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Abstract—Vision Transformer models have been performing
increasingly well in recent times. However, their computational
demands make them infeasible to be deployed on edge devices
with latency and energy constraints. Weightless Neural Networks
(WNNs) are look-up-table based models, that are different from
conventional Deep Neural Networks, and offer a low-latency, low-
energy alternative. In this work, we seek to combine aspects of
vision transformers and weightless neural networks to design
Lightweight Vision Transformers that are efficient for edge
inferences - to strike a desirable trade-off between the hardware
requirements of transformers and accuracy achieved. We analyze
the I-ViT-T vision transformer variant to observe that roughly
57% of the computations are within the Multi Layer Perceptron
(MLP) layers. We estimate the hardware savings in replacing
these layers with our proposed weightless layers, and evaluate
such models for accuracy. Preliminary results with the I-ViT-
T model suggest that the weightless layers introduced in place
of the MLP layers result in a significant speedup for a lower
hardware resource requirement, as compared to a systolic array
based accelerator implementation for the MLPs. When evaluated
on end-to-end performance, this model variant offers a 2.9x drop
in energy per inference over the baseline model – at the cost of
about 6% drop in model accuracy on the CIFAR-10 dataset. We
continue our efforts to improve the model accuracy and extend
this work to larger transformer variants and benchmarks, while
trying to optimize the hardware resource consumption.

I. INTRODUCTION

With the advent of computer vision in several applications,
there has been an increasing demand for low-latency machine
learning inferences at the edge. In recent times, transformer-
based vision models have been gaining popularity in image
classification tasks [1]–[3], and are state-of-the-art in some
datasets. However, the large and complex nature of these mod-
els pose significant challenges in their deployment, particularly
in terms of hardware and energy resources required, and high
inference latency [4]. This makes them inefficient for edge
inferences.

We see an opportunity by tapping into Weightless Neural
Networks (WNNs) that are a class of Look-Up-Table (LUT)-
based neural networks designed specially to be efficiently
deployed on edge FPGA devices, with the design matching
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the underlying logic fabric on the FPGA. However, despite
their advantages of low latency and power, WNNs are limited
in their learning capability, and do not perform well beyond
smaller datasets, such as MNIST [5]–[7].

In this work, we identify key features of vision transformers
and WNNs that suggest combining aspects of these, and seek
to design Quasi-Weightless Vision Transformer models. In
doing so, we propose a class of models that offer model per-
formance advantages of transformers, while offering hardware
performance benefits of WNNs - often resulting in a tradeoff
between the two. We note that low energy requirements,
ultra-low latency and a LUT based implementation makes
weightless models excellent candidates for deployment on
edge FPGAs for inference tasks. Hence we particularly target
edge FPGA devices for hardware evaluations of these models
against their corresponding baselines.

The remainder of the paper is organized as follows. In
Section II we discuss the background and motivation behind
the work, and identify specific features of Vision Transformers
and Weightless Neural Networks that make their fusion worth-
while. In Section III we analyze these models and discuss
the proposed design, and in Section IV we evaluate the said
proposed design. We discuss the limitations and future work
in Section V and Section VI concludes the paper.

II. BACKGROUND & MOTIVATION

A. Vision Transformers

Vision Transformers are encoder-based models that are
inspired from the transformer models designed for language
tasks. As shown in Fig. 1, these involve self-attention applied
to a series of tokens generated by splitting the image into
patches. In case of an image classification task, a classification
head is attached to the sequence, and extracted at the end of
the encoder stack to get the predicted class. Prior studies have
explored quantization techniques to make these models more
efficient for hardware deployment. MobileViT [8] combines
aspects of CNNs and vision transformers to offer a mobile-
friendly vision transformer. I-ViT [9] proposes a fully int-
8 quantized vision transformer variant, that is particularly
suitable for inference on dedicated hardware.

