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ABSTRACT

In this study, we address the gradient-based domain generalization problem, where
predictors aim for consistent gradient directions across different domains. Existing
methods have two main challenges. First, minimization of gradient empirical dis-
tance or gradient inner products (GIP) leads to gradient fluctuations and magnitude
elimination among domains, thereby hindering straightforward learning. Second,
the direct application of gradient learning to joint loss function can incur high
computation overheads due to second-order derivative approximation. To tackle
these challenges, we propose a new Pareto Optimality Gradient Matching (POGM)
method. In contrast to existing methods that add gradient matching as regular-
ization, we leverage gradient trajectories as collected data and apply independent
training at the meta-learner. In the meta-update, we maximize GIP while limiting
the learned gradient from deviating too far from the empirical risk minimization
gradient trajectory. By doing so, the aggregate gradient can incorporate knowledge
from all domains without suffering gradient magnitude elimination or fluctuation
towards any particular domain. Experimental evaluations on datasets from Do-
mainBed demonstrate competitive results yielded by POGM against other baselines
while achieving computational efficiency.

1 INTRODUCTION

Domain generalization (DG) has emerged
as a significant research field in machine
learning, owing to its practical relevance
and parallels with human learning in new
environments. In DG frameworks, learn-
ing occurs across multiple datasets col-
lected from diverse environments, with
no access to data from the target domain
(Zhou et al., 2023). Various strategies have
been proposed to address DG challenges,
including distributional robustness (East-
wood et al., 2022a), domain-invariant rep-
resentations (Li et al., 2018; Zhao et al.,
2020; Bui et al., 2021), invariant risk mini-
mization (Nguyen et al., 2021; 2022), and
data augmentation (Yao et al., 2022; Zhou
et al., 2021; Li et al., 2021).
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Figure 1: Issues in current gradient-based DG methods.
(a) We observe that Fish (Shi et al., 2022) induces gradi-
ent fluctuations across domains, hindering straightforward
convergence to the global optimum due to its simplistic op-
timization approach. (b) We show that the optimal solution
for Fishr (Rame et al., 2022) is obtained when gradient
magnitudes are eliminated in each domain, minimizing
empirical gradient distance.

Recently, gradient-based DG has emerged as a promising approach to enhance generalization across
domains. This approach is orthogonal to the previously mentioned methods in nature, allowing for
their combined integration to facilitate additional performance improvements. Particularly, gradient-
based DG’s target is discovering an invariant gradient direction across source domains. Fish (Shi
et al., 2022) introduces a gradient inner product (GIP) to ensure consistent gradient trajectories among
domains, whereas Fishr (Rame et al., 2022) minimizes the Euclidean distance between domains’
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gradient trajectories. These methods increase the likelihood that the gradient direction remains
consistent even on unseen target domains. In this paper, we perform a theoretical and empirical
analysis to show that there exists the potential degradation in the learning progress of these methods
due to gradient fluctuation and gradient magnitude elimination (see the concept in Fig. 1). We show
that gradient magnitude elimination is caused by using MSE as regularization among gradient pairs
as proposed in Fishr while gradient fluctuation is caused by updating each domain sequentially in
Reptile (Nichol et al., 2018) based Fish (Shi et al., 2022, Alg. 1). Additionally, employing Hessian
approximations, as in Fish (Shi et al., 2022, Alg. 2), incurs substantial computational overhead.

To address these challenges, we introduce Pareto Optimality Gradient Matching (POGM), a simple
but effective gradient-based domain generalization method. First, to mitigate gradient magnitude
elimination and prevent gradient fluctuation phenomenon, we formulate our gradient matching by
summing over pairs of gradient inner product (GIP), and we confine the search space for the GIP
solution to a κ-hypersphere centered around the ERM gradient trajectory to reduce the effort in finding
optimal solutions. Second, to solve the summation of GIP of gradients over K domains, which has a
complexity ofO(K× (K−1)/2), we first utilize the Pareto front to transform the task of minimizing
all GIP pairs into focusing solely on the worst-case scenario. Then, we introduce a closed-form
relaxation method for inter-domain gradient matching. As a result, the complexity of our POGM can
be reduced to O(2×K). Third, to circumvent the computational overhead associated with Hessian
approximations, we leverage meta-learning and consider gradient matching as a separate process.
Hence, our method can learn a set of coefficients for combining domain-specific gradients with scaled
weights. As a consequence, POGM can approximate weighted aggregated domain-specific gradient
updates without the need for second-order derivatives. Our experiments show that POGM achieves
state-of-the-art performance across datasets from the recent DG benchmark, DomainBed (Gulrajani
& Lopez-Paz, 2021). The robust performance of our method across diverse datasets underscores its
broad applicability to different applications and sub-genres of DG tasks.

2 RELATED WORKS

Several approaches for DG have been explored, which can be broadly classified into two categories:
finding domain-invariant representation and representation mixing. From the perspective of the first
category, Mahajan et al. (2021) introduces a regularization-based framework to generate invariant
representations by minimizing the empirical distance between encoded representations from different
domains. Nguyen et al. (2022; 2021) minimize the empirical distance between the source and
target data distribution. Nguyen et al. (2021) assumed that the target dataset is not accessible, and
therefore proposed to generate data on the target dataset using a generative adversarial network
(GAN). However, this approach is applicable within limited constraints, where the target dataset is
required to be accessible to the GAN model. Li et al. (2018); Zhao et al. (2020); Bui et al. (2021)
propose GAN-based frameworks for learning invariant representations. These works highlight the
redundancy in classifier networks, leading to the introduction of a discriminator network to enhance
the extraction of meaningful information. Additionally, Kim et al. (2021) suggests leveraging self-
supervised learning to generate domain-invariant representations. Lv et al. (2022) applies Barlow
Twins to generate causal invariant representations, assumed to be domain-invariant. According to the
second category, Shu et al. (2021); Yao et al. (2022); Zhou et al. (2021); Yan et al. (2020) leverages
mixing strategy to inter-domain representations to improve the DG. Li et al. (2021) proposes a simple
data augmentation approach by perturbing the latent features with the white Gaussian noise.

SWAD (Cha et al., 2021) propose a different approach for DG by leveraging stochastic weight
averaging to smoothen the loss landscape, thus, improving the generalization.

Recently, Shi et al. (2022) pioneers gradient-based DG, introducing Fish to discover invariant gradient
trajectories across domains for enhanced model consistency amidst domain shifts, thereby improving
generalization to unseen datasets. Additionally, Rame et al. (2022) introduces Fishr to enhance
gradient learning by incorporating gradient variant regularization into the loss function, capturing
both the first and second moments of the gradient distribution, thereby leveraging richer information
for gradient learning. Our work is also a gradient-based DG method, in which we aim to address the
gradient limitations in Fish and Fishr by exploiting Pareto optimality for gradient matching.
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3 A THEORETICAL AND EMPIRICAL ANALYSIS ON FISH AND FISHR

3.1 PROBLEM SETTINGS

Let X and Y be the feature and label spaces, respectively. There are K source domainsK = {Di}Ki=1

and L target domains {Di}K+L
i=K+1. The goal is to generalize the model learned using data samples

of the source domains to unseen target domains. Herein, we denote the joint distribution of domain
i by Pi(X,Y ) (X,Y ∼ X ,Y). During training, there are K datasets {Si}Ki=1 available, where
Si = {(x(i)

j , y
(i)
j )}Ni

j=1, Ni is the number of samples of Si that are sampled from the ith domain. At
test time, we evaluate the generalization capabilities of the learned model on L datasets sampled from
the L target domains, respectively. This work focuses on DG for image classification where the label
space Y contains C discrete labels {1, 2, . . . , C}.
To facilitate our analysis, we model a gradient-based domain generalization (GBDG) algorithm that
aims to learn an invariant gradient trajectory via the generalized loss LGBDG = LERM + λLIG, where
LGBDG is denoted as GBDG loss, LERM is the empirical risk minimization (ERM) (Vapnik, 1998) loss
function. LIG is the invariant gradient regularizer, which can represent both Fish (Shi et al., 2022)
or Fishr (Rame et al., 2022), and can be defined as LIG =

∑
i,j∈K Ldist(∇Li(θ),∇Lj(θ)), where

Ldist denotes the empirical distance between two gradient vectors of the model parameters θ trained
from domains i and j, respectively. We denote Li as the loss according to the training on a domain
i ∈ K. Ldist is computed via GIP and by mean-square error (MSE) in Fish and Fishr, respectively. To
understand Fish and Fishr, we conduct both theoretical analysis and empirical experiments on three
baselines including Fish, Fishr, and the conventional ERM. The detailed setup of the experiments is
demonstrated in Appendix. C.1.

