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Abstract
Recent research has shown an increasing inter-
est in utilizing pre-trained large language mod-
els (LLMs) for a variety of time series applica-
tions. However, there are three main challenges
when using LLMs as foundational models for
time series forecasting: (1) Cross-domain gen-
eralization. (2) Cross-modality alignment. (3)
Error accumulation in autoregressive frameworks.
To address these challenges, we proposed Lang-
Time, a language-guided unified model for time
series forecasting that incorporates cross-domain
pre-training with reinforcement learning-based
fine-tuning. Specifically, LangTime constructs
Temporal Comprehension Prompts (TCPs), which
include dataset-wise and channel-wise instruc-
tions, to facilitate domain adaptation and con-
dense time series into a single token, enabling
LLMs to understand better and align temporal
data. To improve autoregressive forecasting, we
introduce TimePPO, a reinforcement learning-
based fine-tuning algorithm. TimePPO mitigates
error accumulation by leveraging a multidimen-
sional rewards function tailored for time series
and a repeat-based value estimation strategy. Ex-
tensive experiments demonstrate that LangTime
achieves state-of-the-art cross-domain forecast-
ing performance, while TimePPO fine-tuning ef-
fectively enhances the stability and accuracy of
autoregressive forecasting.

1. Introduction
Time series refers to sequences of data points indexed in
discrete-time order (Box et al., 2015), and they are com-
mon in real-world applications, such as financial risk as-
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(b) Challenge 2: Cross-modality alignment.
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(c) Challenge 3: Error accumulation.

Figure 1. Challenges of Applying LLMs to Time Series. (a) Cross-
domain generalization: Different domains possess their unique
characteristics and numerical implications. (b) Cross-modality
alignment: LLMs struggle to directly comprehend unseen time
series as they are trained on language data, whereas language
guidance can assist in enhancing their understanding. (c) Error
accumulation: In autoregressive prediction, using the output from
the previous step as input is considered unreliable.

sessment (Baffour et al., 2019), energy sustainability (Yu
et al., 2023b), and weather forecasting (Yu et al., 2025;
Sun et al., 2021). The rapid development of machine learn-
ing has driven significant advances in time series forecast-
ing(Yu et al., 2023a; Shao et al., 2024; Sun et al., 2025).
Recently, large language models (LLMs) (Radford, 2018)
have demonstrated remarkable capabilities in capturing se-
quential structures and patterns, which is crucial for model-
ing time-dependent data in time series forecasting. Given
the similarities between time series and natural language in
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sequence modeling, several approaches have successfully
leveraged pre-trained language models for time series fore-
casting, yielding promising outcomes (Xue & Salim, 2023;
Gruver et al., 2024; Pan et al., 2024; Jia et al., 2024).

However, as shown in Figure 1, arising from the inherent
differences between time series and natural language, apply-
ing LLMs to time series forecasting presents three primary
challenges. Firstly, cross-domain generalization. Unlike
natural language with domain-consistent structural/semantic
rules, time series exhibit diverse statistical patterns across
domains. Moreover, identical values may carry domain-
specific meanings, hindering effective multi-domain inte-
gration into LLMs. To address this challenge, some meth-
ods leverage semantic information embedded in datasets
as prompts, enabling LLMs to effectively differentiate and
adapt to various domains (Liu et al., 2024d). Secondly,
cross-modality alignment. Pre-trained on an extensive text
corpus, LLMs exhibit limited capacity for directly under-
standing time series, thereby rendering cross-modal align-
ment a formidable challenge (Zhou et al., 2023). While
language-as-prefixes models concatenate the two modali-
ties, the lack of meaningful interaction hinders seamless
alignment (Jin et al., 2023).

In addition, error accumulation in autoregressive frame-
works. For tasks with varying prediction horizons, autore-
gressive models allow a single framework to handle multiple
horizons, avoiding the need for separate training protocols
(Liu et al., 2024f;e; Yu et al., 2024). However, supervised
training is limited to optimizing a model’s ability to pre-
dict the next step based on actual historical observations.
As a result, it fails to alleviate the adverse effects of error
accumulation in autoregressive prediction.

To address these challenges, we propose LangTime, a
language-guided unified model for time series forecasting
that incorporates cross-domain pre-training and reinforce-
ment learning-based fine-tuning. Specifically, we design
Temporal Comprehension Prompts (TCPs) to integrate se-
mantic information and channel details to help LLMs dif-
ferentiate time series across various domains. Additionally,
we condense the time series data into a single token and in-
troduce a reconstruction task to enhance the understanding
of the temporal patterns of LLM. Furthermore, we propose
TimePPO, a fine-tuning algorithm based on Proximal Policy
Optimization (PPO), which mitigates error accumulation
during testing and improves long-term forecasting perfor-
mance. Our contributions are summarized as follows:

• We propose LangTime, an autoregressive model that in-
tegrates Temporal Comprehension Prompts to provide
domain and channel-specific information, enabling
LLMs to better understand and forecast time series.

• We introduce TimePPO, a novel fine-tuning algorithm
that alleviates error accumulation in autoregressive pre-

dictions, improving long-term forecasting accuracy.
• Extensive experiments demonstrate that LangTime

achieves state-of-the-art performance on widely recog-
nized benchmarks and exhibits strong transferability
to unseen domains. Our code are publicly available at:
https://github.com/niuwz/LangTime.

2. Related Work
2.1. Large Language Models for Time Series

LLMs have shown considerable promise through pre-
training on data spanning various domains (Doddapaneni
et al., 2021; Taylor et al., 2022; Zhan et al., 2024). Nonethe-
less, foundational models for time series face substantial
challenges in aligning multi-domain data due to differences
in channel numbers, sampling frequencies, and patterns.
Existing works address this issue using tailored strategies.
TTM (Ekambaram et al., 2024) employs frequency prefixes,
Lag-Llama (Rasul et al., 2023) uses lag features as covari-
ates for probabilistic univariate forecasting, UniTime (Liu
et al., 2024d) introduces masking and domain instructions
to mitigate convergence imbalances, and ROSE (Wang et al.,
2024) adopts frequency-based masking and reconstruction
to unify cross-domain representations.

While multi-domain approaches focus on aligning time se-
ries data across sources, recent methods explore integrat-
ing textual information to further enhance forecasting ca-
pabilities, introducing a new challenge of cross-modality
alignment. Directly concatenating time series and language
tokens often lead to a modality gap due to structural and se-
mantic differences. To address this, CALF (Liu et al., 2024c)
applies knowledge distillation, S2IP-LLM (Pan et al., 2024)
aligns semantic and time series spaces with tokenization
and anchors, and TimeCMA (Liu et al., 2024a) uses prompt-
based techniques to extract time series representations.

However, existing methods address these challenges in isola-
tion, leaving a gap in simultaneously solving multi-domain
and cross-modality alignment. LangTime bridges this gap
by tackling both challenges concurrently. By facilitating
robust cross-modality alignment, LangTime achieves supe-
rior performance in time series forecasting across diverse
domains.

2.2. Reinforcement Learning from Human Feedback in
Large Language Models

Reinforcement Learning from Human Feedback (RLHF)
has gained widespread application and demonstrated re-
markable success in Natural Language Processing (NLP)
tasks. For example, InstructGPT (Ouyang et al., 2022)
uses human preference data to train a Reward Model (RM),
which is subsequently employed to fine-tune the supervised
policy using the Proximal Policy Optimization (PPO) algo-
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Figure 2. Overview of LangTime: (1) The Temporal Encoder extracts temporal dependencies from time series data of varying lengths
and domains, generating unified time series representations. (2) Temporal Comprehension Prompts are constructed by integrating time
series representations with domain-specific context, enabling LLMs to perform temporal pattern compression. This pre-training phase
establishes modality alignment by jointly optimizing reconstruction and prediction tasks. (3) During fine-tuning, the TimePPO algorithm
is implemented to mitigate error accumulation in autoregressive forecasting, thereby enhancing long-term prediction. The content of the
prompt has been simplified in the figure, with the detailed information provided in Section 3.3 and Appendix A.2.

rithm (Schulman et al., 2017). This framework effectively
enhances model performance by aligning outputs with hu-
man preferences. However, the requirement to train and
optimize a reward model introduces significant computa-
tional overhead, making PPO resource-intensive in practical
scenarios.

Despite the success of RLHF in NLP, its application to time
series tasks remains underexplored, especially for autore-
gressive models. Time series forecasting introduces unique
error accumulation challenges that require significant adap-
tation of existing RLHF methods. To bridge this gap, we
adapt the PPO algorithm to the specific demands of time
series prediction tasks. We redesign the reward function
and value function to better capture the temporal structure
and mitigate error propagation, simplifying the algorithm
while enhancing its applicability to complex temporal data.
These innovations make PPO more efficient and effective
for autoregressive time series forecasting, addressing chal-
lenges such as computational complexity and scalability in
long-term predictions.

3. Methodology
Problem Definition. Given the historical observations of
multivariate time series Xt = {xi

t−L:t}Ci=1, where L repre-
sents the number of lookback time steps and C denotes the
number of variates, the goal is to predict the future F time
steps Ŷt = {x̂i

t:t+F }Ci=1. The ground truth of the future
values is denoted as Yt = {xi

t:t+F }Ci=1. LangTime is pre-
trained on multi-source datasets Dpre-train = {(Xj

t ,Y
j
t )}Nj=1,

where N is the number of datasets. For downstream task in
dataset j, the model is fine-tuned on Dj

fine-tune and tested on
Dj

test. The datasets for pre-training, fine-tuning, and testing
are pairwise disjoint to ensure generalization.

