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ABSTRACT

Counterfactual generation aims to simulate realistic hypothetical outcomes under
causal interventions. Diffusion models have emerged as a powerful tool for this
task, combining DDIM inversion with conditional generation and classifier-free
guidance (CFG). In this work, we identify a key limitation of CFG for counterfac-
tual generation: it prescribes a global guidance scale for all attributes, leading to
significant spurious changes in inferred counterfactuals. To mitigate this, we pro-
pose Decoupled Classifier-Free Guidance (DCFG), a flexible and model-agnostic
guidance technique that enables attribute-wise control following a causal graph.
DCFG is implemented via a simple attribute-split embedding strategy that disentan-
gles semantic inputs, enabling selective guidance on user-defined attribute groups.
Our experiments demonstrate that DCFG significantly improves the axiomatic
soundness of inferred counterfactuals on challenging medical imaging data, miti-
gating spurious amplification effects, and enhancing counterfactual reversibility.

1 INTRODUCTION

Counterfactual generation is considered to be fundamental to causal reasoning (Pearl, 2009; Peters
et al., 2017; Bareinboim et al., 2022), allowing us to explore hypothetical scenarios such as: ‘How
would this patient’s disease have progressed if they had received treatment A instead of treatment B?’.
Answering such causal questions is important across various domains, such as healthcare (Castro et al.,
2020), fairness (Kusner et al., 2017) and scientific discovery (Narayanaswamy et al., 2020). There
has been a growing interest in generating counterfactual images using deep generative models, aiming
to simulate how visual data would change under hypothetical interventions. Recent works build
Structural Causal Models (SCMs) (Pearl, 2009) using deep generative model components such as nor-
malizing flows (Rezende & Mohamed, 2015), Variational Autoencoders (VAEs) (Kingma & Welling,
2013; Child, 2020) and diffusion models (Sohl-Dickstein et al., 2015a; Ho et al., 2020; Ribeiro et al.,
2025), enabling principled counterfactual inferences via abduction-action-prediction (Pawlowski
et al., 2020; Sanchez & Tsaftaris, 2022; Ribeiro et al., 2023; Wu et al., 2025; Rasal et al., 2025).

Diffusion models have emerged as the state-of-the-art approach for image synthesis, achieving
unprecedented fidelity and perceptual quality (Dhariwal & Nichol, 2021; Podell et al., 2023). Many
previous works have explored diffusion models for counterfactual generation (Sanchez et al., 2022b;a;
Pérez-Garcı́a et al., 2024; Komanduri et al., 2024; Rasal et al., 2025; Kumar et al., 2025), leveraging
Denoising Diffusion Implicit Models (DDIM) (Song et al., 2020) to deterministically encode images
into a latent space, followed by conditional generation with modified attributes. Conditioning is
typically enforced through discriminative score functions, either with external classifiers (Dhariwal &
Nichol, 2021) or through Classifier-free Guidance (CFG) (Ho & Salimans, 2022). Combining DDIM
inversion and guided conditional decoding has also become the dominant paradigm in diffusion-based
image editing (Couairon et al., 2022; Wallace et al., 2023; Hertz et al., 2022; Epstein et al., 2023).

In counterfactual generation, CFG plays a crucial role in ensuring that interventions are effective, i.e.
that the intended changes are reflected in the output. While recent works have proposed refinements
to CFG to enhance fidelity (Chung et al., 2024; Kynkäänniemi et al., 2024), we identify that CFG
exacerbates spurious effects of image attributes that should remain stable under causal interventions,
a phenomenon known as attribute amplification (Xia et al., 2024). This occurs because CFG
presupposes a global guidance scale for all causal parents (e.g. attributes) regardless of whether they
ought to be invariant to particular interventions, leading to increased spurious effects in the prediction.
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While Xia et al. (2024) observed attribute amplification in previous models due to counterfactual fine-
tuning (Ribeiro et al., 2023), we find that a similar failure mode arises in diffusion models due to the
indiscriminate application of global guidance scales to increase intervention effectiveness (Monteiro
et al., 2023). This behaviour not only violates the underlying causal graph by modifying attributes
outside the causal pathway, but can also cause the generation trajectory to drift from the original data
manifold, degrading identity preservation (Mokady et al., 2023). Thus, we argue that addressing
CFG-induced attribute amplification is critical for its reliable use in counterfactual inference models.

To address the spurious effects of CFG under causal interventions, we propose Decoupled Classifier-
Free Guidance (DCFG), a general inference-time guidance technique that significantly reduces
spurious attribute amplification, without requiring any changes to the underlying diffusion model.
DCFG can be implemented via a simple attribute-split embedding strategy that disentangles semantic
attributes in the embedding space, and enables selective masking and group-wise modulation at
inference time following a causal graph. Unlike standard CFG, DCFG assigns separate weights to
attribute groups, allowing for fine-grained, interpretable control over the generative process. While
conceptually related to compositional diffusion approaches, our method differs significantly: Shen
et al. (2024) apply pixel-wise spatial masks to modulate guidance locally, and Liu et al. (2022) rely
on multiple conditional diffusion models fused via shared score functions. In contrast, DCFG uses a
single model and modulates guidance at the semantic attribute level. For counterfactual generation,
we instantiate DCFG by grouping attributes according to their causal roles (e.g., intervened vs.
invariant) and applying distinct guidance to each group. Crucially, by decoupling guidance and
focusing it solely on the intended intervention, DCFG reduces the risk of the generation trajectory
drifting away from the original data manifold (Yang et al., 2023; Mokady et al., 2023; Tang et al.,
2024). The DCFG framework is general and supports arbitrary partitions of semantic attributes under
reasonable independence assumptions. In summary, the contributions of this paper are the following:

(i) We identify and analyze the problem of attribute amplification in standard classifier-free
guidance, where a global guidance weight causes spurious changes to non-intervened attributes;

(ii) We propose Decoupled Classifier-Free Guidance (DCFG), a simple, flexible, and model-
agnostic extension of CFG that assigns separate guidance weights to attribute groups and
supports arbitrary groupings at inference time under mild independence assumptions;

(iii) Through extensive experiments on challenging real-world data (including medical imaging), we
show that DCFG mitigates unintended spurious effects, enhances intervention effectiveness,
and improves counterfactual reversibility, resulting in more faithful counterfactual generation.

2 BACKGROUND

Structural Causal Models. SCMs (Pearl, 2009) consist of a triplet ⟨U,A, F ⟩, where U = {ui}Ki=1

denotes the set of exogenous (latent) variables, A = {ai}Ki=1 the set of endogenous (observed)
variables, and F = {fi}Ki=1 a collection of structural assignments such that each variable ak is
determined by a function fk of its parents pak ⊆ A \ ak and its corresponding noise uk, such that
ak := fk(pak, uk). SCMs enable causal reasoning and interventions via the do-operator, e.g., setting
a variable ak to a fixed value c through do(ak := c). In this work, we focus on generating image
counterfactuals and implement the underlying image synthesis mechanism using diffusion models.

Counterfactual inference. A counterfactual represents a ‘what-if’ scenario given observed events.
We denote an image by x, which is generated via a structural assignment x := f(u,pa), given its
causal parents pa and exogenous noise variable u. Counterfactual inference (Pearl, 2009) proceeds
in three steps: (i) Abduction: infer the latent noise u from the observed data and its parents, i.e.
u = f−1(x,pa); (ii) Action: apply an intervention to alter selected parent variables, yielding the
counterfactual parents p̃a; (iii) Prediction: propagate the effect of the intervention through the
model to compute a counterfactual as follows: x̃ = f(f−1(x,pa), p̃a). Recent advancements have
sought to implement these steps using deep generative model components, such as normalizing
flows (Pawlowski et al., 2020), VAEs (Ribeiro et al., 2023; Pawlowski et al., 2020; Monteiro et al.,
2023), and diffusion models (Sanchez & Tsaftaris, 2022; Komanduri et al., 2024; Rasal et al., 2025).
The general idea is to model each structural assignment fθ and its inverse f−1

ϕ using deep generative
models with trainable parameters {θ, ϕ}. For invertible models such as flows, θ and ϕ coincide.
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2.1 DIFFUSION MODELS FOR COUNTERFACTUAL INFERENCE

Diffusion models (DMs) (Sohl-Dickstein et al., 2015b; Ho et al., 2020) are latent variable models
designed to generate data by gradually removing Gaussian noise from xT ∼ N (0, I) over T steps.
Given a clean data sample x0 ∼ pdata, the forward noising process is defined as follows:

xt =
√
αt x0 +

√
1− αt ϵ, ϵ ∼ N (0, I), (1)

where {αt}Tt=0 is a chosen noise schedule with αt ∈ (0, 1], α0 = 1 and αT ≈ 0. To learn the reverse
process, a parameterized network ϵθ(xt, t, c) is trained to predict the added noise from noisy inputs.
We adopt the conditional diffusion model formulation, where c denotes an embedding of semantic
parent attributes pa used as conditioning. The training objective minimizes the noise prediction loss:

min
θ

Ex0∼pdata,ϵ∼N (0,I),t∼Unif({1,...,T})

[
∥ϵ− ϵθ(xt, t, c)∥22

]
. (2)

At inference time, data samples are generated by progressively denoising xT from time T to time 0.
Following Song et al. (2020), the denoising step from xt to xt−1 is given by the formula:

xt−1 =
√
αt−1

(
xt −

√
1− αt ϵθ(xt, t, c)√

αt

)
+

√
1− αt−1 − σ2

t ϵθ(xt, t, c) + σtϵt, (3)

where ϵt ∼ N (0, I). Setting σt = 0 yields a deterministic sampling process known as DDIM (Song
et al., 2020), which defines an invertible trajectory between data and latent space. Following Sanchez
& Tsaftaris (2022); Sanchez et al. (2022a); Fontanella et al. (2024); Pérez-Garcı́a et al. (2024); Rasal
et al. (2025), we adopt this DDIM formulation for counterfactual generation, as detailed below.

Abduction. We implement the abduction function u = f−1
θ (x0,pa) using the DDIM forward

trajectory. Given an observed image x0 and conditioning c representing an embedding vector of
semantic parents pa, the latent xT serves as a deterministic estimate of the exogenous noise u:

xt+1 =
√
αt+1x̂0 +

√
1− αt+1ϵθ(xt, t, c), x̂0 =

1
√
αt

(
xt −

√
1− αtϵθ(xt, t, c)

)
, (4)

for t = 0, . . . , T − 1, where x̂0 is the model’s estimate of the clean image at each time t.

Action. We apply an intervention to the semantic attributes pa (e.g., do(Male = 1)), and
propagate the effect through the causal graph using invertible flows as in (Pawlowski et al., 2020;
Ribeiro et al., 2023). This yields the counterfactual attribute vector p̃a and its embedding c̃.

Prediction. We implement the structural assignment x̃ := fθ(u, p̃a) under the modified condition c̃
using the DDIM reverse trajectory, with u = xT the exogenous noise estimated in eq. (4):

xt−1 =
√
αt−1x̂0 +

√
1− αt−1ϵθ(xt, t, c̃), for t = T, . . . , 1, (5)

where x̂0 is the predicted clean image, and the final output x̃0 is the predicted counterfactual x̃. In
practice, decoding under the counterfactual condition c̃ using the conditional denoiser alone may
be insufficient for producing effective counterfactuals. Additional guidance is often required to
steer generation toward the desired intervention (Sanchez & Tsaftaris, 2022; Sanchez et al., 2022a;
Komanduri et al., 2024; Fontanella et al., 2024; Weng et al., 2024; Song et al., 2024; Pérez-Garcı́a
et al., 2024; Rasal et al., 2025; Kumar et al., 2025). In line with previous work, we adopt classifier-free
guidance (CFG) to enhance counterfactual fidelity and alignment with the specified intervention.

