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Abstract

Recent advances in GPU-based parallel simulation have enabled practitioners
to collect large amounts of data and train complex control policies using deep
reinforcement learning (RL), on commodity GPUs. However, such successes for
RL in robotics have been limited to tasks sufficiently simulated by fast rigid-body
dynamics. Simulation techniques for soft bodies are comparatively several orders
of magnitude slower, thereby limiting the use of RL due to sample complexity
requirements. To address this challenge, this paper presents both a novel RL
algorithm and a simulation platform to enable scaling RL on tasks involving
rigid bodies and deformables. We introduce Soft Analytic Policy Optimization
(SAPO), a maximum entropy first-order model-based actor-critic RL algorithm,
which uses first-order analytic gradients from differentiable simulation to train a
stochastic actor to maximize expected return and entropy. Alongside our approach,
we develop Rewarped, a parallel differentiable multiphysics simulation platform
that supports simulating various materials beyond rigid bodies. We show that
SAPO outperforms baselines on a challenging soft-body locomotion and dexterous
deformable manipulation task that we re-implement in Rewarped.

1 Introduction

Progress in deep reinforcement learning (RL) has produced policies capable of impressive behavior,
from playing games with superhuman performance [Silver et al., 2016, Vinyals et al., 2019] to
controlling robots for assembly [Tang et al., 2023], dexterous manipulation [Andrychowicz et al., 2020,
Akkaya et al., 2019], navigation [Wijmans et al., 2020, Kaufmann et al., 2023], and locomotion [Rudin
et al., 2021, Radosavovic et al., 2024]. However, standard model-free RL algorithms are extremely
sample inefficient. Thus, the main practical bottleneck when using RL is the cost of acquiring large
amounts of training data.

However, such successes of scaling RL in robotics have been limited to tasks sufficiently simulated by
fast rigid-body dynamics [Makoviychuk et al., 2021], while physics-based simulation techniques for
soft bodies are comparatively several orders of magnitude slower. Consequently for tasks involving
deformable objects, such as robotic manipulation of rope [Nair et al., 2017, Chi et al., 2022], cloth [Ha
and Song, 2022, Lin et al., 2022], elastics [Shen et al., 2022], liquids [Ichnowski et al., 2022, Zhou
et al., 2023], dough [Shi et al., 2022, 2023, Lin et al., 2023], or granular piles [Wang et al., 2023,
Xue et al., 2023], approaches based on motion planning, trajectory optimization, or model predictive
control have been preferred over and outperform RL [Huang et al., 2020, Chen et al., 2022].

How can we overcome this data bottleneck to scaling RL on tasks involving deformables? Model-
based reinforcement learning (MBRL) has shown promise at reducing sample complexity, by leverag-
ing some known model or learning a world model to predict environment dynamics and rewards [Mo-
erland et al., 2023]. In contrast to rigid bodies however, soft bodies have more complex dynamics
and higher-dimensional state spaces. This makes learning to model dynamics of deformables highly
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nontrivial [Lin et al., 2021], often requiring specialized systems architecture and material-specific
assumptions such as volume preservation or connectivity.

Recent developments in differentiable physics-based simulators of deformables [Hu et al., 2019, Du
et al., 2021, Huang et al., 2020, Zhou et al., 2023, Wang et al., 2024, Liang et al., 2019, Qiao et al.,
2021a, Li et al., 2022b, Heiden et al., 2023] have shown that first-order gradients from differentiable
simulation can be used for gradient-based trajectory optimization and achieve low sample complexity.
Yet such approaches are sensitive to initial conditions and get stuck in local optima due to non-smooth
optimization landscapes or discontinuities induced by contacts [Li et al., 2022a, Antonova et al.,
2023]. Additionally, existing soft-body simulations are not easily parallelized, which limits scaling
RL in them. Overall, there is no existing simulation platform that is parallelized, differentiable, and
supports interaction between articulated rigid bodies and deformables.

