3.1, is provided in
App. Sec. A.2.
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A APPENDIX

A.1 DATASETS

Cora, CiteSeer (Sen et al., 2008) and PubMed (Namata et al., 2012) are citation networks where
each node represents a scientific paper, edges signify citations between papers, and labels denote
the research field of each paper. In Cora and CiteSeer the feature vector of each node is a sparse
bag-of-words derived from the text of the paper. PubMed is constructed from medical publications,
the node features are represented by TF/IDF (Ramos et al., 2003) weighted word frequency.

A-Computers and A-Photo (Shchur et al., 2018) are extracted from the Amazon co-purchase graph
(McAuley et al., 2015). These datasets involve nodes representing electronic goods sold on Amazon
web store. Edges indicate whether two products are frequently bought together. The node features
are product reviews encoded using a bag-of-words representation. The labels assigned to the nodes
correspond to product categories, with A-Computers encompassing categories such as Desktops,
Laptops, Monitors, and so forth. A-Photo includes categories such as Cameras, Lenses etc.

ogbn-arxiv and ogbn-products are from the Open Graph Benchmark (OGB) (Hu et al., 2020) and
are larger datasets. The former constitutes a citation network of arXiv papers, while the latter is a
co-purchasing network.

Dataset split. We follow the protocol used in previous studies for partitioning datasets into train-
ing, validation, and test sets. In the transductive setting, Cora, CiteSeer, PubMed, A-Computers,
and A-Photo are partitioned by randomly sampling 20 instances per class for training, 30 instances
per class for validation, and treating the remaining nodes as the test set. For the ogbn-arxiv dataset,
the training is conducted on papers published until 2017, validation is performed on those published
in 2018, and testing is carried out on papers published since 2019. In ogbn-products, nodes (repre-
senting products) are arranged based on their sales ranking. The top 8% of products are assigned
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to the training set, the subsequent top 2% to the validation set, and the remaining to the test set.
The partitioning scheme used by the OGB datasets is designed to perform an accurate simulation of
real-life scenarios.

Table 6: Dataset Statistics.

Dataset # Nodes # Edges # Features # Classes Split (train / val / test)

Cora 2,485 5,069 1,433 7 Random (140 / 210 / 2,135)
Citeseer 2,110 3,668 3,703 6 Random (120 / 180 / 1,810)
Pubmed 19,717 44,324 500 3 Random (60 / 90 / 19,567)
A-computer 13,381 245,778 767 10 Random (200 / 300 / 12,881)
A-photo 7,487 119,043 745 8 Random (160 / 240 / 7,087)
Arxiv 169,343 1,166,243 128 40 Public (53.7% / 17.6% / 28.7%)
Products 2,449,029 61,859,140 100 47 Public (8% / 1.6% / 90.4%)

A.2 CONNECTION BETWEEN CONSISTENCY LOSS AND DISTILLATION

We provide a proof for the proposition presented in Sec. 4.3.1

Proposition 1. Let Ψ be a linear classifier with weights W . Define a corresponding GNN model,
Φ, as a 1-layer GCN model3 that uses the same weights W . Then the linear model Ψ that minimizes
the loss Lconsist is equivalent to the model that minimizes the GNN distillation loss, where the GNN
model Φ acts as the teacher and the linear model Ψ acts as the student.

Proof. Denote the c’th row of W is wc. Let us fix a node v with feature vector x.

The student model’s prediction for the label of v is Ψ(v) = Wx, where the logit of class c is its c’th
entry, i.e., wc ·x. The GCN model’s prediction is obtained by averaging the features of the neighbors
of v and then passing this average to a linear layer, i.e., Φ(v) = W x̃, where x̃ = 1

|N(v)|
∑

vj∈N(v) xj .