3.2 GRADIENT MAGNITUDE ELIMINATION

Let us begin with an analysis of Fishr (Rame et al., 2022) by identifying the issue of gradient
magnitude elimination via Lemma 1.

Lemma 1 (Gradient Magnitude Elimination) One of the feasible solutions of
minθ

∑
i,j∈K Ldist

(
∇Li(θ),∇Lj(θ)

)
in Fishr is when ∥∇Li(θ)∥, ∥∇Lj(θ)∥ ∼ 0.

Lemma 1 reveals that the optimization problem from (Rame et al., 2022, Eq. 4) can lead to the worst
case where the ∥∇Li(θ)∥, ∥∇Lj(θ)∥ ∼ 0. In other words, Fishr does not reduce the angles among
the Fishr gradient and the domain-wise gradients (Figs. 2a, 2b). Meanwhile, the norm differences
between the Fishr model and the domain-specific models are reduced (in contrast with the angle
results). This means that the gradient norm on each domain-specific gradient is reduced instead of
reducing the angle among the gradient as claimed in (Shi et al., 2022; Rame et al., 2022) although
the penalty is reduced (Fig. 2c). As a result, the task loss of Fishr is worse than the ERM (Fig. 2d).
Detailed analysis is demonstrated in Appendix C.3.
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Figure 2: The empirical analysis on Fishr according to the angle between the learned invariant
gradient and the domain-wise gradients (Fig. 2a), and norm difference between Fishr-trained and
domain-specific models (Fig. 2b). The comparison of training loss and penalty value of Fishr are
demonstrated in Figs. 2c, 2d, respectively.
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Figure 3: The gradient direction angles of ERM and Fish in CMNIST, PACS. Although it is claimed
that the Fish gradient is invariant to domain-specific gradients, the angles between the Fish gradient
and domain-specific gradients tend to fluctuate considerably. This leads to a lower correlation among
domain-specific gradients compared to the ERM gradient.

3.3 GRADIENT FLUCTUATION

We show that although the conventional Fish (Shi et al., 2022, Alg. 2) aims to reduce the gradient
angles via GIP, the Reptile-based Fish (Shi et al., 2022, Alg. 1) yields significantly fluctuated gradient
directions (i.e., lower correlation among angles’ cosines). This can be observed in both the CMNIST
and PACS datasets (see Fig. 3), where Fish shows no significant improvement compared with the
conventional ERM.

4 POGM: GRADIENT MATCHING VIA PARETO OPTIMALITY

4.1 GRADIENT INNER PRODUCT WITH GENERALIZED CONSTRAINTS

Our method aims to simultaneously alleviate gradient magnitude elimination (Section 3.2) and address
the issues of gradient fluctuation (Section 3.3). We adopt GIP as proposed from Fish (Shi et al.,
2022) but aim to restrict the searching space for our GIP problem within a κ-hypersphere, which
has the center determined by the ERM trajectory. Specifically, we propose the GIP with generalized
constraints (GIP-C) as follows:

LGIP-C =
∑
i∈K

i ̸=j∑
j∈K
∇Li(θ) · ∇Lj(θ)− γ

(
∥∇LGIP-C −∇LERM∥2 − κ∥∇LERM∥2

)
, (1)

where LERM is the ERM loss defined as LERM = 1
K

∑K
i=1 Li(θ). We utilize ERM as a standard

gradient trajectory as ERM is simple, straightforward, and demonstrates good results in DG. The
advantage of adding this constraint is twofold: 1) The learned invariant gradient∇LGIP-C is not biased
to one set of domains, which ensures the generalization of our algorithm. 2) The learned invariant
gradient ∇LGIP-C is either backtracked towards the previous checkpoint or biased towards specific
domains with a value larger than κ∥∇LERM∥.
However, the incorporation of loss as depicted in Eq. (1) necessitates a second-order derivative
approximation and becomes NP-hard. Additionally, the algorithm has a complexity of O(K × (K −
1)/2) as it sums over all pairs of gradients in K domains. Consequently, the learning is hampered by
both the computational overhead and the challenge of identifying the optimal solution.

In the next section, our target advances twofolds. First, to alleviate the NP-hard problem, we
propose a relaxation for the optimization problem to reduce the computation complexity. Second, to
mitigate computational overhead caused by approximating the second-order derivative, we utilize
meta-learning (Finn et al., 2017) to establish a unified learning framework for our DG process.

4.2 RELAXATION OF INTER-DOMAIN GRADIENT MATCHING

By finding θGIP-C using Eq. (1), we can find θGIP-C that achieve the angles between gradients induced
by θGIP-C to the gradients on source domains Dk,∀i ∈ K are maximized. For instance,

θGIP-C = argmax
θ

∑
i∈K
∇Li(θ) · ∇LGIP-C − γ

(
∥∇LGIP-C −∇LERM∥2 − κ∥∇LERM∥2

)
. (2)
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Herein, Eq. (2) is a multi-objective optimization problem. In general, no single solution can optimize
all objectives at the same time. To overcome this, we determine the Pareto front that provides a
trade-off among the different objectives. We consider the following definitions (Zitzler & Thiele,
1999):

Definition 1 (Pareto dominance) Let θa, θb ∈ Rm be two points, θa is said to be dominated θb

(θa ≻ θb) if and only if Li(θ
a) ≤ Li(θ

b),∀i ∈ K and Lj(θ
a) < Lj(θ

b),∃j ∈ K.

Definition 2 (Pareto optimality) θ∗ is a Pareto optimal point and L(θ∗) is a Pareto optimal objec-
tive vector if it does not exist θ̂ ∈ Rm such that θ̂ ≺ θ∗. The set of all Pareto optimal points is called
the Pareto set. The image of the Pareto set in the loss space is called the Pareto front.

To leverage Definition 2, we present the following lemma:

Lemma 2 The average cosine similarity between the given gradient vector∇LGIP-C and the domain-
specific gradient is lower-bounded by the worst-case cosine similarity as follows:

1

K

∑
i∈K
∇Li(θ) · ∇LGIP-C ≥ min

i∈K
∇Li(θ) · ∇LGIP-C.

Lemma 2 allows the realization that the maximization of our multi-objective function can be reduced
to maximizing the worst-case scenario. The approach leads us to attain the optimal Pareto front.
Hence, the following lemma follows:

Lemma 3 Given θ∗ as an Pareto optimal solution of θ, we have θ∗, which is also the solution of

max
θ

min
i∈K

[
∇Li(θ) · ∇LGIP-C(θ)− γ

(
∥∇LGIP-C(θ)−∇LERM(θ)∥2 − κ∥∇LERM(θ)∥2

)]
(3)

Eq. (3) represents the optimization over the gradient. To simplify implementation and reduce
computational complexity, we seek optimal gradients along gradient trajectories. The approach
enables us to circumvent noise introduced by mini-batch gradients, ensuring both optimization
accuracy and stability. Specifically, we define the gradient trajectory of domain i and define the ERM
gradient trajectory as

h
(r)
i = θ

(r+1)
i − θ(r) =

E∑
e=1

∇Li(θ
(r,e)), h

(r)
ERM = θ

(r+1)
ERM − θ

(r)
ERM =

1

K

K∑
i=1

E∑
e=1

∇Li(θ
(r,e)). (4)

From Lemma 3 on Pareto optimal solution, we derive the theorem for an invariant gradient solution
as follows:

Theorem 1 (Invariant Gradient Solution) Given the Pareto condition as mentioned in Lemma 3,
π = {π(r)

1 , . . . , π
(r)
K } are the set of K learnable scaling parameters, which coordinate the domain-

wise gradient trajectory h
(r)
i , ∀i ∈ K at each training iteration. The invariant gradient hGIP-C is

characterized by:

h
(r)
GIP-C = h

(r)
ERM +

κ∥h(r)
ERM∥

∥h(r)
π̃ ∥

h
(r)
π̃ s.t. π̃ = argmin

π
h(r)
π · h

(r)
ERM +

√
κ∥h(r)

ERM∥∥h(r)
π ∥, (5)

where h
(r)
π =

∑K
i=1 π

(r)
i h

(r)
i ,

∑K
i=1 π

(r)
i = 1. We denote π̃ as the optimal parameter set at round r.

Remark 1 The computation of the loss function using Theorem 1 reduces to O(2×K) as we only
need to compute the GIP between two aggregated gradients once.

