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ABSTRACT
Recommendation systems help users find information that matches
their interests based on their historical behaviors. However, gener-
ating personalized recommendations becomes challenging in the
absence of historical user-item interactions, a practical problem for
startups known as the system cold-start recommendation. Current
research tackles user or item cold-start scenarios but lacks solutions
for system cold-start. To tackle the problem, we initially propose
PromptRec, a simple but effective approach based on in-context
learning of language models, where we transform the recommen-
dation task into the sentiment analysis task of natural languages
containing user and item profiles. However, this naïve strategy
heavily relied on the strong in-context learning ability emerged
from large language models, which could suffer from significant
latency for online recommendations. To fill this gap, we present
a theoretical framework to formalize the connection between in-
context recommendation and language modeling. Based on it, we
propose to enhance small language models with a data-centric
pipeline, which consists of: (1) constructing a refined corpus for
model pre-training; (2) constructing a decomposed prompt tem-
plate via prompt pre-training. They correspond to the development
of training data and inference data, respectively. To evaluate our
proposedmethod, we introduce a cold-start recommendation bench-
mark, and the results demonstrate that the enhanced small language
models can achieve comparable cold-start recommendation per-
formance to that of large models with only around 17% of their
inference time. To the best of our knowledge, this is the first study
to tackle the system cold-start recommendation problem. We be-
lieve our findings will provide valuable insights for future works.
The benchmark and implementation of the methods are available
at https://anonymous.4open.science/r/PromptRec-C3EF/.
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1 INTRODUCTION
Recommendation systems filter massive online information and
help users discover items tailored to their interests. Traditional rec-
ommendation systems such as collaborative filtering [19, 20, 53] and
content-basedmethods [11] rely on historical user-item interactions
(e.g., clicks, purchases, ratings) to learn user/item representations
and find matched items for users. However, this pipeline would fail
in scenarios where we could not obtain any user-item interactions,
and we call it the system cold-start recommendation problem, which
typically happens in situations such as start-up businesses [3, 40].
Although cold-start recommendation scenarios have been studied
in previous research [23, 33, 39], as illustrated in Figure 1, they still
assume historical user-item interactions are available for training
or during inference, which differs from our setting. A straight-
forward strategy to tackle the system cold-start recommendation
problem is to manually design rules, such as recommending popular
or seasonal items [8, 39], but the recommendation results are less
personalized and could hurt user experiences.

One potential direction to solve the system cold-start recom-
mendation problem is leveraging in-context learning with large
language models (LLMs) [4, 30, 52], demonstrated by LLMs could
quickly adapt to a new task (recommendation in our study) without
training them on a task dataset. Intuitively, the relation between
user interests and item properties has been implicitly expressed as
a natural language in public corpora. Thus, it could be captured
by LLMs and used for cold-start recommendations. However, in-
context learning is an emergent ability of large language models,
which usually starts from hundreds of millions to billions of parame-
ters. Therefore, adopting these methods for online recommendation
is impractical due to their slow and costly inference. This naturally
raises a question: could small language models be in-context
recommenders for system cold-start recommendation?

To answer this question, we initially propose a simple but effec-
tive in-context learning approach by leveraging language models,
named PromptRec, to tackle the system cold-start recommendation
problem. Specifically, PromptRec first maps profile features of users
and items to natural language descriptions, then applies a template
reformatting the recommendation task as a language modeling
task over binary sentiment words, and finally leverages a language
model to accomplish the task and perform recommendations. Our
pilot experiments show that large language models successfully
makes personalized cold-start recommendations, but small
language models fail, consistent with the scaling law [22, 59]
observed in the emergent in-context learning ability of LLMs.

To analyze the reason behind this failure, we propose a theo-
retical framework to formalize the mechanism of in-context rec-
ommendation with PromptRec under the Hidden Markov Model
(HMM) assumption [61]. Under the assumption, a language model
first infers the “concept” (sentiment polarity in this study) based on
the input prompt (user-item profiles and a template in this study),
and then makes recommendations conditioned on both the inferred
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Figure 1: Illustration of different cold-start recommendation scenarios, including user cold-start [39], item cold-start [33],
user-item cold-start [23], few-shot recommend [5, 66], and system cold-start (ours).

concept and the input prompt. Our analysis demonstrates that lan-
guage models perform in-context recommendations by estimating
the likelihood of the sentiment words conditioned on the user-item
context and the prior probability to different pre-trained concepts.
Small language models fail to provide precise estimations of these
two factors due to their limited parameters.

With this finding, we enhance the small language models’ rec-
ommendation performance with improved estimation of in-context
prediction probabilities via a data-centric pipeline, including two
major steps: model pre-training and prompt template pre-training.
Specifically, if we could (1) pre-train the language model on a cor-
pus related to the recommendation scenario, and (2) pre-train the
prompt template with interactions from other recommendation
domains, the cold-start recommendation performance of small lan-
guage models could be enhanced. Note that the training data be-
longs to distributions different from the target recommendation
domain, so it does not violate the system cold-start setting. However,
we face two challenges due to the lack of user-item interactions in
the cold-start scenario: (1) how to find a corpus to pre-train small
models for recommendation tasks? (2) how to make the prompt tem-
plate generalizable across different domains? For the first challenge,
we propose refining a general corpus by maximizing mutual infor-
mation between the general documents and the synthetic user-item
interactions in the cold-start scenario. For the second challenge,
we propose to decompose prompt templates into the “task” and
“domain” prompts, where the former is transferable across different
recommendation scenarios. We verify these two methods and show
that the enhanced small languagemodels achieve comparable
performance with large models in just around 17% of their
inference times. Remarkably, enhanced BERT-mini with 11.3M
parameters (≈3% of BERT-large) achieve performance comparable
with BERT-large in terms of in-context recommendations under the
system cold-start setting. We summarize contributions as follows:
• We formalize the system cold-start recommendation problem
and introduce the first benchmark to our community.

