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ABSTRACT

Utility and privacy are two crucial measurements of the quality of synthetic tab-
ular data. While significant advancements have been made in privacy measures,
generating synthetic samples with high utility remains challenging. To enhance
the utility of synthetic samples, we propose a novel architecture called the Down-
Stream Feedback Generative Adversarial Network (DSF-GAN). This approach in-
corporates feedback from a downstream prediction model during training to aug-
ment the generator’s loss function with valuable information. Thus, DSF-GAN
utilizes a downstream prediction task to enhance the utility of synthetic samples.
To evaluate our method, we tested it using two popular datasets. Our experiments
demonstrate improved model performance when training on synthetic samples
generated by DSF-GAN, compared to those generated by the same GAN archi-
tecture without feedback. The evaluation was conducted on the same validation
set comprising real samples. All code and datasets used in this research will be
made openly available for ease of reproduction.

1 INTRODUCTION & RELATED WORK

1.1 INTRODUCTION

The use of synthetic tabular data is a topic of high recent interest. Synthetic data serves various
purposes, such as preserving privacy by replacing the original samples (Yoon et al., 2020), supple-
menting scarce datasets to develop models requiring more data points and boosting performance
(Che et al., 2017), and balancing datasets to eliminate bias (Perets & Rappoport, 2023). However,
the utility of the generated synthetic data is a critical factor. Data utility measures the effectiveness of
synthetic data for a specific task when compared to real samples. One common method for assessing
synthetic data utility is by evaluating machine learning efficacy, i.e., comparing the performance of
a model trained on synthetic samples with one trained using the real samples, evaluated on the same
test set (Chin-Cheong et al., 2019). Despite the success of GAN-based approaches in generating
realistic and privacy-preserving synthetic samples, the utility of synthetic tabular data lags behind
that of real samples in state-of-the-art results (Xu et al., 2019; Rajabi & Garibay, 2022).

1.2 RELATED WORK

A feedback mechanism was first introduced as a way to enhance synthetic samples’ similarity.
CTAB-GAN (Zhao et al., 2021) and its predecessor CTAB-GAN+ (Zhao et al., 2022) both pro-
pose a conditional GAN with a form of feedback that verifies the semantic integrity of synthetic
samples’ feature values (e.g., a sample whose sex=female, and prostate cancer=true is
not semantically correct) (Zhao et al., 2022). Unlike these approaches, our approach uses the clas-
sification or regression performance of a model trained for the specific underlying task the data is
aimed at solving. Feedback GAN (FBGAN) (Huh et al., 2019) uses a separate predictor denoted as
a function analyzer to optimize the generated gene sequences for desired properties, samples above
a threshold are fed back into the discriminator. Similarly, the Feedback Antiviral Peptides GAN
(Hasegawa et al., 2022) uses AVPs sampled from the generator mid-training to further train the dis-
criminator. While all of the above approaches propose some sort of feedback mechanism, to the best
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of our knowledge, no documented literature proposed using feedback from the actual classifier or
regressor trained for the actual downstream task the synthetic data is generated for.

2 METHODOLOGY

The original GAN loss function is given by:

min
G

max
D

Ex∼Pdata(x)[logD(x; θd)] + Ez∼Pz(z)[1− logD(G(z; θg); θd)]

Where Pdata(x) is the real data’s distribution. D(x; θd) is the prediction produced by the discrimi-
nator D, when fed with a mini-batch of real samples x, w.r.t the discriminator’s parameters θd. Pz

is the noise distribution from which the generator G is sampling to generate the synthetic samples,
by employing the function G(z) w.r.t the generator’s parameters θg . D(G(z; θg); θd) represents the
prediction produced by the discriminator D for the a mini-batch of generated sample w.r.t to θd. The
training procedure consists of two loops optimizing G and D iteratively (Goodfellow et al., 2020).

We demonstrate our architecture using the Conditional Tabular GAN (CTGAN) (Xu et al., 2019)
where the loss function is defined as:

min
G

max
w∈W

V (G, f) = Ex∼Pdata(x)[f(x;w)] + Ez∼Pz [f(G(z; θg);w)] +H

Where the discriminator D is replaced with a critic f as proposed by (Arjovsky et al., 2017) and H
is the binary cross entropy loss between the conditional vector composed on the real samples and
the one composed on the generated samples. Let lossG denote generator loss, and lossD denote
discriminator loss, our proposed approach (DSF-GAN) facilitates feedback from a downstream task
mid-training, adding a loss term of the downstream classifier of regressor to the lossG scaled by
λ ∈ R+ to control the magnitude of the feedback term.