3.1. Architecture

LangTime includes three novel components: the Temporal
Encoder (TE), Temporal Comprehension Prompts (TCPs),
and Time Series Proximal Policy Optimization (TimePPO),
as illustrated in Figure 2. To extract meaningful represen-
tations, LangTime employs the TE to process continuous
time series. To bridge the gap between time series and
language, TCPs encode essential contextual information, en-
abling LLMs to effectively differentiate and interpret time
series data. The processed time series representations and
contextual information are then passed into a pre-trained
LLM. To further improve forecasting stability, LangTime
incorporates TimePPO, a reinforcement learning-based fine-
tuning strategy designed to mitigate error accumulation and
enhance multi-step prediction. These components work to-
gether to ensure effective alignment between time series and
language and enhance long-term forecasting performance.

Multi-task Pre-training. To align time series representa-
tion with the word embedding space, we utilize two pre-
training tasks: reconstruction and prediction. The recon-
struction task enhances the model’s understanding of time
series, while the prediction task leverages the generative
capabilities of LLMs to identify anticipatory dependencies
for future forecasting (Cao et al., 2020). We adopt the Hu-
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ber loss (Huber, 1992) to balance robustness and sensitivity.
The overall pre-training loss is formulated as:

Lpre-train = αLreconstruction + (1− α)Lprediction, (1)

where α controls the trade-off between the reconstruction
and prediction tasks. Details about the loss function can be
found in Appendix A.1.

Input Processing and Adaptive Training. The input se-
quence X ∈ RL×C is first divided into non-overlapping
patches of length P . For each patch Pi ∈ RC×P , we apply
a linear transformation to project it into P ′

i ∈ RC×D.

To enable long-term forecasting in an autoregressive manner,
our model maintains a fixed output sequence length while
allowing the input sequence length to vary, constrained to
integer multiples of the patch size. This design exposes the
model to diverse input lengths, improving its generaliza-
tion ability for autoregressive predictions. To address the
imbalance caused by longer input sequences overshadow-
ing shorter ones, we propose a progressive training strategy.
This approach transitions from short to long sequence data,
allowing the model to gradually adapt to the complexities
of longer sequences.

3.2. Temporal Encoder

To align time series with LLMs, we introduce a channel-
independent lightweight TE (Nie et al., 2022) to capture
temporal dependencies and generate rich time series rep-
resentations, which are mapped into the word embedding
space using a simple linear layer (Liu et al., 2024b):

F = Linear(TE(P ′)). (2)

Time series datasets exhibit varying convergence rates due
to differences in their underlying statistical properties (Liu
et al., 2024d). To address this, we introduce a random mask-
ing strategy to enhance the generalization across diverse
datasets of LLMs. Specifically, we use a learnable token
Pm to randomly replace patches in F at a proportion of rm,
thereby obtaining Fm. During training, portions of the time
series representation are randomly masked, prompting the
model to infer missing values and capture deeper temporal
structures for the reconstruction task. This strategy not only
strengthens the model’s robustness but also improves its
adaptability to datasets with distinct characteristics.

3.3. Temporal Comprehension Prompts

To fully leverage the generative capabilities of LLMs, we
introduce TCPs specifically designed to bridge the gap be-
tween time series and language models. TCPs align time
series representations with the structural characteristics of
LLMs, facilitating both comprehension and forecasting. A
detailed illustration of TCPs is provided in Appendix A.2.

Temporal Comprehension Prompts

The information of the given time series:
Period: <Timestamp>,
Dataset: <Dataset Information>,
Channel: <Channel Information>,
Value: <Time Series Representation>,
Please compress this series into one word: <|EMB|>.
Based on the given information, predict next <N> values:
<|OUT|>.

TCPs play a crucial role in guiding the LLM’s interpretation
of time series data by encoding essential contextual infor-
mation. The domain description encodes dataset-specific
characteristics, allowing the model to incorporate relevant
contextual information. The time placeholder is replaced
with time series features extracted by TE to provide direct
temporal input. Additionally, compression token enables
the condensation of time series information into a single
token, enhancing the model’s ability to capture key temporal
patterns. The prediction guidance directs the forecasting
process, ensuring smooth integration between time series
data and the LLM’s generative structure.

All components of the TCPs are fed into the pre-trained
LLM, where the causal attention mechanism enables each
token to incorporate information from all preceding tokens.
Following (Zhang et al., 2024), we extract the previous to-
ken from <|EMB|> and <|OUT|> respectively, serving as
the compressed token and prediction token. Ultimately, we
employed a projection operation to obtain the reconstruction
and prediction:

X̂ = Linear(LLM(Fm)[index(<|EMB|>)− 1]), (3)

Ŷ = Linear(LLM(Fm)[index(<|OUT|>)− 1]). (4)

The compressed token serves as a global summary of the
time series and is used for reconstruction, while distinct
linear layers handle variable sequence lengths, allowing the
model to generalize across different history lengths. Under
the guidance of TCPs, LLMs forecast future values by refer-
encing both temporal embeddings and the compressed token,
ensuring seamless integration of temporal and linguistic rep-
resentations. This design enhances alignment between time
series and LLMs, allowing LangTime to leverage LLMs’
strengths in sequential modeling while enhancing forecast-
ing performance.

3.4. Time Series Proximal Policy Optimization

Autoregressive methods often suffer from high variance
due to error propagation, which significantly degrades
performance in long-term forecasting compared to non-
autoregressive methods (Taieb & Atiya, 2015). To address
this issue, we propose TimePPO, an extension of the PPO
algorithm (Schulman et al., 2017) tailored for time series
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Figure 3. Overview of TimePPO. Both the Reference Model and
the Fine-Tuned Model are initialized with the same parameters.
The Value Function uses a repeat strategy to estimate expected
returns, while the Rewards Function evaluates the accuracy of
prediction results through multiple dimensions.

forecasting. Considering the unique characteristics of time
series, we have undertaken a redesign of the Rewards Func-
tion and Value Function.

Rewards Function. As shown in Figure 3, the rewards
function evaluates the discrepancy between the predicted
series ŷt and the ground truth yt at time t from multiple
perspectives, Additionally, we introduce an MSE penalty
term MSE(ŷt, ŷ

ref
t ) to constrain the difference between the

new policy and the old policy, ensuring stability and safety
during policy updates, as defined in Equation (5):

R(ŷt)=tanh

(
τ
∑
i

Ri(ŷt, yt)wi

)
− βMSE(ŷt, ŷ

ref
t ),

(5)
where τ is a hyperparameter controlling the distribution of
the reward scores, and Ri(ŷt, yt) represents individual eval-
uation dimension (detailed in Appendix A.3). The weights
wi balance the contributions of these dimensions.

V (xt)=


0, if t = 0
m∑
i=t

(
tanh

(
τ
∑
j

Ri(ŷt−1, yi)wj

))
. if t > 0

(6)

Value Function. We define the value function V (xt) to
estimate the expected return from state xt. As shown in
Equation (6), we assume that the model will continue to
repeat the output from time t − 1 until the final time m,
and then consider all the reward scores obtained as the ex-
pected return for predicting the entire sequence. This design
ensures that the value function reflects the accumulated
rewards, facilitating more accurate return estimation over
time.

Advantage Estimation. To estimate the advantage, we em-
ploy Generalized Advantage Estimation (GAE) (Schulman
et al., 2015):

Ât = δt + (γλ)δt+1 + · · ·+ (γλ)T−t+1δT−1,

δt = rt + γV (xt+1)− ξV (xt) ,
(7)

where ξ is introduced to control the sensitivity to estimation
errors in the current state’s value, thereby mitigating the
error accumulation.

TimePPO. Inspired by InstructGPT, we introduce an align-
ment tax to prevent performance degradation (Ouyang et al.,
2022). The loss function for TimePPO is given as:

LTimePPO =E
[
min

(
r(θ)Â(x, y),

clip(r(θ), 1− ϵ, 1 + ϵ)Â(x, y)
)]

− ηLprediction, (8)

where r(θ) represents the policy ratio, and ϵ regulates the ex-
tent of policy updates to ensure stability. The alignment tax
term ηLprediction penalizes large deviations from the ground
truth, ensuring that the model remains aligned with accurate
predictions. Further details are presented in Appendix A.4.

With the aforementioned design, we have successfully en-
hanced the PPO algorithm for time series, thereby optimiz-
ing the autoregressive prediction model from an entirely
novel perspective. The overall process of the TimePPO is
depicted in Algorithm 1.

Algorithm 1 TimePPO

1: Input: initial policy parameters θ0 and θref.
2: for k = 0, 1, 2, ... do
3: Collect set of trajectories Dk = {xt, ŷt, ŷ

ref
t } by run-

ning policy πk = π(θk) and πref = π(θref).
4: Compute rewards R(ŷt) and values V (xt−1).
5: Compute advantage estimates Ât.
6: Update the policy πk = π(θk) by maximizing the

TimePPO objective in Equation (8).
7: end for

4. Experiments
4.1. Training Details

Datasets. We conduct both pre-training and fine-tuning of
LangTime on seven real-world datasets that cover various
time series application domains, including ETT (ETTh1,
ETTh2, ETTm1, ETTm2), Electricity, Exchange, and
Weather. Specifically, we pre-train LangTime across mul-
tiple domains and then perform fine-tuning on individual
domain using the TimePPO algorithm. We evaluate the
performance of LangTime on the test splits of the same
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Table 1. Forecasting performance comparisons. The input sequence length is set to 96. The predictive lengths are set to 96, 192, 336, 720.
Avg is averaged over all predictive lengths. Red: best performance for the entire row. Bold: best performance among models trained
across datasets.

