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Abstract

Diffusion distillation methods aim to compress
the diffusion models into efficient one-step genera-
tors while trying to preserve quality. Among them,
Distribution Matching Distillation (DMD) offers a
suitable framework for training general-form one-
step generators, applicable beyond unconditional
generation. In this work, we introduce its modi-
fication, called Regularized Distribution Match-
ing Distillation, applicable to unpaired image-to-
image problems. We demonstrate its empirical
performance in application to several translation
tasks, including 2D examples and I2I between
different image datasets, where it performs on par
or better than multi-step diffusion baselines.

1. Introduction
One of the global problems of contemporary generative
modeling consists of solving the so-called generative learn-
ing trilemma (Xiao et al., 2021). It states that a perfect
generative model should possess three desirable properties:
high generation quality, mode coverage/diversity of samples
and efficient inference. Today, most model families tend
to have only 2 of the 3. Generative Adversarial Networks
(GANs) (Goodfellow et al., 2014) have fast inference and
produce high-quality samples but tend to underrepresent
some modes of the data set (Metz et al., 2016; Arjovsky
et al., 2017). Variational Autoencoders (VAEs) (Kingma
& Welling, 2013; Rezende et al., 2014) efficiently produce
diverse samples while suffering from insufficient genera-
tion quality. Finally, diffusion-based generative models (Ho
et al., 2020; Song et al., 2020; Dhariwal & Nichol, 2021;
Karras et al., 2022) achieve SOTA generative metrics and
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visual quality yet require running a high-cost multi-step
inference procedure.

Satisfying these three properties is essential in numerous
generative computer vision tasks beyond unconditional gen-
eration. One is image-to-image (I2I) translation (Isola et al.,
2017; Zhu et al., 2017), which consists of learning a map-
ping between two distributions that preserves the cross-
domain properties of an input object while appropriately
changing its source-domain features to match the target.
Most examples, like transforming cats into dogs (Choi et al.,
2020) or human faces into anime (Korotin et al., 2022) be-
long to the unpaired I2I because they do not assume ground
truth pairs of objects in the data set. As in unconditional
generation, unpaired I2I methods were previously centered
around GANs (Huang et al., 2018; Park et al., 2020; Choi
et al., 2020; Zheng et al., 2022), but now tend to be com-
peted and surpassed by diffusion-based counterparts (Choi
et al., 2021; Meng et al., 2021; Zhao et al., 2022; Wu &
De la Torre, 2023). Most of these methods build on top of
the original diffusion sampling procedure and tend to have
high generation time as a consequence.

Since diffusion models succeed in both desirable qualitative
properties of the trilemma, one could theoretically obtain
samples of the desired quality level given sufficient com-
putational resources. It makes the acceleration of diffusion
models an appealing approach to satisfy all of the aforemen-
tioned requirements, including efficient inference.

Recently introduced diffusion distillation techniques (Song
et al., 2023; Kim et al., 2023b; Sauer et al., 2023) address
this challenge by compressing diffusion models into one-
step students with (hopefully) similar qualitative and quan-
titative properties. Among them, Distribution Matching
Distillation (DMD) (Yin et al., 2023; Nguyen & Tran, 2023)
offers an expressive and general framework for training free-
form generators based on techniques initially introduced for
text-to-3D (Poole et al., 2022; Wang et al., 2024). Free-form
here means that the method does not make any assump-
tions about the generator’s structure and distribution at the
input. This crucial observation opens a large space for its
applications beyond the noise → data problems.

In this work, we introduce the modification of DMD, called
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Figure 1. Illustration of performance of the proposed RDMD model on cat → wild translation problem/ from the AFHQv2 (Choi et al.,
2020) data set.

Regularized Distribution Matching Distillation (RDMD),
that applies to the unpaired I2I problems. To achieve this, we
replace the generator’s input noise with the source data sam-
ples to further translate them into the target. We maintain
correspondence between the generator’s input and output by
regularizing the objective with the transport cost between
them. As our main contributions, we

1. Propose a one-step diffusion-based method for un-
paired I2I;

2. Theoretically verify it by establishing its connection
with optimal transport (Villani et al., 2009; Peyré et al.,
2019);

3. Ablate its qualitative properties and demonstrate its
generation quality on 2D and image-to-image exam-
ples, where it obtains comparable or better results than
the multi-step counterparts.

2. Background
2.1. Diffusion Models

Diffusion models (Song & Ermon, 2019; Ho et al., 2020) are
a class of models that sequentially perturb data distribution
pdata with Gaussian noise, transforming it into some tractable
unstructured distribution, which contains no information
about initial domain.