• We propose PromptRec for system cold-start recommendation
and provide the first theoretical framework to formalize the in-
context recommendation with language models.

• We explore the potential of using small language models by
leveraging general corpus and cross domain datasets.

2 PRELIMINARY
2.1 Notations
In this work, we use boldface lowercase letters (e.g., c) to denote
vectors, boldface uppercase letters (e.g., R) to denote matrices, and
calligraphic capital letters (e.g., D) to denote sets. Specifically, each

recommendation dataset D = (U,I,R) has a user set U, an item
set I, and a matrix storing user-item interactions R ∈ R |U |× |I | ,
where 𝑟𝑢,𝑖 ∈ R indicates the interaction between the user 𝑢 and
the item 𝑖 . Each user and each item has 𝑑𝑈 and 𝑑𝐼 profile features
denoted as c𝑢 ∈ R𝑑𝑈 and c𝑖 ∈ R𝑑𝐼 , respectively. The profile features
are attributes that describe users or items (e.g., user’s age, gender,
and occupation; item’s name, brand, and category).

2.2 Problem Statement
We choose the click-through rate (CTR) prediction task [41] to set
up our recommendation scenario. That is, each record 𝑟𝑢,𝑖 ∈ {0, 1}
is a binary value, where 𝑟𝑢,𝑖 = 1 means user 𝑢 clicked item 𝑖 . The
recommendation system 𝑓 takes a user-item pair (c𝑢 , c𝑖 ) as input
to predict the probability 𝑟𝑢,𝑖 ∈ [0, 1] that the user will click on
the item as output based on model 𝑟𝑢,𝑖 = 𝑓 (𝑟𝑢,𝑖 = 1|c𝑢 , c𝑖 ). The
goal of CTR prediction is to minimize the difference L between the
predicted probability 𝑟𝑢,𝑖 and the real user-item interaction 𝑟𝑢,𝑖 .

2.3 System Cold-Start Recommendation
Under the system cold-start recommendation setting, we can not
obtain any interaction records, which is a common situation for
start-up companies that have just launched their businesses [40].
Therefore, in the system cold-start recommendation, we define a
target dataset as Dtgt = (Utgt,Itgt,Rtgt) with an empty interaction
matrix Rtgt = ∅. Our goal is to recommend items in Itgt to users
in Utgt by using their profile features {c𝑢 } and {c𝑖 }. We do not
allow the use of recorded interactions, no matter in training or in
inference, but recommendation system developers could explore
available resources to build user and item profiles.

3 METHODOLOGY
We introduce the details of the proposed framework. In Sec. 3.1,
we present PromptRec, an in-context learning approach to tackle
the system cold-start problem. In Sec. 3.2, we provide a theoretical
framework to build the connection between in-context recommen-
dation and language model. Furthermore, we develop a data-centric
pipeline to enhance the in-context recommendation of (small) lan-
guage models, with a focus on training corpus refinement in Sec. 3.3,
and inference-time prompt design in Sec. 3.4.

3.1 PromptRec
The traditional supervised learning paradigm fails under the system
cold-start setting because there is no training data for tuning the
model 𝑓 . The emergent in-context learning ability [4, 46] of LLMs is
a potential way to overcome this challenge, where the downstream
task is formatted as one of the language model pre-training tasks,
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also called “prompt” learning [29]. Recent prompt-based recom-
mendation systems [5, 47, 66] usually align the recommendation
process with the language modeling task, where LLMs are adopted
to estimate the probability of the item’s name appearing within a
user-item context. For example, given a context about the user inter-
actions as “A user clicked hiking shoes, will also click trekking poles”,
they treat the probability that “trekking poles” appears within this
context as the user preference to the candidate item “trekking poles”.
However, simply predicting item names is ineffective for recom-
mendation, especially in the zero-shot situation. This is because the
probability of the item’s name is affected by every single word in it,
where an item with a name made up of common words will have
a higher chance to appear, regardless of the context. For example,
“League of Legends” naturally has a higher probability than “Legend
of Zelda” since “League” is more common than “Zelda” in corpora.

To solve this problem, instead of predicting the item names,
we give recommendations by predicting the probability of chosen
binary words. In practice, these words can be sentiment words
(e.g., “good”, “bad”). Predicting the probabilities associated with
sentiment words can offer a more accurate representation of user
preferences by mitigating the influence of rare or high-frequency
words on the final recommendation outcomes. Formally, we define
a prompting function 𝑓prompt that maps the user-item pair (c𝑢 , c𝑖 )
into a context X𝑢,𝑖 = 𝑓prompt (𝑐𝑢 , 𝑐𝑖 ). By giving a language model
𝑓LM, the preference score 𝑟𝑢,𝑖 from user 𝑢 to item 𝑖 is estimated by:

𝑟𝑢,𝑖 =
𝑃 (Vpos)

𝑃 (Vpos) + 𝑃 (Vneg)
, (1)

where
𝑃 (V′) = 1

|V′ |
∑︁
𝑤∈V′

log 𝑝 (𝑤 |X𝑢,𝑖 ). (2)

Here, Vpos,Vneg ⊂ V are the predefined positive and negative
sentiment vocabulary sets,V is the full vocabulary set; 𝑝 (𝑤 |X𝑢,𝑖 )
is the predicted probability from the language model 𝑓LM that gen-
erates word 𝑤 conditioned on the context X𝑢,𝑖 with in-context
learning. We first manually design a template T as “The player is
a age gender occupation. name is categorized as a category video
game created by producer. Overall, the player feels [MASK] about
the game.”, where each underlined word is a slot. We then fill the
template slots with the user and item profile features 𝑐𝑢 and 𝑐𝑖 ,
which have been converted into natural language at first1. If we let
Vpos = {“𝑔𝑜𝑜𝑑”} andVneg = {“𝑏𝑎𝑑”}, the predicted preference 𝑟𝑢,𝑖
is computed by normalizing the probabilities of observing “good”
and “bad” at position [MASK].