2.2 CLASSIFIER-FREE GUIDANCE

Classifier-free guidance (Ho & Salimans, 2022) is a widely adopted technique in conditional diffusion
models. It enables conditional generation without requiring an external classifier by training a single
denoising model to operate in both conditional and unconditional modes. During training, the model
learns both pθ(xt | c) and pθ(xt | ∅) by randomly replacing c with a null token ∅. At inference
time, CFG biases the sampling process toward regions more consistent with the conditioning signal,
which can be understood as sampling from a reweighted conditional distribution of the form:

pω(xt | c) ∝ p(xt)p(c | xt)
ω, (6)
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where ω ≥ 0 controls the guidance strength. This corresponds to interpolating between the uncondi-
tional and conditional scores:

∇xt
log pω(xt | c) = (1− ω) · ∇ log p(xt) + ω · ∇ log p(xt | c). (7)

In practice, this is implemented by combining the model’s predictions with and without conditioning:

ϵCFG(xt, t, c) = ϵθ(xt, t,∅) + ω · (ϵθ(xt, t, c)− ϵθ(xt, t,∅)) . (8)

With CFG, abduction is the same as in eq. (4), and action remains unchanged. The only difference lies
in the prediction step, where the conditional denoiser is replaced with the guided score ϵCFG(xt, t, c̃)
to enhance counterfactual effectiveness (Sanchez et al., 2022a; Komanduri et al., 2024):

xt−1 =

√
αt−1√
αt

(
xt −

√
1− αtϵCFG(xt, t, c̃)

)
+

√
1− αt−1ϵCFG(xt, t, c̃). (9)

Despite its effectiveness, CFG applies a single global guidance weight ω uniformly across the entire
counterfactual embedding c̃, which typically encodes multiple attributes, including some that may
not be altered by particular interventions. In counterfactual generation, however, only a subset of
attributes in c̃ (i.e., those affected by the intervention) should be emphasized, while the remaining
attributes should remain invariant. Applying the same guidance strength to all elements of c̃ violates
this principle, and can cause unintended changes to invariant attributes. This misalignment is called
attribute amplification (Xia et al., 2024), which violates the relationships in the associated causal
graph, undermining the axiomatic soundness of inferred counterfactuals (Monteiro et al., 2023).

To address the limitations of CFG for counterfactual inference, we propose a structured alternative
that assigns separate guidance weights to semantically or causally defined groups of attributes.

3 DECOUPLED CLASSIFIER-FREE GUIDANCE

In this section, we present our Decoupled Classifier-Free Guidance (DCFG) for counterfactual image
generation. We first propose a simple attribute-split conditioning embedder (section 3.1) as a practical
implementation that separates attributes in the embedding space to enable selective control. Building
on this, we then describe our DCFG formulation in detail (section 3.2), which allows distinct guidance
strengths to be applied to different subsets of attributes within an assumed causal graph. Finally, we
present how DCFG is integrated into DDIM-based counterfactual inference (section 3.3), detailing its
application across abduction, action, and prediction steps using causally defined attribute groupings.

3.1 ATTRIBUTE-SPLIT CONDITIONING EMBEDDING

In practice, raw conditioning inputs such as discrete image labels or structured attributes (e.g., a
patient’s sex, race, or disease status) are not used directly in diffusion models but transformed into
dense vectors using embedding functions, typically via multi-layer perceptrons (MLPs) (Dhariwal &
Nichol, 2021), convolutional encoders (Zhang et al., 2023), or transformer-based text encoders (Ho &
Salimans, 2022; Ramesh et al., 2022). These embeddings align semantic or categorical inputs with
the model’s internal representations, but conventional designs often entangle multiple attributes into a
single conditioning vector, making it difficult to independently control attributes during sampling.

To address this, we introduce a simple attribute-split conditioning embedding technique that preserves
the identity of each attribute in the embedding space. Let pai denote the raw value of the i-th parent
attribute (e.g., a binary indicator or scalar). Each pai is embedded independently via a dedicated
MLP: Ei : Rdi → Rd, and the final condition vector is formed by concatenating the outputs:

c = concat (E1(pa1), E2(pa2), . . . , EK(paK)) , where c ∈ RKd. (10)

This architecture provides a flexible representation where each attribute is explicitly disentangled at
the embedding level. As a result, we can selectively null-tokenize or modulate individual attributes
at inference time, enabling fine-grained control. Throughout the rest of the paper, we denote the
semantic attribute vector as pa and the corresponding embedding vector as c, as defined in eq. (10).
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3.2 FORMULATION: GROUP-WISE DCFG

To overcome the limitations of CFG and enable more precise, causally aligned control in counter-
factual image generation, we propose Decoupled Classifier-Free Guidance (DCFG). Rather than
applying a single guidance weight uniformly to the entire conditioning vector, we partition semantic
attributes pa into M disjoint groups pa(1),pa(2), . . . ,pa(M), and apply a separate guidance weight
ωm to each group. Let pa = (pa1, . . . , paK) denote the vector of semantic parent attributes.

Proposition 1 (Proxy Posterior for DCFG). Under the assumption that the groups pa(1), . . . ,pa(M)

are conditionally independent given the latent variable xt, for any time t, that is: p(pa | xt) =∏M
m=1 p(pa

(m) | xt), we obtain the following factorized proxy posterior:

pω(xt | pa) ∝ p(xt)

M∏
m=1

p(pa(m) | xt)
ωm , (11)

where ωm ≥ 0 controls the guidance strength for each group m.

A complete derivation and score-based justification for this proxy posterior is provided in Appendix B.
The corresponding guided update used in score-based diffusion sampling is then given by:

∇xt log p
ω(xt | pa) = ∇ log p(xt) +

M∑
m=1

ωm ·
(
∇ log p(xt | pa(m))−∇ log p(xt)

)
. (12)

In practice, we encode pa into a dense conditioning vector c using the attribute-split embedding
described in Section 3.1. For each group m, we construct a masked embedding c(m) that retains only
the embeddings for pa(m) and replaces all others with null tokens (represented here as zero vectors):

c(m) = concat
(
δ
(m)
1 · E1(pa1), . . . , δ(m)

K · EK(paK)
)
, δ

(m)
i =

{
1, if pai ∈ pa(m)

0, otherwise
(13)

The final guided score used in the diffusion model is computed as follows:

ϵDCFG(xt, t, c) = ϵθ(xt, t,∅) +

M∑
m=1

ωm ·
(
ϵθ(xt, t, c

(m))− ϵθ(xt, t,∅)
)
. (14)

The proposed DCFG framework is highly flexible, as it allows arbitrary groupings of attributes,
regardless of whether attributes within a group are mutually independent or not. The only assumption
required is that different groups are conditionally independent given the latent variable xt. This
flexibility enables a wide range of configurations. For instance, setting M = 1 recovers standard
global CFG, while increasing M provides progressively finer-grained control, including per-attribute
guidance (M = K) as an extreme case where we assume all attributes are independent of each other.

3.3 DCFG FOR COUNTERFACTUAL GENERATION

We now detail how DCFG is straightforwardly integrated into DDIM-based counterfactual inference.

Abduction. The abduction step proceeds as in eq. (4), where the conditioning vector c is obtained by
embedding the semantic parent attributes pa using the attribute-split encoder defined in eq. (10).

Action. As in previous setups, we apply a causal intervention to obtain a modified semantic vector p̃a.
This is then embedded into the counterfactual conditioning vector c̃ via the attribute-split embedder:

c̃ = concat (E1(p̃a1), . . . , EK(p̃aK)) . (15)

Prediction. The prediction step uses the DCFG-guided reverse DDIM trajectory:

xt−1 =
√
αt−1x̂0 +

√
1− αt−1ϵDCFG(xt, t, c̃), (16)

where x̂0 =
1

√
αt

(
xt −

√
1− αtϵDCFG(xt, t, c̃)

)
, (17)

and ϵDCFG(xt, t, c̃) is computed as in eq. (14) using counterfactual conditioning embedding c̃.
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For counterfactual generation, we can adopt a two-group partitioning of attributes based on the
assumed causal graph. The affected group paaff contains attributes directly intervened upon and their
descendants, while the invariant group painv comprises attributes expected to remain unchanged.
These groups are assumed conditionally independent given the latent xt, consistent with the d-
separation of the post-intervention graph. Under this setup, eq. (14) uses M = 2 groups with
separate guidance weights ωaff and ωinv. Note that the two-group partition is only one possible choice:
guidance can also be separated at finer-grained level, including the attribute level, provided conditional
independence holds. We present such extensions, including multi-attribute interventions and attribute-
wise configurations, in Section G, which further demonstrate the generality and flexibility of DCFG.

4 EXPERIMENTS

In this section, we demonstrate the benefits of the proposed approach across three public datasets.
For each dataset, we train a diffusion model with the same architecture and training protocol, detailed
in section C. We compare our DCFG against the standard CFG baseline. In all results, settings labeled
as ω = X correspond to standard classifier-free guidance (CFG) with a global guidance weight.
In contrast, configurations denoted by ωaff=X , ωinv=Y represent the two-group DCFG, where
separate guidance weights are applied to the intervened and invariant attribute groups, respectively.
Following Monteiro et al. (2023); Melistas et al. (2024), we evaluate counterfactual quality using
two metrics. Effectiveness (∆): Measured by a pretrained classifier as the change in AUROC for
intervened attributes relative to ω = 1.0 (no CFG). Higher ∆ indicates stronger intervention effect;
large ∆ on invariant attributes indicates unintended amplification. Reversibility: Assesses how well
counterfactuals can be reversed to the original image using inverse interventions. We report MAE
and LPIPS; lower values indicate better identity preservation. See section A.2 for details.

4.1 CASE STUDY 1: CELEBA

We begin our empirical evaluation of DCFG on the CelebA-HQ dataset (Karras et al., 2017), using
Smiling, Male, and Young as independent binary attributes. We adopt this simplified setup to
isolate inference-time failures of standard CFG in a controlled setting. Under this designed scenario,
unintended changes in non-intervened attributes can be attributed to attribute amplification rather
than valid causal effects. We first evaluate DCFG under single-attribute interventions, then extend to
multi-attribute settings to highlight its flexibility. Refer to section D.1 for more dataset details.