Method
Models Trained Across Datasets Models Trained/Fine-tuned on Each Dataset

LangTimePT UniTime† AutoTimes† LangTimeTimePPO UniTime‡SFT AutoTimes∗ S2IP-LLM∗ Time-LLM∗ GPT4TS∗ PatchTST TimesNet
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

1

96 0.323 0.346 0.350 0.385 0.914 0.590 0.319 0.348 0.337 0.374 0.530 0.519 0.359 0.381 0.327 0.361 0.327 0.363 0.329 0.367 0.338 0.375
192 0.372 0.376 0.384 0.401 0.966 0.616 0.368 0.375 0.373 0.393 0.664 0.583 0.383 0.393 0.368 0.381 0.368 0.383 0.367 0.385 0.374 0.387
336 0.419 0.403 0.420 0.423 0.935 0.612 0.413 0.402 0.405 0.415 0.836 0.652 0.416 0.414 0.401 0.405 0.400 0.405 0.399 0.410 0.410 0.411
720 0.491 0.443 0.473 0.455 0.954 0.630 0.487 0.439 0.465 0.448 1.297 0.782 0.483 0.449 0.465 0.436 0.461 0.439 0.454 0.439 0.478 0.450
Avg 0.401 0.392 0.407 0.416 0.942 0.612 0.397 0.391 0.395 0.408 0.832 0.634 0.410 0.409 0.390 0.396 0.389 0.398 0.387 0.400 0.400 0.406

E
T

T
m

2

96 0.184 0.258 0.183 0.264 0.269 0.331 0.188 0.258 0.179 0.264 0.722 0.588 0.193 0.280 0.177 0.262 0.178 0.264 0.175 0.259 0.187 0.267
192 0.245 0.300 0.246 0.307 0.326 0.364 0.245 0.297 0.246 0.307 0.898 0.673 0.257 0.318 0.245 0.305 0.246 0.307 0.241 0.302 0.249 0.309
336 0.308 0.339 0.310 0.346 0.379 0.393 0.301 0.336 0.308 0.346 1.207 0.792 0.317 0.353 0.304 0.342 0.309 0.349 0.305 0.343 0.321 0.351
720 0.410 0.399 0.413 0.405 0.473 0.442 0.402 0.393 0.410 0.406 1.708 0.952 0.419 0.411 0.400 0.397 0.410 0.408 0.402 0.400 0.408 0.403
Avg 0.287 0.324 0.288 0.331 0.362 0.383 0.284 0.321 0.286 0.331 1.134 0.751 0.297 0.341 0.282 0.327 0.286 0.332 0.281 0.326 0.291 0.333

E
T

T
h1

96 0.394 0.395 0.525 0.500 0.417 0.408 0.391 0.388 0.480 0.473 0.381 0.401 0.398 0.410 0.423 0.425 0.385 0.402 0.414 0.419 0.384 0.402
192 0.439 0.420 0.544 0.511 0.484 0.444 0.429 0.419 0.505 0.487 0.435 0.434 0.451 0.440 0.464 0.446 0.432 0.425 0.460 0.445 0.436 0.429
336 0.464 0.442 0.576 0.529 0.529 0.468 0.462 0.440 0.536 0.504 0.480 0.459 0.508 0.471 0.499 0.461 0.467 0.447 0.501 0.466 0.491 0.469
720 0.462 0.449 0.577 0.548 0.549 0.494 0.458 0.445 0.531 0.520 0.499 0.478 0.483 0.478 0.505 0.487 0.472 0.466 0.500 0.488 0.521 0.500
Avg 0.440 0.427 0.556 0.522 0.495 0.454 0.435 0.423 0.513 0.496 0.449 0.443 0.460 0.450 0.473 0.455 0.439 0.435 0.469 0.455 0.458 0.450

E
T

T
h2

96 0.301 0.334 0.308 0.357 0.301 0.333 0.299 0.336 0.306 0.356 0.318 0.352 0.295 0.346 0.306 0.354 0.303 0.354 0.302 0.348 0.340 0.374
192 0.380 0.389 0.390 0.405 0.410 0.398 0.374 0.382 0.388 0.404 0.401 0.404 0.386 0.399 0.377 0.398 0.386 0.404 0.388 0.400 0.402 0.414
336 0.412 0.419 0.424 0.438 0.420 0.419 0.410 0.418 0.423 0.436 0.446 0.441 0.447 0.443 0.423 0.435 0.430 0.438 0.426 0.433 0.452 0.452
720 0.422 0.439 0.435 0.454 0.439 0.444 0.418 0.426 0.433 0.453 0.460 0.459 0.428 0.444 0.431 0.447 0.433 0.452 0.431 0.446 0.462 0.468
Avg 0.379 0.395 0.389 0.414 0.393 0.399 0.375 0.391 0.388 0.412 0.406 0.414 0.389 0.408 0.384 0.409 0.388 0.412 0.387 0.407 0.414 0.427

E
le

ct
ri

ci
ty

96 0.199 0.277 0.279 0.382 0.188 0.267 0.181 0.266 0.210 0.381 0.206 0.277 0.204 0.293 0.184 0.268 0.184 0.270 0.181 0.270 0.168 0.272
192 0.213 0.296 0.276 0.379 0.217 0.291 0.185 0.273 0.249 0.351 0.224 0.296 0.207 0.295 0.204 0.286 0.188 0.275 0.188 0.274 0.184 0.289
336 0.234 0.316 0.285 0.385 0.236 0.319 0.198 0.281 0.259 0.357 0.251 0.322 0.219 0.308 0.222 0.308 0.203 0.290 0.204 0.293 0.198 0.300
720 0.272 0.357 0.322 0.409 0.272 0.346 0.241 0.320 0.298 0.362 0.318 0.380 0.263 0.341 0.269 0.345 0.243 0.322 0.246 0.324 0.220 0.320
Avg 0.230 0.312 0.291 0.389 0.228 0.306 0.201 0.285 0.254 0.363 0.250 0.319 0.223 0.309 0.220 0.302 0.205 0.289 0.205 0.290 0.193 0.295

E
xc

ha
ng

e

96 0.086 0.205 0.124 0.254 0.133 0.253 0.089 0.201 0.118 0.246 0.087 0.202 0.083 0.203 0.087 0.208 0.084 0.201 0.088 0.205 0.107 0.234
192 0.175 0.300 0.218 0.338 0.253 0.357 0.175 0.298 0.212 0.332 0.178 0.298 0.178 0.299 0.178 0.302 0.178 0.299 0.176 0.299 0.226 0.344
336 0.329 0.412 0.367 0.443 0.390 0.452 0.329 0.409 0.360 0.438 0.329 0.413 0.328 0.415 0.338 0.422 0.343 0.422 0.301 0.397 0.367 0.448
720 0.854 0.696 0.913 0.728 0.931 0.730 0.852 0.690 0.904 0.723 0.792 0.675 0.854 0.696 0.819 0.681 0.803 0.671 0.901 0.714 0.964 0.746
Avg 0.361 0.403 0.406 0.441 0.427 0.448 0.361 0.400 0.399 0.435 0.347 0.397 0.361 0.403 0.356 0.403 0.352 0.398 0.367 0.404 0.416 0.443

W
ea

th
er

96 0.184 0.203 0.181 0.222 0.219 0.245 0.178 0.202 0.182 0.220 0.188 0.227 0.195 0.233 0.180 0.221 0.183 0.223 0.177 0.218 0.172 0.220
192 0.216 0.250 0.226 0.261 0.298 0.310 0.211 0.245 0.226 0.263 0.234 0.266 0.240 0.269 0.229 0.261 0.230 0.262 0.218 0.259 0.219 0.261
336 0.275 0.293 0.280 0.299 0.337 0.338 0.269 0.286 0.279 0.323 0.288 0.305 0.293 0.306 0.285 0.301 0.285 0.302 0.278 0.297 0.280 0.306
720 0.361 0.349 0.356 0.347 0.415 0.383 0.351 0.346 0.354 0.346 0.363 0.355 0.368 0.354 0.359 0.349 0.362 0.351 0.354 0.348 0.365 0.359
Avg 0.259 0.274 0.261 0.282 0.317 0.319 0.252 0.270 0.260 0.288 0.268 0.288 0.274 0.291 0.263 0.283 0.265 0.285 0.257 0.281 0.259 0.287

1st Count 58 5 10 45 1 5 2 2 2 9 7

† signifies the use of the official baseline code with cross-domain training conducted similarly to our approach.
‡ denotes supervised fine-tuning using identical data as our method, building upon the conditions specified by †.
∗ indicates the adoption of the official baseline code, with adjustments to input sequence length and maximum training epochs for fair
comparison with other methods, and other results are sourced from iTransformer(Liu et al., 2023).

seven benchmark datasets. The details of these datasets are
provided in Appendix B.1.

Baselines. We evaluate LangTime against state-of-the-art
models. (1) LLM-based methods: UniTime (Liu et al.,
2024d), AutoTimes (Liu et al., 2024e), S2IP-LLM (Pan
et al., 2024), Time-LLM (Jin et al., 2023), and GPT4TS
(Zhou et al., 2023); (2) Specific methods: PatchTST (Nie
et al., 2022), and TimesNet (Wu et al., 2022). We adopt
Qwen2-0.5B-Instruction (Yang et al., 2024) as backbone.

Setup. We adopt pre-training to fine-tuning dataset ratio
of Dpre-train : Dfine-tune = 8 : 2. To ensure a fair compar-
ison, all methods maintained a fixed look-back window
of L = 96 and predicted future values with lengths of
F = {96, 192, 336, 720}. More implementation details can
be found in Appendix B.2.

