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Abstract

Language models are essentially probability distributions over token sequences.
Auto-regressive models generate sentences by iteratively computing and sampling
from the distribution of the next token. This iterative sampling introduces stochas-
ticity, leading to the assumption that language models make probabilistic decisions,
similar to sampling from unknown distributions. Building on this assumption, prior
research has used simulated Gibbs sampling, inspired by experiments designed to
elicit human priors, to infer the priors of language models. In this paper, we revisit
a critical question: Do language models possess Bayesian brains? Our findings
show that under certain conditions, language models can exhibit near-deterministic
decision-making, such as producing maximum likelihood estimations, even with
a non-zero sampling temperature. This challenges the sampling assumption and
undermines previous methods for eliciting human-like priors. Furthermore, we
demonstrate that without proper scrutiny, a system with deterministic behavior
undergoing simulated Gibbs sampling can converge to a "false prior." To address
this, we propose a straightforward approach to distinguish between stochastic and
deterministic decision patterns in Gibbs sampling, helping to prevent the inference
of misleading language model priors. We experiment on a variety of large language
models to identify their decision patterns under various circumstances. Our results
provide key insights in understanding decision making of large language models.

1 Introduction

Auto-regressive models, the backbone architecture of prevailing large language models (LLMs),
generate text by iteratively sampling the next token in a sequence. This has led to the common
assumption that language models make stochastic decisions, meaning they sample from non-trivial
distributions, as opposed to deterministic decisions, where choices are fully determined by the current
states or the inputs. Building upon this assumption, methods such as simulated Gibbs sampling
have been used to infer language model priors [18, 19], drawing parallels to experiments that elicit
human priors [8, 9, 14, 7, 4, 17, 13, 10]. Understanding priors of LLMs can provide useful insights
in aligning them with human preference, which is a key challenge in ensuring safety and helpfulness.

However, we question whether language models always make stochastic decisions. Our findings
suggest that under certain conditions, models exhibit near-deterministic behaviors, e.g., converging to
maximum likelihood estimates, even with non-zero sampling temperatures. This challenges the belief
that language models sample from distributions, raising concerns about the validity of inferred priors.

To better understand the nature of decision-making in LLMs, we propose a method to distinguish
stochastic from deterministic decision-making in language models by analyzing their responses under
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varied initial conditions. Our experiments show that many models switch between stochastic and
deterministic patterns, offering deeper insights into their behavior. These findings are crucial for
accurately interpreting language models’ behavior and priors, particularly in contexts where aligning
model behavior with human preferences is crucial for safety and effectiveness.

2 Related Work

Iterated learning has been widely used in psychology to elicit human priors [8, 9, 14, 7, 4, 17,
13, 10, 16]. In this approach, a specific variable θ is linked to an observational variable ω, and
participants estimate θi based on an observation ωi drawn from the distribution p(·|θi−1), where θi−1

is the estimate from the previous round. Assuming participants use a shared posterior distribution
p(θ|ω) ∝ p(ω|θ)p(θ), this process mirrors Gibbs sampling [6], eventually driving θi to converge to
the distribution p(θ). For a sufficiently large N , the sequence {θn}n>N approximates the human
prior on θ.

This iterative framework has also been applied to eliciting priors from large language models on
causal strength, proportion estimation, everyday quantities [18] and mental representations [19].

3 Analysis

In this section, we present a case study on proportion estimation in large language models based on
[18]. By examining the application of iterated learning in this scenario, we highlight the similarities
and differences between stochastic and deterministic decision-making patterns. Building on this, we
present a methodology for identifying decision patterns in large language models.

3.1 Maximum Likelihood Proportion Estimation

Proportion estimation typically deals with binary outcomes, such as estimating the probability θ of a
coin landing heads [13]. In [18], this method is adapted to large language models to estimate p(θ) as
follows:

1. Begin with a random sample of heads ω0 from N coin tosses.
2. Iteratively prompt the language model to estimate the number of heads Ωi from M coin

tosses, given the prior result ωi−1 heads from N tosses.
3. Compute θi = Ωi/M , then sample ωi ∼ Binomial(N, θi).