Fig. 1 presents the ∆ metrics under different guidance strategies for two separate interventions,
namely do(Smiling) and do(Young). As the global guidance weight ω of CFG increases (left
to right side of each plot), the ∆ of the intervened attribute improves, but so do the ∆ values of
attributes that should remain invariant, indicating undesirable spurious amplification. In contrast, the
right side of each plot shows results for DCFG, where distinct weights are applied to affected (ωaff)
and invariant (ωinv) attribute groups. This decoupled formulation achieves comparable or stronger
improvement on the intervened attribute while keeping the others stable, validating the ability of
DCFG to produce more disentangled and effective counterfactuals purely at inference time.

|----------------------------- Standard CFG ---------------------| |------------------------- Our  DCFG -----------------------------| |----------------------------- Standard CFG ---------------------| |------------------------- Our  DCFG -----------------------------| 

Figure 1: Comparison of ∆ metrics under different interventions in CelebA-HQ. Left: Intervention on
Smiling. Right: Intervention on Young. Both use baseline ω=1.0. Under global CFG, increasing
ω boosts the intended attribute but amplifies non-target ones. DCFG achieves similar improvements
on the target attribute while mitigating amplification. See section D.2 for full quantitative results.
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|----------------------- Our  DCFG --------------------------| |----------------------- Standard CFG -------------------| 

Smiling: no
Male: no

Young: yes
= 1.2

do(Young=no)
= 2.0

do(Young=no)
= 3.0

do(Young=no)
aff = 1.2, inv = 1.0
do(Young=no)

aff = 2.0, inv = 1.0
do(Young=no)

aff = 3.0, inv = 1.0
do(Young=no)

Smiling: no
Male: yes
Young: no

= 1.2
do(Smiling=yes)

= 2.0
do(Smiling=yes)

= 3.0
do(Smiling=yes)

aff = 1.2, inv = 1.0
do(Smiling=yes)

aff = 2.0, inv = 1.0
do(Smiling=yes)

aff = 3.0, inv = 1.0
do(Smiling=yes)

Figure 2: Counterfactual generations in CelebA-HQ (64× 64). Each row compares global CFG (left)
and DCFG (right) across guidance weights. Top: global CFG causes amplification of Smiling
under do(Male); Middle: do(Young) suppresses Male (i.e. amplifies Male=no); Bottom:
do(Smiling) makes the subject appear older, adds glasses, and alters identity. DCFG mitigates
these unintended changes and preserves invariant attributes. See section D.3 for more visual results.

|----------------------------- Standard CFG ---------------------| |------------------------- Our  DCFG -----------------------------| 

|---------------------- Standard CFG ------------------| |----------------------- Our  DCFG ----------------------| 

Figure 3: Reversibility analysis in CelebA-HQ (64× 64). Left: Quantitative evaluation of how well
the original image is recovered after generating a counterfactual and mapping it back to the original
condition under do(Smiling). Right: A qualitative example showing a counterfactual generated
under do(Male) and its reconstruction after reversing the intervention with CFG and our DCFG.

Fig. 2 illustrates how global CFG can introduce unitended changes by uniformly amplifying
all conditioning signals, even when only one attribute is meant to change. In the top row, ap-
plying do(Male=no) with increasing ω inadvertently amplifies Smiling; in the middle row,
do(Young=no) reduces Male expression; and in the bottom row, do(Smiling=yes) intro-
duces changes to age, identity, and even adds glasses. These unintended shifts stem from global
CFG treating all attributes equally. In contrast, DCFG applies decoupled guidance across attributes,
assigning stronger weights to those affected by the intervention, allowing attributes that were not
targeted by the intervention to remain unchanged. This results in counterfactuals that more faithfully
reflect the intended change while preserving identity and consistency in non-intervened factors.

Fig. 3 evaluates the reversibility of counterfactuals in CelebA-HQ. The left panel shows MAE
and LPIPS when recovering the original after applying and then reversing an intervention (e.g.,
do(Smiling)). With global CFG, errors grow as guidance strength increases, while DCFG
yields consistently lower values for the same settings, improving recovery. The right panel shows a
qualitative example under do(Male), where global CFG amplifies non-intervened attributes (e.g.,
Young), making the reversed image appear older. In contrast, DCFG applies strong guidance only
to intervened attributes, mitigating amplification and producing more faithful, disentangled, and
reversible counterfactuals. More reversibility results are provided in sections D.2 and D.3.
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Figure 4: Qualitative results for do(Smiling, Male, Young). We compare two-group DCFG
(ωaff = 2.5, ωinv = 1.0) with attribute-wise DCFG, where ωs, ωm, and ωy control guidance for
Smiling, Male, and Young. Symmetric weights (ωs = ωm = ωy = 2.5) reproduce two-group
results, while asymmetric weights highlight DCFG’s flexibility. See section G.2 for more results.

Finally, to illustrate that DCFG extends beyond the two-group setting, we consider a three-attribute
intervention do(Smiling, Male, Young). As shown in Fig. 4, we compare the two-group
formulation (ωaff = 2.5, ωinv = 1.0) with attribute-wise DCFG, where each attribute has its own
weight (ωs, ωm, ωy). Symmetric weights (ωs = ωm = ωy = 2.5) recover the two-group results,
while asymmetric settings demonstrate the additional flexibility to selectively emphasize individual
attributes. Further discussion and results on multi-attribute interventions are provided in section G.

4.2 CASE STUDY 2: MAMMOGRAPHY

In this study, we evaluate DCFG on the EMBED (Jeong et al., 2023) breast mammography dataset.
For details about EMBED, the reader may refer to section E.1. For our experiments, we define
a binary circle attribute based on the presence of circular skin markers, and a binary breast
density label, where categories A and B are grouped as low and categories C and D as high.

Fig. 5 presents results for counterfactual generation on EMBED. The bar plot on the left reports ∆
effectiveness metrics, measuring how classifier performance changes relative to the baseline. While
global CFG improves effectiveness for the target attribute (circle), it also increases effectiveness
on non-intervened attributes such as density, indicating unintended attribute amplfication. DCFG
mitigates this by applying selective guidance, maintaining stable performance on non-target attributes.
The figure on the right illustrates a key example: applying do(density) under global CFG
unintentionally amplifies the presence of circular skin markers, as evidenced by the increased number
of visible circles in both the counterfactual and reversed images. This is suppressed under DCFG,
where circle features remain unchanged in both counterfactual and reversed images.

4.3 CASE STUDY 3: CHEST RADIOGRAPHY

We evaluate our method on the MIMIC-CXR dataset (Johnson et al., 2019). We follow the dataset
splits and filtering protocols from Ribeiro et al. (2023), and focus on the binary disease label of pleural
effusion. The underlying causal graph in Ribeiro et al. (2023) includes four attributes: race, sex,

|----------------------------- Standard CFG ---------------------| |------------------------- Our  DCFG -----------------------------| 

|---------------------- Standard CFG ------------------| |----------------------- Our  DCFG ----------------------| 

Figure 5: Evaluation of counterfactual generation on EMBED (192× 192). Left: ∆ metrics showing
the effect of do(circle). DCFG improves target intervention effectiveness while suppressing
spurious shifts in non-intervened attributes. Right: A visual example showing the input image, the
counterfactual under do(density), the reversed image, and their difference maps (CF/Rev. -
input). See sec. E.2 for full quantitative results and sec. E.3 for more visual results.
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|----------------------------- Standard CFG ---------------------| |------------------------- Our  DCFG -----------------------------| 

|---------------------- Standard CFG ------------------| |----------------------- Our  DCFG ----------------------| 

Figure 6: Evaluation of counterfactual generation on MIMIC (192× 192). Left: ∆ metrics showing
the effect of do(finding). DCFG improves target intervention effectiveness while suppressing
spurious shifts in non-intervened attributes. Right: A visual example showing the input image, the
counterfactual under do(density), the reversed image, and their difference maps (CF/Rev. -
input). See section F.2 for full quantitative results and section F.3 for more qualitative results.

finding, and age. We adopt this setup, but since our goal is to study attribute amplification caused
by CFG, we focus on sex, race, and finding, which we assume to be mutually independent for
the purposes of our analysis. The reader may refer to section F.1 for further details.

Fig. 6 presents an evaluation of counterfactual generation in MIMIC-CXR, highlighting the advan-
tages of our proposed DCFG. The bar plot on the left shows ∆ metrics that quantify the change
in effectiveness relative to the baseline ω=1.0. While global CFG improves effectiveness for the
intervened variable (finding) as expected, it also introduces substantial spurious shifts in non-
intervened attributes such as race and sex, revealing unwanted attribute amplification. In contrast,
DCFG achieves comparable or higher intervened effectiveness while suppressing spurious amplifi-
cation, demonstrating more precise and controlled generation. On the right, we show a qualitative
example of a counterfactual generated under do(finding), its reversed reconstruction, and their
corresponding difference maps. Compared to global CFG, our method yields localized, clinically
meaningful changes in counterfactuals and better identity preservation in the reversed image.

5 CONCLUSION

In this work, we identify and address a key limitation of classifier-free guidance for counterfactual
image generation: the application of a global uniform guidance scale for all conditioning attributes
leads to spurious amplification of factors that should remain unchanged under causal interventions.
To address this, we proposed Decoupled Classifier-Free Guidance (DCFG), a new flexible guidance
technique that allows arbitrary grouping of semantic attributes, with distinct guidance weights
applied to each group under the mild assumption of conditional independence. DCFG is primarily
operationalized via a simple two-group partition into intervened and invariant attributes, but also
supports more fine-grained settings, such as multi-attribute and per-attribute configurations following
a prescribed causal graph. This flexibility enables DCFG to suppress spurious changes outside of
the intervention’s causal pathway while preserving the intended effect. Beyond counterfactuals,
DCFG can apply broadly to conditional generation tasks that benefit from group-wise control over
conditioning signals. We evaluated DCFG on CelebA-HQ, EMBED, and MIMIC-CXR, covering
natural and medical image domains. Our results show that DCFG significantly reduces attribute
amplification while maintaining intervention effectiveness with improved identity preservation,
particularly at higher guidance strengths. However, the selection of guidance weights still requires
empirical tuning. Future work could explore learned strategies to adaptively tune these weights
based on the input condition or diffusion timestep. Future work could explore learned strategies
to adaptively tune these weights based on the input condition or diffusion timestep. Additionally,
DCFG’s modular nature opens up opportunities for broader integration. One direction is combining
DCFG with latent diffusion models or diffusion autoencoders to enable high-resolution synthesis
and stronger identity preservation. Another promising extension is to apply DCFG selectively at
specific diffusion timesteps. Prior work suggests that restricting guidance to mid-to-late timesteps
can mitigate over-saturation and improve generation quality. Exploring such selective or dynamic
scheduling strategies within the DCFG framework may further enhance counterfactual fidelity.
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Ethics statement. This work uses publicly available datasets, including CelebA-HQ (human
faces), MIMIC-CXR (chest X-rays), and EMBED (mammography). All datasets were released with
appropriate ethical approvals and consent processes in place by their providers. We use them solely
for research purposes, without attempting to identify individuals or deploy the models in clinical
or biometric applications. While counterfactual image generation has potential for misuse (e.g., in
manipulating facial attributes), our focus is on scientific study of causal generative modeling.

Reproducibility statement. We provide dataset descriptions in sections D.1, E.1 and F.1, model
architectures and training hyperparameters in section C, and evaluation protocols in sections A.2
and 4. Code will be made publicly available upon acceptance.
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Tian Xia, Mélanie Roschewitz, Fabio De Sousa Ribeiro, Charles Jones, and Ben Glocker. Mitigating
attribute amplification in counterfactual image generation. In International Conference on Medical
Image Computing and Computer-Assisted Intervention, pp. 546–556. Springer, 2024.

Fei Yang, Shiqi Yang, Muhammad Atif Butt, Joost van de Weijer, et al. Dynamic prompt learning:
Addressing cross-attention leakage for text-based image editing. Advances in Neural Information
Processing Systems, 36:26291–26303, 2023.

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
diffusion models. arXiv preprint arXiv:2302.05543, 2023.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 586–595, 2018.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A BACKGROUND

A.1 NOTATION SUMMARY

Symbol Description
x0 (also denoted as x) Original observed image
xt Noisy image at diffusion timestep t
xT (i.e., u) Latent code after DDIM forward process (abduction; exogenous noise)
x̃ Generated counterfactual image
ϵθ(xt, t, ·) Denoiser prediction given condition input
pa Vector of semantic parent attributes (e.g., sex, age)
p̃a Counterfactual parent attributes after intervention
pai Raw value of the i-th semantic attribute
Ei Embedding MLP for pai: Rdi → Rd

c Full conditioning vector from pa
c̃ Conditioning vector from counterfactual attributes p̃a
∅ Null token for classifier-free guidance (unconditional input)
ωm CFG weight for attribute group m
pa(m) Attributes in the m-th group
c(m) Masked condition vector preserving only group m

Table A.1: Notation used throughout the paper. Tilde (∼) indicates counterfactual quantities.