In this paper, we approach the sample efficiency problem using first-order model-based RL (FO-
MBRL), which leverages first-order analytic gradients from differentiable simulation to accelerate
policy learning, without explicitly learning a world model. Thus far, FO-MBRL has been shown to
achieve low sample complexity on articulated rigid-body locomotion tasks [Freeman et al., 2021, Xu
et al., 2021], but has not yet been shown to work well for tasks involving deformables [Chen et al.,
2022]. We hypothesize that entropy regularization can stabilize policy optimization over analytic
gradients from differentiable simulation, such as by smoothing the optimization landscape [Ahmed
et al., 2019]. To this end, we introduce a novel maximum entropy FO-MBRL algorithm, alongside a
parallel differentiable multiphysics simulation platform for RL.

2 Soft Analytic Policy Optimization (SAPO)

We refer the reader to Appendix A for background on FO-MBRL. Empirically we observe that SHAC,
a state-of-the-art FO-MBRL algorithm, is still prone to suboptimal convergence to local minima in
the reward landscape (Appendix, Figure 3). We hypothesize that entropy regularization can stabilize
policy optimization over analytic gradients from differentiable simulation, such as by the smoothing
effect of entropy regularization [Ahmed et al., 2019].

We draw on the maximum entropy RL framework to formulate Soft Analytic Policy Optimization
(SAPO), a maximum entropy FO-MBRL algorithm (Section 2.1). To implement SAPO, we make
several design choices, including modifications building on SHAC (Appendix B.1). In Appendix B.2,
we describe how we use visual encoders to learn policies from high-dimensional visual observations
in differentiable simulation. Pseudocode for SAPO is shown in Appendix B.3.

2.1 Maximum entropy RL in differentiable simulation

Maximum entropy RL [Ziebart et al., 2008, Ziebart, 2010] augments the standard (undiscounted)
return maximization objective with the expected entropy of the policy over ρπ(st) :

J(π) =

∞∑
t=0

E(st,at)∼ρπ [rt + αHπ[at|st]], (1)

whereHπ[at|st] = −
∫
A π(at|st) log π(at|st)dat is the Shannon entropy of the action distribution,

and the temperature α balances the entropy term versus the reward.

Incorporating the discount factor [Thomas, 2014, Haarnoja et al., 2017], we obtain the following
objective which maximizes the expected return and entropy for future states starting from (st,at)
weighted by its probability ρπ under policy π :

Jmaxent(π) =

∞∑
t=0

E(st,at)∼ρπ

[ ∞∑
l=t

γl−tE(sl,al)[rt + αHπ[al|sl]]

]
. (2)

The soft Q-function is defined by the expectation under π of the discounted sum of rewards and
entropy :

Qπsoft(st,at) = rt + E(st+1,...)∼ρπ

[ ∞∑
l=t+1

γl(rl + αHπ[al|sl])

]
, (3)
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and the soft value function is :

V πsoft(st) = α log

∫
A
exp(

1

α
Qπsoft(s,a))da. (4)

When π(a|s) = exp( 1
α (Q

π
soft(s,a) − V πsoft(s))) ≜ π∗, then the soft Bellman equation yields the

following relationship :

Qπsoft(st,at) = rt + γE(st+1,...)∼ρπ [V
π
soft(st+1)], (5)

where we can rewrite the discounted maximum entropy objective in Eq. 2 :

Jmaxent(π) =

∞∑
t=0

E(st,at)∼ρπ [Qπsoft(s,a) + αHπ[at|st]] (6)

=

∞∑
t=0

E(st,at)∼ρπ [rt + αHπ[at|st] + γV πsoft(st+1)] . (7)

By Soft Policy Iteration [Haarnoja et al., 2018a], the soft Bellman operator B∗ defined by
(B∗Q)(st,at) = rt + γEst+1∼ρπ [V (st+1)] has a unique contraction Q∗ = B∗Q∗ [Fox et al.,
2016] and converges to the optimal policy π∗.