Thus,

CE(Φ(v), Ψ(v)) = CE(W x̃,Wx) (10)

= −
C∑

c=1

(wc · x̃) log(wc · x) (11)

= −
C∑

c=1

wc ·
1

|N(v)|
∑

vj∈N(v)

xj

 log(wc · x) (12)

=
1

|N(v)|
∑

vj∈N(v)

[
−

C∑
c=1

(wc · xj) log(wc · x)

]
(13)

=
1

|N(v)|
∑

vj∈N(v)

CE(Wxj ,Wx) (14)

By summing over all the nodes we get

∑
vi∈V

CE(Φ(vi), Ψ(vi))︸ ︷︷ ︸
Ldistill(Ψ)

=
∑
vi∈V

 1

|N(vi)|
∑

vj∈N(vi)

CE(Ψ(vj), Ψ(vi))


︸ ︷︷ ︸

Lconsist(Ψ)

(15)

3This procedure is discussed by Yang et al. (2022)
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Figure 3: The model’s accuracy is 1.66% higher
on average when using the exact formula (Eq. 8)
for histogram calculation compared to its approx-
imation (Eq. 16).
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Figure 4: Running times of the pre-
processing procedure of calculating the his-
tograms using the exact calculation (Eq. 8)
and using its approximation (Eq. 16) as func-
tion as the context size.

A.3 APPROXIMATING LABEL HISTOGRAMS IN LARGE GRAPHS

For larger datasets, such as ogbn-products, we use an efficient approximation for h′
i in Eq. 8 that

is faster to compute using graph convolution operations. We calculate histogram for all nodes in
the graph jointly by spreading the labels using convolution operations. Specifically, the matrix H ′

whose rows represent un-normalized histograms for each node, is obtained by:

H ′ =

ℓ∑
k=1

(
αÂ

)k

Ỹ (16)

Where the i-th row of Ỹ is defined by:

ỹi =

{
yi vi ∈ Vtrain
0 vi /∈ Vtrain

We normalize H ′ in the same manner presented in Eq. 9.

When using convolutions, this computation takes a running time of O(|E|). However, unlike the
previous method of calculating histograms, the labels of some nodes in the training might leak into
the label histogram feature. This can affect the generalization, as we do not have this information at
test time. We observed that using small enough values for α eliminated the generalization gap due
to this issue.

Histogram approximation Ablation. As described in Sec. 5, we augment the input features by
concatenating histograms of labels derived from the local context of each node. Here, we analyze
the trade-off between the time saved by the approximation and its potential impact on accuracy com-
pared to exact computation. The results are presented in Fig. 3 and Fig. 4. The results show that
while the exact histogram calculation results in a superior accuracy of 1.66% on average, approxi-
mating the histograms significantly reduces computation time.

A.4 ADDITIONAL COMPARISONS

To expand our empirical study, in Tab. 7, we explore the following additional baselines, which use
an MLP as a student model: FF-G2M (Wu et al., 2023a), KRD (Wu et al., 2023b), and CPF (Yang
et al., 2021). This further evaluation supports our claim that the techniques we incorporate capture
explicitly the regularization provided by GNN distillation.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 7: Comparisons to additional distillation methods.

Dataset SAGE APPNP GCN GAT

cora 80.52 ± 1.77 82.98 ± 0.70 81.82 ± 1.26 81.82 ± 1.65
citeseer 70.33 ± 1.97 72.70 ± 1.53 71.19 ± 1.62 71.47 ± 1.75
pubmed 75.39 ± 2.09 76.61 ± 2.64 76.73 ± 2.64 75.38 ± 1.85
a-computer 82.97 ± 2.16 81.15 ± 2.57 82.74 ± 1.52 83.12 ± 1.54
a-photo 90.90 ± 0.84 90.36 ± 1.89 91.18 ± 0.84 91.30 ± 0.92