A.2 EVALUATING COUNTERFACTUALS

To evaluate the soundness of generated counterfactuals, we define a counterfactual image generation
function Fθ(·), which produces counterfactuals according to

x̃ := Fθ(x,pa, p̃a) = fθ(f
−1
θ (x,pa), p̃a). (18)

We describe three key metrics used to assess counterfactual quality: composition, reversibility, and
effectiveness (Monteiro et al., 2023; Melistas et al., 2024).

Composition evaluates how well the model reconstructs the original image under a null intervention,
by computing a distance metric d between the original image and its counterfactual:

Comp(x,pa) := d(x,Fθ(x,pa,pa)). (19)

Reversibility measures the consistency of the counterfactual transformation by applying the reverse
intervention and comparing the result to the original image:

Rev(x,pa, p̃a) := L1(x,Fθ(Fθ(x,pa, p̃a), p̃a,pa)). (20)

Effectiveness quantifies whether the intended intervention has the desired causal effect. It com-
pares the intervened value p̃ak with the prediction obtained by an anti-causal model applied to the
counterfactual image:

Eff(x,pa, p̃a) := Lk(p̃ak,Pak(Fθ(x,pa, p̃a))). (21)

A note on Composition. We do not report the Composition metric in our evaluation, as it is ill-
defined in the context of CFG and DCFG. Since both methods use the same trained diffusion model,
applying a null intervention (i.e., p̃a = pa) does not meaningfully differentiate between them. If
reconstruction is performed without guidance, CFG and DCFG are equivalent, reducing to standard
decoding. If guidance is applied, it becomes unclear how to split attributes into invariant (painv) and
intervened (paaff) groups during null intervention. For instance, assigning all attributes to painv with
ωinv = 1 would effectively disable guidance, making the comparison trivial and uninformative. For
this reason, we focus on Effectiveness and Reversibility, which better capture the behavior of guided
sampling under interventions.
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Effectiveness Classifier. To evaluate effectiveness, we train a classifier with a ResNet-18 backbone
for each dataset, using the split as in table A.2. The classifier predicts the intervened attribute from
generated counterfactuals, and AUROC is used to quantify intervention success. On CelebA, the
classifier achieves AUROC scores of 0.974 (Smiling), 0.992 (Male), and 0.828 (Young). On
EMBED, the AUROC is 0.935 for density and 0.908 for circle. On MIMIC-CXR, AUROC
scores are 0.864 for race, 0.991 for sex, and 0.938 for finding.

Reversibility Metrics. We use Mean Absolute Error (MAE) and LPIPS (Zhang et al., 2018) to
evaluate reversibility. These metrics quantify the pixel-level and perceptual similarity, respectively,
between the original image and its reversed counterfactual.

B DECOUPLED CLASSIFIER-FREE GUIDANCE

We provide a theoretical justification for the Decoupled Classifier-Free Guidance formulation pre-
sented in Proposition 1, interpreting it as gradient ascent on a sharpened proxy posterior under a
group-level conditional independence assumption.

Proof of Proposition 1. We begin by assuming that the semantic attributes are partitioned into M
disjoint groups:

pa = (pa(1), . . . ,pa(M)). (22)
Under the assumption that these groups are conditionally independent given xt, we have:

p(pa | xt) =

M∏
m=1

p(pa(m) | xt). (23)

Applying Bayes’ rule:

p(xt | pa) =
p(pa | xt) · p(xt)

p(pa)
∝ p(pa | xt) · p(xt). (24)

so the posterior can be factorized as:

p(xt | pa) ∝ p(xt) ·
M∏

m=1

p(pa(m) | xt). (25)

Applying group-level guidance weights ωm yields the sharpened proxy posterior:

pω(xt | pa) ∝ p(xt) ·
M∏

m=1

p(pa(m) | xt)
ωm . (26)

Gradient of the Log Proxy Posterior. For DCFG, the gradient becomes:

∇xt
log pω(xt | pa) = ∇ log p(xt) +

M∑
m=1

ωm ·
(
∇ log p(xt | pa(m))−∇ log p(xt)

)
, (27)

where pa(m) is the m-th group of attributes, and ωm is the guidance weight for that group.

The corresponding implementation interpolates denoising scores per group:

ϵCFG = ϵθ(xt, t | ∅) +

M∑
m=1

ωm ·
(
ϵθ(xt, t, c

(m))− ϵθ(xt, t,∅)
)
, (28)

where c(m) denotes the masked condition vector in which only group m is retained and all others are
null-tokenized, as defined in eq. (13).

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

C IMPLEMENTATION DETAILS

Architecture. We adopt the commonly used U-net backbone (Dhariwal & Nichol, 2021) for all
diffusion models in this work. We modify it to support CFG and DCFG. Each conditioning attribute is
projected via a dedicated MLP embedder (section 3.1), and the resulting embeddings are concatenated
with the timestep embedding. During training, we apply exponential moving average (EMA) to
model weights for improved stability. All images are normalized to the range [-1,1]. The complete
architecture and training configurations for each dataset are summarized in table A.2.

Table A.2: Training and architecture of diffusion U-Net configurations used in our experiments. *We
did not evaluate on the whole test set due to the high computational cost of diffusion sampling.

PARAMETER CELEBA-HQ EMBED MIMIC-CXR

TRAIN SET SIZE 24,000 151,948 62,336
VALIDATION SET SIZE 3,000 7,156 9,968
TEST SET SIZE∗ 3,000 43,669 30,535
RESOLUTION 64 × 64 × 3 192 × 192 × 1 192 × 192 × 1
BATCH SIZE 128 48 48
TRAINING EPOCHS 6000 5000 5000

BASE CHANNELS (U-NET) 64 64 32
CHANNEL MULTIPLIERS [1,2,4,8] [1,1,2,2,4,4] [1,2,3,4,5,6]
ATTENTION RESOLUTIONS [16] - -
RESNET BLOCKS 2 2 2
DROPOUT RATE 0.1 0.0 0.0

NUM. CONDITIONING ATTRS 3 2 4
COND. EMBEDDING DIM 3 × 96 2 × 64 4 × 64
NOISE SCHEDULE LINEAR COSINE LINEAR

LEARNING RATE 1e-4
OPTIMISER ADAM (WD 1e-4)
EMA DECAY 0.9999
TRAINING STEPS T 1000
LOSS MSE (noise prediction)

Training Procedure for DCFG. The training of our proposed DCFG follows the same setup
as standard Classifier-Free Guidance (CFG). Specifically, we apply classifier-free dropout (Ho &
Salimans, 2022) by replacing the entire conditioning vector with a null token (i.e., zero vector) with
probability p∅ = 0.5. Unlike the typical choice of p∅ = 0.2, we found that using p∅ = 0.5 better
preserves identity, which is particularly important for counterfactual generation tasks. Note that we
apply dropout to all attributes jointly, rather than selectively masking subsets. One could alternatively
consider group-wise dropout—nullifying only a random subset of attribute groups—but such partial
masking may encourage the model to over-rely on the remaining visible attributes, making the
resulting guidance less disentangled and less robust. We leave this as an interesting direction for
future exploration.

Computation Resources. All experiments were conducted on servers equipped with multiple
NVIDIA GPUs, including L40S and similar models, each with approximately 48GB of memory.
Training each model typically takes around one week on one GPU. Due to the high computational
cost of diffusion-based sampling, generating counterfactuals for each intervention (do(key)) and
each guidance configuration takes approximately one day for the MIMIC-CXR and EMBED datasets,
and around 7 hours for CelebA-HQ.

Evaluation. Due to the computational cost of diffusion sampling, we evaluate on fixed, balanced
subsets rather than the full test sets. For CelebA-HQ and EMBED, we use 1,000 samples each,
selected to ensure an even distribution across the conditioning attributes. For MIMIC-CXR, we
evaluate on 1,500 samples, stratified to balance race groups. These fixed subsets are reused across
all experiments to enable fair and consistent comparisons. To generate counterfactuals, we use
DDIM sampling with 1,000 time steps, as we find this setting achieves stronger identity preservation
compared to shorter schedules—an essential property for counterfactual evaluation. This setup allows
us to assess attribute-specific phenomena such as amplification and reversibility while keeping the
sampling cost manageable.
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D CELEBA-HQ

D.1 DATASET DETAILS

For the CelebA-HQ dataset (Karras et al., 2017), we select Smiling, Male, and Young as three
independent binary variables. These are among the most reliably annotated attributes in CelebA, each
achieving over 95% consistency in manual labeling (Wu et al., 2023). Moreover, they exhibit low
inconsistency across duplicate face pairs (e.g., Male: 0.005; Smiling: 0.077), suggesting minimal
label noise. We assume these variables to be independent, as our goal is to isolate and analyze
attribute amplification under global classifier-free guidance (CFG), which is more interpretable with
uncorrelated factors. As shown in Fig. A.1, the Pearson correlation matrix confirms weak pairwise
correlations among these attributes. Although a moderate negative correlation is observed between
Male and Young (ρ=− 0.33), we attribute this to dataset bias rather than a true causal dependency,
and proceed by modeling them as independent.

Figure A.1: Pearson correlation matrix of CelebA-HQ attributes: Smiling, Male, and Young.
While a moderate negative correlation is observed between Male and Young (ρ= − 0.33), we
regard this as a spurious correlation likely stemming from dataset bias rather than a meaningful
causal relationship. Therefore, for the purposes of our analysis, we assume these attributes to be
independent.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

D.2 EXTRA QUANTITATIVE RESULT FOR CELEBA-HQ

Table A.3: CelebA-HQ: Effectiveness (ROC-AUC ↑) and Reversibility (MAE, LPIPS ↓) metrics when
changing ωaff. Compared to global CFG (i.e., ω), DCFG achieves strong intervention effectiveness
on the intervened variable while mitigating amplification on invariant variables. For higher ωaff , we
apply ωinv=1.2 to prevent degradation of invariant attributes. While reversibility deteriorates with
increasing ωaff , DCFG consistently maintains better reversibility than global CFG with ω=ωaff .

do(key) Guidance configuration Smiling AUC/∆ Male AUC/∆ Young AUC/∆ MAE LPIPS

do(Smiling)

ω=1.0 86.5 / +0.0 96.9 / +0.0 78.6 / +0.0 0.113 0.082
ω=1.2 91.7 / +5.2 98.5 / +1.6 80.9 / +2.3 0.133 0.091
ω=1.5 95.5 / +9.0 99.2 / +2.3 84.3 / +5.7 0.163 0.111
ω=1.7 96.7 / +10.2 99.4 / +2.5 85.7 / +7.1 0.179 0.119
ω=2.0 97.7 / +11.2 99.6 / +2.7 88.3 / +9.7 0.203 0.127
ω=2.5 98.6 / +12.1 99.7 / +2.8 89.3 / +10.7 0.234 0.142
ω=3.0 98.8 / +12.3 99.9 / +3.0 90.3 / +11.7 0.263 0.155
ωaff=1.2, ωinv=1.0 89.9 / +3.4 95.8 / -1.1 77.8 / -0.8 0.128 0.093
ωaff=1.5, ωinv=1.2 93.9 / +7.4 97.5 / +0.6 79.7 / +1.1 0.136 0.092
ωaff=1.7, ωinv=1.2 95.4 / +8.9 97.5 / +0.6 79.9 / +1.3 0.141 0.095
ωaff=2.0, ωinv=1.2 97.0 / +10.5 97.3 / +0.4 79.7 / +1.1 0.146 0.098
ωaff=2.5, ωinv=1.2 98.9 / +12.4 96.1 / -0.8 77.8 / -0.8 0.164 0.112
ωaff=3.0, ωinv=1.2 99.6 / +13.1 95.4 / -1.5 77.6 / -1.0 0.177 0.122

do(Male)