4.2. Main Results

Comparison with Other Forecasting Methods. Table 1
presents the overall forecasting performance of our model.

The table is divided into two sections by vertical lines. On
the left, models are pre-trained across multiple datasets,
while on the right, models are either trained separately or
fine-tuned for each dataset.

Pre-trained LangTime achieves remarkable improvements
over baseline models that are also trained across datasets,
achieving the best performance in 58 out of 70 entries.
This highlights LangTime’s ability to generalize effectively
across diverse time series distributions. On the right side
of the table, results indicate that TimePPO fine-tuned Lang-
Time achieves competitive performance, surpassing models
trained individually on each dataset in 45 out of 70 entries,
establishing new state-of-the-art results. These findings val-
idate LangTime’s effectiveness in handling time series data
with diverse characteristics. Furthermore, compared to other
LLM-based forecasting methods, LangTime demonstrates
significant advantages, reinforcing its capability to enhance
the alignment between LLMs and time series data.

Comparison with Other Fine-tuning Algorithms. Table 2
presents a comparison between our proposed TimePPO algo-
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Table 2. Comparisons of forecasting performance among various fine-tuning algorithms. The results are presented as averages over four
forecasting horizons: 96, 192, 336, and 720. Bold: best results. Table 18 shows the full results.

Method
ETTm1 ETTm2 ETTh1 ETTh2 Electricity Exchange Weather

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

LangTime 0.401 0.392 0.287 0.324 0.440 0.427 0.379 0.395 0.230 0.312 0.361 0.403 0.259 0.274
LangTimeSFT 0.399 0.391 0.285 0.321 0.447 0.423 0.378 0.391 0.211 0.291 0.362 0.404 0.263 0.279
LangTimeTimePPO 0.397 0.391 0.284 0.321 0.435 0.423 0.375 0.391 0.201 0.285 0.361 0.400 0.252 0.270
AutoTimes 0.942 0.612 0.362 0.383 0.495 0.454 0.392 0.399 0.228 0.306 0.427 0.448 0.317 0.319
AutoTimesSFT 0.945 0.613 0.364 0.383 0.491 0.448 0.400 0.403 0.228 0.307 0.424 0.444 0.318 0.319
AutoTimesTimePPO 0.940 0.610 0.360 0.383 0.485 0.446 0.390 0.399 0.233 0.304 0.425 0.450 0.317 0.318

Table 3. Ablation studies on various components of temporal com-
prehension prompts on ETTh1 and Weather datasets. Results are
reported as averages over four forecasting horizons: 96, 192, 336,
and 720. Full results are accessible in Table 19.

LG TS DI CI
ETTh1 Weather

MSE MAE MSE MAE

✓ ✓ ✓ ✓ 0.436 0.436 0.267 0.284
✓ ✓ ✓ 0.440 0.438 0.269 0.288
✓ ✓ 0.442 0.440 0.272 0.292
✓ 0.442 0.443 0.274 0.293

Table 4. Ablation studies on various dimensions of Rewards Func-
tion on ETTh1 and Weather datasets. Results are reported as
averages over four forecasting horizons: 96, 192, 336, and 720.
Full results are accessible in Table 20.

Method
ETTh1 Weather

MSE MAE MSE MAE

LangTimePT 0.436 0.436 0.267 0.284
All dimensions 0.429 0.433 0.259 0.280
TimePPO w/o RMSE 0.435 0.437 0.263 0.281
TimePPO w/o RMAE 0.433 0.438 0.261 0.282
TimePPO w/o RKL 0.435 0.438 0.262 0.282

rithm and Supervised Fine-tuning algorithm (SFT). Across
most datasets, models fine-tuned with TimePPO achieve su-
perior predictive performance compared to those fine-tuned
with SFT. This demonstrates the effectiveness of TimePPO
in mitigating cumulative errors and enhancing the stability
of autoregressive forecasting models.

4.3. Ablation Studies

Temporal Comprehension Prompts. We analyzed the im-
pact of TCPs at different levels of detail by segmenting
TCPs into the following components: ① Language Guid-
ance (LG); ② Timestamp (TS); ③ Dataset Information
(DI); ④ Channel Information (CI). The detailed results
in Table 3 show that removing CI and DI leads to a decline
in LangTime’s performance, while the impact of TS is rela-
tively minor. Notably, even in the absence of supplementary
metadata, using only LG still yields favorable results, fur-
ther confirming the effectiveness of our proposed approach
in aligning LLMs with time series data.

Rewards Function. We comprehensively evaluate the ac-

Table 5. Ablation study of different backbones on ETTh1 and
Weather datasets. Bold: best results.

Dataset
GPT2 Qwen Linear

MSE MAE MSE MAE MSE MAE

ETTh1

96 0.409 0.406 0.388 0.391 0.702 0.567
192 0.472 0.438 0.442 0.423 0.721 0.580
336 0.530 0.461 0.479 0.445 0.733 0.592
720 0.556 0.483 0.482 0.465 0.735 0.611
Avg 0.492 0.447 0.448 0.431 0.723 0.588

Weather

96 0.194 0.233 0.181 0.217 0.223 0.273
192 0.244 0.276 0.236 0.254 0.263 0.310
336 0.294 0.311 0.294 0.295 0.318 0.343
720 0.366 0.358 0.368 0.341 0.398 0.405
Avg 0.275 0.294 0.270 0.277 0.301 0.333

curacy of prediction results from three dimensions in the
TimePPO, including Mean Squared Error (MSE), Mean
Absolute Error (MAE), and KL divergence, as detailed in
Table 10. We evaluate LangTime’s predictions across the
three different dimensions and compute the corresponding
reward scores, with the results presented in Table 4. The
findings indicate that incorporating all dimensions signifi-
cantly enhances the performance of pre-trained LangTime.
Conversely, removing any single dimension leads to a de-
cline in TimePPO’s effectiveness, with MSE exerting the
most significant impact compared to others.

Backbones. We selected Qwen2-0.5B-Instruction (Yang
et al., 2024) as the backbone due to its superior instruction-
following capability. To validate the framework’s scalability,
we substituted the backbone with GPT-2 (Radford et al.,
2019). Table 5 demonstrates that while GPT-2 achieves
comparable performance on the Weather dataset, it under-
performs on ETTh1 due to weaker instruction compliance.
To evaluate LLMs’ role in transferring sequential modeling
from text to time series, we replaced the backbone with a
linear layer (Zeng et al., 2023). As presented in Table 5, this
modification resulted in significant performance degrada-
tion, conclusively demonstrating that our method effectively
enhances LLMs’ comprehension of time series patterns.

Adaptability to Different Prompts. The TCPs in our ap-
proach comprise two components. The background part
incorporates domain and channel descriptions to provide
richer linguistic information, enabling LLMs to develop a
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Table 6. Impact of language prompt modification on model capa-
bility on ETTh1 and Weather datasets. Bold: best performance.

Dataset
Original Instruction Background

MSE MAE MSE MAE MSE MAE

ETTh1

96 0.388 0.391 0.386 0.397 0.387 0.396
192 0.442 0.423 0.442 0.425 0.441 0.426
336 0.479 0.445 0.479 0.445 0.478 0.445
720 0.482 0.465 0.488 0.465 0.493 0.468
Avg 0.448 0.431 0.449 0.433 0.450 0.434

Weather

96 0.181 0.217 0.181 0.219 0.184 0.214
192 0.236 0.254 0.241 0.261 0.237 0.256
336 0.294 0.295 0.297 0.300 0.296 0.298
720 0.368 0.341 0.371 0.347 0.372 0.348
Avg 0.270 0.277 0.273 0.282 0.272 0.279

Table 7. Comparison of zero-shot performance of pre-trained mod-
els. The input sequence length is set to 96 for the Traffic dataset
and 48 for the Illness to fit patch size 24. The predictive lengths are
set to 24, 36, 48, 60 for Illness, and 96, 192, 336, 720 for Traffic.
Bold: best results.

Dataset
LangTimePT UniTime AutoTimes
MSE MAE MSE MAE MSE MAE

Traffic

96 0.486 0.259 0.550 0.363 0.575 0.376
192 0.525 0.284 0.536 0.343 0.557 0.353
336 0.594 0.298 0.642 0.429 0.697 0.453
720 0.686 0.327 0.675 0.444 0.727 0.397
Avg 0.573 0.292 0.601 0.395 0.639 0.395

Illness

24 4.071 1.482 4.221 1.525 5.189 1.572
36 3.962 1.443 4.235 1.496 4.676 1.530
48 4.006 1.477 4.349 1.515 5.060 1.642
60 4.053 1.492 4.632 1.559 4.667 1.603

Avg 4.023 1.474 4.359 1.524 4.898 1.587

more profound understanding of time series background
knowledge. The instruction part has two task instructions to
guide the model in understanding the time series data and
generating predictions. We compared the impact on perfor-
mance when these two parts varied separately, as shown in
Table 6. However, when their expression changes but the
basic meaning remains consistent, modifying the domain
description and instructions does not significantly affect
the model’s performance. The detailed modification of the
prompt can be found in Appendix B.3.

4.4. Zero-Shot Transferability Analysis

In this section, we conduct an in-depth analysis of the zero-
shot performance of our pre-trained model compared to
other cross-domain training models in unseen domains. Ta-
ble 7 demonstrates that LangTime consistently outperforms
baseline models in most cases. This highlights the effec-
tiveness of TCPs in enhancing the model’s adaptability to
diverse, unseen time series distributions. Additionally, we
further analyze LangTime’s cross-domain transferability in
Appendix C.1.
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Figure 4. Parameter sensitivity analysis on α used in Equation (1).
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Figure 5. Parameter sensitivity analysis on τ used in Equation (5).