Using this distribution as a prior and reversing the process
by progressively removing the noise yields a sampling pro-
cedure from pdata. A convenient way to formalize diffusion
models is through stochastic differential equations (SDEs)
(Song et al., 2020), which describe continuous-time stochas-
tic dynamics of particles. The forward process is commonly
defined as the Variance Exploding (VE) SDE1

dxt = g(t)dwt, (1)

1The other popular forward processes (e.g. VP-SDE) can be
obtained by scaling the VE-SDE.

where t ∈ [0, T ], x0 ∼ pdata, g(·) is the scalar diffusion
coefficient and dwt is the differential of a standard Wiener
process. We denote by pt(xt) marginal distribution of xt,
so that pdata(x0) = p0(x0). pT acts as an unstructured prior
distribution that we can sample from.

Conveniently, SDE dynamics can be represented via a deter-
ministic counterpart given by an ordinary differential equa-
tion (ODE), which yields the same marginal distributions
pt(xt) as in Equation 1, given the same initial distribution
p0(x0) = pdata(x0):

dxt = −1

2
g2(t)∇x log pt(xt)dt, (2)

where ∇xt
log pt(xt) is called the score function of pt(xt).

Equation 2 is also called Probability Flow ODE (PF-ODE).
The ODE formulation allows us to obtain a backward pro-
cess by simply reversing velocity of the particle. In partic-
ular, we can obtain samples from pdata by taking xT ∼ pT
and running the PF-ODE backwards in time, given access
to the score function.

However, in the case of generative modeling ∇x log pt(xt)
is intractable due to pdata being intractable, and thus can-
not be used directly in Equation 2. Under mild regularity
conditions, the unconditional score can be expressed by:

∇xt
log pt(xt) = Ep0|t(x0|xt)

[
st|0(xt|x0)

]
, (3)

where st|0(xt|x0) = ∇xt
log pt|0(xt|x0) is the conditional

distribution (also called perturbation kernel) and p0|t(x0|xt)
is the corresponding posterior distribution. The perturbation
kernel in the case of VE-SDE corresponds to simply adding
an independent Gaussian noise:

pt|0(xt|x0) = N (xt|x0, σ
2
t I), σ

2
t =

∫ t

0

g2(s)ds. (4)

Denoising Score Matching (DSM) (Vincent, 2011) utilizes
Equation 3 and approximates ∇xt log pt(xt) with the score
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model sθt (xt) via L2-regression minimization:
T∫

0

βt Ep0,t(x0,xt)∥s
θ
t (xt)− st|0(xt|x0)∥2dt → min

θ
, (5)

where βt is some positive weighting function. The
minimum in the Equation 5 is obtained at sθt (xt) =
∇xt

log pt(xt). Given a suitable parameterization of the
score network, DSM objective is equivalent to

T∫
0

βt Ep0,t(x0,xt)∥D
θ
t (xt)− x0∥2dt → min

θ
, (6)

where Dθ
t is called the denoising network (or simply de-

noiser) and is related to the score network via sθt (xt) =(
xt −Dθ

t (xt)
)
/σ2

t . Therefore, Denoising Score Matching
procedure consists of learning to denoise images at various
noise levels.

Having obtained sθt (xt), we solve Equation 2 backward in
time, starting from xT ∼ N (0, σ2

T I) to obtain approximate
samples from pdata.

2.2. Distribution Matching Distillation

Distribution Matching Distillation (Yin et al., 2023) is the
core technique of this paper. Essentially, it aims to train
a generator Gθ(z) on matching the given distribution preal.
Its input z is assumed to come from a tractable input dis-
tribution pnoise. Formally, matching two distributions can
be achieved by optimizing the KL divergence between the
distribution2 pθ of Gθ(z) and the data distribution preal:

KL(pθ ∥ preal) = Epnoise(z) log
pθ(Gθ(z))

preal(Gθ(z))
→ min

θ
(7)

Differentiating it by the parameters θ, using the chain
rule, one encounters a summand, containing the differ-
ence sθ(Gθ(z))−sreal(Gθ(z)) between the score functions
of the corresponding distributions 3. The pure data score
function can be very non-smooth due to the Manifold Hy-
pothesis (Tenenbaum et al., 2000) and is generally hard to
train (Song & Ermon, 2019), so the authors make the prob-
lem accessible through the diffusion framework. To this
end, they replace the original loss with an ensemble of KL
divergences between distributions, perturbed by the forward
diffusion process:∫ T

0

ωt KL
(
pθt ∥ preal

t

)
dt, (8)

2The superscript θ in pθ does not mean introducing the addi-
tional neural model of density but is rather used to emphasize its
dependence on the generator.