ω=1.0 86.6 / +0.0 91.8 / +0.0 79.8 / +0.0 0.115 0.079
ω=1.2 90.1 / +3.5 95.1 / +3.3 80.8 / +1.0 0.127 0.088
ω=1.5 93.3 / +6.7 97.2 / +5.4 82.0 / +2.2 0.158 0.111
ω=1.7 94.7 / +8.1 97.5 / +5.7 83.7 / +3.9 0.175 0.123
ω=2.0 96.0 / +9.4 97.9 / +6.1 85.0 / +5.2 0.202 0.139
ω=2.5 97.6 / +11.0 98.4 / +6.6 87.5 / +7.7 0.238 0.156
ω=3.0 98.2 / +11.6 99.2 / +7.4 90.2 / +10.4 0.267 0.171
ωaff=1.2, ωinv=1.0 85.1 / -1.5 91.3 / -0.5 79.0 / -0.8 0.137 0.097
ωaff=1.5, ωinv=1.2 88.3 / +1.7 93.8 / +2.0 78.9 / -0.9 0.149 0.101
ωaff=1.7, ωinv=1.2 88.1 / +1.5 95.8 / +4.0 77.5 / -2.3 0.151 0.103
ωaff=2.0, ωinv=1.2 88.0 / +1.4 97.8 / +6.0 77.0 / -2.8 0.158 0.109
ωaff=2.5, ωinv=1.2 87.4 / +0.8 99.4 / +7.6 76.2 / -3.6 0.171 0.118
ωaff=3.0, ωinv=1.2 87.4 / +0.8 99.7 / +7.9 75.9 / -3.9 0.188 0.130

do(Young)

ω=1.0 87.5 / +0.0 95.7 / +0.0 62.3 / +0.0 0.115 0.085
ω=1.2 90.8 / +3.3 97.4 / +1.7 64.5 / +2.2 0.130 0.088
ω=1.5 95.6 / +8.1 99.3 / +3.6 66.3 / +4.0 0.166 0.110
ω=1.7 96.7 / +9.2 99.4 / +3.7 67.8 / +5.5 0.183 0.119
ω=2.0 97.7 / +10.2 99.6 / +3.9 69.5 / +7.2 0.204 0.130
ω=2.5 98.3 / +10.8 99.8 / +4.1 73.5 / +11.2 0.234 0.146
ω=3.0 98.5 / +11.0 99.9 / +4.2 77.7 / +15.4 0.261 0.160
ωaff=1.2, ωinv=1.0 87.4 / -0.1 95.0 / -0.7 63.2 / +0.9 0.129 0.095
ωaff=1.5, ωinv=1.2 90.0 / +2.5 96.7 / +1.0 67.4 / +5.1 0.147 0.100
ωaff=1.7, ωinv=1.2 89.2 / +1.7 96.1 / +0.4 71.3 / +9.0 0.150 0.103
ωaff=2.0, ωinv=1.2 87.9 / +0.4 94.5 / -1.2 75.6 / +13.3 0.157 0.110
ωaff=2.5, ωinv=1.2 88.5 / +1.0 91.9 / -3.8 81.8 / +19.5 0.172 0.125
ωaff=3.0, ωinv=1.2 86.7 / -0.8 90.0 / -5.7 87.6 / +25.3 0.188 0.136

Table A.4: CelebA-HQ: Effectiveness (ROC-AUC ↑) and Reversibility (MAE, LPIPS ↓) metrics
when changing ωinv. Increasing ωinv consistently increases effectiveness on invariant variables,
while degrading intervention effectiveness. When ωinv=2.5, the amplification on invariant attributes
becomes comparable to that of the global CFG setting with ω=2.5.

do(key) Guidance configuration Smiling AUC/∆ Male AUC/∆ Young AUC/∆ MAE LPIPS

do(Smiling)

ω=1.0 86.5 / +0.0 96.9 / +0.0 78.6 / +0.0 0.113 0.082
ω=2.5 98.6 / +12.1 99.7 / +2.8 89.3 / +10.7 0.234 0.142
ωaff=2.5, ωinv=1.0 99.1 / +12.6 92.6 / -4.3 75.2 / -3.4 0.165 0.118
ωaff=2.5, ωinv=1.2 98.9 / +12.4 96.1 / -0.8 77.8 / -0.8 0.164 0.112
ωaff=2.5, ωinv=1.5 98.3 / +11.8 98.2 / +1.3 82.6 / +4.0 0.177 0.118
ωaff=2.5, ωinv=1.7 98.1 / +11.6 98.8 / +1.9 84.0 / +5.4 0.189 0.123
ωaff=2.5, ωinv=2.0 97.5 / +11.0 99.3 / +2.4 87.0 / +8.4 0.209 0.131
ωaff=2.5, ωinv=2.5 96.3 / +9.8 99.5 / +2.6 88.7 / +10.1 0.236 0.143

do(Male)

ω=1.0 86.6 / +0.0 91.8 / +0.0 79.8 / +0.0 0.115 0.079
ω=2.5 97.6 / +11.0 98.4 / +6.6 87.5 / +7.7 0.238 0.156
ωaff=2.5, ωinv=1.0 83.4 / -3.2 99.4 / +7.6 68.9 / -10.9 0.173 0.122
ωaff=2.5, ωinv=1.2 87.4 / +0.8 99.4 / +7.6 71.1 / -8.7 0.171 0.118
ωaff=2.5, ωinv=1.5 92.0 / +5.4 99.3 / +7.5 74.0 / -5.8 0.182 0.119
ωaff=2.5, ωinv=1.7 93.5 / +6.9 98.9 / +7.1 76.8 / -3.0 0.189 0.123
ωaff=2.5, ωinv=2.0 95.3 / +8.7 98.7 / +6.9 80.2 / +0.4 0.207 0.135
ωaff=2.5, ωinv=2.5 97.2 / +10.6 97.7 / +5.9 87.5 / +7.7 0.242 0.158

do(Young)

ω=1.0 87.5 / +0.0 95.7 / +0.0 62.3 / +0.0 0.115 0.085
ω=2.5 98.3 / +10.8 99.8 / +4.1 73.5 / +11.2 0.234 0.146
ωaff=2.5, ωinv=1.0 83.4 / -4.1 85.9 / -9.8 85.1 / +22.8 0.169 0.127
ωaff=2.5, ωinv=1.2 88.5 / +1.0 91.9 / -3.8 81.8 / +19.5 0.172 0.125
ωaff=2.5, ωinv=1.5 92.4 / +4.9 96.4 / +0.7 78.5 / +16.2 0.187 0.127
ωaff=2.5, ωinv=1.7 94.3 / +6.8 97.8 / +2.1 75.3 / +13.0 0.199 0.133
ωaff=2.5, ωinv=2.0 97.1 / +9.6 99.0 / +3.3 73.3 / +11.0 0.215 0.139
ωaff=2.5, ωinv=2.5 99.3 / +11.8 99.7 / +4.0 68.5 / +6.2 0.238 0.147
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D.3 EXTRA QUALITATIVE RESULTS FOR CELEBA-HQ
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Figure A.2: Additional qualitative results for do(Smiling) on CelebA-HQ. Each row shows
the original image followed by counterfactuals generated with global CFG (ω) and DCFG (ωaff, ωinv).
DCFG better preserves invariant attributes and identity while effectively reflecting the intervention.
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Figure A.3: Additional qualitative results for do(Male) on CelebA-HQ. Each row shows the
original image followed by counterfactuals generated with global CFG (ω) and DCFG (ωaff, ωinv).
DCFG better preserves invariant attributes and identity while effectively reflecting the intervention.
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Figure A.4: Additional qualitative results for do(Young) on CelebA-HQ. Each row shows the
original image followed by counterfactuals generated with global CFG (ω) and DCFG (ωaff, ωinv).
DCFG better preserves invariant attributes and identity while effectively reflecting the intervention.
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Figure A.5: Reversibility analysis for do(Similing) on CelebA-HQ. Each row shows the
original image, followed by counterfactuals generated using global CFG (ω) and our proposed DCFG
(ωint, ωinv), along with their respective reversed generations. DCFG more faithfully preserves non-
intervened attributes, resulting in visually and semantically more consistent reversals. This highlights
the benefit of DCFG in enhancing both targeted editability and reversibility.
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Figure A.6: Reversibility analysis for do(Male) on CelebA-HQ. Each row shows the original
image, followed by counterfactuals generated using global CFG (ω) and our proposed DCFG
(ωint, ωinv), along with their respective reversed generations. DCFG more faithfully preserves non-
intervened attributes, resulting in visually and semantically more consistent reversals. This highlights
the benefit of DCFG in enhancing both targeted editability and reversibility.
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Figure A.7: Reversibility analysis for do(Young) on CelebA-HQ. Each row shows the original
image, followed by counterfactuals generated using global CFG (ω) and our proposed DCFG
(ωint, ωinv), along with their respective reversed generations. DCFG more faithfully preserves non-
intervened attributes, resulting in visually and semantically more consistent reversals. This highlights
the benefit of DCFG in enhancing both targeted editability and reversibility.
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Figure A.8: Effect of ωinv on CelebA-HQ counterfactuals. Each row shows the original image
followed by counterfactuals generated using global CFG (ω=2.5) and our proposed DCFG with fixed
intervention guidance (ωaff=2.5) and varying invariant guidance ωinv ∈ {1.0, 1.5, 2.0, 2.5}. As ωinv
increases, amplification of invariant attributes becomes more pronounced, and at ωinv=2.5, DCFG
effectively reproduces the same over-editing behavior as global CFG. This shows that ωinv modulates
the degree of guidance applied to invariant attributes and should be carefully calibrated to maintain
identity and disentanglement.
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E EMEBD

E.1 DATASET DETAILS

We use the EMory BrEast imaging Dataset (EMBED) (Jeong et al., 2023) for our experiments.
Schueppert et al. (2024) manually labeled 22,012 images with circular markers and trained a classifier
on this subset, which was then applied to the full dataset to infer circle annotations. We adopt
this preprocessing pipeline and extract the circle attribute from their predictions. To define
the density label, we binarize the original four-category breast density annotations by grouping
categories A and B as low density, and categories C and D as high density. While the full dataset
comprises 151,948 training, 7,156 validation, and 43,669 test samples, we use only 1,000 test samples
in this work due to the high computational cost of diffusion models. As shown in Fig. A.9, the
Pearson correlation matrix reveals that density and circle are nearly uncorrelated, supporting
our assumption of their independence.