3.2 In-context Recommendation Framework
Assume we only consider one word for each sentiment vocabulary
set, i.e., |Vpos | = |Vneg | = 1, then the objective of making cold-start
recommendation for a user-item pair with Eq. (1) is defined as:

minL(𝑟𝑢,𝑖 , 𝑟𝑢,𝑖 ) → max𝑝 (𝑦𝑢,𝑖 |X𝑢,𝑖 ), (3)

where 𝑦𝑢,𝑖 denotes the only positive word in Vpos if the ground-
truth preference 𝑟𝑢,𝑖 = 1; otherwise it is the only negative word in

1In this example, the user-item context X𝑢,𝑖 could be “The player is a young male
college student. Legend of Zelda is categorized as a action adventure video game created
by Nintendo. Overall, the player feels [MASK] about the game.”

Vneg. The equation above indicates that the effectiveness of recom-
mendation heavily relies on the accurate estimation of 𝑝 (𝑦𝑢,𝑖 |X𝑢,𝑖 ),
which is achieved by leveraging LLMs. However, a drawback of
employing LLMs in online recommendation is their relatively slow
inference speeds [25, 27]. One way to overcome this dilemma is
adopting small language models in PromptRec, but they are recog-
nized as having limited in-context learning abilities [4, 30, 32, 36].

To analyze how to enhance the in-context learning ability of
a language model, we extend 𝑝 (𝑦𝑢,𝑖 |X𝑢,𝑖 ) by assuming that a lan-
guage model generates words as a Hidden Markov Model (HMM)
suggested by [61]. Under the HMM assumption [1], a language
model 𝑓LM generates words through a two-step process, where it
first draws a concept 𝜃 ∈ Θ from concept bases Θ and then samples
a sequence of words conditioned on the concept. Thus, we can
extend the in-context recommendation objective function as:

max𝑝 (𝑦𝑢,𝑖 |X𝑢,𝑖 ) = max
∫
𝜃 ∈Θ

𝑝 (𝑦𝑢,𝑖 |X𝑢,𝑖 , 𝜃 )𝑝 (𝜃 |X𝑢,𝑖 )𝑑𝜃

∝ max
∫
𝜃 ∈Θ

𝑝 (𝑦𝑢,𝑖 |X𝑢,𝑖 , 𝜃 )𝑝 (X𝑢,𝑖 |𝜃 )𝑝 (𝜃 )𝑑𝜃 .
(4)

An effective recommendationmodel requires an accurate estimation
of each factor in the above equation. In Sec. 3.3, we introduce a
data refinement strategy for better probability estimation by model
pre-training. In Sec. 3.4, we introduce a prompt refinement method
for a better design of X𝑢,𝑖 by prompt pre-training.

3.3 Refining Corpus for Model Pre-training
3.3.1 Model Pre-training Meets In-context Recommendation.
We begin by theoretically analyzing why language models pre-
trained on a text corpus can be used for recommendation tasks.
Specifically, a language model is pre-trained to maximize the likeli-
hood of any observed 𝑇 -length sequence W = [𝑤1, ...,𝑤𝑇 ], where
each word 𝑤 belongs to V . Following the HMM framework, the
pre-training objective is written as:

max𝑝 (W) = max
∫
𝜃 ∈Θ

𝑝 (W|𝜃 )𝑝 (𝜃 )𝑑𝜃 . (5)

This objective encourages the language model to distinguish differ-
ent concepts and the word probabilities conditioned on the concepts
during model pre-training. If a pair of instance (X𝑢,𝑖 , 𝑦𝑢,𝑖 ) ∈ Dtgt is
present in a pre-training sequence, i.e.,W = [X𝑢,𝑖 , 𝑦𝑢,𝑖 ], the model
has chance to optimize the following objective function:

max𝑝 (X𝑢,𝑖 , 𝑦𝑢,𝑖 ) = max
∫
𝜃

𝑝 (X𝑢,𝑖 , 𝑦𝑢,𝑖 |𝜃 )𝑝 (𝜃 )𝑑𝜃 . (6)

Since 𝑝 (X𝑢,𝑖 , 𝑦𝑢,𝑖 |𝜃 ) = 𝑝 (X𝑢,𝑖 , 𝑦𝑢,𝑖 , 𝜃 )/𝑝 (𝜃 ), and 𝑝 (X𝑢,𝑖 , 𝑦𝑢,𝑖 , 𝜃 ) =

𝑝 (𝑦𝑢,𝑖 |X𝑢,𝑖 , 𝜃 )𝑝 (X𝑢,𝑖 , 𝜃 ), the objective can be transformed into:

max𝑝 (X𝑢,𝑖 , 𝑦𝑢,𝑖 ) = max
∫
𝜃

𝑝 (𝑦 |X𝑢,𝑖 , 𝜃 )𝑝 (X𝑢,𝑖 |𝜃 )𝑝 (𝜃 )𝑑𝜃 . (7)

We observe that Eq. (7) has the same form as Eq. (4), indicating
that pre-training language models on the texts containing the con-
tent of (X𝑢,𝑖 , 𝑦𝑢,𝑖 ) could improve recommendation performance by
enabling more accurate estimation of the probabilities. However,
pre-training small language models on a large and general corpus
containing the interaction contexts may not be beneficial since they
inadvertently allocate their limited parameters to encode irrelevant
documents. In the next subsection, we introduce how to refine a
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Figure 2: Refining corpus for model pre-training (RCMP) in
system cold-start recommendation.

general corpus into a smaller and more informative one, towards
pre-training small language models for recommendation.