Our main observation is when the environment is a differentiable simulation, we can use FOBG
estimates to directly optimize Jmaxent(π), including discounted policy entropy. Consider the entropy-
augmented H-step return :

Rα0:H(τ) =

H−1∑
t=0

γt(rt + αHπ[at|st]), (8)

then we have a single first-order estimate of Eq. 7 :

∇̂[1]
θ Jmaxent(π) = ∇θ(Rα0:H + γHVsoft(sH)). (9)

Furthermore, we can incorporate the entropy-augmented return into TD(λ) estimates of Eq. 19 using
soft value-bootstrapped k-step returns :

Γt:t+k =

(
k−1∑
l=0

γl(rt+l + αHπ[at+l|st+l])

)
+ γkVsoft(st+k), (10)

where Ṽsoft(st) = Γλt:t+H , and the value function is trained by minimizing Eq. 18 with Vsoft, Ṽsoft,
and Γt:t+k substituted in place of V , Ṽ , and Gt:t+k. We refer to this maximum entropy FO-MBRL
formulation as Soft Analytic Policy Optimization (SAPO).

3 Experiments

We evaluate our proposed maximum entropy FO-MBRL algorithm, Soft Analytic Policy Optimization
(SAPO, Section 2), against baselines on a soft-body locomotion task and dexterous deformable
manipulation task. We implement these tasks in Rewarped (Section C), our parallel differentiable
multiphysics simulation platform. We also compare algorithms on DFlex rigid-body locomotion
tasks introduced in [Xu et al., 2021] in Appendix F.2.

Tasks. We briefly describe the tasks we use for evaluation. We visualize these tasks in Figure 2.

SoftJumper – Soft jumping locomotion task, inspired by GradSim [Murthy et al., 2021] and
DiffTaichi [Hu et al., 2020], where the objective is to maximize the forward velocity and height of
a high-dimensional actuated soft elastic quadruped.
HandFlip – Shadow hand flip task from DexDeform [Li et al., 2023a], where the objective is to
flip a cylindrical piece of dough in half within the palm of a dexterous robot hand.

Baselines. We compare to vanilla model-free RL algorithms: Proximal Policy Optimization
(PPO, Schulman et al. [2017]), an on-policy actor-critic algorithm; Soft Actor-Critic (SAC, Haarnoja
et al. [2018b]) an off-policy maximum entropy actor-critic algorithm. We use the implementations
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and hyperparameters from [Li et al., 2023b] for both, which have been validated to scale well with
parallel simulation. Implementation details (network architecture, common hyperparameters, etc.)
are standardized between methods for fair comparison, see Appendix E. We also compare against
Analytic Policy Gradient (APG, Freeman et al. [2021]) and Short-Horizon Actor-Critic (SHAC, Xu
et al. [2021]), both of which are state-of-the-art FO-MBRL algorithms that leverage first-order ana-
lytic gradients from differentiable simulation for policy learning. Finally, we include gradient-based
trajectory optimization (TrajOpt) as a baseline, which uses differentiable simulation gradients to
optimize for an open-loop action sequence that maximizes total rewards across environments.
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Figure 1: Rewarped tasks training curves. Episode return as a function of environment steps in
Rewarped SoftJumper (A ⊂ R222) and HandFlip (A ⊂ R24) tasks. Smoothed using EWMA with
α = 0.99. Mean and 95% confidence intervals over 10 random seeds.

SoftJumper HandFlip
PPO 261.5 ± 12.6 7.3 ± 1.0
SAC -161.8 ± 2.5 4.6 ± 1.0

TrajOpt 437.2 ± 17.7 27.3 ± 2.6
APG 956.6 ± 15.8 38.2 ± 3.4
SHAC 853.3 ± 10.0 32.7 ± 2.7
SAPO (ours) 1820.5 ± 49.3 90.0 ± 2.3

Table 1: Rewarped tabular results. Evaluation episode returns for final policies after training. Mean
and 95% confidence intervals over 10 random seeds with 64 episodes per seed.

In Figure 1, we plot training curves comparing SAPO against baselines. Our proposed maximum
entropy FO-MBRL algorithm SAPO shows better training stability across different random seeds,
compared existing FO-MBRL algorithms APG and SHAC. In Table 1, we report evaluation per-
formance for final policies after training. Our proposed algorithm SAPO outperforms all baselines
across all tasks we evaluated, given the same budget for the total number of environment steps.