The language model produces a bimodal prior distribution over θ, concentrating at the extremes θ = 0
and θ = 1, as reported in [18]. This outcome is consistent with findings on human priors [13] but is
counterintuitive: why would large language models assume that coins can only be totally biased? In
this work, we propose an alternative explanation for the bimodal result by assuming a deterministic
decision process based on maximum likelihood estimation (MLE) of θ, where Ωi = M ωi−1

N . Under
this assumption, the language models no longer sample from posterior distributions, and the iterated
learning process no longer functions as Gibbs sampling. To analyze the convergence of such
a process, we model the stochastic process {Ωi}, where the randomness arises from sampling
ωi ∼ Binomial(N, θi). It is evident that {Ωi} forms a Markov process with the following transition:

Ωi ∼ Binomial(N,
Ωi−1

N
). (1)

This transition matrix has notable features. First, Ωi = 0 and Ωi = N are the only absorbing states,
meaning the stationary distribution p̂MLE has a support set of only {0, N}. Second, we have:

E[Ωi] = EΩi−1

[
N × Ωi−1

N

]
= E[Ωi−1], (2)

which leads to:
E[Ω0] = EΩ∼p̂MLE [Ω] = p̂(N)N. (3)

Thus, the stationary distribution for an MLE decision maker is given by:

p̂MLE(0) = 1− E[Ω0]

N
, p̂MLE(N) =

E[Ω0]

N
. (4)
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Since θi =
Ωi

N , the resulting distribution over θ is also bimodal. If E[Ω0]
N = 0.5, p̂MLE is symmetric

around θ = 0.5, resembling a Beta distribution B(α, β) with small α and β, as seen in [13, 18].

The key difference between the MLE decision process and the posterior sampling process lies in the
absence of true prior elicitation in the MLE framework. Since θi is not sampled from a posterior
distribution p(θ|ω) ∝ p(ω|θ)p(θ), the stationary distribution reflects polarization induced by the
iterative procedure rather than the model’s prior beliefs. This distinction underscores the need for
caution when interpreting iterated learning results from LLMs, as they may not represent true priors.

3.2 Distinguishing Stochastic and Deterministic Decision Making

Given the existence of deterministic decision-making processes that yield similar results to posterior
sampling, it is important to identify methods to differentiate between them in iterated learning. From
the analysis above, we observe that in deterministic processes like MLE, the stationary distribution
depends on the initial value E[Ω0]. In contrast, in stochastic processes based on Gibbs sampling [6],
the stationary distribution remains invariant across reasonable variations in Ω0, always converging to
the same prior distribution over θ. This provides a simple criterion for distinguishing deterministic
from stochastic decision-making mechanisms:

Vary the initial value Ω0 and compare the resulting stationary distributions. If
the distribution remains consistent across different Ω0 values, the process is likely
stochastic. If not, it is more likely deterministic.

Although one might argue that some deterministic processes could converge to the same distribution
regardless of Ω0, empirical evidence suggests that this typically signals the presence of specific priors,
as we will demonstrate in Section 4.

4 Experiments

4.1 Decision Making Settings and Models

We consider two settings in [18], following their prompting procedures:

CoinFlip This is the process we analyze in Section 3. We use N = 10 and M = 100. We experiment
with Ω0 ∈ [0, 10] to distinguish between stochastic and deterministic decisions.

LifeExpectancy We aim to elicit priors of language models on life expectancy. To achieve this, we
iteratively prompt language models to estimate the life expectancy Li of a random person, given the
current age Ai−1 of this person. The next “current age” is sampled uniformly from [1, Li].

We experiment with two open-source models: LLaMA-3.1-70B-Instruct [5] and
Gemma-2-2B-it [15]. For closed-source models, we use gpt-4o-mini [11], gpt-4o [1, 12],
claude-3-haiku [2] and claude-3-5-sonnet [3]2. We conduct all experiments with temperatures
set to 1.0.