From Theorem 1, GIP-C appears to have a close relationship with ERM. For instance,
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Corollary 1 When the radius of the κ-hypersphere reduces to 0, the GIP-C is reduced to ERM. For
instance, limκ→0 hGIP-C = h

(r)
ERM.

Furthermore, leveraging Pareto optimality (Zitzler & Thiele, 1999), we derive a corollary as follows:

Corollary 2 The optimal GIP-C solution is always better than that of the optimal ERM solution. For
instance, L(θ∗GIP-C) > L(θ∗ERM).

Hence, GIP-C consistently exhibits superior performance compared with ERM, contributing as one
of the most effective baselines to date. To determine the invariant gradient trajectory, we propose
a meta-learning based approach (Finn et al., 2017) for our DG. Firstly, the agent aims to train its
model parameter using domain-wise data via the optimization problem θ

(r)
i = argminθ L(θ(r), Si)

at the local stage. Therefore, the domain-wise gradient trajectory can be computed via Eq. (4). At
the meta update stage, the agent leverages the domain-wise gradients to approximate the invariant
gradient trajectory hGIP-C using Theorem 1. Thereafter, the model is updated using updating function
θ(r+1) = θ(r) − αh

(r)
GIP-C. The detailed algorithm is presented in Alg. 1.

Algorithm 1: Domain Generalization via Pareto Optimality Gradient Matching

Input : Number of training domain K, initial model parameter θ(0), learning rate α.
Output : Model parameters θ

1 for each round r = 0, . . . , R do
2 for domain i ∈ K do
3 Append the meta model to the domain-wise model θ(r,0)i ← θ(r).
4 for local epoch e ∈ E do
5 Sample mini-batch ζ from local data Si

6 Update domain-wise model θ(r,e+1)
i = θ

(r,e)
i − η∇Li(θ

(r,e)
i , ζ).

7 end for
8 end for
9 Apply Meta Update

10 end for
11 Meta Update
12 Calculate h

(r)
i from θ

(r,E)
i , θ(r)i according to h

(r)
i = θ

(r,E)
i − θ

(r)
i .

13 Calculate h
(r)
ERM = 1

K

∑K
i=1 h

(r)
i as the average gradient update.

14 At the rth optimization, ϕ = κ2∥h(r)
ERM∥2.

15 Find the optimal π̃ set by solving π̃ = argminπ h
(r)
π · h(r)

ERM +
√
κ∥h(r)

ERM∥∥h
(r)
π ∥, where

h
(r)
π =

∑K
i=1 πih

(r)
i , πi ∈ [0, 1],

∑K
i=1 πi = 1, ∀i ∈ K

16 Update

θ(r+1) = θ(r) − αhGIP-C where hGIP-C is defined via Theorem 1.

4.3 THEORETICAL ANALYSIS

We consider two theoretical analyses for our proposed method in accordance to gradient invariant
and DG properties. For instance,

Theorem 2 (Gradient Invariant Properties) Given Ui = ∇Li(θ) · ∇LGIP-C(θ) as the utility func-
tion of the Pareto Optimality problem. At each round r where the Pareto is applied on different
domains i, we have the GIP variance reduced accordingly to the number of learned epochs applied.
For instance, Var

(
Ui(θ

(r+1,e))
)
≤ Var

(
Ui(θ

(r+1,e))
)/

E∗
(

η2L
2 − η

)
.

Remark 2 The number of epochs E is related to the progress in gradient magnitude each round.

Thus, GIP variance reduction also relates to the gradient variance
∥∥∥∇Uk(θ

(r,e))
∥∥∥2. As the gradient

variance decreases, the gradient step becomes smaller, and thus the gradient invariant analysis
becomes more stable.
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Lemma 4 (Divergence of domains in the sources’ convex hull (Albuquerque et al., 2021)) Let
dV [Di,Dj ] ≤ ϵ, ∀i, j ∈ [K]. ∢K is the convex hull formed by source domains. The following
inequality holds for the V-divergence between any pair of domains D′

,D′′ ∈ ∢K : dV [D
′
,D′′

] ≤ ϵ.

From these two lemmas, we have the risk bounds on DG:

Theorem 3 (Optimal generalized risk bounds) If a target domain lies beneath the convex hull
formed by K source domains, then we can achieve the optimal generalized risk on target domains
when the following holds:

L∗
L = L∗

K +
M

2

√√√√ 1

K2

K∑
i=1

K∑
j=1

DKL

[
pi(y|x, θ∗)∥pj(y|x, θ∗)

]
+

1

K2

K∑
i=1

K∑
j=1

DKL

[
pi(x|θ∗)∥pj(x|θ∗)

]

s.t. θ∗ = argmax
θ

i ̸=j∑
i,j∈K

∇Li(θ) · ∇Lj(θ), (6)

where L∗
K,L∗

L are the source and target risks, respectively.

Theorem 3 demonstrates that by maximizing the GIP among domain gradients during each meta
update round, we can effectively reduce the generalization gap between the source and target domains.

Remark 3 The term DKL

[
pi(x|θ∗)∥pj(x|θ∗)

]
represents the distribution of the dataset between two

domains i, j, and is independent of θ∗. Therefore, we can consider this term irreducible.

Remark 4 The term DKL

[
pi(y|x, θ∗)∥pj(y|x, θ∗)

]
refers to the gap between the two hypotheses

pi(y|x, θ∗), pj(y|x, θ∗). This term is optimizable, and in our work, we optimize it by finding the
model θ∗ that maximizes the similarity among domain-specific gradients.

5 EXPERIMENTAL EVALUATION

5.1 ILLUSTRATIVE TOY TASKS

Dataset and Settings Descriptions. Based on Zhao et al. (2019), we introduced a synthetic binary
classification dataset, named Rect-4, which comprises four distinct domains representing four different
users. In each domain, a data sample xd = (xd,1, xd,2) is randomly selected in the two-dimensional
space with varying region distributions (see Appendix B for more details). To visualize the gradient of
the toy dataset, we design a 1-layer, 2-parameter network. To this end, we can visualize the gradients
in a 3-D space, consisting of 2 parameters and 1 weight.

Results and Analysis. Fig. 4 presents the performance
of POGM on Rect-4 in the first 5 meta-training rounds.
The results align with our empirical analysis in Sec-
tions 3.2 and 3.3. POGM demonstrates the smallest
gradient divergence and the largest gradient update mag-
nitude, indicating a closer progression towards the op-
timal solution. In contrast, Fish exhibits fluctuations
across domains, resulting in a smaller meta-gradient
magnitude and hindering convergence. Similarly, Fishr
produces a large gradient divergence between domains.
Despite the large magnitude of the domain-wise gradi-
ents, the small meta-gradient in Fishr prevents robust
convergence. The problem of Fishr in the initial rounds
will be discussed in detailed in Section 5.4.
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Figure 4: Illustrative toy task of POGM (opti-
mal point is at w1 = 0, b = 0).
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Table 1: DomainBed benchmark. We format first, second, and worse than ERM results.

Algorithm Accuracy(↑) Ranking(↓)
CMNIST RMNIST VLCS PACS OfficeHome TerraInc. DomainNet Avg Arith.