4 Conclusion

Due to high sample complexity requirements and slower runtimes for soft-body simulation, RL has
had limited success on tasks involving deformables. To address this, we introduce Soft Analytic
Policy Optimization (SAPO), a first-order model-based actor-critic RL algorithm based on the
maximum entropy RL framework, which leverages first-order analytic gradients from differentiable
simulation to achieve higher sample efficiency. Alongside this approach, we present Rewarped,
a scalable and easy-to-use platform which enables parallelizing RL environments of GPU-based
differentiable multiphysics simulation. We re-implement a challenging soft-body locomotion task
and dexterous deformable manipulation task using Rewarped. On these tasks, we demonstrate that
SAPO outperforms baselines in terms of sample efficiency as well as task performance given the
same budget for total environment steps.
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A Background

Reinforcement learning (RL) considers an agent interacting with an environment, formalized as a
Markov decision process (MDP) represented by a tuple (S,A, P,R, ρ0, γ). In this work, we consider
discrete-time, infinite-horizon MDPs with continuous action spaces, where s ∈ S are states, a ∈ A
are actions, P : S ×A → S is the transition function, R : S ×A → R is a reward function, ρ0(s) is
an initial state distribution, and γ is the discount factor. We want to obtain a policy π : S → A which
maximizes the expected discounted sum of rewards (return) Eπ[

∑∞
t=0 γ

trt] with rt = R(st,at),
starting from state s0 ∼ ρ0. We also denote the state distribution ρπ(s) and state-action distribution
ρπ(s,a) for trajectories generated by a policy π(at|st).
In practice, the agent interacts with the environment for T steps in a finite-length episode, yielding a
trajectory τ = (s0,a0, s1,a1, . . . , sT−1,aT−1). We can define the H-step return :

R0:H(τ) =

H−1∑
t=0

γtrt, (11)

and the standard RL objective is to optimize θ which parameterize a policy πθ, to maximize the
expected return :

J(π) = E s0∼ρ0
τ∼ρπ

[R0:T ]. (12)

Typically, the policy gradient theorem [Sutton et al., 1999] provides a useful expression of ∇θJ(π)
that does not depend on the derivative of state distribution ρπ(·) :

∇θJ(π) ∝
∫
S
ρπ(s)

∫
A
∇θπ(a|s)Qπ(s,a) da ds, (13)

where Qπ(st,at) = Eτ∼ρπ [Rt:T ] is the Q-function (state-action value function).

We proceed to review zeroth-order versus first-order estimators of the policy gradient following the
discussion in [Suh et al., 2022, Georgiev et al., 2024]. We denote a single zeroth-order estimate :

∇̂[0]
θ J(π) = R0:T

T−1∑
t=0

∇θπ(at|st), (14)

where the zeroth-order batched gradient (ZOBG) is the sample mean ∇[0]

θ J(π) =
1
N

∑N
i=1 ∇̂

[0]
θ J(π)

and is an unbiased estimator, under some mild assumptions to ensure the gradients are well-defined.
The ZOBG yields an N -sample Monte-Carlo estimate commonly known as the REINFORCE
estimator [Williams, 1992] in RL literature, or the score function / likelihood-ratio estimator. Policy
gradient methods may use different forms of Equation 14 to adjust the bias & variance of the
estimator [Schulman et al., 2015b]. For instance, a baseline term can be used to reduce variance,
substituting R0:T with R0:T −Rl:H+l.

Differentiable simulation as the environment provides gradients for the transition dynamics P and
rewards R, so we can directly obtain an analytic value for∇θR0:T under policy πθ. In this setting,
for a single first-order estimate :

∇̂[1]
θ J(π) = ∇θR0:T , (15)

then the first-order batched gradient (FOBG) is the sample mean∇[1]

θ J(π) =
1
N

∑N
i=1 ∇̂

[1]
θ J(π), and

is also known as the pathwise derivative [Schulman et al., 2015a] or reparameterization trick [Kingma
and Welling, 2014, Rezende et al., 2014, Titsias and Lázaro-Gredilla, 2014].