Figure A.9: Pearson correlation matrix of EMBED attributes: density and circle. The
correlation between these two variables is negligible (ρ= − 0.04), suggesting that they can be
reasonably treated as independent for the purposes of our analysis.
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E.2 EXTRA QUANTITATIVE RESULTS FOR EMBED

Table A.5: EMBED: Effectiveness (ROC-AUC ↑) and Reversibility (MAE, LPIPS ↓) metrics when
changing ωaff. Compared to global CFG (i.e., ω), DCFG achieves strong intervention effectiveness
on the intervened variable while mitigating amplification on invariant variables. For higher ωaff , we
apply ωinv=1.2 to prevent degradation of invariant attributes. While reversibility deteriorates with
increasing ωaff , DCFG consistently maintains better reversibility than global CFG with ω=ωaff .

do(key) Guidance configuration Density AUC/∆ Circle AUC/∆ MAE LPIPS

do(density)

ω=1.0 63.4 / +0.0 92.9 / +0.0 0.027 0.033
ω=1.2 70.5 / +7.1 94.5 / +1.6 0.033 0.038
ω=1.5 79.0 / +15.6 95.9 / +3.0 0.035 0.047
ω=1.7 84.3 / +20.9 96.7 / +3.8 0.032 0.055
ω=2.0 89.6 / +26.2 97.5 / +4.6 0.034 0.064
ω=2.5 95.2 / +31.8 97.7 / +4.8 0.042 0.076
ω=3.0 97.8 / +34.4 98.2 / +5.3 0.045 0.086
ωaff=1.2, ωinv=1.0 73.1 / +9.7 92.8 / -0.1 0.028 0.038
ωaff=1.5, ωinv=1.0 81.6 / +18.2 92.2 / -0.7 0.029 0.043
ωaff=1.7, ωinv=1.0 86.2 / +22.8 91.6 / -1.3 0.031 0.048
ωaff=2.0, ωinv=1.0 91.6 / +28.2 90.7 / -2.2 0.032 0.053
ωaff=2.5, ωinv=1.2 96.6 / +33.2 92.2 / -0.7 0.036 0.064
ωaff=3.0, ωinv=1.2 98.6 / +35.2 91.6 / -1.3 0.038 0.071

do(circle)

ω=1.0 92.6 / +0.0 90.6 / +0.0 0.023 0.026
ω=1.2 94.7 / +2.1 92.1 / +1.5 0.029 0.024
ω=1.5 96.8 / +4.2 93.9 / +3.3 0.030 0.027
ω=1.7 97.9 / +5.3 95.2 / +4.6 0.027 0.035
ω=2.0 98.8 / +6.2 96.4 / +5.8 0.030 0.040
ω=2.5 99.7 / +7.1 97.8 / +7.2 0.038 0.043
ω=3.0 99.9 / +7.3 98.4 / +7.8 0.042 0.051
ωaff=1.2, ωinv=1.0 93.3 / +0.7 92.6 / +2.0 0.024 0.028
ωaff=1.5, ωinv=1.0 93.2 / +0.6 94.4 / +3.8 0.025 0.030
ωaff=1.7, ωinv=1.0 93.2 / +0.6 95.7 / +5.1 0.025 0.032
ωaff=2.0, ωinv=1.0 92.9 / +0.3 97.2 / +6.6 0.026 0.034
ωaff=2.5, ωinv=1.2 94.5 / +1.9 98.5 / +7.9 0.027 0.038
ωaff=3.0, ωinv=1.2 94.0 / +1.4 98.9 / +8.3 0.029 0.042

Table A.6: EMBED: Effectiveness (ROC-AUC ↑) and Reversibility (MAE, LPIPS ↓) metrics when
changing ωinv. Increasing ωinv consistently increases effectiveness on invariant variables, while
degrading intervention effectiveness. When ωinv=2.5, the amplification on invariant attributes
becomes comparable to that of the global CFG setting with ω=2.5.

do(key) Guidance configuration Density AUC/∆ Circle AUC/∆ MAE LPIPS

do(density)

ω=1.0 63.4 / +0.0 92.9 / +0.0 0.027 0.033
ω=2.5 95.2 / +31.8 97.7 / +4.8 0.042 0.076
ωaff=2.5, ωinv=1.0 96.7 / +33.3 89.5 / -3.4 0.035 0.063
ωaff=2.5, ωinv=1.2 96.6 / +33.2 92.2 / -0.7 0.036 0.064
ωaff=2.5, ωinv=1.5 96.6 / +33.2 94.6 / +1.7 0.036 0.067
ωaff=2.5, ωinv=1.7 96.6 / +33.2 95.7 / +2.8 0.037 0.070
ωaff=2.5, ωinv=2.0 96.5 / +33.1 96.6 / +3.7 0.038 0.073
ωaff=2.5, ωinv=2.5 96.4 / +33.0 97.6 / +4.7 0.039 0.080

do(circle)

ω=1.0 92.6 / +0.0 90.6 / +0.0 0.023 0.026
ω=2.5 99.7 / +7.1 97.8 / +7.2 0.038 0.043
ωaff=2.5, ωinv=1.0 92.2 / -0.4 98.5 / +7.9 0.028 0.039
ωaff=2.5, ωinv=1.2 94.5 / +1.9 98.5 / +7.9 0.027 0.038
ωaff=2.5, ωinv=1.5 97.2 / +4.6 98.3 / +7.7 0.028 0.039
ωaff=2.5, ωinv=1.7 98.1 / +5.5 98.2 / +7.6 0.029 0.040
ωaff=2.5, ωinv=2.0 99.0 / +6.4 98.2 / +7.6 0.031 0.043
ωaff=2.5, ωinv=2.5 99.8 / +7.2 98.0 / +7.4 0.035 0.050
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E.3 EXTRA QUALITATIVE RESULTS FOR EMBED
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Figure A.10: Additional qualitative results for do(density) on EMBED. Each row shows the
original image followed by counterfactuals generated with global CFG (ω) and DCFG (ωaff, ωinv).
DCFG better preserves invariant attributes and identity while effectively reflecting the intervention.
Notably, under global CFG, increasing ω leads to spurious changes in circle count, whereas DCFG
mitigates such amplification.

density: low
circle: present

= 1.2
do(circle=absent)

= 2.0
do(circle=absent)

= 3.0
do(circle=absent)

aff = 1.2, inv = 1.0
do(circle=absent)

aff = 2.0, inv = 1.0
do(circle=absent)

aff = 3.0, inv = 1.0
do(circle=absent)

density: high
circle: present

= 1.2
do(circle=absent)

= 2.0
do(circle=absent)

= 3.0
do(circle=absent)

aff = 1.2, inv = 1.0
do(circle=absent)

aff = 2.0, inv = 1.0
do(circle=absent)

aff = 3.0, inv = 1.0
do(circle=absent)

Figure A.11: Additional qualitative results for do(circle) on EMBED. Each row shows the
original image followed by counterfactuals generated with global CFG (ω) and DCFG (ωaff, ωinv)
and the difference map (CF-input). DCFG better preserves invariant attributes and identity while
effectively reflecting the intervention. Notably, under global CFG, increasing ω leads to spurious
changes in density, whereas DCFG mitigates such amplification.
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Figure A.12: Reversibility analysis for do(density) on EMBED. Each row shows the original
image, the counterfactual generated using global CFG (ω) or DCFG (ωint, ωinv), their corresponding
reversed generations, and the associated difference maps (counterfactual - input, and reversed -
input). DCFG more faithfully preserves non-intervened attributes and leads to smaller residuals in
the difference maps, indicating better identity preservation.
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Figure A.13: Reversibility analysis for do(circle) on EMBED. Each row shows the original
image, the counterfactual generated using global CFG (ω) or DCFG (ωint, ωinv), their corresponding
reversed generations, and the associated difference maps (counterfactual - input, and reversed -
input). DCFG more faithfully preserves non-intervened attributes and leads to smaller residuals in
the difference maps, indicating better identity preservation.
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F MIMIC

F.1 DATASET DETAILS

We use the MIMIC-CXR dataset (Johnson et al., 2019) in our experiments. Following the dataset
splits and filtering protocols of Ribeiro et al. (2023); Glocker et al. (2023), we focus on the binary
disease label for pleural effusion. We adopt the same causal graph (DAG) as proposed in Ribeiro et al.
(2023), in which age is modeled as a parent of finding. While we include age as part of the
conditioning variables, we do not intervene on it. Instead, our primary goal is to study amplification
of unintervened variables caused by CFG. For this purpose, we focus on race, sex, and finding,
which we assume to be mutually independent. Fig. A.14 shows the Pearson correlation matrix of
these three attributes, where all pairwise correlations are small (e.g., ρ=0.12 between race and
sex, and ρ= − 0.15 between race and finding), supporting the validity of the independence
assumption in our counterfactual modeling.

Figure A.14: Pearson correlation matrix of MIMIC attributes: race, sex, and finding. All
pairwise correlations are low (e.g., ρ=0.12 between race and sex, and ρ=− 0.15 between race
and finding), suggesting that these variables can be reasonably treated as independent for the
purposes of our counterfactual analysis.
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F.2 EXTRA QUANTITATIVE RESULTS FOR MIMIC-CXR

Table A.7: MIMIC: Effectiveness (ROC-AUC ↑) and Reversibility (MAE, LPIPS ↓) metrics when
changing ωaff. Compared to global CFG (i.e., ω), DCFG achieves strong intervention effectiveness
on the intervened variable while mitigating amplification on invariant variables. For higher ωaff , we
apply ωinv=1.2 to prevent degradation of invariant attributes. While reversibility tends to degrade as
ωaff increases, DCFG maintains better reversibility than global CFG at higher guidance strengths.

do(key) Guidance configuration Sex AUC/∆ Race AUC/∆ Finding AUC/∆ MAE LPIPS

do(sex)

ω=1.0 92.4 / +0.0 75.6 / +0.0 88.8 / +0.0 0.146 0.202
ω=1.2 95.2 / +2.8 79.3 / +3.7 92.8 / +4.0 0.151 0.206
ω=1.5 97.7 / +5.3 82.4 / +6.8 95.7 / +6.9 0.171 0.226
ω=1.7 98.5 / +6.1 84.7 / +9.1 97.0 / +8.2 0.186 0.239
ω=2.0 99.3 / +6.9 87.4 / +11.8 98.0 / +9.2 0.207 0.258
ω=2.5 99.8 / +7.4 90.5 / +14.9 99.0 / +10.2 0.239 0.284
ω=3.0 99.9 / +7.5 92.9 / +17.3 99.5 / +10.7 0.266 0.305
ωaff=1.2, ωinv=1.0 96.4 / +4.0 74.6 / -1.0 89.1 / +0.3 0.158 0.217
ωaff=1.5, ωinv=1.0 98.4 / +6.0 74.1 / -1.5 88.5 / -0.3 0.167 0.227
ωaff=1.7, ωinv=1.2 99.2 / +6.8 76.9 / +1.3 91.5 / +2.7 0.174 0.233
ωaff=2.0, ωinv=1.2 99.5 / +7.1 75.8 / +0.2 90.9 / +2.1 0.183 0.243
ωaff=2.5, ωinv=1.2 99.9 / +7.5 74.9 / -0.7 90.1 / +1.3 0.199 0.260
ωaff=3.0, ωinv=1.2 100.0 / +7.6 74.5 / -1.1 89.4 / +0.6 0.216 0.276

do(race)

ω=1.0 95.1 / +0.0 65.4 / +0.0 90.4 / +0.0 0.135 0.191
ω=1.2 97.6 / +2.5 69.9 / +4.5 93.3 / +2.9 0.135 0.190
ω=1.5 98.9 / +3.8 73.9 / +8.5 96.2 / +5.8 0.155 0.209
ω=1.7 99.3 / +4.2 76.3 / +10.9 97.5 / +7.1 0.171 0.223
ω=2.0 99.6 / +4.5 80.5 / +15.1 98.2 / +7.8 0.193 0.242
ω=2.5 99.7 / +4.6 86.1 / +20.7 99.2 / +8.8 0.229 0.271
ω=3.0 99.8 / +4.7 90.1 / +24.7 99.4 / +9.0 0.256 0.292
ωaff=1.2, ωinv=1.0 95.4 / +0.3 69.6 / +4.2 90.3 / -0.1 0.141 0.198
ωaff=1.5, ωinv=1.0 94.8 / -0.3 75.5 / +10.1 90.0 / -0.4 0.147 0.203
ωaff=1.7, ωinv=1.2 97.2 / +2.1 78.3 / +12.9 92.4 / +2.0 0.153 0.208
ωaff=2.0, ωinv=1.2 96.4 / +1.3 82.8 / +17.4 92.0 / +1.6 0.160 0.215
ωaff=2.5, ωinv=1.2 95.6 / +0.5 89.0 / +23.6 91.7 / +1.3 0.178 0.231
ωaff=3.0, ωinv=1.2 94.0 / -1.1 92.7 / +27.3 91.7 / +1.3 0.197 0.249

do(finding)