mean
Geom.
mean Median

ERM 57.8 ± 0.2 97.8 ± 0.1 77.6 ± 0.3 86.7 ± 0.3 66.4 ± 0.5 53.0 ± 0.3 41.3 ± 0.1 68.7 9.00 8.0 10
MTL (JMLR, 2021) 57.6 ± 0.3 97.9 ± 0.1 77.7 ± 0.5 86.7 ± 0.2 66.5 ± 0.4 52.2 ± 0.4 40.8 ± 0.1 68.5 8.4 7.7 7
SagNet (CVPR, 2021) 58.2 ± 0.3 97.9 ± 0.0 77.6 ± 0.1 86.4 ± 0.4 67.5 ± 0.2 52.5 ± 0.4 40.8 ± 0.2 68.7 8.0 7.3 7
ARM (NIPS, 2021) 63.2 ± 0.7 98.1 ± 0.1 77.8 ± 0.3 85.8 ± 0.2 64.8 ± 0.4 51.2 ± 0.5 36.0 ± 0.2 68.1 10.0 8.3 10
VREx (ICML, 2021) 67.0 ± 1.3 97.9 ± 0.1 78.1 ± 0.2 87.2 ± 0.6 65.7 ± 0.3 51.4 ± 0.5 30.1 ± 3.7 68.2 8.1 6.1 7
RSC (ECCV, 2020) 58.5 ± 0.5 97.6 ± 0.1 77.8 ± 0.6 86.2 ± 0.5 66.5 ± 0.6 52.1 ± 0.2 38.9 ± 0.6 68.2 10.6 10.2 11
AND-mask (ICLR, 2021) 58.6 ± 0.4 97.5 ± 0.0 76.4 ± 0.4 86.4 ± 0.4 66.1 ± 0.2 49.8 ± 0.4 37.9 ± 0.6 67.5 13.0 12.7 13
SAND-mask (ICML, 2021) 62.3 ± 1.0 97.4 ± 0.1 76.2 ± 0.5 85.9 ± 0.4 65.9 ± 0.5 50.2 ± 0.1 32.2 ± 0.6 67.2 14.0 13.3 13
EQRM (NIPS, 2022) 53.4 ± 1.7 98.0 ± 0.0 77.8 ± 0.6 86.5 ± 0.2 67.5 ± 0.1 47.8 ± 0.6 41.0 ± 0.3 67.4 8.99 7.4 7
RDM (WACV, 2024) 57.5 ± 1.1 97.8 ± 0.0 78.4 ± 0.4 87.2 ± 0.7 67.3 ± 0.4 47.5 ± 1.0 41.4 ± 0.3 68.2 8.7 6.9 6
SAGM (CVPR, 2023) 63.4 ± 1.2 98.0 ± 0.1 79.9 ± 0.2 85.8 ± 0.8 65.3 ± 0.5 50.8 ± 0.6 38.5 ± 0.2 68.8 8.7 6.8 11
CIRL (CVPR, 2022) 62.1 ± 1.3 97.7 ± 0.2 78.6 ± 0.6 86.3 ± 0.4 67.1 ± 0.3 52.1 ± 0.2 39.7 ± 0.4 69.1 8.7 8.1 7
MADG (NIPS, 2023) 60.4 ± 0.8 97.9 ± 0.0 78.7 ± 0.2 86.5 ± 0.4 71.3 ± 0.5 53.7 ± 0.5 39.9 ± 0.2 69.8 5.1 4.0 5
ITTA (CVPR, 2023) 57.7 ± 0.6 98.5 ± 0.1 76.9 ± 0.6 83.8 ± 0.3 62.0 ± 0.2 43.2 ± 0.5 34.9 ± 0.1 65.3 14.1 10.9 16
Mixstyle (ICLR, 2022) 54.4 ± 1.4 97.9 ± 0.0 77.9 ± 0.1 85.2 ± 0.1 60.4 ± 0.5 44.0 ± 0.6 34.0 ± 0.3 64.8 14.0 12.8 17
Fish (ICLR, 2022) 61.8 ± 0.8 97.9 ± 0.1 77.8 ± 0.6 85.8 ± 0.6 66.0 ± 2.9 50.8 ± 0.4 43.4 ± 0.3 69.1 8.6 6.8 9
Fishr (ICML, 2022) 68.8 ± 1.4 97.8 ± 0.1 78.2 ± 0.2 86.9 ± 0.2 68.2 ± 0.2 53.6 ± 0.4 41.8 ± 0.2 70.8 4.6 3.6 3

POGM (Ours) 66.3 ± 1.2 97.9 ± 0.0 82.0 ± 0.1 88.4 ± 0.5 70.0 ± 0.3 54.8 ± 0.5 42.6 ± 0.2 71.7 2.1 1.8 2

5.2 RESULTS ON DOMAINBED BENCHMARK

We conducted extensive experiments to validate our proposed POGM on DomainBed (Gulrajani &
Lopez-Paz, 2021). Our evaluation encompasses not only synthetic datasets like Colored MNIST
(CMNIST) (Ghifary et al., 2015a) and Rotated MNIST (RMNIST) (Ghifary et al., 2015b), but also
real-world multi-domain image classification datasets such as VLCS (Torralba & Efros, 2011), PACS
(Li et al., 2017), OfficeHome (Venkateswara et al., 2017), Terra Incognita (Beery et al., 2018), and
DomainNet (Peng et al., 2019). To ensure a fair comparison, we enforce strict training conditions. All
methods are trained using only 20 different hyperparameter configurations and for the same number
of steps. We then average the results over three trials. For a comprehensive understanding of our
experimental setup, please refer to the detailed settings provided in Appendix A. Tab. 1 summarizes
results on DomainBed using the “Test-domain” model selection: The validation set follows the same
distribution as the test domain.

In DomainBed, ERM was carefully fine-tuned and therefore serves as a robust baseline. However,
previous methods consistently fall short of achieving the highest scores across datasets. Specifically,
invariant predictors like IRM and VREx, along with gradient masking approaches such as AND-mask,
demonstrate poor performance on real datasets. Furthermore, CORAL not only underperforms
compared to ERM on Terra Incognita but more crucially, it fails to identify correlation shifts on
CMNIST. This is attributed to feature-based methods neglecting label considerations.

As observed from Tab. 1, our proposed method efficiently tackle correlation and diversity shifts.
Besides the Fishr which shows the competitive results to our work, our POGM systematically
performs better than ERM on all real datasets: the differences are over standard errors on VLCS
(82.0% vs. 77.6%), PACS (88.4% vs. 86.7%), OfficeHome (70.0% vs. 66.4%), and on the large-
scale Terra Inc. (54.8% vs. 53.0%), and DomainNet (42.6% vs. 41.3%). However, on synthetic data,
our proposed POGM does not exhibit significant improvement over other baseline methods. Notably,
POGM performs notably worse on CMNIST, which will be discussed further in the subsequent
section. In summary, despite the decrease on synthetic datasets, POGM shows competitive results vs.
Fish, and Fishr, outperforms the ERM on all challenging datasets. Significantly, POGM consistently
achieves top results on real datasets, i.e., ranking in the top 1 and 2 positions on benchmark tests.

5.3 NUMERICAL STUDIES

5.3.1 INVARIANT GRADIENT PROPERTIES

Fig. 5 illustrates the invariant gradient properties of POGM. POGM shows a stronger correlation
between two domain-specific gradient angles compared to ERM, Fish (refer to Fig. 3). Furthermore,
every pair-wise gradient angle has smaller gap with each other, thus, the gradient of POGM shows
better invariant properties than that of Fish and Fishr. The correlation implies that the angles of two
gradient directions change at the same rate as the POGM, indicating invariant properties.
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Figure 5: The correlation of gradient direction of POGM on CMNIST, VLCS, PACS, and OfficeHome.
Compared to Fish and Fishr, POGM represents a higher correlation of gradient pairs among domains.

5.3.2 DOMAIN SPECIFIC GRADIENT ANGLE AND NORM DIFFERENCE

Besides the gradient invariant properties, we consider the average angle cosine with the domain-
specific gradients cos(θ(r)GIP-C, θ

(r)
i ) and the norm distance with the domain-specific models ∥θ(r)GIP-C −

θ
(r)
i ∥. If the gradients’ angles and the norm distances are small, the generalization gap between the

trained model and the domain-specific model is better, thus improving the validation set on the source
domains. The results in Fig. 6 demonstrate that POGM outperforms Fish in retaining the performance
on source domains when still improving the results on target domains. Additionally, models tend to
perform better when the average gradient angle cosine exceeds 0, indicating most gradient conflicts
(SHI et al., 2023) become insignificant (i.e., the angles become less than 90 degrees).
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Figure 6: The gradients angles and the norm difference of ERM, Fish, Fishr, POGM on VLCS, PACS.

5.4 STABLE TRAINING BEHAVIOR OF POGM
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Figure 7: Invariant properties of POGM vs. ERM and Fishr.

Despite the robust results reported in the benchmarks, Fishr has drawback (which is mentioned in
Section 3.2 and illustrated in Section 5.1) which impedes the convergence rate of Fishr in the initial
rounds and can be further improved. Our introduced POGM is able to avoid the drawback of Fishr.
Fig.7 illustrates the performance of POGM over Fishr and ERM in VLCS dataset. In Fishr, by
minimizing the MSE among gradient variance and mean, the gradient angles of Fishr do not achieve
the optimal results at the initial phases (from step 500 to 5000 in figures 7a, 7b, and 7c). In the latter
stages, the Fishr angles become similar to that of ERM.

In contrast, by following GIP maximization proposed by (Shi et al., 2022), the angles between the
learned gradient and other domains are optimized directly, resulting in a significant improvement in
POGM over ERM and Fishr (see Fig. 7d).
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5.5 INTEGRATABILITY

From Tab. 2, POGM demonstrates
strong performance when combined
with representation augmentation and
mixing methods (e.g., Mixup and CIRL)
in significant domain shifts (i.e., CM-
NIST). This is because representation
mixing reduces domain shifts among dif-
ferent domains (Yao et al., 2022).