First-order model-based RL (FO-MBRL) aims to use differentiable simulation (and its first-order
analytic gradients) as a known differentiable model, in contrast to vanilla MBRL which either assumes
a given non-differentiable model or learns a world model of dynamics and rewards from data.

Analytic Policy Gradient (APG, Freeman et al. [2021]) uses FOBG estimates to directly maximize
the discounted return over a truncated horizon :

J(π) =

t+H−1∑
l=t

E(sl,al)∼ρπ [γ
l−trl], (16)
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and is also referred to as Backpropagation Through Time (BPTT, Werbos [1990], Mozer [1995]),
particularly when the horizon is the full episode length [Degrave et al., 2019, Huang et al., 2020].

Short-Horizon Actor-Critic (SHAC, Xu et al. [2021]) is a FO-MBRL algorithm which learns a
policy πθ and (terminal) value function Vψ :

J(π) =

t+H−1∑
l=t

E(sl,al)∼ρπ [γ
l−trl + γtV (st+H)], (17)

L(V ) =

t+H−1∑
l=t

Esl∼ρπ [||V (s)− Ṽ (s)||2], (18)

where Ṽ (st) are value estimates for state st computed starting from timestep t over an H-step
horizon. TD(λ) [Sutton, 1988] is used for value estimation, which computes λ-returns Gλt:t+H as a
weighted average of value-bootstrapped k-step returns Gt:t+k :

Ṽ (st) = Gλt:t+H = (1− λ)

(
H−1−t∑
l=1

λl−1Gt:t+l

)
+ λH−t−1Gt:t+H , (19)

where Gt:t+k =
(∑k−1

l=0 γ
lrt+l

)
+ γkV (st+k). The policy and value function are optimized in an

alternating fashion per standard actor-critic formulation [Konda and Tsitsiklis, 1999]. The policy
gradient is obtained by FOBG estimation, with single first-order estimate :

∇̂[1]
θ J(π) = ∇θ(R0:H + γHV (sH)), (20)

and the value function is optimized as usual by backpropagating ∇ψL(V ) of the mean-squared loss
in Eq. 18. Combining value estimation with a truncated horizon window where H ≪ T [Williams
and Zipser, 1995], SHAC optimizes over a smoother surrogate reward landscape compared to BPTT
over the entire T -step episode.
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B Algorithm Details

B.1 Design Choices

I. Entropy adjustment. In practice, we apply automatic temperature tuning [Haarnoja et al., 2018b]
to match a target entropy H̄ via an additional Lagrange dual optimization step :

min
αt≥0

E(st,at)∼ρπ [αt(Hπ[at|st]− H̄)]. (21)

We use H̄ = −dim(A)/2 following [Ball et al., 2023].

II. Target entropy normalization. To mitigate non-stationarity in target values [Yu et al., 2022]
and improve robustness across tasks with varying reward scales and action space dimensions, we
normalize entropy estimates. The continuous Shannon entropy is not scale invariant [Marsh, 2013].
In particular, we offset [Han and Sung, 2021] and scale entropy by H̄ to be approximately contained
within [0,+1].

III. Stochastic policy parameterization. We use state-dependent variance, with squashed Normal
distribution πθ = tanh(N (µθ(s), σ

2
θ(s))), which aligns with SAC [Haarnoja et al., 2018b]. This

enables policy entropy adjustment and captures aleatoric uncertainty in the environment [Kendall
and Gal, 2017, Chua et al., 2018]. In contrast, SHAC uses state-independent variance, similar to the
original PPO implementation [Schulman et al., 2017].

IV. Critic ensemble, no target networks. We use the clipped double critic trick [Fujimoto et al.,
2018] and also remove the critic target network in SHAC, similar to [Georgiev et al., 2024]. However
when updating the actor, we instead compute the average over the two value estimates to include in the
return (Eq. 9), while using the minimum to estimate target values in standard fashion, following [Ball
et al., 2023]. While originally intended to mitigate overestimation bias in Q-learning (due to function
approximation and stochastic optimization [Thrun and Schwartz, 2014]), prior work has shown
that the value lower bound obtained by clipping can be overly conservative and cause the policy to
pessimistically underexplore [Ciosek et al., 2019, Moskovitz et al., 2021].