Mean 80.02 ± 1.83 80.76 ± 1.87 80.73 ± 1.58 80.62 ± 1.54

Dataset GLNN-SAGE GLNN-APPNP GLNN-GCN GLNN-GAT

cora 80.54 ± 1.35 79.68 ± 1.02 80.53 ± 1.57 79.97 ± 1.52
citeseer 71.77 ± 2.01 72.96 ± 1.64 71.54 ± 1.47 71.96 ± 1.71
pubmed 75.42 ± 2.31 76.64 ± 2.60 78.01 ± 2.75 76.77 ± 1.66
a-computer 83.03 ± 1.87 80.23 ± 2.40 83.16 ± 1.49 83.19 ± 1.38
a-photo 92.11 ± 1.08 91.27 ± 1.64 92.92 ± 0.67 92.79 ± 0.91

Mean 80.57 ± 1.78 80.16 ± 1.86 81.23 ± 1.59 80.94 ± 1.44

Dataset FF-G2M KRD CPF Ours

cora 81.58 ± 1.01 81.11 ± 1.42 80.85 ± 1.64 82.92 ± 1.15
citeseer 73.25 ± 1.10 72.17 ± 1.78 70.67 ± 2.11 75.64 ± 1.68
pubmed 77.68 ± 2.25 77.30 ± 1.81 76.27 ± 1.82 77.22 ± 2.49
a-computer 81.15 ± 2.34 81.10 ± 2.75 80.92 ± 2.08 81.03 ± 1.60
a-photo 92.60 ± 0.32 92.42 ± 0.48 90.14 ± 1.13 93.06 ± 1.56

Mean 81.25 ± 1.62 80.82 ± 1.80 79.77 ± 1.79 81.97 ± 1.75

A.5 ADDITIONAL ABLATIONS

We start by examining our classifier with only the standard cross-entropy classification loss. We see
from App.Tab. 9 that the results of this naive classifier are far from being competitive. We show
that each of the analyzed components has a significant impact on the performance. As can be seen
in App.Tab. 9, pairs of these components already achieve strong results. Yet, the best performance
is achieved when using all 3 components.

Influence of node degree. We extend our analysis of the relationship between node degree and
model performance to scenarios involving noisy labels. For this, we evaluate the model’s accuracy
for nodes with varying edge degrees when 20% of the train and validation labels are replaced with
random (noisy) labels. The results, presented in App. Fig. 6 indicate that the impact of noise is rel-
atively consistent across nodes of varying degrees. Furthermore, this effect qualitatively resembles
the patterns observed when labels are not noisy.

Correlation between accuracy and node homophily. App. Fig. 7 examines the correlation
between confidence assigned by the model to the true label and the homophily rate of the node. This
analysis reveals that the correlation observed for our MLP is more similar to that of GNN distillation
than to a standard MLP, further supporting our hypothesis.

Hyper-parameter sensitivity. The consistency loss term is incorporated into the overall loss func-
tion with a weighting factor, denoted as γ. To assess the impact of this factor on model performance,
we evaluate the model’s accuracy across different values of γ. As shown in App. Fig. 8, the results
indicate that this loss demonstrates robustness across a wide range of γ values.
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Figure 5: Accuracy vs. degree of nodes. The relation between the model performance and the node’s
degree exhibits a comparable pattern across both our MLP and GLNN (GNN distillation).
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Figure 6: Accuracy vs. degree of nodes with noisy labels. We replace 20% of the train and validation
labels with random labels. The relation between the model performance and the node’s degree
exhibits a comparable pattern across both our MLP and GLNN.

Label histograms as classifiers. To further analyze the importance of the histogram, we evaluate
the accuracy of predictions based only on the most frequent label in the histogram, without any
training. This is compared across different values of ℓ, which represents the context size of the
histogram. The results, presetned in App. Fig. 9, indicate that relying only on immediate neighbors
(ℓ = 1) is insufficient for accurate predictions. However, when the context size ℓ increases to 7, the
accuracy is notably high for such a simplistic baseline approach.