Table 2: The integratibility of POGM

Dataset CMNIST PACS VLCS

POGM 66.3 ± 1.2 88.4 ± 0.5 70.0 ± 0.3
POGM + Mixup 69.5 ± 0.6 89.1 ± 0.6 70.8 ± 0.5
POGM + Data Aug. 67.1 ± 1.1 88.6 ± 0.5 71.2 ± 0.4
POGM + CIRL 71.4 ± 0.7 90.1 ± 0.4 70.6 ± 0.5
POGM + SWAD 68.1 ± 0.5 91.2 ± 0.3 72.6 ± 0.2

Meanwhile, data augmentation expands the data samples, thereby increasing the effective domain
sampling size and mitigating the negative impact of domain shifts. Additionally, POGM exhibits
substantial robustness when integrated with sharpness-aware techniques, such as SWAD, in datasets
with moderate domain shifts (e.g., PACS, VLCS). The reason for this is that sharpness-aware methods
stabilize gradients, which in turn enhances gradient matching—an aspect that depends heavily on the
stability of domain-specific gradients.

6 REDUCED COMPUTATIONAL OVERHEADS VIA HESSIAN-FREE
APPROXIMATION

Fig. 8 demonstrates the computational efficiency in
terms of the amount of GPU memory used and up-
date time in each step, respectively. Firstly, POGM
uses much less GPU memory than Fishr and ERM.
This is because POGM does not need to approximate
the Hessian, which saves memory during calcula-
tions. However, POGM uses more memory than
Reptile-based Fish. This is because Reptile-based
Fish trades off some performance for a simpler de-
sign, as explained in Section 5.2. Secondly, POGM
is much faster than the other methods per step. This
is because POGM only applies the meta-update every
few rounds (while others apply every round), thereby
significantly reducing the computation time.

0 1 2 3 4 5
GPU memory (GB)

Fishr

Fish

ERM

POGM
GPU memory (GB)

0.0 0.2 0.4 0.6 0.8
Time per iteration (s)

Time per iteration

Figure 8: The evaluation of average GPU mem-
ory used during the training and the average
time consumption per step when training Fish,
Fishr, ERM, POGM with the VLCS dataset.

6.1 ABLATION STUDIES

Our ablation studies examine the impact of the number of domain-specific loop steps E, meta-update
learning rate α, the effects of selecting the hypersphere radius κ, and the impact of domain divergence
on POGM. The results are shown in Appendix D.

7 CONCLUSION

In our paper, we tackled the challenge of out-of-distribution generalization. We conducted thorough
empirical analyses on two state-of-the-art gradient-based methods, Fish (Shi et al., 2022) and Fishr
(Rame et al., 2022), revealing two main issues: gradient magnitude elimination, and gradient
fluctuation. These issues hinder both Fishr and Fish from consistently achieving peak performance.
Building on these observations, we propose a novel approach that incorporates GIP from Fish and
introduces a generalized regularization, called GIP-C, to ensure stability. We employ meta-learning
to separate the domain-specific optimization stage from the GIP optimization phase, allowing for
a Hessian-free approximation of our GIP-C optimization problem. Our experiments, which are
reproducible with our open-source implementation, demonstrate that POGM delivers competitive
results compared to Fishr and outperforms other baseline methods across various popular datasets.
We anticipate that our learning architecture will pave the way for gradient-based out-of-distribution
generalization without the need for Hessian approximation.
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A EXPERIMENTAL SETTINGS

A.1 DATASETS

Rotated MNIST (Ghifary et al., 2015a) consists of 10000 digits in MNIST with different rotated
angle d such that each domain is determined by the degree d ∈ {0, 15, 30, 45, 60, 75}.
Colored MNIST (Gulrajani & Lopez-Paz, 2021) consists of 10000 digits in MNIST with different
rotated angle d such that each domain is determined by the different color set.

PACS (Li et al., 2017) includes 9991 images with 7 classes y ∈ {dog, elephant, giraffe, guitar, horse,
house, person} from 4 domains d ∈ {art, cartoons, photos, sketches}.

VLCS (Torralba & Efros, 2011) is composed of 10729 images, 5 classes y ∈ {bird, car, chair, dog,
person} from domains d ∈ {Caltech101, LabelMe, SUN09, VOC2017}.

OfficeHome (Venkateswara et al., 2017) includes 15500 images from 65 categories from four
domains d ∈ {Art, Clipart, Product, and Real-World} with various categories of objects commonly
found in office and home settings. It’s widely used for domain adaptation and generalization tasks.

TerraIncognita (Beery et al., 2018) contains 24330 images captured by satellites and aerial platforms,
representing different terrains like forests, deserts, and urban areas.

DomainNet (Peng et al., 2019) is a large-scale dataset with 0.6 millions of images which are divided
into 345 classes for DG research, featuring images from six domains d ∈ {Clipart, Infograph, Painting,
Quickdraw, Real, and Sketch}.

A.2 BASELINES

We compare POGM with the two most popular recent gradient-based DG, i.e., Fish (Shi et al., 2022),
and Fishr (Rame et al., 2022) using GPUs: NVIDIA RTX 3090.

Besides, we also compare our POGM with other state-of-the-art methods, which are ERM, IRM
(Wang et al., 2022), GroupDRO (Sagawa et al., 2020), Mixup (Yao et al., 2022), DANN (Sicilia et al.,
2023), MTL (Blanchard et al., 2021), SagNet (Nam et al., 2021), ARM (Zhang et al., 2021), VREx
(Krueger et al., 2021), RSC (Huang et al., 2022), AND-mask, SAND-mask (Shahtalebi et al., 2020),
EQRM (Eastwood et al., 2022b), RDM (Nguyen et al., 2024), SAGM (Wang et al., 2023), CIRL (Lv
et al., 2022), MADG (Dayal et al., 2023), ITTA (Chen et al., 2023), MixStyle (Zhou et al., 2021).

A.3 IMPLEMENTATION DETAILS

We utilize different architectures for feature extraction and classification across datasets. Specifically,
we employ a simple CNN for RMNIST and CMNIST, while ResNet-18 (He et al., 2016) is used for
VLCS, PACS, and OfficeHome. For Terra Incognita and DomainNet, ResNet-50 (He et al., 2016)
serves as the chosen architecture.

All experiments are trained for 100 epochs. During the local domain training phase, we employ SGD
to optimize both the feature extractor and classifier. The initial learning rates are set to 0.001 for
RMNIST and CMNIST, and 0.00005 for PACS, VLCS, Terra Incognita, OfficeHome, and DomainNet.
Batch sizes are set to 64 for RMNIST and CMNIST, and 32 for the other datasets.

In the meta-learning phase, the meta-learning rate is set to 0.01, with the available searching hyper-
sphere κ set to 0.5. We conduct 5 local steps between each meta update.

Our code is based on DomainBed1.

A.4 HYPERPARAMETER SEARCH

Based on the experimental guidelines in (Gulrajani & Lopez-Paz, 2021), we perform a random search
with 20 trials to fine-tune the hyperparameters for each algorithm and test domain. We divide the data
from each domain into 80% for training, and evaluation; and 20% for selecting the hyperparameters.

1https://github.com/facebookresearch/DomainBed/tree/main/domainbed
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To mitigate randomness, we experiment twice with different seeds. Finally, we present the average
results from these repetitions along with their estimated standard error.

We perform a grid search over pre-defined values for each hyperparameter and report the optimal
values along with the values used for the grid search. Furthermore, we do early stopping based on the
validation accuracy on the source domain and use the models that obtain the best validation accuracy.

A.5 MODEL SELECTION

In DG, choosing the right model is like a learning task itself. We adopt the test-domain validation
method from (Gulrajani & Lopez-Paz, 2021), which is one of three selection methods. This approach
is like consulting an oracle, as we pick the model that performs best on a validation set with the same
distribution as the test domain.

B TOY DATASET DESCRIPTION

We visualize the training data in Figs. 9 and 10. In the FDG setting, the users are from different
domains. To this end, we design the data where the points are distributed into rectangular with
different sizes and shapes. The rationale for designing the data distribution is as follows:

• The global dataset consists of two classes from two rectangular regions, which has the
classification boundary equal to y = 0.

• Each domain-wise dataset has different classification boundary (e.g., x = −6 for domain 1).
We add the noisy data on every domains so that the user assign to each domain will tend to
learn the local boundary instead of the global boundary. Thus, we can observe the gradient
divergence more clearly, as the global boundary is not the optimal solution when learn on
local dataset.