3Note that there is one more summand, which contains the
gradient ∇θ log p

θ with respect to the log-density parameters. We
do not discuss how to approximate it, because it will be further
omitted.

Here, ωt is a weighting function, pθt and preal
t are the per-

turbed versions of the generator distribution and preal up to
the time step t. In theory, the minima of Equation 8 objec-
tive coincides (Wang et al., 2024, Thm. 1) with the original
minima from Equation 7. Meanwhile in practice taking the
gradient of the new loss, which can be equivalently written
as

T∫
0

ωt EN (ε|0,I)pnoise(z) log
pθt (Gθ(z) + σtε)

preal
t (Gθ(z) + σtε)

dt, (9)

results in obtaining difference sθt (Gθ(z) + σtε) −
sreal
t (Gθ(z) + σtε), which can be approximated by the dif-

fusion models.

Given this, authors approximate sreal
t with the pre-trained

diffusion model, which we will denote sreal
t as well with a

slight abuse of notation. The whole procedure now can be
considered as distillation of sreal

t into Gθ. At the same time,
sθt is the score of the noised distribution of the generator,
which is intractable and therefore approximated by an ad-
ditional ”fake” diffusion model sϕt and the corresponding
denoiser Dϕ

t . It is trained on the standard denoising score
matching objective with the generator’s samples at the input.
The joint training procedure is essentially the coordinate
descent

T∫
0

ωt Eε,z log
pϕt (Gθ(z) + σtε)

preal
t (Gθ(z) + σtε)

dt → min
θ

;

T∫
0

βt Eε,z∥Dϕ
t (Gθ(z) + σtε)−Gθ(z)∥2 dt → min

ϕ
,

(10)
where the stochastic gradient with respect to the fake net-
work is calculated by backpropagation and the generator’s
stochastic gradient is calculated directly as

ωt

(
sϕt − sreal

t

)
∇θGθ(z), (11)

where the scores are evaluated in the point Gθ(z) + σtε.
Minimization of the fake network’s objective ensures sϕt =

sθt ⇔ pϕt = pθt . At this condition, the generator’s objective
is equal to the original ensemble of KL divergences from
Equation 8, minimizing which solves the initial problem
and implies pθ = preal.

2.3. Unpaired I2I and optimal transport

The problem of unpaired I2I consists of learning a mapping
G between the source distribution pS and the target distri-
bution pT given the corresponding independent data sets
of samples. When optimized, the mapping should appro-
priately adapt G(x) to the target distribution pT , while pre-
serving the input’s cross-domain features. However, from
the first glance it is unclear what the preservation of cross-
domain properties should be like.
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One way to look at that formally is by introducing the notion
of ”transportation cost” c(·, ·) between the generator’s input
and output and saying that it should not be too large on av-
erage. In a practical I2I setting, we can choose c(·, ·) as any
reasonable distance between images or their features that
we aim to preserve, e.g. pixel-wise distance or difference
between LPIPS (Zhang et al., 2018) embeddings.

Monge optimal transport (OT) problem (Villani et al., 2009;
Santambrogio, 2015) follows this reasoning and aims at
finding the mapping with the least average transport cost
among all the mappings that fit the target pT :

inf
G

{
EpS(x)c(x, G(x)) |G(x) ∼ pT

}
, (12)

which can be seen as a mathematical formalization of the
I2I task.

Under mild constraints, in the case when pS and pT have
densities, the optimal transport map G∗ is bijective, differen-
tiable, has differentiable inverse and thus satisfies the change
of variables formula pS(x) = pT (G∗(x))|det (∇G∗(x)) |.
This highly non-linear change of variables condition gives
insight into why it is notoriously challenging to optimize
Equation 12 directly.

3. Methodology
Our main goal is to adapt the DMD method for the unpaired
I2I between an arbitrary source distribution pS and target
distribution pT .

3.1. Regularized Distribution Matching Distillation

First, we note that the construction of DMD requires only
having samples from the input distribution. Given this, we
replace the Gaussian input pnoise by pS , the data distribution
pdata by pT and aim at optimizing

L(θ) =
T∫

0

ωt KL
(
pθt ∥ pTt

)
dt =

=

T∫
0

ωt EpS(x)N (ε|0,I) log
pθt (Gθ(x) + σtε)

pTt (Gθ(x) + σtε)
dt, (13)

where pθt and pTt are now respectively the distribution of
the generator output Gθ(x) and the target distribution pT ,
perturbed by the forward process up to the timestep t.