In this work, we seek to explore avenues to make vision
transformers further light-weight, that are complementary to
such existing techniques.
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Fig. 1. A typical vision transformer model. The model typically consists of
a stack of encoder blocks. Figure adapted from [1]

B. Weightless Neural Networks

Weightless Neural Networks are neural networks inspired
by the dendritic trees of biological neurons. These involve the
idea of avoiding intensive computations in neural networks, by
replacing the regular weight-based neural layers with “weight-
less” layers. These weightless layers are primarily comprised
of look-up table (LUT) based neurons, and eliminate the
need for power and resource hungry multiply-accumulate
operations in conventional neurons (Fig. 2). While earlier
works in this field [10], [11] suffered from high memory
requirements, recent works like BTHOWeN [6] & ULEEN [5]
have demonstrated significantly lower compute and memory
requirements compared to iso-accuracy MLPs & CNNs for
image classification tasks. This has sparked a renewed interest
in WNN research and potential usage. While WNNs suffer
from a higher training complexity, their LUT-based architec-
ture makes them well-suited for deployment on FPGAs (that
have underlying LUT slices) for inferences. We note that since
we primarily aim to design an inference-efficient model, the
training complexity isn’t a major concern.

C. Combining Weightless Neural Networks and Vision Trans-
formers

As mentioned earlier, vision transformers incur high re-
source utilization, high latency, and involve several power-
hungry multiply-accumulate operations. On the contrary,
WNNs offer a low-latency energy efficient solution involving
look-up operations, resulting in low resource utilization. Fur-
thermore, while the model sizes of vision transformers scale
quadratically with latent dimensions, we could potentially
scale it linearly with WNNs. By incorporating self-attention,
vision transformers are able to learn positional dependence
in images and perform well on larger datasets – the current
WNNs struggle in doing so. Moreover, most layers in vision
transformers are linear-like, and from prior work [5], we know
that WNNs have been able to learn patterns represented by
linear layers more efficiently. Thus, all of these factors suggest
that many of the aspects of vision transformers and WNNs
are complementary to each other, and the question of how to
combine these is worth studying.

Fig. 2. (a) Conventional Neuron : Each neuron multiplies inputs with weights
and adds them. (b) Binary Neural Network Neuron : The weights being binary,
the multiplication operation is substituted by a XNOR (c) Weightless Neuron
: In contrast, the input sequence is ”looked up” in the LUT with no MAC
operations involved

In this work, we focus on identifying specific layers of
the vision transformer models that are compute-intensive,
and aim at replacing such layers with weightless layers to
provide hardware benefits. We note that transformer models
have repeated blocks of a few layers stacked one over the
other. As a consequence of the repeated blocks, we need to
modify intermediate layers of a larger network to introduce
weightless layer. Such a modification hasn’t been explored
in the past, to the best of our knowledge. In this regard,
we redesign and adapt weightless layers that preserve the
dimensions of the latent space of transformer network, and
integrate them together to design a Quasi-Weightless Vision
Transformer model.

We also note that while there are alternatives to vision trans-
formers for vision tasks, transformers are ubiquitous in the
realm of language models. An effective solution of integrating
vision transformers and WNNs would pave the way for future
exploration of extending these concepts to language models.
Vision transformers are architecturally similar to language
models, and at the same time, these have smaller datasets
and model sizes compared to language models. Thus, this
study also serves as a good stepping stone towards eventually
studying weightless language models.
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III. QUASI-WEIGHTLESS VISION TRANSFORMERS

A. Initial Thoughts & Key Insights

For our analysis and implementation, we use the I-ViT
vision transformer model [9] shown in Fig. 3 as our baseline.
We profiled the I-ViT-T model variant to analyze the com-
putational requirements of the layers within it. Based on this
analysis, we figured out that the MLP layers are quite compute
intensive, and perform about 57% of total MAC (multiply and
accumulate) operations within each encoder layer. In addition,
the MLP layers are also found to be responsible for about
66.7% of the total model weights within the encoder layer.
These findings could be generalized to other variants of vision
transformers as well, as shown in [4]. Additionally, prior
studies indicate that the WNN layers can out-perform iso-
accurate MLP layers in terms of reduced latency and reduced
energy consumption [5], [6].

Thus, we plan to replace the MLP layers of the vision
transformer with similarly designed fully connected (FC)
weightless layers. We expect that this change would result
in both reduced latency and reduced energy consumption,
at a minimal drop in accuracy. Note that since the LUTs
can inherently learn non-linearities, we would not require
additional non-linear activation layers. By doing so, we hope to
gain the benefits of the energy savings from WNNs combined
with the performance advantages brought forth by the self-
attention layers of the transformers.