• All of the local classification boundary is orthogonal from the global classification boundary,
thus, we can make the learning more challenging despite the simplicity of the toy dataset.
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Figure 9: Illustration of users with different domains.
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Figure 10: Illustration of users with same domains.

C EMPIRICAL ANALYSIS

C.1 DETAILED MEASUREMENT SETUP OF THE EMPIRICAL ANALYSIS

To evaluate the invariant gradient properties of Fish and Fishr, we conduct four following experiments.
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C.1.1 DOMAIN-SPECIFIC MODEL NORM DIFFERENCE

We conduct the domain-specific model norm difference to measure the empirical distance
∥θ(r)i − θ

(r)
□ ∥

2 between domain-specific model θ
(r)
i and the learned model θ

(r)
□ , where □ =

{Fish,Fishr,ERM} is the algorithms being evaluated.

To conduct the mentioned measurement, at each update round r, we conduct simultaneously two
different training scenarios:

Evaluated Algorithm Training. From the previous model θ(r−1)
□ , we train evaluated model θ(r)□ .

Domain-specific Training. From the previous model θ(r−1)
□ , we train domain-specific model θ(r)i

via the domain-specific data Si.

By doing so, we only evaluate the divergence between the evaluated and domain-specific models at
every round. Thus, our metric guarantees fairness among algorithms.

C.1.2 DOMAIN-SPECIFIC GRADIENT ANGLE

We conduct the domain-specific model gradient angle to measure the cosine similarity h
(r)
i ·

h
(r)
□ /∥h(r)

i ∥∥h
(r)
□ ∥ between domain-specific gradient trajectory h

(r)
i and the learned gradient trajec-

tory h
(r)
□ .

To conduct the mentioned measurement, at each update round r, we conduct simultaneously two
different training scenarios:

Evaluated Algorithm Training. From the previous model θ(r−1)
□ , we train evaluated model θ(r)□ .

The evaluated gradient trajectory is measured as

h
(r)
□ = θ

(r)
□ − θ

(r−1)
□ . (7)

Domain-specific Training. From the previous model θ(r−1)
□ , we train domain-specific model θ(r)i

via the domain-specific data Si. The domain-specific gradient trajectory is measured as

h
(r)
i = θ

(r)
i − θ

(r−1)
i . (8)

By doing so, we only evaluate the divergence between the evaluated and domain-specific models at
every round. Thus, our metric guarantees fairness among algorithms.

C.1.3 INVARIANT GRADIENT ANGLE

To measure the invariant gradient angle, we first save a previously τ -time trained model θr−τ
□ . We

measure the invariant gradient angle via the following cosine similarity formulation:

Invariant Angle =
[θ

(r)
□ − θ

(r−1)
□ ] · [θ(r)□ − θ

(r−τ)
□ ]∥∥∥[θ(r)□ − θ

(r−1)
□ ]

∥∥∥× ∥∥∥[θ(r)□ − θ
(r−τ)
□ ]

∥∥∥ (9)

By doing so, we can approximate the fluctuation of the evaluated gradient. Specifically, as the
gradient fluctuation issue is higher, the angle becomes larger, resulting in a smaller cosine similarity.

C.2 GRADIENT MAGNITUDE NORM

We measure the gradient magnitude norm to evaluate how much the gradient made that round. As
the gradient magnitude is larger, the gradient tends to progress more, and thus, make more impact
on the learning progress. To measure the gradient magnitude norm, we calculate via the following
formulation:

Grad Norm = ∥θ(r)□ − θ
(r−1)
□ ∥2. (10)
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C.3 EVALUATION ON GRADIENT ELIMINATION

In Fig. 2, the results are conducted from the real dataset VLCS, the gradient magnitude decreased
from iteration 0 to 5000. This led to a notable decrease in the cosine of the gradient angle specific
to the domain, as shown in Fig. 2a. Simultaneously, there was a significant reduction in the norm
difference. This observation corresponds with the illustration in Fig. 1b, where the elimination of
norm magnitude does not necessarily imply a reduction in gradient angle. This phenomenon results
in the slower convergence of Fishr compared to that of the ERM, i.e., for nearly 5000 iterations (see
Fig. 2d).

Fig. 2c demonstrates the behavior of regularization in Fishr, where the algorithm firstly aims to
minimize the regularizer exhaustively, leading to the overfitting in the regularization. From iteration
7500 to 10000, the ERM loss in Fishr is considered instead of regularization minimization. And the
Fishr only achieves the stable learning stage after the iteration of 10000.

When the Fishr goes into the stable learning stage, the gradient norm distance and gradient angle
cosine become same with that of the ERM, resulting in the same performance between ERM and
Fishr.

C.4 EXTENSIVE ANALYSIS ON THE EFFECT OF DOMAIN DIVERGENCE TO THE POGM
PERFORMANCE

 2 2
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Figure 11

To detailed explain the effects of domain divergence to POGM performance, we first explain the
rationale of POGM. As depicted in Fig. 11, the POGM gradients are learned via the maximization
of

∑i ̸=j
i,j∈K∇Li(θ) · ∇Lj(θ). Therefore, the learned POGM gradient vectors will be between all

domain-wise gradient trajectories, which can be found in Fig. 11.

When training domains are diverse, the space between them is extensive, increasing the chance of
test domains to be. This increases the likelihood that the learned POGM gradients will align well
with test domains, especially those similar to certain training domains. Conversely, when training
domains are similar, and especially when test domains differ significantly from them, problems arise.

Lemma 5 (Domain Divergence) Given a set of gradients vectors Gsource = {g1, . . . , gK} get from
the model θ when train in source domains K = {D − i}Ki=1. If there is a gradient vector gL created
by target domain L such that gL · gi < gi · gj , ∀i, j ∈ K, then gL resides outside the convex hull
generated by the set Gsource.

Lemma 5 shows that, as the target domains diverge from the training source domains, the learned
gradient of POGM in particular and via GIP, in general, will suffer from the divergence with that
of the gradients on test target domains. Thus, we believe that, to guarantee the performance of the
POGM, the training domain must diverge (and suggested to diverge than that of the test domains).
Therefore, the POGM can learn a more generalized characteristics of source and target domains.
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D ABLATION STUDIES

D.1 DIFFERENT META UPDATE LEARNING RATE

Table 3

Model selection α CMNIST RMNIST VLCS PACS OfficeHome TerraInc DomainNet Avg

Testing-domain
0.01 65.2 ± 0.9 94.7 ± 0.3 81.3 ± 0.3 87.6 ± 0.9 68.7 ± 0.5 50.4 ± 0.9 30.3 ± 2.0 68.3
0.1 62.0 ± 0.9 93.4 ± 0.9 81.3 ± 0.2 88.5 ± 0.5 69.4 ± 0.6 51.4 ± 0.5 34.2 ± 1.1 68.6
0.5 64.7 ± 1.2 97.8 ± 0.1 80.5 ± 0.4 87.8 ± 0.3 68.6 ± 0.4 53.9 ± 0.1 40.0 ± 0.4 70.5

Training-domain
0.01 51.7 ± 0.2 94.0 ± 0.2 79.4 ± 0.3 82.8 ± 0.7 67.8 ± 0.5 46.0 ± 1.1 30.3 ± 2.0 64.6
0.1 51.1 ± 0.2 93.2 ± 0.8 79.7 ± 0.6 86.4 ± 0.9 69.2 ± 0.7 46.0 ± 1.7 34.2 ± 1.1 65.7
0.5 51.4 ± 0.2 97.7 ± 0.1 79.4 ± 0.3 85.8 ± 0.6 67.8 ± 1.0 46.5 ± 0.4 40.0 ± 0.4 66.9

The ablation test of meta update learning rate is demonstrated as in Tab. 3. On the synthetic dataset
RMNIST, due to the high correlation among domains, the DG problem tends to be simple. Thus, by
choosing a high learning rate, we can easily achieve the optimal state.

When dealing with the more challenging dataset (i.e., CMNIST with low correlation among domains,
and real datasets such as VLCS, PACS, and OfficeHome) the low learning rate appears to be the
efficient setting.

However, in real-world datasets with high dimensionality, and due to the large of the learning model
(i.e., ResNet-50), the loss landscape exists significantly sharp minimizers. As a result, choosing a
large meta-learning rate is efficient in these datasets.