3.3.2 Refined Corpus Extraction for Pre-training.
We consider a general corpus C collected from various real-world
sources, containing a recommendation-related corpus in the cold-
start scenario, i.e., C∗ ⊂ C. Pre-training 𝑓lm on general corpus C
benefits to cold-start recommendations. However, this approach is
resource-intensive and might not yield significant gains for small
language models, considering their limited parameters in storing
all the information in C. Also, it is difficult to precisely locate and
extract the C∗ subset to reduce the data size. Since C∗ is intractable
in the cold-start setting, we propose to seek a refined corpus Ĉ ⊂ C
with only 𝐾 documents but preserving the information of C∗.

Specifically, we construct Ĉ based on a self-constructed corpusZ.
Here,Z is the complete set of combinations of all possible user/item
profiles and sentiment polarities, i.e.,Z = {[𝑓prompt (𝑐𝑢 , 𝑐𝑖 ), 𝑦]}, for
∀𝑐𝑢 ∈ R𝑑𝑈 , ∀𝑐𝑖 ∈ R𝑑𝐼 , and ∀𝑦 ∈ Vpos ∪Vneg. The relation among
Z, C, and C∗ is visualized in Figure 2.We can have C∗ ⊂ Z sinceZ
exhausts all possibilities in the cold-start scenario. Moreover, since
both the general corpus and our constructed corpus contain C∗,
we can obtain C∗ by finding the subset Ĉ maximizing the mutual
information between C andZ, which is formed as:

Ĉ = argmaxC′∈C, | C′ |=𝐾 𝑀𝐼 (C′;Z)
= argmaxC′∈C, | C′ |=𝐾 𝐻 (Z) − 𝐻 (Z|C′)
∝ argmaxC′∈C, | C′ |=𝐾 − 𝐻 (Z|C′)

= argmaxC′∈C, | C′ |=𝐾
∑︁

𝑧∈Z,𝑐∈C′
𝑝 (𝑐, 𝑧) log𝑝 (𝑧 |𝑐) ,

(8)

where 𝑀𝐼 (·; ·) denotes mutual information [44], 𝐻 (·) and 𝐻 (·|·)
refer to the entropy and conditional entropy, 𝑝 (·, ·) and 𝑝 (·|·) are
the joint and conditional probability of two pieces of texts. Through
our design, we can extract documents Ĉ most correlated to the cold-
start scenario, implicitly containing the related interaction records
(X𝑢,𝑖 , 𝑦𝑢,𝑖 ). Pre-training language model 𝑓LM on Ĉ will empower
PromptRec with better in-context recommendation performance
for the cold-start scenario.

Practically, the above two probabilities can be estimated with a
pre-trained language model 𝑔LM. Specifically, the joint probability
𝑝 (𝑐, 𝑧) can be approximated with the similarity of two document
embeddings [65]: 𝑝 (𝑐, 𝑧) = 1

1+exp (−𝑒𝑐 ·𝑒⊤𝑧 )
, where 𝑒𝑐 as well as 𝑒𝑧 are

generated representations of documents 𝑐 and 𝑧 from 𝑔LM. Also, the
conditional probability 𝑝 (𝑧 |𝑐) is estimated by [6, 36]: log𝑝 (𝑧 |𝑐) =
1
|𝑧 |

∑ |𝑧 |
𝑙=0 log𝑔LM (𝑧𝑙 |𝑐, 𝑧1, ..., 𝑧𝑙−1). Please note that, 𝑔LM could be

a different language model than 𝑓LM used in predicting 𝑟𝑢,𝑖 . The
two models are applied at different stages, where 𝑔LM is for data
pre-processing, and 𝑓LM is for prediction. In this section, we refine
the large corpus C to a small one Ĉ, leading to a better in-context
recommendation performance for our cold-start scenario via pre-
training model 𝑓LM on it, which is verified by our experiments.

3.4 Transferable Prompt Pre-Training
3.4.1 Prompt Pre-training Meets In-context Recommendation.
We start with theoretically analyzing why training prompt tem-
plates with user-item interactions is beneficial to in-context rec-
ommendations. Without loss of generality, we consider a trainable
prompt template S as a prefix of user-item context X𝑢,𝑖 . Then, the
learning objective of Eq. (3) is reformalized as:

minL(𝑟𝑢,𝑖 , 𝑟𝑢,𝑖 ) → max
S

𝑝 (𝑦𝑢,𝑖 |S,X𝑢,𝑖 ). (9)

In practice, we concatenate the word embedding of S and X𝑢,𝑖 to-
gether to be fed into the language model 𝑓LM, as shown in Figure 3.
In the traditional supervised training paradigm, wherewe have suffi-
cient training samples from the target datasetDtgt, the optimal pre-
fix prompt S∗ could be optimized with gradient-descent algorithms
according to S∗ = argmaxS

∑
(X𝑢,𝑖 ,𝑦𝑢,𝑖 ) ∈Dtgt 𝑝 (𝑦𝑢,𝑖 |S,X𝑢,𝑖 ). How-

ever, under the cold-start setting, we cannot collect observed user-
item interactions from our target datasets.

To overcome this challenge, we collect interaction records from
other recommendation scenarios, called source datasets Dsrc =

{D (𝑚) }𝑀
𝑚=1. Each source datasetD (𝑚) = (U (𝑚) ,I (𝑚) ,R(𝑚) ) has

a user set, an item set, an interaction matrix, and the profile features
of users and items. Note that, the interaction matrix of each source
dataset R(𝑚) is not empty, while the target matrix Rtgt = ∅ is empty
under the cold-start setting. In addition, the users and items in the
target dataset are absent in the source datasets: Utgt ∩ Usrc =

Itgt ∩ Isrc = ∅, where Usrc = U (1) ∪ · · · ∪ U (𝑚) and Isrc =

I (1) ∪ · · · ∪I (𝑚) . Formally, we estimate the optimal prompt prefix
S∗ for the target dataset by pre-training on the source datasets,
which is expressed under the HMM framework as:

S∗ = argmax
S

𝑀∑︁
𝑚=1

∑︁
(X𝑢,𝑖 ,𝑦𝑢,𝑖 ) ∈D (𝑚)

src∫
𝜃

𝑝 (𝑦𝑢,𝑖 |S,X𝑢,𝑖 , 𝜃 )𝑝 (S,X𝑢,𝑖 |𝜃 )𝑝 (𝜃 )𝑑𝜃,

(10)

where (X𝑢,𝑖 , 𝑦𝑢,𝑖 ) denotes a user-item interaction record coming
from one of the source datasets. By using the chain rule of proba-
bility, we could simplify the above objective function as:

S∗ = argmax
S

𝑀∑︁
𝑚=1

∑︁
(X𝑢,𝑖 ,𝑦𝑢,𝑖 ) ∈D (𝑚)

src∫
𝜃

𝑝 (S|X𝑢,𝑖 , 𝑦𝑢,𝑖 , 𝜃 )𝑝 (𝑦𝑢,𝑖 |X𝑢,𝑖 , 𝜃 )𝑝 (X𝑢,𝑖 |𝜃 )𝑝 (𝜃 )𝑑𝜃 .
(11)
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Figure 3: Transferable prompt pre-training (TPPT) for PromptRec in system cold-start recommendation.

Thus, the prompt posterior probability 𝑝 (S|X′
𝑢,𝑖
, 𝑦′
𝑢,𝑖
, 𝜃 ) indicates

that the optimal prefix S∗ captures information from three as-
pects: user-item contexts, sentiment words, and the mappings from
user-item contexts to the sentiment words. Ideally, the information
within the sentiment words, as well as the mappings, are shared
across datasets, while that of user-item contexts is not. This is be-
cause different recommendation datasets usually refer to different
domains, such as movies, restaurants, toys, and news. Thus, directly
training on the source datasets cannot produce the optimal prefix
prompt for the target domain.

3.4.2 Prompts Decomposition for Transferable Pre-training.
To tackle the challenge, we propose to decompose the learned
prefix prompts S into two groups, namely task prompt S𝑇 and
domain prompt S (𝑚)

𝐷
, whereS𝑇 describe the task “recommendation”

and S (𝑚)
𝐷

reflects the topics of a recommendation scenario. Per
discussions to Eq. (11), S𝑇 should capture the information about
sentiment words as well as the context-sentiment mappings, while
S (𝑚)
𝐷

reflects unique characteristics of user-item contexts. Thus,
the learning objective of our design is finally reformatted as:

minL(𝑟𝑢,𝑖 , 𝑟𝑢,𝑖 ) → max
S𝑇 ,S (𝑡𝑔𝑡 )

𝐷

𝑝 (𝑦𝑢,𝑖 |S𝑇 ,S
(𝑡𝑔𝑡 )
𝐷

,X𝑢,𝑖 ), (12)

where S (𝑡𝑔𝑡 )
𝐷

is the domain prompt for the target domain Dtgt. In
cold-start recommendation, this objective is intractable since user-
item interactions in the target domain are not available. However,
by our design, a domain prompt should encode the topic within
a recommendation scenario, which means it can be represented
by the keywords of item profiles. In contrast, the task prompt has
the ability to transfer across different scenarios, thus it should be
learned from various recommendation scenarios. These insights
motivate us to propose a two-stage greedy algorithm to successively
optimize S (𝑡𝑔𝑡 )

𝐷
and S𝑇 under our cold-start setting. In the first

stage, we extract the keywords of item profiles from the target do-
main to estimate the target-domain prompt: S (𝑡𝑔𝑡 )∗

𝐷
= 𝑔dom (Dtgt),

where 𝑔dom is designed as a keyword extraction method such as
TF-IDF scores. In the second stage, we leverage the interactions
from source datasets to optimize the task prompt according to the
reformed Eq. (11) with our prompt decomposition method:

S∗
𝑇 = argmaxS𝑇

𝑀∑︁
𝑚=1

∑︁
(X𝑢,𝑖 ,𝑦𝑢,𝑖 ) ∈D (𝑚)

src∫
𝜃

𝑝 (S𝑇 ,S (𝑚)∗
𝐷

|X𝑢,𝑖𝑦𝑢,𝑖 , 𝜃 )𝑝 (𝑦𝑢,𝑖 |X𝑢,𝑖 , 𝜃 )𝑝 (X𝑢,𝑖 |𝜃 )𝑝 (𝜃 )𝑑𝜃,

(13)

where S (𝑚)∗
𝐷

= 𝑔dom (D (𝑚)
src ). After obtaining S∗

𝑇
, we could apply

it to the cold-start recommendation on Dtgt as demonstrated in
Figure 3. Specifically, S∗

𝑇
and S (𝑡𝑔𝑡 )∗

𝐷
are inserted as the prefix to

each user-item context X𝑢,𝑖 in cold-start recommendations.

4 EXPERIMENT
We investigate three research questions (RQ): (1) How to evaluate
the cold-start performance of PromptRec? (2) Can PromptRec make
personalized recommendations in the cold-start scenario? If so, how
it is sensitive to the scales of language models? (3) Can Refined
Corpus Model Pre-training (Sec. 3.3) and Transferable Prompt Pre-
training (Sec. 3.4) helps PromptRec generalize to small language
models? To answer these questions, we introduce the first bench-
mark evaluating cold-start recommendation systems. We hope this
benchmark can facilitate future research on developing recommen-
dation systems under the cold-start setting.

4.1 Cold-start Recommendation Benchmark
Our Cold-start Recommendation Benchmark consists of three pub-
lic datasets and a dataset pre-processing strategy designed to sim-
ulate the cold-start challenge in real-world scenarios. It also con-
siders baseline methods, including traditional supervised learning
methods, rule-based methods, and LLM-based methods, where all
baselines and future tests will be evaluated using GAUC.
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Table 1: Statistics of datasets.