ω=1.0 94.6 / +0.0 78.3 / +0.0 80.8 / +0.0 0.134 0.193
ω=1.2 97.2 / +2.6 81.2 / +2.9 85.7 / +4.9 0.136 0.194
ω=1.5 98.9 / +4.3 83.8 / +5.5 90.6 / +9.8 0.153 0.210
ω=1.7 99.5 / +4.9 85.7 / +7.4 92.9 / +12.1 0.165 0.222
ω=2.0 99.7 / +5.1 88.5 / +10.2 95.0 / +14.2 0.184 0.239
ω=2.5 99.8 / +5.2 91.9 / +13.6 97.7 / +16.9 0.215 0.264
ω=3.0 99.9 / +5.3 93.8 / +15.5 98.6 / +17.8 0.244 0.287
ωaff=1.2, ωinv=1.0 95.1 / +0.5 78.1 / -0.2 85.6 / +4.8 0.142 0.202
ωaff=1.5, ωinv=1.0 94.9 / +0.3 77.8 / -0.5 92.0 / +11.2 0.141 0.201
ωaff=1.7, ωinv=1.2 97.1 / +2.5 80.6 / +2.3 93.5 / +12.7 0.150 0.209
ωaff=2.0, ωinv=1.2 96.9 / +2.3 80.2 / +1.9 96.6 / +15.8 0.149 0.209
ωaff=2.5, ωinv=1.2 96.4 / +1.8 80.1 / +1.8 98.8 / +18.0 0.151 0.212
ωaff=3.0, ωinv=1.2 95.2 / +0.6 79.3 / +1.0 99.6 / +18.8 0.154 0.216

Table A.8: MIMIC: Effectiveness (ROC-AUC ↑) and Reversibility (MAE, LPIPS ↓) metrics when
changing ωinv. Increasing ωinv consistently increases effectiveness on invariant variables, while
degrading intervention effectiveness. When ωinv=2.5, the amplification on invariant attributes
becomes comparable to that of the global CFG setting with ω=2.5.

do(key) Guidance configuration Sex AUC/∆ Race AUC/∆ Finding AUC/∆ MAE LPIPS

do(sex)

ω=1.0 92.4 / +0.0 75.6 / +0.0 88.8 / +0.0 0.146 0.202
ω=2.5 99.8 / +7.4 90.5 / +14.9 99.0 / +10.2 0.239 0.284
ωaff=2.5, ωinv=1.0 99.9 / +7.5 71.3 / -4.3 86.2 / -2.6 0.200 0.261
ωaff=2.5, ωinv=1.2 99.9 / +7.5 74.9 / -0.7 90.1 / +1.3 0.199 0.260
ωaff=2.5, ωinv=1.5 99.8 / +7.4 80.1 / +4.5 94.2 / +5.4 0.207 0.264
ωaff=2.5, ωinv=1.7 99.7 / +7.3 83.2 / +7.6 95.9 / +7.1 0.214 0.269
ωaff=2.5, ωinv=2.0 99.7 / +7.3 86.7 / +11.1 97.5 / +8.7 0.227 0.278
ωaff=2.5, ωinv=2.5 99.6 / +7.2 90.3 / +14.7 98.9 / +10.1 0.249 0.293

do(race)

ω=1.0 95.1 / +0.0 65.4 / +0.0 90.4 / +0.0 0.135 0.191
ω=2.5 99.7 / +4.6 86.1 / +20.7 99.2 / +8.8 0.229 0.271
ωaff=2.5, ωinv=1.0 91.3 / -3.8 89.5 / +24.1 88.4 / -2.0 0.181 0.237
ωaff=2.5, ωinv=1.2 95.6 / +0.5 89.0 / +23.6 91.7 / +1.3 0.178 0.231
ωaff=2.5, ωinv=1.5 98.5 / +3.4 87.9 / +22.5 95.2 / +4.8 0.185 0.236
ωaff=2.5, ωinv=1.7 99.2 / +4.1 87.4 / +22.0 96.8 / +6.4 0.191 0.242
ωaff=2.5, ωinv=2.0 99.6 / +4.5 86.3 / +20.9 98.0 / +7.6 0.205 0.253
ωaff=2.5, ωinv=2.5 99.8 / +4.7 85.6 / +20.2 99.1 / +8.7 0.231 0.274

do(finding)

ω=1.0 94.6 / +0.0 78.3 / +0.0 80.8 / +0.0 0.134 0.193
ω=2.5 99.8 / +5.2 91.9 / +13.6 97.7 / +16.9 0.215 0.264
ωaff=2.5, ωinv=1.0 93.0 / -1.6 77.0 / -1.3 99.0 / +18.2 0.143 0.206
ωaff=2.5, ωinv=1.2 96.4 / +1.8 80.1 / +1.8 98.8 / +18.0 0.151 0.212
ωaff=2.5, ωinv=1.5 98.5 / +3.9 84.1 / +5.8 98.3 / +17.5 0.166 0.224
ωaff=2.5, ωinv=1.7 99.2 / +4.6 86.2 / +7.9 97.8 / +17.0 0.180 0.236
ωaff=2.5, ωinv=2.0 99.6 / +5.0 89.4 / +11.1 97.1 / +16.3 0.202 0.254
ωaff=2.5, ωinv=2.5 99.9 / +5.3 92.6 / +14.3 95.8 / +15.0 0.239 0.282
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F.3 EXTRA VISUAL RESULTS FOR MIMIC

race: Black, sex: Male,
finding: PE

= 1.2
do(finding=Normal)

= 2.0
do(finding=Normal)

= 3.0
do(finding=Normal)

aff = 1.2, inv = 1.0
do(finding=Normal)

aff = 2.0, inv = 1.0
do(finding=Normal)

aff = 3.0, inv = 1.0
do(finding=Normal)

race: Asian, sex: Female,
finding: Normal

= 1.2
do(finding=PE)

= 2.0
do(finding=PE)

= 3.0
do(finding=PE)

aff = 1.2, inv = 1.0
do(finding=PE)

aff = 2.0, inv = 1.0
do(finding=PE)

aff = 3.0, inv = 1.0
do(finding=PE)

Figure A.15: Additional qualitative results for do(finding) on MIMIC. Each row shows the
original image followed by counterfactuals generated using global CFG (ω) and DCFG (ωaff, ωinv).
DCFG better preserves invariant attributes and identity while accurately applying the intended
intervention. Compared to standard CFG, DCFG produces counterfactuals with more localized
changes and stronger identity preservation.

race: White, sex: Male,
finding: PE

= 1.2
do(sex=Female)

= 2.0
do(sex=Female)

= 3.0
do(sex=Female)

aff = 1.2, inv = 1.0
do(sex=Female)

aff = 2.0, inv = 1.0
do(sex=Female)

aff = 3.0, inv = 1.0
do(sex=Female)

race: Black, sex: Female,
finding: Normal

= 1.2
do(sex=Male)

= 2.0
do(sex=Male)

= 3.0
do(sex=Male)

aff = 1.2, inv = 1.0
do(sex=Male)

aff = 2.0, inv = 1.0
do(sex=Male)

aff = 3.0, inv = 1.0
do(sex=Male)

Figure A.16: Additional qualitative results for do(sex) on MIMIC. Each row shows the original
image followed by counterfactuals generated using global CFG (ω) and DCFG (ωaff, ωinv). DCFG
better preserves invariant attributes and identity while accurately applying the intended intervention
on sex. Compared to standard CFG, which tends to amplify unrelated features such as disease (i.e.
finding), DCFG produces counterfactuals with more localized, semantically aligned changes and
stronger identity preservation.
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race: Black, sex: Male,
finding: Normal

= 1.2
do(race=White)

= 2.0
do(race=White)

= 3.0
do(race=White)

aff = 1.2, inv = 1.0
do(race=White)

aff = 2.0, inv = 1.0
do(race=White)

aff = 3.0, inv = 1.0
do(race=White)

race: White, sex: Female,
finding: PE

= 1.2
do(race=Asian)

= 2.0
do(race=Asian)

= 3.0
do(race=Asian)

aff = 1.2, inv = 1.0
do(race=Asian)

aff = 2.0, inv = 1.0
do(race=Asian)

aff = 3.0, inv = 1.0
do(race=Asian)

Figure A.17: Additional qualitative results for do(race) on MIMIC. Each row shows the
original image followed by counterfactuals generated using global CFG (ω) and DCFG (ωaff, ωinv).
While race interventions correspond to relatively subtle visual changes, standard CFG often amplifies
unrelated features such as disease appearance (e.g., finding). In contrast, DCFG better preserves
invariant attributes and identity, producing counterfactuals that are more localized, semantically
aligned, and faithful to the intended intervention.

race: Black
sex: female

finding: Normal
= 2.5

do(finding=PE)
= 2.5

Reversed
aff = 2.5, inv = 1.0
do(finding=PE)

aff = 2.5, inv = 1.0
Reversed

race: Asian
sex: male
finding: PE

= 2.5
do(sex=female)

= 2.5
Reversed

aff = 2.5, inv = 1.0
do(sex=female)

aff = 2.5, inv = 1.0
Reversed

Figure A.18: Reversibility analysis on MIMIC. Each row shows the original image, the counterfac-
tual generated using global CFG (ω) or DCFG (ωint, ωinv), their corresponding reversed generations,
and the associated difference maps (counterfactual - input, and reversed - input). DCFG more
faithfully preserves non-intervened attributes and leads to smaller residuals in the difference maps,
indicating better identity preservation.
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G MULTI-ATTRIBUTE INTERVENTIONS

To demonstrate the generality of the proposed DCFG, we conduct experiments with multi-attribute
interventions, i.e., interventions that involve modifying multiple attributes simultaneously. Such
interventions can be handled under the two-group partition defined in section 3.3. We also explore an
attribute-wise guidance scheme to further highlight the flexibility and generality of DCFG.

Recall that Proposition 1 only requires that different groups are mutually independent given the latent
variable. In the case of CelebA, the attributes Smiling, Male, and Young are assumed to be
conditionally independent of each other (see Section D.1). This independence allows us to treat each
attribute as its own group, thereby extending the two-group partition introduced in Section 3.3 to an
attribute-wise setting. In this scheme, each attribute is assigned its own guidance weight (e.g., ωs for
Smiling, ωm for Male, and ωy for Young), enabling fine-grained and disentangled control over
multi-attribute interventions. However, attribute-wise DCFG is more computationally demanding,
as evident from eq. 14, which requires evaluating ϵθ once for the unconditional case and once per
group. This results in M + 1 forward passes (where M is the number of groups), compared to 2 for
global CFG and 3 for the two-group DCFG. In the following, we present experimental results with
two-attribute interventions in Section G.1 and with three-attribute interventions in Section G.2.

G.1 TWO-ATTRIBUTE INTERVENTIONS

We begin with two-attribute interventions, where two of the variables Smiling, Male, and Young
are intervened upon simultaneously. Tables A.9, A.10, and A.11 report the Effectiveness (AUC)
and Reversibility (MAE, LPIPS) metrics. Across all pairs, global guidance (ω=2.5) yields high
effectiveness for the intervened attributes but also amplifies the non-intervened one. Two-group
DCFG (ωaff=2.5, ωinv=1.0) consistently suppresses such spurious changes while maintaining high
effectiveness on the intervened attributes. DCFG further demonstrates its flexibility and generality
through the attribute-wise configuration, where each attribute receives its own guidance weight. This
allows selective adjustment of individual attributes, while symmetric settings (e.g., ωs=ωy=2.5,
ωm=1.0) recover the group-wise performance. Qualitative examples in Figs. A.19, A.20, and A.21
support these findings, showing that attribute-wise DCFG allows finer control over the intervened
attributes and reproduces the outcomes of two-group DCFG under symmetric configurations.