B. System Design

We design a modified multi-layer weightless network sim-
ilar to the one in [5] and [12] to replace the MLP layer
as discussed in Section III-A. After adding two layers of
LUTs, we include a summation layer that sums responses
from the LUTs in the previous layer, in order to generate
integer outputs for the final layer. Prior work on WNNs
mostly involved discriminator-based models that had these
layers generate scores for different output classes. In contrast,
we preserve the latent space dimensionality since these layers
form intermediate parts of a larger network. In order to ensure
that the introduced weightless network mimics the way a MLP
layer processes each token independently, we flatten the input
activations along the row, and pass them to these layers one
row at a time.

Fig. 4 shows the proposed design of the quasi-weightless
vision transformer. We integrate the weightless layer into each
of the encoders of the vision transformer model, with the
original MLP layer being replaced by it.

IV. EVALUATION

A. Experimental Setup

To evaluate and iterate upon our design, we adopt the
following methodology :

1) Setup a baseline model, and design the proposed quasi-
weightless model replacing MLPs with configurable
LUT-based weightless layers for the same model variant.

2) Train model, tweak hyperparams, report accuracy.

3) Analytically estimate hardware (HW) resource con-
sumption, energy, and performance.

4) Iterate over the above steps 1-3 incorporating feedback
from these analytical reports.

After careful consideration, we identify the I-ViT-T model
[9] (int8 quantized variant) as our baseline for experimen-
tation. This is primarily due to the fact that we found full-
precision DeiT [2] models to be infeasible to train with larger
batch sizes when integrated with the weightless network. Fur-
thermore, as noted in Sec. III-B, since the weightless network
generates integer outputs, it would be more compatible with
I-ViT. Having chosen the baseline model, we redefine the
PyTorch model for its quasi-weightless version. We consider
the CIFAR-10 [13] image classification task as our benchmark
for evaluation, as this is a commonly used dataset for edge
application evaluations. We pick the ImageNet [14] pre-trained
vision transformers, modify these model layers, and fine-tune
them on CIFAR-10. We performed various iterations over
weightless layer configurations, training strategies, and other
hyperparameters - this is still an ongoing effort.

In order to provide estimates of hardware performance
improvements when deployed on a FPGA, we require a syn-
thesized design for both the MLP layers (that we are replacing)
and for the weightless layers. The synthesized designs for
MLP will serve as our baseline to compare the performance
of the WNN layers against. We consider the PYNQ-Z1 FPGA
board, a typical edge device, as the target device for obtaining
the hardware utilization reports of our synthesized design.

The MLP layer that we intend to replace, consists of the
Dense→ShiftGELU→Dense sections shown in Fig. 3. The
Dense bubble represents a GeMM operation (general matrix
multiplication) while the the ShiftGELU operation performs an
integer approximation of the sigmoid function used for non-
linear activation in ViTs [9]. It consists of bitwise logical and
arithmetic operations, along with floating point division and
multiplication operations. For the chosen I-ViT-T model, the
matrix multiplications in the MLP layer would be 1) 196×192
by 192× 768 and 2) 192× 768 by 768× 192. We designed a
systolic array based accelerator, typically used in literature for
MLP accelerators [15] to consider hardware estimates for our
baseline. The systolic architecture designed utilizes a pipelined
blocking matrix multiplication method. To provide more points
of comparison against the resources, latency, and energy
consumption of the quasi-weightless model we synthesized
several different sizes of systolic arrays: 4x4, 8x8, 16x16,
and 32x32. We also designed a high-throughput inference
accelerator for the introduced weightless layers, similar to the
one proposed in ULEEN [5] and DWN [12], and synthesized
the same on the target FPGA.

In addition to the systolic arrays, we also created a dedicated
processing unit for computing the ShiftGELU and ShiftMAX
operations. ShiftMax implements an integer version of the
typical ViT SoftMax, which translates attention scores into
probabilities [9]. Similar to ShiftGELU, ShiftMax consists of
few fundamental arithmetic computations and other simpler
bitwise operations such as shift.
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Fig. 3. An encoder layer in I-ViT - Integer Vision Transformer [9]. Each of the intermediate operations are performed in int8 precision, and the resultant
int32 values are quantized back to int8 using a scale factor. Shiftmax and ShiftGELU represent element-wise non-linear operations. The full I-ViT model has
multiple of these encoder layers stacked.