Target networks [Mnih et al., 2015] are widely used [Lillicrap et al., 2015, Fujimoto et al., 2018,
Haarnoja et al., 2018b] to stabilize temporal difference (TD) learning, at the cost of slower training.
Efforts have been made to eliminate target networks [Kim et al., 2019, Yang et al., 2021, Shao et al.,
2022, Gallici et al., 2024], and recently CrossQ [Bhatt et al., 2024] has shown that careful use of
normalization layers can stabilize off-policy model-free RL to enable removing target networks
for improved sample efficiency. CrossQ also reduces Adam β1 momentum from 0.9 to 0.5, while
keeping the default β2 = 0.999. In comparison, SHAC uses β1 = 0.7 and β2 = 0.95. Using smaller
momentum parameters decreases exponential decay (for the moving average estimates of the 1st and
2nd moments of the gradient) and effectively gives higher weight to more recent gradients, with less
smoothing by past gradient history [Kingma and Ba, 2015].

V. Architecture and optimization. We use SiLU [Elfwing et al., 2018] instead of ELU for the acti-
vation function. We also switch the optimizer from Adam to AdamW [Loshchilov and Hutter, 2017],
and lower gradient norm clipping from 1.0 to 0.5. Note that SHAC already uses LayerNorm [Ba
et al., 2016], which has been shown to stabilize TD learning when not using target networks or replay
buffers [Bhatt et al., 2024, Gallici et al., 2024].

B.2 Learning visual encoders in differentiable simulation

We use separate visual encoders for the actor πθ(at|fϕ(st)) and critic Vψ(fζ(st)), to enable learning
on deformable tasks with high-dimensional point cloud (particle-based) inputs. To maintain differen-
tiability to compute analytic gradients and reduced memory requirements, we use a downsampled
particle state of the simulation as a point cloud observation. For runtime efficiency, we use the DP3
PointNet variant [Ze et al., 2024] to encode a point cloud observation into a lower-dimensional latent
vector. We leave combining differentiable rendering (of RGB or depth image observations) with
differentiable simulation, like in [Murthy et al., 2021], to future work.
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B.3 Pseudocode

Algorithm 1: Soft Analytic Policy Optimization (SAPO)

Initialize network parameters θ, ϕ, ψi, ζi
t0 ← 0
repeat

Create buffer B
for t = t0 + 1 . . . H do

at ∼ πθ(·|fϕ(st))
ht ← Hπ[at|st]
ĥt ← (ht + |H̄|)/(2|H̄|)
st+1, rt, dt ← env.step(at)
v
(i)
t+1 ← Vψi

(fζi(st+1))
if dt then

t0 ← 0
▷ Add data to buffer :
B ← B ∪ {(st,at, rt, dt, ht, {v(i)t+1})}

t0 ← t0 + (H + 1)

▷ Update actor using Eq. 7, with normalized
entropy ĥt and mean values 1

C

∑C
i=1 v

(i)
t :

(θ, ϕ)← (θ, ϕ)− η∇(θ,ϕ)Jmaxent(π)

▷ Detach data from differentiable simulation
autograd :
B ← stopgrad(B)

▷ Update entropy temperature using Eq. 21,
with unnormalized entropy ht :
α← α− η∇α[ 1H

∑H
t=1 α(ht − H̄)]

▷ Compute TD(λ) value targets via Eq. 19
using soft returns of Eq. 10, with
normalized entropy ĥt and min values
mini=1...C v

(i)
t :

ṽt ← . . .

for K updates do
Sample (st, ṽt) ∼ B
▷ Update critics using Eq. 18 with

clipped soft value targets ṽ :
(ψi, ζi)← (ψi, ζi)− η∇(ψi,ζi)L(V )

until converged;

Model components
Actor πθ(at|fϕ(st))
Actor encoder fϕ(st)
Critic Vψi

(fζi(st))
Critic encoder fζi(st)
Critic index i = 1 . . . C

Hyperparameters
Horizon H
Entropy temperature α
Target entropy H̄
TD trace decay λ
Discount γ
Learning rates η
Num critics C
Mini-epochs K
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C Rewarped: Parallel Differentiable Multiphysics Simulation