Table A.9: CelebA: Effectiveness (AUC ↑) and Reversibility (MAE, LPIPS ↓) metrics for
do(Smiling, Male). Global CFG (ω=2.5) achieves high effectiveness on both Smiling
and Male, but also amplifies the non-intervened attribute Young. Group-wise DCFG (ωaff , ωinv) mit-
igates this amplification while maintaining high effectiveness on the intervened attributes. Attribute-
wise guidance (ωs for Smiling, ωm for Male, and ωy for Young) demonstrates the flexibility and
generality of DCFG: changing only one weight selectively affects the corresponding attribute, while
setting ωs=ωm=2.5 and ωy=1.0 recovers the group-wise configuration (ωaff=2.5, ωinv=1.0).

Guidance configuration Smiling AUC/∆ Male AUC/∆ Young AUC/∆ MAE LPIPS

ω=1.0 83.3 / +0.00 90.7 / +0.0 79.3 / +0.0 0.117 0.082
ω=2.5 97.7 / +14.4 99.5 / +8.8 87.7 / +8.4 0.227 0.155

ωaff=2.5, ωinv=1.0 98.9 / +15.6 99.0 / +8.3 72.9 / -6.4 0.189 0.123
ωs=1.0, ωm=1.0, ωy=1.0 82.1 / -1.20 85.5 / -5.2 81.1 / +1.8 0.144 0.102
ωs=1.0, ωm=2.5, ωy=1.0 79.5 / -3.80 99.4 / +8.7 76.1 / -3.2 0.171 0.120
ωs=2.5, ωm=1.0, ωy=1.0 99.3 / +16.0 82.4 / -8.3 77.3 / -2.0 0.172 0.119
ωs=2.5, ωm=2.0, ωy=1.0 98.7 / +15.4 96.3 / +5.6 74.6 / -4.7 0.175 0.114
ωs=2.5, ωm=2.5, ωy=1.0 98.4 / +15.1 98.7 / +8.0 72.4 / -6.9 0.186 0.121
ωs=2.5, ωm=3.0, ωy=1.0 97.6 / +14.3 99.5 / +8.8 71.0 / -8.3 0.198 0.128
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Table A.10: CelebA: Effectiveness (AUC ↑) and Reversibility (MAE, LPIPS ↓) metrics for
do(Smiling, Young). Global CFG (ω=2.5) achieves high effectiveness on both Smiling and
Young but also amplifies the non-intervened attribute Male. Group-wise DCFG (ωaff , ωinv) mitigates
this amplification while maintaining high effectiveness on the intervened attributes. Attribute-wise
guidance (ωs for Smiling, ωm for Male, and ωy for Young) demonstrates the flexibility and
generality of DCFG: changing only one weight selectively affects the corresponding attribute, while
setting ωs=ωy=2.5 and ωm=1.0 recovers the group-wise configuration (ωaff=2.5, ωinv=1.0).

Guidance configuration Smiling AUC/∆ Male AUC/∆ Young AUC/∆ MAE LPIPS

ω=1.0 83.6 / +0.0 94.6 / +0.0 60.1 / +0.0 0.123 0.094
ω=2.5 96.8 / +13.2 99.8 / +5.2 75.7 / +15.6 0.221 0.138

ωaff=2.5, ωinv=1.0 97.5 / +13.9 85.5 / -9.1 79.0 / +18.9 0.204 0.148
ωs=1.0, ωm=1.0, ωy=1.0 82.1 / -1.5 93.8 / -0.8 58.1 / -2.0 0.139 0.107
ωs=1.0, ωm=1.0, ωy=2.5 77.7 / -5.9 85.6 / -9.0 84.2 / +24.1 0.176 0.137
ωs=2.5, ωm=1.0, ωy=1.0 98.9 / +15.3 91.5 / -3.1 54.9 / -5.2 0.173 0.125
ωs=2.5, ωm=1.0, ωy=2.0 97.9 / +14.3 87.2 / -7.4 71.0 / +10.9 0.189 0.138
ωs=2.5, ωm=1.0, ωy=2.5 97.0 / +13.4 86.1 / -8.5 77.9 / +17.8 0.201 0.147
ωs=2.5, ωm=1.0, ωy=3.0 96.1 / +12.5 83.7 / -10.9 84.4 / +24.3 0.212 0.154

Table A.11: CelebA: Effectiveness (AUC ↑) and Reversibility (MAE, LPIPS ↓) metrics for
do(Male, Young). Global CFG (ω=2.5) achieves high effectiveness on both Male and Young
but also amplifies the non-intervened attribute Smiling. Group-wise DCFG (ωaff , ωinv) mitigates
this amplification while maintaining high effectiveness on the intervened attributes. Attribute-wise
guidance (ωs for Smiling, ωm for Male, and ωy for Young) demonstrates the flexibility and
generality of DCFG: changing only one weight selectively affects the corresponding attribute, while
setting ωm=ωy=2.5 and ωs=1.0 recovers the group-wise configuration (ωaff=2.5, ωinv=1.0).

Guidance configuration Smiling AUC/∆ Male AUC/∆ Young AUC/∆ MAE LPIPS

ω=1.0 82.5 / +0.0 89.1 / +0.0 63.1 / +0.0 0.122 0.088
ω=2.5 98.5 / +16.0 99.6 / +10.5 79.8 / +16.7 0.216 0.143

ωaff=2.5, ωinv=1.0 80.0 / -2.5 99.2 / +10.1 83.9 / +20.8 0.198 0.144
ωs=1.0, ωm=1.0, ωy=1.0 85.2 / +2.7 88.1 / -1.0 63.4 / +0.3 0.154 0.114
ωs=1.0, ωm=1.0, ωy=2.5 82.8 / +0.3 86.5 / -2.6 86.1 / +23.0 0.183 0.137
ωs=1.0, ωm=2.5, ωy=1.0 83.1 / +0.6 99.4 / +10.3 65.6 / +2.5 0.177 0.126
ωs=1.0, ωm=2.5, ωy=2.0 80.5 / -2.0 99.3 / +10.2 76.5 / +13.4 0.183 0.128
ωs=1.0, ωm=2.5, ωy=2.5 80.3 / -2.2 98.8 / +9.7 81.9 / +18.8 0.199 0.141
ωs=1.0, ωm=2.5, ωy=3.0 82.0 / -0.5 98.4 / +9.3 85.0 / +21.9 0.208 0.147
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Figure A.19: Qualitative results for do(Smiling, Male) on CelebA-HQ. Each row shows
the original image followed by counterfactuals generated with two-group DCFG (ωaff , ωinv) and
with attribute-wise DCFG (ωs for Smiling, ωm for Male, and ωy for Young). Attribute-wise
DCFG provides more flexible configurations, allowing selective control of individual attributes while
recovering the two-group DCFG results under symmetric settings.
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Figure A.20: Qualitative results for do(Smiling, Young) on CelebA-HQ. Each row shows
the original image followed by counterfactuals generated with two-group DCFG (ωaff , ωinv) and
with attribute-wise DCFG (ωs for Smiling, ωm for Male, and ωy for Young). Attribute-wise
DCFG provides more flexible configurations, allowing selective control of individual attributes while
recovering the two-group DCFG results under symmetric settings.
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Figure A.21: Qualitative results for do(Male, Young) on CelebA-HQ. Each row shows
the original image followed by counterfactuals generated with two-group DCFG (ωaff , ωinv) and
with attribute-wise DCFG (ωs for Smiling, ωm for Male, and ωy for Young). Attribute-wise
DCFG provides more flexible configurations, allowing selective control of individual attributes while
recovering the two-group DCFG results under symmetric settings.
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G.2 THREE-ATTRIBUTE INTERVENTIONS

We then move to three-attribute interventions, where all of Smiling, Male, and Young are inter-
vened simultaneously. Table A.12 reports the corresponding Effectiveness (AUC) and Reversibility
(MAE, LPIPS) metrics. Notably, in this setting all attributes are intervened, which makes global CFG
and two-group DCFG identical, as no invariant attributes remain. In this setting, attribute-wise DCFG
provides additional flexibility: it enables selective control of the guidance strength across attributes,
while symmetric settings (e.g., ωs=ωm=ωy=2.5) recover the outcomes of the global/two-group
configuration (ω=2.5∗). Qualitative examples in Fig. A.22 further illustrate this flexibility, showing
that attribute-wise DCFG can selectively control each attribute under the all-attribute intervention.

Table A.12: CelebA: Effectiveness (AUC ↑) and Reversibility (MAE, LPIPS ↓) metrics for
do(Smiling, Male, Young). Since all three attributes are intervened, there are no invariant
attributes remaining; hence, global CFG (ω) and two-group DCFG (ωaff , ωinv) become identical,
as the same guidance weight is applied to every attribute. Attribute-wise DCFG (ωs for Smiling,
ωm for Male, and ωy for Young) demonstrates the flexibility and generality of DCFG by enabling
selective adjustment of each attribute. In particular, setting ωs=ωm=ωy=2.5 recovers the global/two-
group configuration (ω=2.5∗), where ∗ denotes the equivalence between global CFG and two-group
DCFG in this all-attribute intervention setting.

Guidance configuration Smiling AUC/∆ Male AUC/∆ Young AUC/∆ MAE LPIPS

ω=1.0 86.1 / +0.0 88.4 / +0.0 64.0 / +0.0 0.124 0.093
ω=2.5∗ 98.1 / +12.0 99.0 / +10.6 84.7 / +20.7 0.207 0.138

ωs=1.0, ωm=1.0, ωy=1.0 84.1 / -2.0 88.6 / +0.2 66.4 / +2.4 0.151 0.114
ωs=2.5, ωm=1.0, ωy=1.0 99.3 / +13.2 86.8 / -1.6 66.3 / +2.3 0.176 0.123
ωs=1.0, ωm=2.5, ωy=1.0 80.9 / -5.2 99.3 / +10.9 64.8 / +0.8 0.183 0.130
ωs=1.0, ωm=1.0, ωy=2.5 79.1 / -7.0 86.6 / -1.8 88.5 / +24.5 0.181 0.141
ωs=1.0, ωm=2.5, ωy=2.5 79.0 / -7.1 99.2 / +10.8 83.8 / +19.8 0.189 0.142
ωs=2.5, ωm=1.0, ωy=2.5 97.8 / +11.7 86.1 / -2.3 85.9 / +21.9 0.188 0.147
ωs=2.5, ωm=2.5, ωy=1.0 98.4 / +12.3 98.4 / +10.0 67.7 / +3.7 0.191 0.126
ωs=2.5, ωm=2.5, ωy=2.0 97.9 / +11.8 98.5 / +10.1 77.6 / +13.6 0.198 0.133
ωs=2.5, ωm=2.5, ωy=2.5 97.7 / +11.6 98.3 / +9.9 81.6 / +17.6 0.210 0.139
ωs=2.5, ωm=2.5, ωy=3.0 97.6 / +11.5 98.6 / +10.2 84.8 / +20.8 0.220 0.151
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Figure A.22: Qualitative results for do(Smiling, Male, Young) on CelebA-HQ. The first
column shows the original image, followed by counterfactuals generated with global/two-group DCFG
(ω=2.5) and with attribute-wise DCFG (ωs, ωm, ωy). Attribute-wise DCFG enables selective control
of the three attributes (e.g., raising only ωs or ωy) while symmetric settings (e.g., ωs=ωm=ωy=2.5)
reproduce the outcomes of the global/two-group configuration.
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H USAGE OF LLM

Portions of the writing in this paper were assisted by a large language model (ChatGPT), specifically
for phrasing, grammar improvements, and polishing of text. The research ideas, methods, experiments,
and analyses were conceived, implemented, and verified entirely by the authors. All content has been
reviewed and verified by the authors, who take full responsibility for the final manuscript.
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