A.6 IMPLEMENTATION DETAILS
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Figure 7: The correlation between confidence assigned by the model to the true label and the ho-
mophily rate of the node. Notably, the correlation exhibited by our MLP aligns more closely with
that observed in GNN distillation processes than with that of a standard MLP.
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Figure 8: Accuracy vs. consistency regularization term (γ).

Table 8: Comparison between the accuracy on the test and train sets. MLPs have nearly 100%
accuracy on the training set, while other models have lower training accuracy and higher testing
accuracy.

MLP SAGE GLNN Ours
Dataset Train Test Train Test Train Test Train Test

cora 100.0 46.3 99.4 81.0 96.1 80.3 99.7 83.0
citeseer 100.0 49.9 99.1 70.3 97.2 70.9 99.9 75.7
pubmed 100.0 64.6 99.8 75.5 98.7 76.4 99.8 77.2
a-computer 99.9 64.9 95.2 81.7 94.0 82.4 99.3 81.0
a-photo 100.0 73.2 97.9 90.9 96.7 92.5 99.6 93.1

=1 =3 =5 =7 =9 =13
cora 1.0 24.09 13.26 21.26 23.69 35.16
citeseer 3.0 65.31 54.22 41.14 68.55 74.99
pubmed 5.0 68.45 67.77 70.88 68.71 75.19
a-computer 7.0 68.96 69.59 73.84 68.71 75.19
a-photo 9.0 69.01 70.17 73.68 68.71 75.19
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Figure 9: Accuracy of predictions based only on the most frequent label in the histogram, without
any training. ℓ represents the context size of the histogram. Relying only on immediate neighbors
(ℓ = 1) is insufficient for accurate predictions. However, for values larger than 5 the accuracy is
notably high for such a simplistic baseline.
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Table 9: Ablation table

Dataset Base Only
Iterations

Only
Histograms

Histograms
and Consistency

Histograms
and Iterations Ours

cora 56.88 77.72 78.86 81.75 81.79 82.92
citeseer 53.59 69.03 73.02 74.19 74.95 75.64
pubmed 64.03 65.89 75.77 76.57 77.04 77.22
a-computer 67.32 78.43 76.45 75.38 80.57 81.03
a-photo 77.75 88.42 86.59 90.21 91.31 93.06

Mean 63.91 75.90 78.14 79.62 81.13 81.97

Algorithm 1 Pseudo-code

Input: Graph G, Train-set Vtrain, Iterations T, Confidence threshold τ
Compute histograms according to Eq. 9 into H
X ← Concatenate(X,H)
Initialize Ψ, an MLP or linear model.
V1
train = Vtrain

for t = 1 to T do
Train Ψ on Vt

train and G using the loss from Eq. 5
Ŷ = Ψ(X)

Y ∗ = λ · Ŷ + (1− λ) · ÂŶ
Vt+1
train ← Vtrain ∪ {i|maxj=1,...,C(Y

∗
ij) > τ}

end for

• We conducted each experiment using 10 different random seeds and reported the mean and
standard deviation of the model accuracy on the test set.

• In the experiments of Sec 4, we use MLP with architecture of 2 layers and hidden dimen-
sions of 128. In Sec. 5, the backbone consists of a single linear layer for all datasets, except
for OGB datasets, where we utilized a two-layer MLP with hidden dimensions of 512 and
1024 for ogbn-products and ogbn-arxiv, respectively.

• Across all datasets, except for the OGB datasets, we employed 5 iterations, as outlined in
Section 4.3.2. Within each iteration, the model underwent training for 200 epochs, and the
optimal epoch was determined based on performance on the validation set. Notably, for the
ogbn-products dataset, it was observed that a single epoch sufficed.

• On the larger datasets, ogbn-products and ogbn-arxiv, we observed that employing pseudo-
labeling, as described in Sec. 4.3.2, is not necessary. This is primarily because they include
large training splits, both in terms of the proportion of the entire graph, and in terms of the
absolute number of labeled nodes. Consequently, in these cases, we report the performance
only of the consistency loss and label-histogram features.