We aim to evaluate our approach on more challenging manipulation & locomotion tasks that involve
interaction between articulated rigid bodies and deformables. To this end, we introduce Rewarped,
our parallel differentiable multiphysics simulation platform that provides GPU-accelerated parallel
environments for RL and enables computing batched simulation gradients efficiently. We build
Rewarped on NVIDIA Warp [Macklin, 2022], the successor to DFlex [Xu et al., 2021, Murthy et al.,
2021, Turpin et al., 2022, Heiden et al., 2023].

We proceed to discuss high-level implementation details and optimization tricks to enable efficient
parallel differentiable simulation. We develop a parallelized implementation of Material Point
Method (MPM) which supports simulating parallel environments of complex deformable materials,
building on the (non-parallelized) MPM implementation by [Ma et al., 2023]. Furthermore, we
support one-way coupling from kinematic articulated rigid bodies to MPM particles, based on the
(non-parallelized) MPM implementation from [Huang et al., 2020, Li et al., 2023a].

C.1 Parallel Differentiable simulation

We implement all simulation code in NVIDIA Warp [Macklin, 2022], a library for differentiable
programming that converts Python code into CUDA kernels by runtime JIT compilation. Warp also
implements reverse-mode auto-differentiation by the discrete adjoint method, using a tape to record
kernel calls for the computation graph, and generates kernel adjoints to compute the backward pass.
Warp uses source-code transformation [Griewank and Walther, 2008, Hu et al., 2020] to automatically
generate kernel adjoints.

We use gradient checkpointing [Griewank and Walther, 2000, Qiao et al., 2021b] to reduce memory
requirements. During backpropogation, we run the simulation forward pass again to recompute
intermediate values, instead of saving them during the initial forward pass. This is implemented
by capturing and replaying CUDA graphs, for both the forward pass and the backward pass of the
simulator. Gradient checkpointing by CUDA graphs enables us to compute batched simulation
gradients over multiple time steps efficiently, when using more simulation substeps for simulation
stability. We use a custom PyTorch autograd function to interface simulation data and model
parameters between Warp and PyTorch while maintaining auto-differentiation functionality.

D Tasks

SoftJumper HandFlip

Figure 2: Visualizations of tasks implemented in Rewarped.
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E Hyperparameters

We run all algorithms on consumer workstations with NVIDIA RTX 4090 GPUs. Each run uses a
single GPU, on which we run both the GPU-accelerated parallel simulation and optimization loop.
We use a recent high-performance implementation of standard model-free RL algorithms which has
been validated for parallel simulation [Li et al., 2023b]. We aim to use common hyperparameter
values among algorithms where applicable, such as for discount factor, network architecture, etc.

For TrajOpt, we initialize a single T -length trajectory of zero actions. This action is repeated across
N = 16 parallel environments. We optimize this trajectory for 50 epochs with a horizon H of
32 steps. We use AdamW as the optimizer, with learning rate of 0.01, (β1, β2) = (0.7, 0.95), and
gradient norm clipping of 0.5. For evaluation, we playback this single trajectory repeated across
parallel environments, each with different random initial states.

shared PPO SAC APG SHAC SAPO

Num envs N 64
Batch size 2048
Horizon H 32
Mini-epochs K 5 8 1 16 16
Discount γ 0.99
TD/GAE λ 0.95 0.95 0.95
Actor η 5e−4 5e−4 2e−3 2e−3 2e−3
Critic η 5e−4 5e−4 5e−4 5e−4
Entropy η 5e−3 5e−3
η schedule KL(0.008) linear linear linear
Optim type AdamW Adam Adam
Optim (β1, β2) (0.9, 0.999) (0.7, 0.95) (0.7, 0.95) (0.7, 0.95)
Grad clip 0.5 1.0 1.0
Norm type LayerNorm
Act type SiLU ELU ELU
Actor σ(s) yes no no
Actor log(σ) log(0.1, 1.0) (−5, 2) (−5, 2)
Num critics C 2 2
Critic τ 0.995 0.995
Replay buffer 106

Target entropy H̄ −dim(A)/2 −dim(A)/2
Init temperature 1.0 1.0

Table 2: Shared hyperparameters. Algorithms use hyperparameter settings in the shared column
unless otherwise specified in an individual column.