Optimizing the objective in Equation 13, one obtains a gen-
erator, which takes x ∼ pS and outputs Gθ(x) ∼ pT , so
it performs the desired transfer between the two distribu-
tions. However, there are no guarantees that the input and
the output will be related. Similarly to the OT problem
(Equation 12), we fix the issue by penalizing the transport

cost between them. We obtain the following objective

Lλ(θ) = L(θ) + λEpS(x)c (x, Gθ(x)) → min
θ

, (14)

where c(·, ·) is the cost function, which describes the object
properties that we aim to preserve after transfer, and λ is
the regularization coefficient. Choosing the appropriate λ
will result in finding a balance between fitting the target
distribution and preserving properties of the input.

As in DMD, we assume that the perturbed target distri-
butions are represented by a pre-trained diffusion model
sTt and approximate the generator distribution score sθt by
the additional fake diffusion model sϕt . Analogous to the
DMD procedure (Equation 10), we perform the coordinate
descent in which, however, the generator objective is now
regularized. We call the procedure Regularized Distribution
Matching Distillation (RDMD). Formally, we optimize

T∫
0

ωt Eε,x log
pϕt (Gθ(x) + σtε)

pTt (Gθ(x) + σtε)
dt

+ λEpS(x)c (x, Gθ(x)) → min
θ

;

T∫
0

βt Eε,x∥Dϕ
t (Gθ(x) + σtε)−Gθ(x)∥2 dt → min

ϕ
.

(15)

Given the optimal fake score sϕt , the generator’s objective
becomes equal to the desired loss in Equation 14, which
validates the procedure.

3.2. Analysis of the method

The optimization problem in Equation 14 can be seen as the
soft-constrained optimal transport, which balances between
satisfying the output distribution constraint and preserving
the original image properties. Moreover, if one takes λ → 0,
the objective essentially becomes equivalent to the Monge
problem (Equation 12). It can be seen by replacing the
λ coefficient before the transport cost with the 1/λ coeffi-
cient before the KL divergence. In the limit, it equals +∞
whenever the generator output and the target distributions
are different, which makes the corresponding problem hard-
constrained and, therefore, equivalent to the original optimal
transport problem. Based on this observation, we prove the
following

Theorem 3.1. Let c(x,y) be the quadratic cost ∥x− y∥2
and Gλ be the theoretical optimum in the problem 14. Then,
under mild regularity conditions, it converges in probability
(with respect to pS ) to the optimal transport map G∗, i.e.

Gλ pS

−−−→
λ→0

G∗. (16)

The detailed proof can be found in Appendix A. Informally,
it means that the optimal transport map can be approximated
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Figure 2. Comparison of the DMD loss surfaces without (left) and with (right) transport cost regularization on a toy problem of translating
N (0, I) to N (0, 1.52I). We set the regularization coefficient λ = 0.2. The generator is parameterized as r · C(α), where C(α) is the
rotation matrix, corresponding to the angle α. Minima at the left contains all orthogonal matrices, multiplied by σ = 1.5, while the
minimum at the right is attained in the only point, which is close, but not equal, to the OT map. The surfaces are moved up for the sake of
visualization.

by the RDMD generator, trained on Equation 15, given a
sufficiently small regularization coefficient, enough capacity
of the architecture, and convergence of the optimization
algorithm.

This result is important to examine from another angle. It
is ideologically similar to the L2 regularization for over-
parameterized least squares regression. The original least
squares, in this case, have a manifold of solutions. At the
same time, by adding L2 weight penalty and taking the limit
as the regularization coefficient goes to zero, one obtains a
solution with the least norm based on the Moore-Penrose
pseudo-inverse (Moore, 1920; Penrose, 1955). In our case,
numerous maps may be optimal in the original DMD pro-
cedure, since it only requires matching the distribution at
output. However, taking the limit when λ → 0, one obtains
a feasible solution with the least transport cost.

We demonstrate this effect on a toy problem of translat-
ing N (0, I) to N (0, σ2I) and consider linear generator
G(x) = Ax. The solution to the optimal transport problem
with the quadratic cost c(x,y) = ∥x − y∥2 is A = σI .
For the DMD optimization problem without regularization,
minima are obtained at the manifold of orthogonal matrices
multiplied by σ: AA⊤ = σ2I . However, if one adds the
regularization, the minimum compresses into one point at
the cost of introducing the bias relatively to the true OT map.
We illustrate this by comparing the loss surface with and
without regularization in Figure 2.