Dataset #User/Feature #Item/Feature #Interaction Density
ML-100K 943/4 1682/22 100,000 3.15%
Coupon 8312/12 6924/13 12,684 0.01%

Restaurant 138/20 939/25 1,161 0.45%

4.1.1 Datasets. The constraint of cold-start recommendation is the
lack of user-item interactions during training. Under this setting,
recommendation systems heavily rely on profile features to make
personalized recommendations. We finally collect three datasets
that meet the requirements: In-Vechical Coupon Recommenda-
tion (Coupon) [55], Mexico Restaurant Recommendation (Restau-
rant) [50], andMovieLens-100K (ML-100K) [17]. The Coupon dataset
evaluates the performance of recommenders in delivering accu-
rate shop discounts to drivers; the Restaurant dataset measures
the ability of systems to predict user preferences for restaurants;
the ML-100K dataset assesses the ability of models to recommend
movies to users. Table 1 summarizes the dataset statistics.

4.1.2 Dataset Partition. Each dataset is split into training, valida-
tion, and test sets, where the training dataset consists of 250 samples,
the valid dataset has 50 samples, and the rest of each dataset forms
the test dataset. Here, the training dataset is retained only to enable
the evaluation of recommendations for future works, where a small
number of interaction records are available for model tuning. The
validation dataset is included and kept smaller than the training
dataset. All models are compared by their averaged performances
on the test dataset over multiple random seeds.

4.1.3 Data Preprocessing. In this paper, we treat recommendation
as the Click-Through Rate (CTR) prediction problem. Since the
initial labels of these datasets are the intensity of user preferences
toward items, we transform them into binary labels {0, 1} by intro-
ducing a threshold [35, 67], so that they can be used as benchmarks
for CTR prediction. Here, the thresholds for ML-100K, Coupon, and
Restaurant datasets are 4.0, 1.0, and 2.0, respectively.

4.1.4 Metrics. The CTR prediction is a binary classification task
that could be evaluated by the ROC-AUC score [15]. However,
AUC has limitations in personalized recommendations due to its
computation involving all user-item interactions, leading to unex-
pected interference between different users [68]. The Group-AUC
(GAUC) [18, 68] score addresses it by computing AUC for each user
separately and then aggregating them by weighted average:

𝐺𝐴𝑈𝐶 =
∑︁
𝑢∈U

#ℎ𝑖𝑠𝑡𝑜𝑟𝑦𝑢 ×𝐴𝑈𝐶 (𝑢)∑
𝑢∈U #ℎ𝑖𝑠𝑡𝑜𝑟𝑦𝑢

, (14)

where #ℎ𝑖𝑠𝑡𝑜𝑟𝑦𝑢 is the number of history records for user 𝑢, and
𝐴𝑈𝐶 (𝑢) is the AUC over all interactions records for user 𝑢.

4.1.5 Baseline Methods. We consider two categories of baseline
methods. The first one includes baselines that rely on human-
designed rules, such as randomly recommending items to users
Random. The second category includes LLM-based unsupervised
methods, which use verbalized features of users and items as inputs
and make recommendations by using outputs from LLMs without
fine-tuning. For example, EmbSim [66] generates two embeddings

Table 2: PromptRec for cold-start recommendation.

Strategy LLM ML-100K Coupon Restaurant

Baselines
Random - 50.10±0.13 49.76±1.33 50.44±2.40
EmbSim BERT 50.22±0.01 50.31±0.12 51.93±0.87
PairNSP BERT 48.88±0.01 54.14±0.11 47.70±2.77
ItemLM BERT 50.42±0.01 31.98±0.16 49.25±1.76

Ours

PromptRec

BERT 52.39±0.01 63.77±0.18 55.49±1.41
GPT2 54.45±0.01 55.03±0.19 51.83±1.06
T5 56.16±0.01 51.11±0.21 52.68±0.88

LLaMA 57.03±1.89 56.08±0.09 54.43±1.45
Results are converted to percentages for readability. We bold the best results and
underline the second-best results in each dataset.

of the user and item verbalized features and predicts user-item
preferences by taking the dot product of their embeddings. PairNSP
applies the next sentence prediction task [6], where the verbalized
features of the user and item are concatenated and fed into a lan-
guage model to determine whether they belong to the same context.
ItemLM [5] predicts the preference by calculating the likelihood of
the item’s name appearing within the user-item context.

4.2 PromptRec can Make Personalized
Cold-Start Recommendations

4.2.1 Experiment Designs.
Language language models. We consider diverse large language
models across different scales, architectures, pre-training strategies,
and model sizes to show the generalization of PromptRec. Based
on factors including accessibility and popularity, we choose BERT-
large-uncased [6], GPT-2-medium [2], T5-large [38], and LLaMA-
7B [48]. The numbers of their parameters span from 355M to 7B. We
use their implementations and checkpoints from Huggingface [60].
Prompting function designs. Human experts design the prompt-
ing function 𝑓prompt for each dataset, which includes three compo-
nents: templates, verbalizers, and labelers. Each template has the
following parts: the user profile, the item profile, and the connection
between the above profiles and the recommendation task. We con-
sider two types of verbalizers, namely, the continuous-feature ver-
balizer and the discrete-feature verbalizer. The continuous-feature
verbalizer breaks down the feature value range into multiple inter-
vals, each of which is assigned with a natural language description
by experts (e.g., age 72 is verbalized with word “old”.). In contrast,
the discrete-feature verbalizer directly returns a description for
each feature value. For example, a certain user-item interaction
from the ML-100K dataset is formatted as the following sentences
via going through the human-designed template and verbalizer:
“The woman is a middle-aged writer living in Michigan. The StarWars
is categorized as an adventure, animated, romantic, scientific, war
movie. The user is that woman, and the item is that movie. In short,
the user feels [MASK] about the item.” For causal language models
such as LLaMA, the texts remain mostly the same, except that the
last sentence is replaced with “In short, the user’s attitude towards
the item is [MASK]”. The expert-designed labeler regards positive
as the positive word, while negative as the negative word.
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Table 3: Sensitivity analysis of model sizes.