Hopper Ant Humanoid SNUHumanoid

Actor MLP (128, 64, 32) (128, 64, 32) (256, 128) (512, 256)
Critic MLP (64, 64) (64, 64) (128, 128) (256, 256)

Table 3: DFlex task-specific hyperpararameters. All algorithms use the same actor and critic
network architecture.

shared

Num envs N 32
Batch size 1024
Actor MLP (512, 256)
Critic MLP (256, 128)

Table 4: Rewarped task-specific hyperpararameters. All algorithms use the same actor and critic
network architecture. Algorithms use hyperparameter settings in the shared column unless otherwise
specified in an individual column.
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F Additional Experimental Results

F.1 Example of SHAC getting stuck in local optima

We reproduce the original DFlex Ant results from SHAC [Xu et al., 2021], and in Figure 3 we
visualize individual runs for insight [Patterson et al., 2023]. From this, we observe that one of the
runs quickly plateaus to a suboptimal policy after 1M steps and does not improve.

0 1M 2M 3M 4M
0

3k

6k

9k

R
et
ur
n

DFlex Ant

Figure 3: Example of SHAC getting stuck in local minima. Episode return as a function of
environment steps in DFlex Ant (A ⊂ R8). One run (colored in red) quickly plateaus after 1M steps
and does not improve. 6 random seeds.

F.2 Results on DFlex locomotion
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Figure 4: DFlex locomotion training curves. Episode return as a function of environment steps in
DFlex Hopper (A ⊂ R3), Ant (A ⊂ R8), Humanoid (A ⊂ R21), and SNUHumanoid (A ⊂ R152)
locomotion tasks. Mean and 95% CIs over 10 random seeds.

Hopper Ant Humanoid SNUHumanoid
PPO 3155 ± 30 3883 ± 60 414 ± 45 135 ± 3
SAC 3833 ± 50 3366 ± 25 4628 ± 120 846 ± 44
APG 590 ± 3 368 ± 11 783 ± 16 149 ± 1
SHAC 4939 ± 3 7779 ± 70 8256 ± 74 5755 ± 67
SAPO (ours) 5060 ± 18 8610 ± 40 8469 ± 58 6427 ± 53

Table 5: DFlex locomotion tabular results. Evaluation episode returns for final policies after
training. Mean and 95% CIs over 10 random seeds with 128 episodes per seed.
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F.3 SAPO ablations on DFlex locomotion
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Figure 5: SAPO ablations – DFlex locomotion training curves. Episode return as a function
of environment steps in DFlex Hopper (A ⊂ R3), Ant (A ⊂ R8), Humanoid (A ⊂ R21), and
SNUHumanoid (A ⊂ R152) locomotion tasks. Mean and 95% CIs over 10 random seeds.

Hopper Ant Humanoid SNUHumanoid (avg ∆%)

SAPO (ours) 5060 ± 18 8610 ± 42 8469 ± 59 6427 ± 52 6.8%
w/o Vsoft 4882 ± 7 7729 ± 52 8389 ± 76 6392 ± 54 2.7%
w/oHπ and Vsoft 5036 ± 2 7897 ± 30 7731 ± 91 6032 ± 58 0.5%

SHAC 4939 ± 3 7779 ± 69 8256 ± 76 5755 ± 66 –

Table 6: SAPO ablations – DFlex locomotion tabular results. Evaluation episode returns for final
policies after training. Mean and 95% CIs over 10 random seeds with 128 episodes per seed.

F.4 Rewarped tasks trajectory visualizations

SoftJumper

HandFlip

time −−−−−−−−−−−−−−−→

Figure 6: Visualizations of trajectories from policies learned by SAPO in Rewarped tasks. The
camera view is fixed between different time steps.
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