D.2 DIFFERENT DOMAIN-SPECIFIC TRAINING ITERATIONS

Table 4

Model selection E CMNIST RMNIST VLCS PACS OfficeHome TerraInc DomainNet Avg

Testing-domain
1 63.8 ± 1.2 97.3 ± 0.3 79.7 ± 0.6 87.3 ± 0.4 67.5 ± 0.4 54.0 ± 0.6 40.0 ± 0.4 69.9
5 60.9 ± 1.3 95.8 ± 0.7 81.0 ± 0.1 87.5 ± 0.9 69.0 ± 1.0 49.9 ± 1.0 33.1 ± 2.0 68.2
10 60.3 ± 1.2 97.5 ± 0.1 81.5 ± 0.4 88.2 ± 0.4 69.7 ± 0.2 52.3 ± 0.9 32.1 ± 0.6 68.8

Training-domain
1 51.6 ± 0.2 97.2 ± 0.3 78.8 ± 0.6 84.0 ± 0.3 67.0 ± 0.6 46.0 ± 0.4 40.0 ± 0.4 66.4
5 51.3 ± 0.1 95.6 ± 0.7 80.2 ± 0.3 86.5 ± 0.8 68.7 ± 1.0 44.9 ± 1.2 33.1 ± 2.0 65.7
10 50.4 ± 0.2 97.3 ± 0.2 79.1 ± 0.2 86.0 ± 0.3 69.0 ± 0.2 47.1 ± 0.9 31.9 ± 0.7 65.8

Tab. 4 demonstrates the ablation test on different domain-specific training iterations on 7 evaluating
datasets (i.e., RMNIST, CMNIST, VLCS, PACS, OfficeHome, Terra Incognita, DomainNet). The
results differ depending on the dataset characteristics. For synthetic datasets like RMNIST and
CMNIST, where the data is simpler, gradient trajectories are easily estimated. Thus, using a low
number of domain-specific training iterations between each meta-update round (e.g., 1 round) yields
optimal settings. However, for real-world datasets such as VLCS, PACS, OfficeHome, Terra Incognita,
and DomainNet, employing a larger number of rounds leads to improved training outcomes.

D.3 DIFFERENT SEARCHING HYPERSPHERE RADIUS

Table 5

Model selection κ CMNIST RMNIST VLCS PACS OfficeHome TerraInc DomainNet Avg

Testing-domain
0.05 62.0 ± 1.4 96.3 ± 0.5 80.4 ± 0.8 85.7 ± 1.5 68.3 ± 1.1 49.9 ± 0.9 28.1 ± 3.6 67.2
0.1 64.5 ± 1.6 97.4 ± 0.2 81.2 ± 0.4 88.2 ± 0.8 68.7 ± 0.6 52.9 ± 0.6 31.6 ± 0.9 69.2
0.5 63.8 ± 1.0 97.2 ± 0.3 82.0 ± 0.1 88.3 ± 0.4 69.5 ± 0.2 53.9 ± 0.1 40.2 ± 0.3 70.7

Training-domain
0.05 51.4 ± 0.1 96.1 ± 0.7 79.0 ± 0.8 84.4 ± 1.6 68.1 ± 1.3 45.3 ± 1.0 28.1 ± 3.6 64.6
0.1 51.3 ± 0.1 97.2 ± 0.3 79.5 ± 0.3 84.7 ± 0.8 67.4 ± 0.6 45.4 ± 1.5 31.5 ± 0.8 65.3
0.5 51.0 ± 0.5 97.2 ± 0.3 78.7 ± 0.3 85.8 ± 0.4 68.6 ± 0.4 45.8 ± 0.4 40.1 ± 0.3 66.7

Tab. 5 demonstrates the ablation test on different searching hypersphere radius κ on 7 evaluating
datasets (i.e., RMNIST, CMNIST, VLCS, PACS, OfficeHome, Terra Incognita, DomainNet). Across
almost all datasets, POGM performs well when the available search radius is set to κ ≥ 0.5. We
can explain this problem as follows. Because of significant gradient divergence across domains, the
search space expands accordingly. Therefore, the optimal solution is significantly different from the
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ERM solutions, likely due to gradient divergence, which expands the search space. Besides, in the
synthetic dataset RMNIST, the difference among domains is not significant, which makes the search
space become small. Therefore, the optimal solution is κ = 0.1.

E PROOF ON LEMMAS

E.1 PROOF ON LEMMA 1

For a simple proof, we denote gi, gj as the gradients trajectories of the model learned from different
domains∇Li(θ),∇Lj(θ), respectively. We assume that each gradient gi, gj , ∀i, j can be factorized
as follows:

gi = kg̃i

gj = kg̃j , (11)

where k is the scaling factor, g̃i, g̃j is the unit vector, and satisfies ∥g̃i∥, ∥g̃j∥ < ε, ∀ε. Therefore, we

have MSE loss from Fishr (Rame et al., 2022) of Ldist

(
∇Li(θ),∇Lj(θ)

)
as follows:

∥gi − gj∥2 = ∥kg̃i − kg̃j∥2 = k2∥g̃i − g̃j∥2 ≤ k2
(
∥g̃i∥2 + ∥g̃j∥2

)
≤ k22ε. (12)

Therefore, we have:

Ldist

(
gi, gj

)
=

1

K(K − 1)

K∑
i=1

K∑
j ̸=i

∥gi − gj∥2 ≤ k22ε (13)

From this case, it is obvious that when k → 0, we have Ldist

(
gi, gj

)
< k22ε. Therefore, the regular-

ization loss can achieve the minimal solution when k → 0, which also means where ∥gi∥, ∥gi∥ → 0.

E.2 PROOF ON LEMMA 2

We have

∇Li(θ) · ∇LGIP-C ≥ min
i∈K
∇Li(θ) · ∇LGIP-C.

Therefore, we have:

1

K

∑
i∈K
∇Li(θ) · ∇LGIP-C ≥ min

i∈K
∇Li(θ) · ∇LGIP-C.

E.3 PROOF ON LEMMA 3

We have

θ∗ = argmax
θ

∑
i∈K
Li(θ) · ∇LGIP-C(θ)− γ

(
∥∇LGIP-C(θ)−∇LERM(θ)∥2 − κ∥∇LERM(θ)∥2

)
,

(14)

From Lemma 2 and definitions 1, 2, we have:

Lavg(θ
∗) =

∑
i∈K
Li(θ

∗) · ∇LGIP-C(θ
∗)− γ

(
∥∇LGIP-C(θ

∗)−∇LERM(θ∗)∥2 − κ∥∇LERM(θ∗)∥2
)

≥min
i∈K

[
Li(θ

∗) · ∇LGIP-C(θ
∗)− γ

(
∥∇LGIP-C(θ

∗)−∇LERM(θ∗)∥2 − κ∥∇LERM(θ∗)∥2
)]

≥LPareto(θ
∗) = LPareto(θ

∗). (15)

Therefore, we have that θ∗ is also the Pareto optimality solution.
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E.4 PROOF ON LEMMA 5

We define a convex hullH of the finite set {g1, . . . , gK}:

H = {hi, ∀i} = {λ1g1 + . . .+ λKgK | λ ⪰ 0,1⊤λ = 1}, (16)

it is obvious that to guarantee the point to be in the convex hull, we must satisfy the condition:
λk < 1, ∀k. Consider the target gradient vector gL, where we have gL · gi < gi · gj , ∀i, j ∈ K. To
prove that gL is outside of the convex hull, we leverage a contradict consumption, where gL is in the
convex hull, and gL = λ1g1 + . . .+ λKgK . Then, we have

gL · gi = (λ1g1 + . . .+ λKgK) · gi
= λ1(g1 · gi) + . . .+ λK(gK · gi)
< (λ1 + . . .+ λK)(gL · gi) = gL · gi (17)

This does not exist, thus we have gL outside of the convex hullH.

E.5 PROOF ON LEMMA 6

The update of the model can be written as follows:

θ(r,e+1) = θ(r,e) − η∇Uk(θ
(r,e)). (18)

Now using the Lipschitz-smoothness assumption, we have

Uk(θ
(r,e+1))− Uk(θ

(r,e)) ≤ −η
〈
∇Uk(θ

(r,e)),∇Uk(θ
(r,e))

〉
+

η2L

2

∥∥∥∇Uk(θ
(r,e))

∥∥∥2
=

(η2L
2
− η

)∥∥∥∇Uk(θ
(r,e))

∥∥∥2. (19)

Averaging over all rounds, we have

Uk(θ
(r,e+1))− Uk(θ

(r,0)) =
(η2L

2
− η

) E∑
e=0

∥∥∥∇Uk(θ
(r,e))

∥∥∥2. (20)

Rearranging terms, we have∥∥∥∇Uk(θ
(r,e))

∥∥∥2 ≤ Uk(θ
(r,E∗))− Uk(θ

(r,0))

E∗
(

η2L
2 − η

) . (21)

F PROOF ON THEOREMS

F.1 PROOF ON THEOREM 1

Theorem 4 (Invariant Gradient Solution) Given the Pareto condition as mentioned in Lemma 3,
π̃ = {π(r)

1 , . . . , π
(r)
K } are the set of K learnable scaling parameters for the joint learner at each r

communication round. The invariant gradient hGIP-C is characterized by the

h
(r)
GIP-C = h

(r)
ERM +

κ∥h(r)
ERM∥

∥h(r)
π ∥

h(r)
π s.t. π̃ = argmin

π
h(r)
π · h

(r)
ERM + κ∥h(r)

ERM∥∥h(r)
π ∥ (22)

where h
(r)
π =

∑K
i=1 π

(r)
i h

(r)
i .