Fig. 4. Proposed Quasi-Weightless Vision Transformer

B. Results

Model Variant Baseline Model Quasi-Weightless Model
I-ViT-T [9] 95.41% 89.44%
DeiT-T [2] 87.1% 80.3%

TABLE I
MODEL ACCURACY COMPARISONS OF THE BASELINE VISION

TRANSFORMER MODELS VS. THE DESIGNED QUASI-WEIGHTLESS MODELS
ON THE CIFAR-10 DATASET

We evaluate the model accuracy of the baseline model and
the quasi-weightless model for the I-ViT-T model variant.
While we noted the issues surrounding implementation with
DeiT models in the previous section, we still include an

Method LUTs FFs 1/Throughput Energy/Sample
4x4 Systolic 1,435 744 1,806,336 Cycles 307.077 uJ
8x8 Systolic 5,601 3,051 460,800 Cycles 188.928 uJ
16x16
Systolic

22,337 12,363 119,808 Cycles 101.837 uJ

32x32
Systolic

91,937 50,385 32,256 Cycles 62.2541 uJ

Weightless
Network Im-
plementation

15,543 20,755 196 Cycles 1.99 uJ

TABLE II
HARDWARE ARCHITECTURE PERFORMANCE COMPARISON USING A
SINGLE GEMM (DENSE) (196X192)*(192X768) WITHIN THE MLP

LAYER

Stage Baseline Model Quasi-Weightless
Model

Q, K, V 15.5635 uJ (each) 15.5635 uJ (each)
MatMul 1 18.1574 uJ 18.1574 uJ
ShiftMax 10.196 uJ 10.196 uJ
MatMul 2 18.1574 uJ 18.1574 uJ
MLP Dense 1 62.2541 uJ
ShiftGELU 60.505 uJ
MLP Dense 2 62.2541 uJ

1.99 uJ

Total 278.215 uJ 95.1913 uJ
TABLE III

ENERGY CONSUMPTION COMPARISON BETWEEN METHODS FOR A SINGLE
LAYER (PER SAMPLE INFERENCE). A 32X32 SYSTOLIC ARRAY IS USED

FOR THE NON-WEIGHTLESS LAYERS.

evaluation of the same to serve as an additional comparison. 1

As noted in Table I, with CIFAR-10, the baseline I-ViT model
accuracy was found to be 95.41%, while the weightless model
was able to achieve an accuracy of 89.44%. On the DeiT-
T model, the baseline model was 87.1% accurate versus the
quasi-weightless model being 80.3% accurate.

These preliminary findings suggest that the quasi-weightless

1The original works on I-ViT [9] and DeiT [2] do not report model
accuracies on CIFAR-10 for the Tiny (T) variants. In order to setup and
report baseline model accuracies, we follow the exact same methodology
and code implementations provided by the authors. We ascertain that our
implementation is as intended by training the DeiT-B model on the CIFAR-
10 dataset. With this setup, we are able to reproduce the accuracy of 97.5%
when trained on CIFAR-10 from scratch, and 99.1% when finetuned on
ImageNet pretrained model as reported in [2], within 0.1% & 0.2% error
margin respectively.
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model accuracy is comparably close to the baseline. We also
note that these weightless models that have been integrated
with vision transformers perform much better compared to
prior weightless networks, that report the accuracy on CIFAR-
10 in the range of 50% [5].

Making a direct comparison between the performance of a
single MLP Dense layer implementation with the weightless
network is difficult as the introduced weightless network
replaces both the MLP Dense layers and the ShiftGELU layer.
As shown in Table II, for a single MLP Dense layer the systolic
architecture was found to consume significantly higher energy
to process each sample compared to the weightless network
implementation. Of the different sized systolic array based
matrix multipliers, the 32x32 implementation consumed the
least amount of energy at 62.2541 uJ per MLP Dense layer
and took 32,256 cycles to complete a single layer. In contrast,
the weightless network that replaces the entire MLP block
consumed 1.99 uJ of energy and took 196 cycles to process
a sample – this is a significant performance uplift over the
systolic architecture.