• In the iterative training described in Sec. 4.3.2, The weights of the model are initialized
once, then at each iteration we continue the training for numerous epochs.

• The parameter defining the size of the local context utilized for computing the histogram,
as explained in Section 5, was set to 10 hops (i.e., ℓ = 10).

• We used Eq. 16 for calculation the approximation of the histograms in the larger datasets
from OGB. While for all the other datasets we used the original formula (Eq. 8).

• The hyper-parameters were selected from the range presented in App.Tab. 10 via grid
search.

Python Libraries. We use Deep Graph Library (DGL) (Wang et al., 2019a) for storing the graph
datasets and performing graph operations on them. We also use PyTorch (Paszke et al., 2019) and
scikit-learn (Pedregosa et al., 2011).
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Table 10: Hyper-parameters Range

Hyper-parameter Search Range

Learning Rate [0.001, 0.005, 0.008, 0.01, 0.05, 0.1]
Weight Decay [0, 0.0001, 0.0005, 0.001, 0.005]
γ (Eq. 5) [0.0, 0.005, 0.01, 0.025, 0.05, 0.1, 0.2, 0.4, 0.5]
τ (Eq. 6) [0, 0.2, 0.4, 0.5, 0.6, 0.8]
λ (Eq. 7) 0 to 1 in increments of 0.01
α (Eq. 8) [0.025, 0.05, 0.1, 0.2, 0.4, 0.5, 0.6]

A.7 RUNNING TIMES

The label histograms described in Sec. 5 can be computed efficiently, requiring less than 5 millisec-
onds per node on a CPU, as shown in Fig. 4. For example, computing histograms for the large
ogbn-products dataset (2.4M nodes) takes 1.26 minutes on an AMD 7713 processor. In contrast, the
DeepWalk embeddings, proposed in previous work, requires over an hour on the same hardware.

In terms of training times, our approach directly trains the MLP, whereas distillation approaches
involve first training a slower teacher GNN followed by the student MLP. This two-step process
leads to longer overall training times. Tab. 11 summarizes the training times (averaged over 10
runs) on a single A10 GPU, demonstrating that our approach consistently achieves faster training
across datasets.

Table 11: Training times in seconds.

Teacher SAGE Student MLP Distillation (teacher+student) Ours

cora 1.7 0.6 2.3 1.3
citeseer 1.5 0.5 2.0 0.9
pubmed 10.7 4.2 14.9 1.2
a-computer 15.2 4.5 19.7 3.1
a-photo 8.7 1.6 10.3 1.7

A.7.1 INDUCTIVE SETTING

In the inductive setting we further split the unlabelled test set, denoted as U = V/(Vtrain ∪ Vval),
into two disjoint sets: (1) Unseen test nodes, a set of nodes exclusively available during inference
time and not in training time, denoted by Uunseen. (2) Observed test nodes, a set of unlabeled
nodes with accessible features during training, denoted by Useen. Unlike the unseen test nodes, the
observed test nodes participate in the consistency loss and may have pseudo-labels. In the inductive
setting, we train the model on the graph induced by all the nodes in the set Vtrain ∪ Vval ∪ Useen.
Only the nodes of Vtrain are used in the classification loss (Eq. 1). At training time, we discard
edges that connect to nodes that are in Uunseen. The test accuracy is computed on the combination
of the sets Useen and Uunseen.

We evaluate the label-histogram descriptor described in Sec. 5 in the inductive settings. Similarly to
the transductive case, using label-histogram achieve similar results to using distillation method that
leverage learnable positional features, as shown in App.Tab. 12.
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Table 12: Inductive setting: The test set is further partitioned into 80% test set that present during
training (seen) and 20% unseen test (unseen). The formula used for computing a composite measure
denoted as prod is expressed as follows: prod = 0.8 · seen+ 0.2 · unseen.