Proof. For a clear proof, we denote h
(r)
GIP-C = h

(r)
GIP-C(θ), h

(r)
ERM = h

(r)
ERM(θ), h(r)

i = h
(r)
i (θ), and

h
(r)
π = h

(r)
π (θ). Therefore, we have

max
θ

min
i∈K

[
h
(r)
i (θ) · h(r)

GIP-C(θ)− γ
(
∥h(r)

GIP-C(θ)− h
(r)
ERM(θ)∥2 − κ∥h(r)

ERM(θ)∥2
)]

. (23)
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This is equivalent to

max
θ

min
π

[
h(r)
π (θ) · h(r)

GIP-C(θ)− γ
(
∥h(r)

GIP-C(θ)− h
(r)
ERM(θ)∥2 − κ∥h(r)

ERM(θ)∥2
)]

, (24)

We first deal with the following minimization problem

min
π

U(π) = h(r)
π (θ) · h(r)

GIP-C(θ)− γ
(
∥h(r)

GIP-C(θ)− h
(r)
ERM(θ)∥2 − κ∥h(r)

ERM(θ)∥2
)
. (25)

To find the relaxation of the minimization U(π), we fix π, γ to find the optimal state of h(r)
GIP-C(θ).

The minimization is achieved when∇
h
(r)
GIP-C(θ)

U(π) = 0. For instance, we have:

∇
h
(r)
GIP-C(θ)

U(π) = h(r)
π (θ)− 2γ

(
h
(r)
GIP-C(θ)− h

(r)
ERM(θ)

)
∇

h
(r)
GIP-C(θ)

(h
(r)
GIP-C(θ))

= h(r)
π (θ)− 2γ

(
h
(r)
GIP-C(θ)− h

(r)
ERM(θ)

)
= 0. (26)

This equality is achieved when

h
(r)
GIP-C(θ) = h

(r)
ERM(θ) +

h
(r)
π (θ)

2γ
. (27)

Replace the solution found in Eq. (27) with Eq. (25), we have:

U(π) = h(r)
π (θ) ·

[
h
(r)
ERM(θ) +

h
(r)
π (θ)

2γ

]
− γ

(
∥h(r)

GIP-C(θ)− h
(r)
ERM(θ)∥2 − κ∥h(r)

ERM(θ)∥2
)

= h(r)
π (θ) · h(r)

ERM(θ) + h(r)
π (θ) · h

(r)
π (θ)

2γ
− γ

(
∥h(r)

GIP-C(θ)− h
(r)
ERM(θ)∥2 − κ∥h(r)

ERM(θ)∥2
)

= h(r)
π (θ) · h(r)

ERM(θ) +
1

2γ
∥h(r)

π (θ)∥2 − γ
(
∥h

(r)
π (θ)

2γ
∥2 − κ∥h(r)

ERM(θ)∥2
)

= h(r)
π (θ) · h(r)

ERM(θ) +
1

2γ
∥h(r)

π (θ)∥2 − 1

4γ
∥h(r)

π (θ)∥2 + γκ∥h(r)
ERM(θ)∥2

= h(r)
π (θ) · h(r)

ERM(θ) +
1

4γ
∥h(r)

π (θ)∥2 + γκ∥h(r)
ERM(θ)∥2. (28)

By fixing the γ, we have:

∇γU(π) = − 1

4γ2
∥h(r)

π (θ)∥2 + κ∥h(r)
ERM(θ)∥2 = 0. (29)

the optimal solution is when γ satisfies:

γ =

√
1

4
∥h(r)

π (θ)∥2
/
κ∥h(r)

ERM(θ)∥2 =
∥h(r)

π (θ)∥
2
√
κ∥h(r)

ERM(θ)∥
. (30)

Replace γ into Eq. (28), we have:

U(π) = h(r)
π (θ) · h(r)

ERM(θ) +
√
κ∥h(r)

π (θ)∥∥h(r)
ERM(θ)∥. (31)

F.2 PROOF ON THEOREM 2

Consider the GIP optimization problem from Eq. (2), taking the GIP value as Ui = gGIP-C · gi, we
consider the variance of the GIP function at each round r (when each specific domain k are being
chosen to optimized) as:

Var
(
Ui(θ

(r+1,e))
)
=

i∈K∑
Ui(θ

(r,e))−maxminUi(θ
(r,e))

=
K − 1

K

( i∈K∑
i ̸=k

Ui(θ
(r,e))−max

θ
Uk(θ

(r,e))
)
. (32)
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After each step, only the Uk is updated via maximization problem, i.e., θ(e+1) = θ(e) − η∇Uk(θ
(e)).

Then, we have:

Uk(θ
(r,e+1)) = Uk

(
θ(r,e) − η∇Uk(θ

(r,e))
)
= Uk

(
θ(r,e)

)
− η

[
∇Uk(θ

(r,e))
]2
. (33)

Therefore, we have the Eq. (32) as follows:

Var
(
Ui(θ

(r+1,e))
)
=

K − 1

K

( i∈K∑
i ̸=k

Ui − Uk + η
[
∇Uk(θ

(r,e))
]2)

. (34)

It is obvious that when Uk(θ
(e+1)) conduct 1 step and in the next step, the different domain k′ is

being chosen as Pareto fronts, we have the following:

Var
(
Ui(θ

(r+1,e))
)
≤ η

∥∥∥∇Uk(θ
(r,e∗))

∥∥∥2. (35)

To bound the Eq. (35), we have the following lemma:

Lemma 6 The gradient variance norm after E∗ rounds can be considered as∥∥∥∇Uk(θ
(r,e))

∥∥∥2 ≤ Uk(θ
(r,E∗))− Uk(θ

(r,0))

E∗
(

η2L
2 − η

) . (36)

Therefore, we have:

Var
(
Ui(θ

(r+1,e))
)
≤ Uk(θ

(r,E∗))− Uk(θ
(r,0))

E∗
(

η2L
2 − η

) =
Var

(
Ui(θ

(r+1,e))
)

E∗
(

η2L
2 − η

) . (37)

F.3 PROOF ON THEOREM 3

From (Nguyen et al., 2022), we have

Ltest ≤ Ltrain +
M

2

√√√√ 1

K

K∑
i=1

DKL

[
pT (y|θ)∥pi(y|θ)

]
. (38)

From Lemma 4, we have:

Ltest ≤ Ltrain +
M

2

√√√√ 1

K2

K∑
i=1

K∑
j=1

DKL

[
pi(y|θ)∥pj(y|θ)

]

= Ltrain +
M

2

√√√√ 1

K2

K∑
i=1

K∑
j=1

DKL

[
pi(y|x, θ)pi(x|θ)∥pj(y|x, θ)pj(x|θ)

]

= Ltrain +
M

2

√√√√√√√
1

K2

K∑
i=1

K∑
j=1

DKL

[
pi(y|x, θ)∥pj(y|x, θ)

]
︸ ︷︷ ︸

B1

+
1

K2

K∑
i=1

K∑
j=1

DKL

[
pi(x|θ)∥pj(x|θ)

]
︸ ︷︷ ︸

B2

,

(39)
where B1 is the divergence of the inference of model θ on different domains i, j. B2 is the divergence
between domains, which is not tunable. This also means that, as the GIP gi · gj is maximized, we can
improve the model generalization as follows:

L∗
test = L∗

train +
M

2

√√√√ 1

K2

K∑
i=1

K∑
j=1

DKL

[
pi(y|x, θ∗)∥pj(y|x, θ∗)

]
+

1

K2

K∑
i=1

K∑
j=1

DKL

[
pi(x|θ∗)∥pj(x|θ∗)

]

s.t. θ∗ = argmax
θ

i ̸=j∑
i,j∈K

∇Li(θ) · ∇Lj(θ). (40)
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