Case 1 – Classification: let h(x, θh) denote a logistic regression model, with loss function given as
log-loss:

L = − (y log(ŷ) + (1− y) log(1− ŷ))

Case 2 – Regression: let h(x, θh) denote a linear regression model, with loss function given as
RMSE:

L =

√√√√ 1

m

m∑
i=1

(ŷi − yi)2

Hence, with the regression or classification loss denoted as Lf , the new LossG with feedback is:

LG = Ez∼Pz
[f(G(z; θg);w)] +H + (λ ∗ Lf )

3 EXPERIMENTS

We used the base GAN architecture presented in (Xu et al., 2019) for this experiment. For empir-
ically evaluating the increase in synthetic data utility contributed by the downstream feedback, we
used two distinct datasets. We trained a DSF-GAN for N

2 epochs using the original loss function.
For each iteration of training in the remaining epochs (N2 + 1,..,N ), we sampled synthetic samples
x̂ from G and used it to train a logistic regression or linear regression model. We then added the re-
spective loss term to lossG. Post-training, we sampled n samples from the trained model, and used it
as a training set for a regression or classification model, we evaluated the model performance using
a set-aside validation set comprised of real samples which were excluded from the GAN training.
Our results show an increase in utility for the classification and regression tasks and are presented in
Tables 2 and 3. Epochs, batch sizes, datasets, and more details are presented in Appendix A.

4 CONCLUSIONS

In this work, we propose a novel GAN architecture, with a feedback mechanism from a downstream
task (i.e., the original task the dataset was used to solve). This was done by utilizing the loss
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function of the downstream task trained on the synthetic samples mid-training, and evaluated on
the real samples. The empirical experiments show increased synthetic data utility, hence proving
the potential of this architecture. Many directions for future work are possible. For example, using
other forms of feedback or feedback models. This research is another stepping stone in enabling
synthetic data’s safe and efficient use in machine-learning tasks.

URM STATEMENT

We acknowledge that all authors in this paper meet the URM criteria of ICLR 2024 Tiny Papers
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A APPENDIX

A.1 FIGURES

Real Samples

Generator

Discriminator

Discriminator Loss

X

X

Cond. Vector

La
te

nt
 N

oi
se

Classifier\Regressor

Sample n=Ntrain

Real 
Samples 
Test Set

Synthetic 
Samples

Feedback Loss (Lf)

^

Figure 1: Downstream Feedback Generative Adversarial Network Schematic Flow

A.2 EXPERIMENTAL DETAILS

Before training the GAN model, a train, validation split is performed. The training samples are
used to train the GAN models, while the validation set, comprised of real samples, is set aside for
evaluating the synthetic data which is ultimately generated by the trained models. Both the GAN
models (base architecture and with the feedback mechanism) are trained separately, using the exact
same training set, the same number of epochs, batch size, and other parameters e.g., embedding
dimensions and learning rate.
To further ensure the stability of the results, we used five-fold Cross-validation and computed the
confidence interval, both in the initial split phase before GAN training and in the synthetic data
sampling where we sample from the trained model to train the downstream classifier or regressor to
evaluate the synthetic data utility.

A.2.1 DATASETS

1. House Price - https://www.kaggle.com/datasets/shree1992/housedata

2. Adult Census Income - https://archive.ics.uci.edu/dataset/2/adult
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A.2.2 MODEL TRAINING

Data set n Epochs Batch size λ
Adult 32,560 100 500 1
House 4,551 500 200 1

Table 1: Training specifics for DSF-GAN

A.3 RESULTS

No Feedback Feedback
Data set Precision Recall Precision Recall
Adult 0.575± 0.003 0.441± 0.007 0.598± 0.003 0.485± 0.006

Table 2: Results for classification feedback model, precision and recall for a model evaluated on
synthetic generated by the base GAN model, and precision, recall for a model trained on synthetic
data generated by the DSF-GAN with the feedback mechanism. All models are evaluated using a
validation set comprised of real samples

No Feedback Feedback
Data set RMSE R2 RMSE R2

House 0.0118± 1.7e−4 0.3607± 0.018 0.0115± 5.8e−5 0.3903± 0.006

Table 3: Results for regression feedback model, RMSE and R2 for a model evaluated on synthetic
generated by the base GAN model, and RMSE, R2 for a model trained on synthetic data generated
by the DSF-GAN with the feedback mechanism. All models are evaluated using a validation set
comprised of real samples
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