4.5. Parameter Analysis

The Sensitivity of α. Figure 4 presents the impact of α on
model performance. When only the prediction task (α = 0)
or only the reconstruction task (α = 1) is applied, the model
exhibits suboptimal performance. However, when balanc-
ing both tasks (α = 0.4 or α = 0.6), LangTime achieves
the best results across both datasets. This highlights the
importance of the reconstruction task in guiding the LLM’s
understanding of time series structures.

The Sensitivity of τ . Figure 5 illustrates the impact of τ
on TimePPO’s rewards function. Since τ influences the
distribution of reward scores, its effect varies based on the
dataset’s MSE and MAE convergence values. For ETTh1,
performance remains relatively stable across different values
of τ , indicating low sensitivity. In contrast, for Weather,
an improper τ selection leads to noticeable fluctuations,
occasionally causing performance degradation after fine-
tuning. Nevertheless, in most cases, TimePPO exhibits
robustness with respect to τ within a certain range.

The Sensitivity of β and η. Figure 6 illustrates the model’s
sensitivity to the parameters β and η. Here, β controls the
MSE penalty term, aiming to regulate the extent of policy
updates from the reward score perspective. For η, we ref-
erenced the alignment tax design in InstructGPT (Ouyang
et al., 2022), enhancing the model’s prediction capability
and training stability. The sensitivity analysis experiments
revealed no significant impact of these parameters, demon-
strating the robustness of our proposed method.

4.6. Model Analysis

Error Accumulation Analysis. To evaluate how TimePPO
improves model resilience against cumulative errors, we
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Figure 6. Parameter sensitivity analysis on β and η.

Table 8. Comparison of algorithms in mitigating accumulated error
on ETTh1 and Weather datasets. Reporting last-step metrics for
long-term autoregressive forecasting (336, 720), with last 96 points
for 336 and 48 points for 720.

Dataset
Pre-Training SFT TimePPO

MSE MAE MSE MAE MSE MAE

ETTh1
336 0.527 0.469 0.526 0.468 0.519 0.464
720 0.541 0.513 0.539 0.512 0.537 0.513
Avg 0.534 0.491 0.533 0.490 0.528 0.489

Weather
336 0.364 0.353 0.364 0.353 0.358 0.350
720 0.467 0.418 0.475 0.418 0.462 0.412
Avg 0.415 0.385 0.419 0.386 0.410 0.381

analyzed prediction metrics at the final step of long-term
forecasting (336 and 720). As shown in Table 8, TimePPO
demonstrates superior performance in these critical final-
step predictions where accumulated errors have greatest im-
pact. This improvement stems from TimePPO’s unique ap-
proach: its value function estimates sequence-wide returns
while advantage calculations assess each step’s long-term
value relative to these estimates. Unlike methods that focus
solely on immediate next-step prediction, these mechanisms
optimize the entire sequence’s prediction quality. Through
this holistic optimization, TimePPO effectively mitigates the
cumulative error problem inherent in autoregressive models.

T-SNE Visualization. In this part, we focus on analyz-
ing the three channels of the ETTh1 and Weather datasets.
The ETTh1 dataset emphasizes energy-related features, in-
cluding High Useful Load, High Useless Load, and Middle
Useful Load, while the Weather dataset comprises features
related to the natural environment, such as Air Tempera-
ture, Air Pressure, and Potential Temperature. We employ
T-SNE visualization techniques to analyze LangTime’s per-
formance in processing these features, aiming to better un-
derstand the model’s adaptability across different domains.

As shown in Figure 7, initially, TE processed all channels
uniformly, leading to overlaps in representations between
different domains such as High Useful Load and High Use-
less Load within the ETTh1 dataset. However, TCPs pro-
vided channel guidance to LLMs, enabling them to effec-
tively distinguish these features and uncover their seman-
tic relationships. Specifically, in the Weather dataset, Air
Temperature and Potential Temperature exhibit stronger cor-
relation compared to Air Pressure, demonstrating the role
of language guidance in uncovering intrinsic dependencies
between different channels.
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Air Pressure (Weather)
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Middle Useful Load  (ETT)

(a) Temporal Representations
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(b) Compressed Token

Figure 7. T-SNE visualization of the mean pooling of temporal
representations generated by Temporal Encoder and compressed
token generated by LLM.

The information of given time series: 
Period: 2020-12-19 05:40:00 to 2020-12-19 21:30:00, 
Dataset: Meteorological indicator data with ten minute sample rate, 
Channel: Air Pressure, 
Value: [ENC][ENC][ENC][ENC]. 
Please compress this series into one word: <|EMB|>. 
Base on the given information, predict next 4 values: 

0.0094 0.0096 0.0098 0.0100 0.0102 0.0104 0.0106 0.0108

Figure 8. Attention map visualization for the last token, which is
the actual prediction token preceding <|OUT|>. Special tokens
and system prompts are hidden, and softmax values are recalcu-
lated over the remaining tokens to provide a clearer representation.

Attention Map Analysis. To further examine how LLMs
interpret and integrate time series representations, we visu-
alize the last token attention weights from the final layer of
the LLM in LangTime that is ultimately processed through
the MLP to generate predictions, as shown in Figure 8. The
results indicate that: ① The last token focuses primarily on
the time series representations and the token preceding the
compressed token placeholder, which plays a key role in
reconstructing the input sequence. ② LLMs also attend to
contextual and prediction-relevant information, reinforcing
the effectiveness of TCPs in aligning time series with LLMs.
These findings confirm that TCPs enhance LLMs’ ability to
differentiate time series patterns, preserve domain-specific
knowledge, and capture meaningful temporal dependencies.

5. Conclusion
In this work, we propose LangTime, a novel generalized
model designed to address the challenges of leveraging
multi-domain datasets for improving downstream time se-
ries forecasting. By incorporating TCPs, LangTime en-
hances the LLM’s ability to interpret time series embed-
dings and generate accurate predictions. Additionally, we
introduce TimePPO, a fine-tuning algorithm specifically
designed for time series to effectively mitigate error accu-
mulation in long-term forecasting. Extensive experiments
demonstrate that LangTime achieves state-of-the-art perfor-
mance on standard benchmarks and exhibits strong zero-
shot transferability to unseen domains. Future work will
concentrate on broadening LangTime’s applicability to en-
compass a wider array of time series analysis tasks.
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A. Method Design Details
A.1. Pre-Training Loss Details

During pre-training, we combine two tasks, as shown in Equation (1). For each task, we use the Huber loss, as illustrated in
Equation (9) and Equation (10).

Lreconstruction =

{
1
2 (x− x̂)2, if |x− x̂| ≤ δ,

δ · (|x− x̂| − 1
2δ), otherwise.

(9)

Lprediction =

{
1
2 (y − ŷ)2, if |y − ŷ| ≤ δ,

δ · (|y − ŷ| − 1
2δ), otherwise.

(10)

A.2. Temporal Comprehension Prompts Details

Table 9 provides a description of each channel in the datasets used in TCPs. The full prompts used in TCPs are as follows.

Temporal Comprehension Prompts

<|im start|>system
You are a helpful assistant, and your target is to summarize a time series and predict the next time series. Note: Value means the
actual values of the time series, where each token represents data for <PATCH SIZE> consecutive time points. <|im end|>
<|im start|>user
The information of the given time series:
Period: <Timestamp>,
Dataset: <Dataset Information>,
Channel: <Channel Information>,
Value: <Time Series Representation>,
Please compress this series into one word: <|EMB|>.
Based on the given information, predict next <N> values: <|im end|>
<|im start|>assistant
<|OUT|><|im end|>

In TCPs, <Timestamp> , <Dataset Information> , and <Channel Information> define the domain description, encoding
dataset-specific characteristics to help the model incorporate relevant contextual information. <Time Series Representa-
tion> , generated by the Temporal Encoder, represents the processed time series features. <|EMB|> serves as a placeholder
for the temporal series embeddings. <N> specifies the number of patches predicted concurrently and <|OUT|> represents
the placeholder for the predicted outputs.

A.3. Rewards Dimension Details

The Rewards Function we propose assesses the significance of the output across three distinct dimensions. As delineated in
Table 10, we independently compute the Mean Squared Error (MSE), Mean Absolute Error (MAE), and KL divergence
between the predicted outcomes and the ground truth. For KL divergence, we first compute the mean and variance based on
the two sequences, and then calculate the KL divergence between the two continuous distributions. Subsequently, their
reciprocals are employed as evaluation metrics. Ultimately, the reward score for the predicted outcomes is determined via
Equation (5). The proximity of the predicted result ŷt to the ground truth yt is directly proportional to the reward score
attained.

A.4. TimePPO Details

Unlike the discrete action space in NLP, the output of time series prediction models is a sequence in a continuous space.
Therefore, we have redesigned the loss function based on NLP to measure the prediction results of the model from the
probability distribution in the continuous space corresponding to the time series.

TimePPO is specifically designed to handle the continuous action space of time series forecasting, where the ratio of
predicted mean probabilities is computed. This design prevents instability arising from excessive policy updates, thereby
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Table 9. Dataset Information and Channel Information used in TCPs. i means column index in dataset Traffic and Electricity. The Traffic
and Illness datasets are utilized to evaluate Zero-Shot performance, whereas the remaining datasets are employed for both training and
testing.

Dataset Description Channel Description

ETT

An hourly-sampled (minutely-sampled in ETTm1
and ETTm2) electricity transformer dataset

intended for electrical asset monitoring, collected
from one area in a province in China.