We also performed estimations for end-to-end energy con-
sumption per sample inference for the baseline implementa-
tion, as well as the quasi-weightless model implementation,
for a single encoder in the stack. We considered the 32x32
systolic array architecture for this comparison, and consid-
ered using the same architecture as the original model for
the parts of the quasi-weightless model implementation that
remain unchanged. In doing so, the energy associated with
the Multi-head self-attention (MSA) layers remain unchanged.
Table III summarizes these results, and shows the quasi-
weightless model implementation outperforming the baseline
model implementation by a significant degree. The layers with
the highest energy consumption (MLP Dense 1, ShiftGELU,
MLP Dense 2) are particularly the ones replaced with the
weightless network, and hence provides the most uplift in
energy consumption. The total end-to-end energy consumption
for a single sample with the baseline model implementation is
278.215 uJ and with the quasi-weightless model is 95.1913 uJ
- which is a 65.79% increase in energy efficiency. We also note
that by eliminating about 66.7% of the overall model weights
(from the MLP layers), we also save a corresponding amount
of memory. While we account for BRAM access energy in
our estimates, typically a lot of these model weights are stored
off-chip and are fetched on-demand. The resultant savings in
reduced weight movement to on-chip memory would be much
more pronounced.

These preliminary results on performance and power con-
sumption lend support to the potential of employing weightless
models for edge applications.

V. LIMITATIONS / FUTURE DIRECTIONS

Our more immediate improvements revolve around the
limitations with the current accuracy we were able to achieve,
as well as the comparisons we could fairly make. Given
we have sub 90% accuracy, we will continue optimizing the
weightless layers while ensuring we still meet the resource

constraints of the target PYNQ-Z1 FPGA. We will also be
performing further comparisons for a few other datasets,
such as CIFAR-100 and ImageNet. We note that the current
model design is not quite efficient in terms of training time
- thereby restricting our experiments to limited benchmarks
and smaller model variants. Improved training techniques is
something that we would definitely like to focus on. We would
finally like to perform a more end-to-end deployment of the
model for performing a more robust comparison between the
quasi-weightless model and the baseline model. Our current
comparisons are primarily analytical estimates.

Aside from these improvements, we also hope to extend
this work in the future by incorporating learnable mapping
techniques [12] and knowledge distillation from the MLP to
the weightless network. We would also like to explore if the
learnable mapping techniques or alternate bit concatenations
result in improved training times. In terms of the transformer
models, we would like to evaluate additional model variants
such as iVIT-B and iVIT-S, as well as other benchmarks.
Added comparison against other binarized models, such as Bi-
naryViT [16] and BiViT [17] would also be useful to prove the
effectiveness of quasi-weightless model over binarized models.
In terms of the future model design itself, we eventually hope
to extend to weightless self-attention layers to create a fully
weightless vision transformer. This would eventually pave the
way for decoder-only and encoder-decoder models, to target
Large Language Models.

VI. CONCLUSION

Quasi-weightless vision transformers appear to be a promis-
ing lightweight alternative to traditional vision transform-
ers based on our end-to-end analysis of the energy savings
& model accuracy. They achieve significantly higher accu-
racy than previous weightless neural networks as well. The
weightless layers that replace the MLP layers in these quasi-
weightless vision transformers show a significant improve-
ment in sample latency and energy consumption compared to
traditional systolic array based architectures, and the results
are indeed positive. We report an overall 66.7% reduction
in the required model weights, and a 2.9x savings in end-
to-end energy when comparing the quasi-weightless model
implementation to the baseline design, traded off by a ∼ 6%
drop in accuracy on CIFAR-10 benchmark. We also eliminated
the need for BRAMs and off-chip weight movement for
the MLP layers that are replaced by the weightless layers.
However, we note that the amount of LUTs required for
a single weightless layer is still notably large. Since these
can’t be shared across the encoder, we are left with the
challenging task of fitting multiple layers onto a single FPGA.
Reductions can possibly be made to the size of the weightless
layers without a massive impact in the performance, and we
intend to research this further. By reducing the overall size
of the weightless layers, we hope to fit multiple layers onto
a single FPGA. We continue our efforts towards better model
designs and training techniques in order to close the gap in
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model accuracy between the quasi-weightless models and the
baselines.
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F. M. G. França, M. Breternitz Jr., and L. K. John, “Uleen: A novel
architecture for ultra-low-energy edge neural networks,” ACM Trans.
Archit. Code Optim., vol. 20, no. 4, dec 2023. [Online]. Available:
https://doi.org/10.1145/3629522

[6] Z. Susskind, A. Arora, I. D. Miranda, L. A. Villon, R. F. Katopodis, L. S.
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