Family #Params ML-100K Coupon Restaurant

BERT
29.1M 52.10±0.01 50.50±0.16 49.29±0.81
110M 53.55±0.01 62.96±0.18 52.67±1.28
336M 52.39±0.01 63.77±0.18 55.49±1.41

4.2.2 Experiment Results.
Table 2 presents the results of the PromptRec approach with differ-
ent backbone large language models on the proposed benchmark.
We also report the results of several baseline zero-shot solutions on
the top with BERT-large. In addition, Table 3 reports the results of
BERT with different scales. Some observations are made as below.

Baseline methods mostly fail to make personalized recom-
mendations under the system cold-start setting. There is no
baseline that consistently makes effective personalized recommen-
dations on all datasets under the system cold-start setting. Some
possible reasons are as follows. Essentially, personalized recommen-
dation requires the models to capture the fine-grained differences
between items from the same category. However, the two pre-
training tasks (i.e., text representation and NSP [6]) of EmbSim and
PairNSP can only be used to distinguish coarse-grained semantics.
Thus, they can not well handle the recommendation task. On the
other hand, although ItemLM relies on a fine-grained pre-training
task (i.e., MLM [6]), it suffers from linguistic bias, which is discussed
in Sec. 3.1. This observation shows that it is very challenging to
conduct system cold-start recommendations.

PromptRec could be generalized to various LLM families for
system cold-start recommendation. PromptRec shows a signifi-
cant improvement over the Random strategy with every LLM can-
didate on each dataset, indicating its strong generalization ability.
Also, PromptRec improves the performance of the Random strategy
on the three datasets by up to 6.93%, 14.01%, and 5.05% GAUC,
respectively. This result demonstrates that large language mod-
els could make personalized recommendations with their strong
in-context learning ability.

PromptRec is sensitive to language model sizes. In Table 3,
we observe that the BERT family generally displays a gradual im-
provement in performance with an increase in model sizes. Notably,
the 29.1M variation cannot provide sufficient cold-start recommen-
dations on the Coupon and Restaurant datasets. This result aligns
with recent studies [59] on the relation between model sizes and
in-context learning ability. It also verifies the necessity of our im-
provement on small language models.

4.3 Small Language Models are Cold-Start
Recommenders with RCMP and TPPT

4.3.1 Experiment Designs.
Small language models. We consider four small variations in the
BERT family introduced by [49], including BERT-tiny, BERT-mini,
BERT-small, and BERT-medium. They share the same architecture
and pre-training strategies with BERT-base/large. The smallest vari-
ation, BERT-tiny, only contains 4.4M parameters with 2 transformer
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Figure 4: Averaged cold-start recommendation performance
compared with inference time over different model scales.

layers and 128 hidden dimensions, which is the smallest publicly
available general pre-trained language model.
Details of Refined Corpus Model Pre-training (RCMP). RCMP
has two steps: refining a general corpus and further pre-training lan-
guage models on the refined corpus. Specifically, we refine the gen-
eral corpus according to Eq. (8) with hyper-parameter 𝐾 = 10000.
The general corpus C is constructed as a subset of the C4 [37]
dataset, where we randomly sample 5% documents having at least
30 unique words and 3 sentences, resulting in roughly 17 million
documents. Document embeddings used for estimating 𝑝 (𝑐, 𝑧) are
produced by an encoder [56] trained on 1 billion paired sentences.
We discovered that estimating 𝑝 (𝑧 |𝑐) has minimal impact on docu-
ment quality, so we treat it as a constant to expedite corpus selection.
For further pre-training, we follow previous works [14], employing
the Adafactor [45] optimizer with learning rate 2𝑒−5, batch size
32, 10K training steps, and learning rate linear decay (detailed in
Appendix A.1). We repeat the training over five random seeds, and
report the average of the best scores for each random seed.
Details of transferable prompt pre-training (TPPT). For each
dataset in the benchmark, we treat it as a single cold-start scenario,
so we use the other two datasets to pre-train the task prompt S𝑡 .
We adopt a continuous task prompt, represented as trainable vec-
tors aligned with the pre-trained model’s dimension. Our training
utilizes the AdamW optimizer with a learning rate of 1𝑒−4 and
a batch size of 64 for 50K steps. Performance is assessed on the
validation set after each epoch. We validate the performance on
the validation set at the end of each epoch. If the performance de-
creases consecutively twice, the learning rate will be reduced by a
factor 0.5. The early stop strategy is triggered by three 3 times learn-
ing rate reduction. Domain prompts S𝑑 derive from each dataset’s
top TF-IDF [42] scored keywords. Every task has a 50-word task
prompt, while domain prompts vary: 5, 10, 50, 100, and 200 words.
Experiments for each configuration use five random seeds, with
results reported for the best-performing average setup.

4.3.2 Experiment Results.
Table 4 reports the results of TPPT and RCMP with the three small
language models over five random seeds. Figure 4 demonstrates
the relation between cold-start performance and inference time.
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Table 4: PromptRec with enhanced small language models.

Model Strategy ML-100K Coupon Restaurant

BERT-tiny
(4.4M)

PromptRec 50.72±0.01 47.53±0.16 49.41±2.31
+RCMP 51.15±0.20 59.11±0.76 50.47±2.20
+TPPT 51.86±0.05 57.37±0.09 53.22±0.23

BERT-mini
(11.3M)

PromptRec 52.45±0.01 45.63±0.19 53.40±0.97
+RCMP 52.77±0.01 61.72±3.97 53.63±0.63
+TPPT 53.17±0.46 62.36±0.08 53.73±1.94

BERT-small
(29.1M)

PromptRec 52.10±0.01 50.50±0.16 49.29±0.81
+RCMP 52.30±0.20 55.25±3.39 53.91±1.61
+TPPT 52.67±2.75 64.57±0.21 54.86±0.97

Further pre-training small language models on refined cor-
pus enhances its cold-start recommendation performance. In
Table 4, the RCMP strategy enhances PromptRec’s performance
across all datasets and small language models. Notably, RCMP
boosts BERT-mini’s performance from 45.63% to 61.72% GAUC. For
the five instances where PromptRec’s performance is approximately
or below 50.00% GAUC, RCMP facilitates effective in-context rec-
ommendations with the exception of BERT-tiny on the Restaurant
dataset. These findings indicate that RCMP enables small language
models to achieve in-context recommendations through advanced
pre-training on a refined corpus.