High Useful Load
High Useless Load

Middle Useful Load
Middle Useless Load

Low Useful Load
Low Useless Load
Oil Temperature

Weather Meteorological indicator data with ten minute
sample rate.

Air Pressure
Air Temperature

Potential Temperature
Dew Point Temperature

Relative Humidity
Saturation Water Vapor Pressure

Actual Water Vapor Pressure
Water Vapor Pressure Deficit

Specific Humidity
Water Vapor Concentration

Air Density
Wind Velocity

Maximum Wind Velocity
Wind Direction

Precipitation
Duration of Precipitation

Short Wave Downward Radiation
Photosynthetically Active Radiation

Maximum Photosynthetically Active Radiation
Internal Logger Temperature

CO2 Concentration of Ambient Air

Exchange Daily exchange rates of the US dollar to eight
different currencies ranging from 1990 to 2016.

Exchange rate of the US dollar to the Australian dollar
Exchange rate of the US dollar to the British pound

Exchange rate of the US dollar to the Canadian dollar
Exchange rate of the US dollar to the Swiss franc

Exchange rate of the US dollar to the Chinese yuan
Exchange rate of the US dollar to the Japanese yen

Exchange rate of the US dollar to the New Zealand dollar
Exchange rate of the US dollar to the Singapore dollar

Electricity Hourly electricity consumption of 321 customers
from 2012 to 2014. Electricity consumption of customer i

Traffic
Hourly road occupancy rates data from 862 detectors
across the freeways of the San Francisco Bay area,

covering the years 2015 to 2016.
Road occupancy rates detected by detector i

Illness
Weekly influenza-like illness (ILI) patient data from

US Centers for Disease Control (2002-2021)
showing ILI patient ratio.

Weight ILI Rate
Unweight ILI Rate

Number of ILI patients aged between 0-4 years old
Number of ILI patients aged between 5-24 years old

Total number of ILI patients across all age groups
Number of sentinel providers

Total patients
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Table 10. Dimensions of Rewards Function

Dimension Calculation Formula

MSE RMSE = 1
1
n

∑n
t=1(ŷt−yt)2

MAE RMAE = 1
1
n

∑n
t=1 |ŷt−yt|

KL Divergence RKL = 1
DKL(P∥Q)

enhancing robustness in long-term forecasting.

We consider time series prediction as a continuous action space and calculate the ratio of predicted mean probabilities:

π(a|y) = 1√
2πσ2(y)

exp

(
− (a− µ(y))2

2σ2(y)

)
, (11)

where µ(y) represents the mean of sequence y, while σ2(y) denotes the variance of sequence y. Based on Equation (11), we
employ the probability policy ratio r(θ) to quantify the variations between the two policies.

r(θ) =
πθ(µ (ynew)|ynew)

πθold (µ(ynew)|yold)
. (12)

Based on this design, r(θ) can accurately reflect the impact on the distribution of prediction results before and after the
model parameter updates. Compared with directly calculating the numerical error of prediction results, it exhibits stronger
robustness.

B. Experimental Details
B.1. Datasets

We perform comprehensive experiments on seven extensively employed time series datasets for long-term forecasting.
Adhering to the data processing and train-validation-test set split protocol established in TimesNet (Wu et al., 2022), we
ensure that the train, validation, and test datasets are rigorously partitioned in chronological order to prevent data leakage.
Regarding the long-term forecasting configurations, we set the context length of LangTime and the lookback length of
other comparative methods to 96, while the forecast length varies among {96, 192, 336, 720}. Brief descriptions of the
pre-training datasets are as follows: (1) ETT (Zhou et al., 2021) includes data for monitoring electricity transformers from
July 2016 to July 2018, comprising four subsets: ETTm1, ETTm2, ETTh1, and ETTh2. (2) Electricity contains hourly
power consumption data for 321 clients from 2012 to 2014. (3) Exchange (Lai et al., 2018) records daily exchange rates for
eight countries from 1990 to 2016. (4) Weather is recorded every 10 minutes in 2020, featuring 21 meteorological indicators
such as temperature, humidity, and precipitation. Additionally, we evaluated the zero-shot performance of LangTime using
two datasets from different domains: (1) Illness includes weekly data on patients with seven influenza-like illnesses from
2002 to 2021. (2) Traffic includes data on hourly road occupancy rates, gathered by 862 detectors across the freeways of the
San Francisco Bay area from 2015 to 2016. Owing to the constraints of computational resources and given our adoption of a
channel-independent approach, we partition the number of channels in certain datasets. Table 11 illustrates the number of
channels present in each sub-dataset. This strategy facilitates more efficient management of batch size during cross-domain
training.

B.2. Experimental Setting

LangTime was implemented using PyTorch (Paszke et al., 2019), and all experiments were executed on 8 NVIDIA A100
80GB GPUs. We employed the AdamW optimizer (Loshchilov, 2017) with an initial learning rate of 1× 10−4. A cosine
annealing schedule with warmup was utilized for learning rate decay during pre-training, with a warmup rate set at 0.05.
The Temporal Encoder in LangTime comprises 4 layers utilizing group query attention (Ainslie et al., 2023), with a query
head count of 8, and key and value head counts of 2. The dimension of the latent space is set to 512. The patching process
employs a patch size of 24, and LangTime predicts 4 patches simultaneously.
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Table 11. Summary of datasets used for pre-training.

Dataset Name Channels Frequency Time Points Channel Split Application Domain

ETTm1/ETTm2 7 15 mins 57,507 - Energy Infrastructure Observation

ETTh1/ETTh2 7 1 hour 14,307 - Energy Infrastructure Observation

Electricity 321 1 hour 26,211 7 Electricity Consumption

Weather 21 10 mins 52,603 7 Meteorologic Monitoring

Exchange 8 1 day 7,207 - Foreign Exchange Market

Pre-training. During the warmup phase, we established α = 0.7 to facilitate LLMs in comprehending the time series,
subsequently reducing α to 0.5 during the learning rate decay phase. The Mask Rate was set at 0.4, and for the pre-trained
model with a lookback length of 96, we designated the input lengths as {96, 288, 480, 672}. The batch size is set to 48 in
pre-training.

Fine-tuning. Customizing the fine-tuning parameters can yield optimal results for different datasets. For instance, in
the Weather dataset, we configure the initial learning rate to 1× 10−6, maintain the lookback window at 96, and execute
predictions with target lengths of 672, with a clip range ϵ set to 0.1. The parameter τ is set to 0.1, while ξ is set to 0.9.

B.3. Ablation Study Details

In Table 6, we compare the impact of modifying the Instruction part and the Background part in TCPs on model performance.
For the Instruction part, it is modified as follows:

Temporal Comprehension Prompts (Modified)

The details of the provided time series:
Period: <Timestamp>,
Dataset: <Dataset Information>,
Channel: <Channel Information>,
Value: <Time Series Representation>,
Please summarize this series in a single term: <|EMB|>.
Using the given details, forecast the upcoming <N> values: <|OUT|>.

In Table 6, we also made modifications to the descriptions of the ETTh1 and Weather datasets. The specific modification
details are shown in Table 12.

Table 12. Details of Modifying the Background Description Prompt for the ETTh1 and Weather Datasets

Prompt Background of ETTh1 Background of Weather

Original
An hourly-sampled electricity transformer dataset

intended for electrical asset monitoring,
collected from one area in a province in China.

Meteorological indicator data with
ten minute sample rate.

Modified
An hourly-sampled dataset of electricity transformers

designed for monitoring electrical assets.
Data on meteorological indicators

sampled every ten minutes.

C. Supplementary Results
C.1. Cross-Domain Transfer Capability Analysis

Zero-Shot Transferability Analysis. To further investigate the transferability of LangTime across different domains, we
pre-train LangTime on the ETTh1 and ETTm1. Following the experimental setup of UniTime(Liu et al., 2024d), we evaluate
the model on three datasets: ETTh2 (which belongs to the same domain as the source), Electricity (a different domain with
certain underlying similarities to the source), and Weather (which represents a completely unrelated domain). The results are
summarized in Table 13. Compared to UniTime, which also employs natural language for enhancement, our model achieves
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superior performance on most datasets. This demonstrates the effectiveness of our proposed language-guided approach in
enhancing the ability of large language models to understand time series data.

Table 13. Zero-shot transferability comparisons. Models trained and validated under uniform data settings

Method
ETTm2 Weather Electricity

MSE MAE MSE MAE MSE MAE

LangTime

96 0.199 0.271 0.240 0.279 0.319 0.397
192 0.258 0.310 0.294 0.321 0.339 0.418
336 0.322 0.350 0.337 0.346 0.384 0.451
720 0.425 0.409 0.411 0.393 0.467 0.503
Avg 0.301 0.335 0.320 0.335 0.377 0.442

UniTime

96 0.207 0.284 0.244 0.281 0.432 0.505
192 0.267 0.320 0.293 0.316 0.453 0.525
336 0.325 0.357 0.342 0.347 0.459 0.532
720 0.426 0.413 0.414 0.391 0.486 0.552
Avg 0.306 0.343 0.323 0.334 0.458 0.529

Comparison with Time Series Foundation Model. Foundation models for time series are typically pre-trained on
large-scale time series datasets and exhibit strong domain transfer capabilities (Ansari et al., 2024; Liu et al., 2024f). To
further assess the impact of the language-guided approach on domain transferability, we compare LangTime, pre-trained
on three datasets (Weather, ECL, and Exchange), with TimesFM(Das et al., 2024), which is pre-trained on a large-scale
dataset. The results are presented in Table 14. To ensure the invisibility of test data, we conduct evaluations on four datasets:
ETTh1, ETTh2, ETTm1, and ETTm2. Even when pre-trained on fewer datasets, LangTime still demonstrates competitive
performance and achieves favorable results on multiple datasets. This further validates the effectiveness of our proposed
framework.