Datasets Eval SAGE MLP GLNN NOSMOG Ours ∆GLNN ∆NOSMOG

Cora

prod 79.53 59.18 78.28 81.02 81.11 ↑ 2.83% ↑ 0.09%

unseen 81.03 ± 1.71 59.44 ± 3.36 73.82 ± 1.93 81.36 ± 1.53 80.09 ± 2.29 ↑ 6.27% ↓ -1.27%

seen 79.16 ± 1.60 59.12 ± 1.49 79.39 ± 1.64 80.93 ± 1.65 81.37 ± 1.74 ↑ 1.98% ↑ 0.44%

Citeseer

prod 68.06 58.49 69.27 70.60 72.94 ↑ 3.67% ↑ 2.34%

unseen 69.14 ± 2.99 59.31 ± 4.56 69.25 ± 2.25 70.30 ± 2.30 71.77 ± 3.37 ↑ 2.52% ↑ 1.47%

seen 67.79 ± 2.80 58.29 ± 1.94 69.28 ± 3.12 70.67 ± 2.25 73.23 ± 3.13 ↑ 3.95% ↑ 2.56%

Pubmed

prod 74.77 68.39 74.71 75.82 74.51 ↓ -0.2% ↓ -1.31%

unseen 75.07 ± 2.89 68.28 ± 3.25 74.3 ± 2.61 75.87 ± 3.32 74.84 ± 3.39 ↑ 0.54% ↓ -1.03%

seen 74.70 ± 2.33 68.42 ± 3.06 74.81 ± 2.39 75.80 ± 3.06 74.43 ± 3.20 ↓ -0.38% ↓ -1.37%

A-computer

prod 82.73 67.62 82.29 83.85 80.66 ↓ -1.63% ↓ -3.19%

unseen 82.83 ± 1.51 67.69 ± 2.20 80.92 ± 1.36 84.36 ± 1.57 80.19 ± 2.65 ↓ -0.73% ↓ -4.17%

seen 82.70 ± 1.34 67.60 ± 2.23 82.63 ± 1.4 83.72 ± 1.44 80.78 ± 2.29 ↓ -1.85% ↓ -2.94%

A-photo

prod 90.45 77.29 92.38 92.47 92.11 ↓ -0.27% ↓ -0.36%

unseen 90.56 ± 1.47 77.44 ± 1.50 91.18 ± 0.81 92.61 ± 1.09 91.75 ± 1.36 ↑ 0.57% ↓ -0.86%

seen 90.42 ± 0.68 77.25 ± 1.90 92.68 ± 0.56 92.44 ± 0.51 92.20 ± 1.35 ↓ -0.48% ↓ -0.24%

Arxiv

prod 70.69 55.35 65.09 70.90 71.32 ↑ 6.23% ↑ 0.42%

unseen 70.69 ± 0.58 55.29 ± 0.63 60.48 ± 0.46 70.09 ± 0.55 71.42 ± 0.34 ↑ 10.94% ↑ 1.33%

seen 70.69 ± 0.39 55.36 ± 0.34 71.46 ± 0.33 71.10 ± 0.34 71.29 ± 0.22 ↓ -0.17% ↑ 0.19%

Products

prod 76.93 60.02 75.77 77.33 81.28 ↑ 5.51% ↑ 3.95%

unseen 77.23 ± 0.24 60.02 ± 0.09 75.16 ± 0.34 77.02 ± 0.19 81.69 ± 0.19 ↑ 6.53% ↑ 4.67%

seen 76.86 ± 0.27 60.02 ± 0.11 75.92 ± 0.61 77.41 ± 0.21 81.18 ± 0.18 ↑ 5.26% ↑ 3.77%

Mean prod 77.59 63.76 76.83 78.86 79.13 ↑ 2.31% ↑ 0.28%
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