Pre-training transferable prompts help small languagemod-
els for better cold-start recommendation performance. In Ta-
ble 4, the TPPT strategy markedly enhances PromptRec’s cold-start
recommendation performance across all situations. Specifically,
BERT-small on the coupon dataset attains a GAUC of 64.57, sur-
passing the highest GAUC of 63.77 achieved by BERT-large among
all candidate models. As the same observation on RCMP, TPPT
facilitates in-context recommendations in all five settings where
previously the language models were suboptimal. Furthermore,
TPPT consistently outperforms RCMP in cold-start scenarios. These
results indicate that while small language models possess the po-
tential for in-context recommendation in cold-start situations, they
require optimal prompts for activation.

Improved small language models make effective cold-start
recommendations with an efficient inference speed. Figure 4
illustrates a trade-off between model size and performance, with
BERT-large achieving the highest GAUC near 58% but with almost
40 ms inference time. However, the proposed strategies offer a
significant boost of small language models from random recom-
mendation to comparable with BERT-large in just above 5 ms.

5 RELATEDWORK
5.1 Cold-start Recommendation
The phrase “cold-start“ describes the situation when the recom-
mender knows nothing about its serving objects. There are several
cases of cold-start recommendations.
New System Cold-startMaking personalized recommendations
on new items to new users without any knowledge about the
community the user and item came from raises the system cold-
start recommendation problem [3, 8, 26, 31, 40, 43], so-called new
community cold-start problem. To our best knowledge, no studies

have been conducted to formalize this issue, introduce theoretical
methodologies, or establish evaluation benchmarks. Some recent
studies proposed a new problem called "Zero-shot Recommenda-
tion" [7, 47], which seems the same as this case at first glance.
However, a massive difference between these two concepts is that
the system cold-start setting assumes the user-item interaction
on the target dataset is not available during both off-line train-
ing and online inferring, while the zero-shot setting can visit the
user’s shopping history during the online inferring. We believe the
proposed system cold-start setting is more realistic.
NewUser/Item cold-start.When a recommendation system is sev-
ering online stability, new items and users will still join day by day.
Recommending these new items to users is the new item cold-start
problem. Similarly, recommending items to new users causes the
new user cold-start problem, and recommending new items to new
users raises the new user-item cold-start problem [23, 26, 40, 43].
Different from the new system cold-start recommendation, the
new user/item cold-start recommendation can train models on his-
torical user-item interactions. Incorporating side information to
enhance the quality of representing users/items is the most tradi-
tional way [13, 54, 62]. Under the assumption that side information
is not available, directly mining the historical user-item interac-
tion is more tractable [9, 23, 51]. Lately, pre-training graph neural
networks is also considered as a frontier direction [16, 63].

5.2 In-context Recommendation
Researchers introduce in-context learning into developing rec-
ommender systems for several purposes, including interpretabil-
ity [10, 24], multi-tasks learning [12, 28, 64], sequential recom-
mendation [5, 21, 34, 47, 58, 66], and conversational recommenda-
tion [10, 57]. The intuitions behind these studies can be considered
as two folds: utilizing pre-trained language models as a knowledge
base to enhance recommendation [5, 28, 47, 64, 66]; using language
models as a bridge to realize the interaction between humans and
systems based on natural language [10, 12, 21, 24, 34, 57, 58]. These
studies inspire us to push prompt learning to a more challenging
scenario, the system cold-start recommendation, where the user’s
shopping history is not available. Moreover, in contrast with these
studies that only explore large language models for recommenda-
tion, this study demonstrates that small language models could also
provide cold-start recommendations under the cold-start setting.

6 CONCLUSIONS
This paper studies the system cold-start recommendation problem,
including providing a formal definition and the first benchmark. We
propose PromptRec for this problem and show that large language
models can make personalized recommendations without any train-
ing samples. In addition, we provide a mathematical framework
to study the behavior of language models to make in-context rec-
ommendations. We also investigate two methods to improve small
language models by leveraging the datasets that are out-of-domains
of the cold-start scenario. Our results demonstrate that the small
language models could make personalized recommendations with
their enhanced in-context ability. We encourage future research
to explore the system cold-start setting for more recommendation
tasks and hope they could be deployed in real-world businesses.
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A APPENDIX
A.1 BERT Further Pre-training Details
We use the implementation of pre-training BERT from https://
github.com/huggingface/transformers/tree/main/examples/pytorch/
language-modeling to further pre-train BERT on our refined corpus.
Table 5 lists some important pre-training hyper-parameters, and
the hyper-parameters not listed in this table use the default settings
of the source code.

Table 5: Hyper-parameters for further pre-training BERT.

Hyper-parameter Assignment

Training steps 10K
Batch size 32

Max sequence length 256

Maximum learning rate 2𝑒−5 (BERT-tiny)
4𝑒−5 (BERT-mini/small)

Optimizer AdaFactor
Adam epsilon and beta weights 1𝑒−8, 0.9 and 0.95

Learning rate scheduler linear decay with warmup
Warmup ratio and decay rate 500 steps and 0.1

Label Smoothing Rate 0.0 (BERT-tiny)
0.1 (BERT-mini/small)

Half-Precision Training Yes
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