Table 14. Zero-shot performance comparison of LangTime and foundation model

Method
ETTh1 ETTh2 ETTm1 ETTm2

MSE MAE MSE MAE MSE MAE MSE MAE

LangTime

96 0.493 0.449 0.331 0.374 0.893 0.590 0.216 0.303
192 0.536 0.475 0.416 0.423 0.866 0.595 0.257 0.324
336 0.570 0.495 0.444 0.447 0.920 0.621 0.342 0.375
720 0.547 0.504 0.474 0.473 0.951 0.653 0.448 0.429
Avg 0.537 0.481 0.416 0.429 0.907 0.615 0.316 0.358

TimesFM

96 0.516 0.429 0.368 0.358 0.687 0.490 0.276 0.300
192 0.533 0.461 0.461 0.434 0.826 0.565 0.416 0.365
336 0.560 0.467 0.507 0.448 0.780 0.569 0.556 0.443
720 1.075 0.652 0.549 0.503 0.862 0.620 0.440 0.434
Avg 0.671 0.502 0.471 0.436 0.789 0.561 0.422 0.386

C.2. TimePPO Fine-Tuning Scalability Analysis

Impact of Fine-Tuning Data Volume. We analyzed the impact of the amount of data used for fine-tuning on model
performance, as shown in Table 15. Models pre-trained across multiple domains exhibit performance improvements after
fine-tuning with target domain datasets, which supports the effectiveness of our proposed method. Furthermore, even
with limited data, the models fine-tuned using TimePPO still achieve favorable performance, enhancing their scalability in
resource-constrained environments.
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Table 15. Performance Impact of Fine-Tuning Data Volume on ETTh1 and Weather Datasets. Representing Data Usage at 5%, 10%, 15%,
and 20%

Dataset
Pre-training 5% 10% 15% 20%

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

96 0.388 0.396 0.385 0.397 0.384 0.397 0.383 0.396 0.383 0.396
192 0.435 0.425 0.433 0.426 0.433 0.425 0.431 0.424 0.430 0.424
336 0.469 0.444 0.467 0.444 0.469 0.443 0.467 0.442 0.467 0.443
720 0.466 0.462 0.464 0.459 0.462 0.458 0.460 0.458 0.460 0.459
Avg 0.439 0.432 0.437 0.432 0.437 0.431 0.435 0.430 0.435 0.430

Weather

96 0.169 0.205 0.162 0.199 0.162 0.200 0.162 0.202 0.162 0.198
192 0.228 0.262 0.225 0.256 0.225 0.257 0.224 0.256 0.223 0.255
336 0.278 0.297 0.278 0.297 0.277 0.298 0.275 0.297 0.275 0.298
720 0.360 0.354 0.350 0.345 0.349 0.345 0.347 0.344 0.346 0.345
Avg 0.259 0.280 0.254 0.274 0.253 0.275 0.252 0.275 0.252 0.274

Impact of Fine-tuning Different Components. We compare the effects of freezing certain components during TimePPO
fine-tuning, and the results are shown in Table 16. Full-parameter fine-tuning of LangTime achieves the best performance,
while fine-tuning only the LLM component yields results close to those of full-parameter fine-tuning. Notably, even when
only the TE component is fine-tuned (with less than 3% of the total parameters), the model still achieves performance
comparable to fine-tuning a larger proportion of parameters. This further demonstrates the adaptability of our method under
resource-constrained settings.

Table 16. Effects of Fine-tuning Different Components of LangTime

Dataset
Pre-training Full LLM TE

MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

96 0.388 0.396 0.383 0.396 0.383 0.396 0.384 0.396
192 0.435 0.425 0.430 0.424 0.430 0.424 0.431 0.425
336 0.469 0.444 0.467 0.443 0.467 0.443 0.468 0.445
720 0.466 0.462 0.460 0.459 0.460 0.459 0.465 0.461
Avg 0.439 0.432 0.435 0.431 0.435 0.431 0.437 0.432

Weather

96 0.169 0.205 0.162 0.199 0.162 0.199 0.163 0.199
192 0.228 0.262 0.225 0.256 0.225 0.256 0.226 0.256
336 0.278 0.297 0.278 0.298 0.278 0.297 0.278 0.297
720 0.360 0.354 0.350 0.345 0.350 0.345 0.352 0.345
Avg 0.259 0.280 0.254 0.274 0.254 0.274 0.255 0.274

C.3. More Parameter Sensitivity Analysis

We tested the impact of mask rate and single-step prediction length on LanTime during pre-training on the ETTh1 dataset,
with results shown in Table 17. Among the three output lengths, the model performed best when the output length was 96.
This is because a shorter output length necessitates more steps to complete the prediction, leading to greater cumulative
error. On the other hand, while a longer single-step prediction length reduces the number of steps, it results in decreased
accuracy in single-step predictions.

The mask rate balances two objectives: (1) preventing overfitting in datasets with varying convergence speeds, and (2)
enhancing temporal pattern learning through reconstruction tasks. Table 17 shows that extreme mask rates (either too low or
too high) degrade performance: low rates fail to improve temporal pattern extraction, while high rates impair long-horizon
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predictions.

Table 17. Sensitivity analysis of mask rate and output sequence length on the ETTh1 dataset. Bold: best performance for the same output
length, Underline: the best performance for the same mask rate.

Mask Rate
0 0.2 0.4 0.6

MSE MAE MSE MAE MSE MAE MSE MAE

24

96 0.392 0.398 0.387 0.398 0.395 0.401 0.409 0.404
192 0.456 0.433 0.442 0.434 0.449 0.432 0.456 0.431
336 0.500 0.456 0.483 0.454 0.486 0.444 0.483 0.452
720 0.517 0.481 0.492 0.465 0.487 0.464 0.497 0.466
Avg 0.466 0.442 0.451 0.438 0.455 0.435 0.461 0.438

96

96 0.384 0.394 0.383 0.396 0.383 0.393 0.383 0.394
192 0.437 0.424 0.436 0.425 0.434 0.423 0.438 0.424
336 0.473 0.442 0.470 0.444 0.470 0.443 0.473 0.444
720 0.484 0.462 0.473 0.462 0.475 0.463 0.482 0.466
Avg 0.444 0.431 0.441 0.432 0.440 0.430 0.444 0.432

192

96 0.394 0.401 0.390 0.399 0.394 0.401 0.390 0.399
192 0.450 0.429 0.445 0.426 0.450 0.429 0.445 0.428
336 0.491 0.449 0.484 0.445 0.489 0.447 0.481 0.446
720 0.503 0.468 0.493 0.462 0.499 0.464 0.487 0.465
Avg 0.460 0.437 0.453 0.433 0.458 0.435 0.451 0.435

C.4. Full Results

In this section, we present the experimental results that were not fully displayed in the main text. Specifically, Table 18
provides a detailed account of the impact of different fine-tuning algorithms on two models pre-trained across multiple
domains. Table 19 and Table 20 display the complete results of the ablation experiments we conducted. Table 21 and
Table 22 respectively display the experimental results for α and τ in the parameter sensitivity analysis.

C.5. Cases

In this part, we visualize the forecasting results of LangTime. Figure 9 illustrates the performance comparison between
pre-trained LangTime and LangTime fine-tuned via TimePPO under various settings. Figure 10 visualizes the zero-shot
results of the pre-trained LangTime on the Traffic dataset. This demonstrates the exceptional performance of our proposed
LangTime across domains, achieving impressive results even in unseen domains.
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Table 18. Comparisons of forecasting performance among various fine-tuning algorithms.

Method
ETTm1 ETTm2 ETTh1 ETTh2 Electricity Exchange Weather

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

LangTimePT

96 0.323 0.346 0.184 0.258 0.394 0.395 0.301 0.334 0.199 0.277 0.086 0.205 0.184 0.203
192 0.372 0.376 0.245 0.300 0.439 0.420 0.380 0.389 0.213 0.296 0.175 0.300 0.216 0.250
336 0.419 0.403 0.308 0.339 0.464 0.442 0.412 0.419 0.234 0.316 0.329 0.412 0.275 0.293
720 0.491 0.443 0.410 0.399 0.462 0.449 0.422 0.439 0.272 0.357 0.854 0.696 0.361 0.349
Avg 0.401 0.392 0.287 0.324 0.440 0.427 0.379 0.395 0.230 0.312 0.361 0.403 0.259 0.274

LangTimeSFT

96 0.324 0.346 0.184 0.257 0.400 0.388 0.286 0.322 0.186 0.264 0.086 0.205 0.170 0.206
192 0.366 0.374 0.245 0.296 0.447 0.418 0.384 0.390 0.198 0.286 0.183 0.305 0.221 0.253
336 0.417 0.403 0.304 0.337 0.478 0.437 0.416 0.423 0.210 0.293 0.325 0.412 0.284 0.299
720 0.488 0.439 0.406 0.395 0.461 0.448 0.424 0.429 0.249 0.323 0.856 0.695 0.377 0.356
Avg 0.399 0.391 0.285 0.321 0.447 0.423 0.378 0.391 0.211 0.291 0.362 0.404 0.263 0.279