4.2 Results

Figure 1 and Figure 2 present the main results on a selection of models. We leave additional results
in the Appendix due to space limits. Our key observations are:

Variations in Decision Patterns on CoinFlip The models show significant differences in their
decision patterns for the CoinFlip task. gpt-4o-mini follows a deterministic decision-making
pattern, with its distributions diverging across different initial values. The black dotted line lying
in the plane of θ = 1 in Figure 1a, which we fit featuring p(θ = 1|Ω0) with respect to Ω0, also
coincides with the MLE estimation in Equation (4). On the other hand, claude-3-5-sonnet,
LLaMA-3.1-70B-Instruct, and claude-3-haiku display stochastic behaviors, producing consis-
tent distributions regardless of the initial values. These distributions, however, do not follow bimodal
patterns concentrated at the extremes. Specifically, claude-3-5-sonnet and claude-3-haiku
show normal-like distributions centered around θ = 0.5, while LLaMA-3.1-70B-Instruct skews
towards the lower end with an exponential-like distribution.

2We provide version numbers in Appendix
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(a) gpt-4o-mini
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(b) gpt-4o
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(c) claude-3-haiku
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(d) claude-3-5-sonnet
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(e) Gemma-2-2b-it
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(f) Llama-3.1-70B-Instruct

Figure 1: CoinFlip results on all models.
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(a) gpt-4o-mini
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(b) Gemma-2-2b-it
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(c) claude-3-haiku

Figure 2: LifeExpectancy results on selected models. Results of other models in Appendix.

Notably, gpt-4o consistently converges to a distribution focused at θ = 1. Further analysis reveals
that gpt-4o actively avoids predicting 0 heads, which prevents Ω = 0 from becoming an absorb-
ing state in the Markov process discussed in Section 3.1. This behavior suggests that the model
incorporates a prior that avoids θ = 0. However, it’s important to note that gpt-4o’s output of
nearly p(θ = 1) ≈ 1 reflects the iterative prompting process rather than a prior belief about biased
coins. We observe similar behavior in Gemma-2-2b-it, though this model tends to avoid θ = 1
instead. An alternative explanation of these behaviors is, gpt-4o and Gemma-2-2b-it are both
near-deterministic, except under certain conditions (e.g., when observed coins are all heads or tails).

Stochastic Decision Making on LifeExpectancy In the LifeExpectancy task, all models consis-
tently converge to similar distributions, demonstrating stochastic decision-making. The MLE estimate
for Li in this scenario would be Ai−1, the current age, since the likelihood of encountering someone
at age Ai−1 is 1

Li
for Li ≥ Ai−1. Despite this, the models demonstrate enough “intelligence” to

avoid naïve MLE estimations where life expectancy equals the observed age.

5 Conclusion and Discussion

In this work, we revisited the question of whether language models consistently make stochastic
decisions. Our theoretical analysis shows that deterministic decision processes can produce results
similar to stochastic processes in iterated learning, though they differ in key underlying mechanisms.
We proposed a method to distinguish between these decision patterns and conducted experiments
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across various models and scenarios to enhance our understanding of language models’ decision-
making behaviors.

6 Limitation

Our exploration is limited to two representative tasks in [18] due to the cost of experimenting with
large language models. We leave further evaluations on the generalizability of our approach to other
tasks for future work. However, because Gibbs sampling guarantees convergence when the initial
value falls in a reasonable range, our proposed identification approach is a sufficient condition to
detect non-Gibbs-sampling processes, which further indicates non-stochastic decision processes in
large language models. Therefore, our proposed approach demonstrates universal applicability to
other tasks.
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A Model Versions

We use following snapshots for closed-source models: gpt-4o-mini-2024-07-18,
gpt-4o-2024-08-06, claude-3-haiku-20240307 and claude-3-5-sonnet-20240620.

B Prompts Used to Elicit LLM Priors

We follow [18] to prompt large language models.

CoinFlip

System: Imagine that you are a participant in a psychology experiment. Your task
is to evaluate the bias in a coin.
User: Here is a brief overview of the past coin flips: Out of Ntotal coin flips,
Nhead resulted in heads and Ntotal-Nhead in tails. With this information, please
predict the number of heads in a larger set of 100 coin flips. Please limit your
answer to a single value without outputting anything else.

LifeExpectancy

System: You are an expert at predicting future events.
User: If you were to evaluate the lifespan of a random T-year-old man, what age
would you predict he might reach? Please limit your answer to a single value
without outputting anything else.

C Additional Results
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(a) claude-3-5-sonnet
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(b) gpt-4o
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(c) Llama-3.1-70B-Instruct

Figure 3: Additional LifeExpectancy results.
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