LangTimeTimePPO

96 0.319 0.348 0.188 0.258 0.391 0.388 0.299 0.336 0.181 0.266 0.089 0.201 0.178 0.202
192 0.368 0.375 0.245 0.297 0.429 0.419 0.374 0.382 0.185 0.273 0.175 0.298 0.211 0.245
336 0.413 0.402 0.301 0.336 0.462 0.440 0.410 0.418 0.198 0.281 0.329 0.409 0.269 0.286
720 0.487 0.439 0.402 0.393 0.458 0.445 0.418 0.426 0.241 0.320 0.852 0.690 0.351 0.346
Avg 0.397 0.391 0.284 0.321 0.435 0.423 0.375 0.391 0.201 0.285 0.361 0.400 0.252 0.270

AutoTimesPT

96 0.914 0.590 0.269 0.331 0.417 0.408 0.301 0.333 0.188 0.267 0.133 0.253 0.219 0.245
192 0.966 0.616 0.326 0.364 0.484 0.444 0.410 0.398 0.217 0.291 0.253 0.357 0.298 0.310
336 0.935 0.612 0.379 0.393 0.529 0.468 0.420 0.419 0.236 0.319 0.390 0.452 0.337 0.338
720 0.954 0.630 0.473 0.442 0.549 0.494 0.439 0.444 0.272 0.346 0.931 0.730 0.415 0.383
Avg 0.942 0.612 0.362 0.383 0.495 0.454 0.392 0.399 0.228 0.306 0.427 0.448 0.317 0.319

AutoTimesSFT

96 0.916 0.616 0.270 0.329 0.415 0.401 0.301 0.333 0.184 0.261 0.123 0.235 0.220 0.245
192 0.956 0.605 0.326 0.365 0.480 0.438 0.432 0.416 0.217 0.284 0.253 0.357 0.299 0.310
336 0.940 0.606 0.383 0.393 0.526 0.461 0.420 0.419 0.238 0.317 0.389 0.452 0.338 0.338
720 0.969 0.626 0.477 0.444 0.544 0.493 0.448 0.444 0.274 0.367 0.932 0.732 0.415 0.383
Avg 0.945 0.613 0.364 0.383 0.491 0.448 0.400 0.403 0.228 0.307 0.424 0.444 0.318 0.319

AutoTimesTimePPO

96 0.914 0.609 0.257 0.323 0.417 0.403 0.300 0.332 0.208 0.277 0.127 0.252 0.218 0.245
192 0.961 0.598 0.333 0.365 0.476 0.438 0.410 0.406 0.221 0.286 0.256 0.360 0.298 0.310
336 0.938 0.605 0.380 0.403 0.517 0.465 0.416 0.417 0.237 0.308 0.388 0.458 0.337 0.338
720 0.948 0.627 0.471 0.443 0.528 0.479 0.436 0.439 0.267 0.345 0.928 0.727 0.415 0.378
Avg 0.940 0.610 0.360 0.383 0.485 0.446 0.390 0.399 0.233 0.304 0.425 0.450 0.317 0.318

Table 19. Ablation studies on various components of temporal comprehension prompts on ETTh1 and Weather datasets.
Language
Guidance Timestamp Dataset

Information
Channel

Information Length
ETTh1 Weather

MSE MAE MSE MAE

✓ ✓ ✓ ✓

96 0.384 0.399 0.175 0.209
192 0.432 0.429 0.235 0.265
336 0.471 0.449 0.293 0.312
720 0.459 0.467 0.364 0.349
Avg 0.436 0.436 0.267 0.284

✓ ✓ ✓

96 0.385 0.402 0.179 0.214
192 0.434 0.429 0.238 0.267
336 0.476 0.451 0.295 0.315
720 0.465 0.471 0.366 0.356
Avg 0.440 0.438 0.269 0.288

✓ ✓

96 0.392 0.407 0.180 0.217
192 0.441 0.431 0.240 0.267
336 0.468 0.450 0.299 0.318
720 0.469 0.471 0.369 0.365
Avg 0.442 0.440 0.272 0.292

✓

96 0.393 0.407 0.180 0.220
192 0.440 0.433 0.239 0.269
336 0.470 0.454 0.306 0.320
720 0.467 0.477 0.369 0.365
Avg 0.442 0.443 0.274 0.293
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Table 20. Ablation studies on various dimensions of Rewards Function on ETTh1 and Weather datasets.

Method
ETTh1 Weather

MSE MAE MSE MAE

LangTimePT

96 0.384 0.399 0.175 0.209
192 0.432 0.429 0.235 0.265
336 0.471 0.449 0.293 0.312
720 0.459 0.467 0.364 0.349
Avg 0.436 0.436 0.267 0.284

All dimensions

96 0.379 0.399 0.172 0.205
192 0.426 0.427 0.226 0.263
336 0.466 0.448 0.288 0.310
720 0.445 0.458 0.352 0.342
Avg 0.429 0.433 0.259 0.280

TimePPO w/o RMSE

96 0.382 0.401 0.175 0.208
192 0.430 0.429 0.229 0.264
336 0.472 0.452 0.289 0.311
720 0.456 0.465 0.359 0.342
Avg 0.435 0.437 0.263 0.281

TimePPO w/o RMAE

96 0.381 0.401 0.172 0.208
192 0.429 0.430 0.225 0.264
336 0.470 0.453 0.289 0.312
720 0.453 0.468 0.357 0.345
Avg 0.433 0.438 0.261 0.282

TimePPO w/o RKL

96 0.382 0.401 0.176 0.207
192 0.430 0.430 0.228 0.264
336 0.472 0.454 0.289 0.310
720 0.456 0.468 0.357 0.346
Avg 0.435 0.438 0.262 0.282
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Table 21. Full result of parameter sensitivity analysis on α

α Length
ETTh1 Weather

α Length
ETTh1 Weather

MSE MAE MSE MAE MSE MAE MSE MAE

0

96 0.389 0.399 0.165 0.204

0.2

96 0.388 0.395 0.182 0.225
192 0.443 0.432 0.254 0.279 192 0.442 0.429 0.234 0.267
336 0.494 0.456 0.329 0.330 336 0.491 0.452 0.284 0.302
720 0.481 0.467 0.484 0.409 720 0.480 0.466 0.355 0.348
Avg 0.452 0.438 0.308 0.306 Avg 0.450 0.435 0.264 0.285

0.4

96 0.394 0.400 0.176 0.220

0.6

96 0.399 0.402 0.185 0.229
192 0.445 0.431 0.230 0.264 192 0.449 0.432 0.244 0.276
336 0.497 0.454 0.281 0.300 336 0.503 0.454 0.293 0.309
720 0.485 0.467 0.354 0.347 720 0.499 0.468 0.364 0.357
Avg 0.455 0.438 0.260 0.283 Avg 0.462 0.439 0.271 0.293

0.8

96 0.406 0.406 0.192 0.235

1

96 0.768 0.583 0.224 0.276
192 0.459 0.436 0.244 0.277 192 0.757 0.587 0.273 0.311
336 0.511 0.456 0.292 0.309 336 0.754 0.595 0.315 0.336
720 0.497 0.463 0.363 0.355 720 0.730 0.603 0.379 0.376
Avg 0.468 0.440 0.273 0.294 Avg 0.752 0.592 0.298 0.325

Table 22. Full result of parameter sensitivity analysis on τ

τ Length
ETTh1 Weather

τ Langth
ETTh1 Weather

MSE MAE MSE MAE MSE MAE MSE MAE

LangTimePT

96 0.384 0.399 0.175 0.209

0.01

96 0.377 0.397 0.170 0.212
192 0.432 0.429 0.235 0.265 192 0.424 0.426 0.224 0.259
336 0.471 0.449 0.293 0.312 336 0.465 0.447 0.278 0.299
720 0.459 0.467 0.364 0.349 720 0.443 0.456 0.354 0.349
Avg 0.436 0.436 0.267 0.284 Avg 0.427 0.432 0.256 0.280

0.05

96 0.378 0.397 0.224 0.259

0.1

96 0.379 0.399 0.171 0.214
192 0.424 0.426 0.224 0.259 192 0.426 0.427 0.224 0.262
336 0.466 0.448 0.278 0.299 336 0.466 0.448 0.278 0.302
720 0.445 0.458 0.354 0.349 720 0.445 0.458 0.354 0.352
Avg 0.428 0.432 0.270 0.292 Avg 0.429 0.433 0.257 0.282

0.3

96 0.378 0.398 0.173 0.220

0.5

96 0.378 0.398 0.175 0.219
192 0.425 0.427 0.221 0.262 192 0.425 0.427 0.223 0.262
336 0.467 0.449 0.271 0.298 336 0.467 0.449 0.275 0.300
720 0.448 0.460 0.348 0.348 720 0.449 0.461 0.352 0.350
Avg 0.430 0.433 0.253 0.282 Avg 0.430 0.433 0.256 0.283
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(a) Input-96-predict-96 results on ETTh1 dataset.
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(b) Input-96-predict-192 results on ETTh1 dataset.

0 25 50 75 100 125 150 175 200

0.70

0.75

0.80

0.85

0.90

0.95

1.00 Pre-Trained
TimePPO
Ground Truth

(c) Input-96-predict-96 results on Weather dataset.
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(d) Input-96-predict-192 results on Weather dataset.

Figure 9. Long-term forecasting cases for ETTh1 and Weather dataset. Green lines are the ground truths, orange lines are the pre-trained
model predictions and blue lines are the TimePPO fine-tuned model predictions. The vertical line indicates where the prediction starts.
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(a) Input-96-predict-96 results on Traffic dataset.
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(b) Input-96-predict-192 results on Traffic dataset.
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(c) Input-96-predict-96 results on Traffic dataset.
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(d) Input-96-predict-192 results on Traffic dataset.

Figure 10. Zero-Shot forecasting cases for Traffic dataset. Green lines are the ground truths, orange lines are the pre-trained model
predictions. The vertical line indicates where the prediction starts.
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