4. Related work
In this section, we give an overview of the existing methods
for solving unpaired I2I including GANs, diffusion-based
methods, and methods based on optimal transport.

GANs were the prevalent paradigm in the unpaired I2I
for a long time. Among other methods, CycleGAN (Zhu
et al., 2017) and the concurrent DualGAN (Yi et al., 2017),
DiscoGAN (Kim et al., 2017) utilized the cycle-consistency
paradigm, consisting in training the transfer network along
with its inverse and optimizing the consistency term along
with the adversarial loss. It gave rise to the whole family of
two-sided methods, including UNIT (Liu et al., 2017) and
MUNIT (Huang et al., 2018) that divide the encoding into
style-space and content-space and SCAN (Li et al., 2018)
that splits the procedure into coarse and fine stages.

The one-side GAN-based methods aim to train I2I without
learning the inverse for better computational efficiency. Dis-
tanceGAN (Benaim & Wolf, 2017) achieves it by learning to
preserve the distance between pairs of samples, GCGAN (Fu
et al., 2019) imposes geometrical consistency constraints,
and CUT (Park et al., 2020) uses the contrastive loss to
maximize the patch-wise mutual information between input
and output.

Diffusion-based I2I models mostly build on modifying the
diffusion process using the source image. SDEdit (Meng
et al., 2021) initializes the reverse diffusion process for tar-
get distribution with the noisy source picture instead of the
pure noise to maintain similarity. Many methods guide (Ho
& Salimans, 2022; Epstein et al., 2023) the target diffu-
sion process. ILVR (Choi et al., 2021) adds the correc-
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Figure 3. Visualization of RDMD mappings on Gaussian → Swissroll with different choices of the regularization coefficient λ.

tion that enforces the current noisy sample to resemble the
source. EGSDE (Zhao et al., 2022) trains a classifier be-
tween domains and encourages dissimilarity between the
embeddings, corresponding to the source image and the cur-
rent diffusion process state. At the same time, it enforces a
small distance between their downsampled versions, which
allows for a balance between faithfulness and realism. The
other diffusion-based approaches include two-sided meth-
ods based on the concatenation of two diffusion models with
deterministic sampling (Su et al., 2022; Wu & De la Torre,
2023).

Optimal transport (Villani et al., 2009; Peyré et al., 2019)
is another useful framework for the unpaired I2I. Meth-
ods based on it usually reformulate the OT problem (Equa-
tion 12) and its modifications as Entropic OT (EOT) (Cu-
turi, 2013) or Schrödinger Bridge (SB) (Föllmer, 1988)
to be accessible in practice. In particular, NOT (Korotin
et al., 2022), ENOT (Gushchin et al., 2024), and NSB (Kim
et al., 2023a) use the Lagrangian multipliers formulation
of the distribution matching constraint, which results in
simulation-based adversarial training. The other methods
obtain (partially) simulation-free techniques by iteratively
refining the stochastic process between two distributions.
In the works (De Bortoli et al., 2021; Vargas et al., 2021)
refinement consists of learning the time-reversal with the
corresponding initial distribution (source or target). The
newer methods are based on Flow Matching (Lipman et al.,
2022; Tong et al., 2023; Albergo & Vanden-Eijnden, 2022)
and the corresponding Rectification (Liu et al., 2022; Shi
et al., 2024; Liu et al., 2023) procedure. While being theo-
retically sound, most of these methods work well for smaller
dimensions (Korotin et al., 2023) but suffer from computa-
tionally hard training in large-scale scenarios.

5. Experiments
This section presents the experimental results on 2 unpaired
translation tasks. Section 5.1 is devoted to the toy 2D ex-
periment. In Section 5.2 we compare our method with
the diffusion-based baselines on the translation problem

between cats and wild animals from the AFHQv2 data
set (Choi et al., 2020).

In all the experiments, we use the forward diffusion process
with variance σt = t and T = 80.0 as in the paper (Kar-
ras et al., 2022). We parameterize all the diffusion models
with the denoiser networks Dσ(x), conditioned on the noise
level σ, and optimize Equation 6 to train the target diffusion
model. As for the RDMD procedure, we optimize Equa-
tion15, where the gradient with respect to the generator
parameters is calculated analogously to Equation 11. The
transport cost c(x,y) is chosen as the squared difference
norm ∥x− y∥2. The average transport cost, reported in the
figures, is calculated as the square root of the MSE between
all input and output images for the sake of interpretability.

We use the same architecture for all networks: target score,
fake score, and generator. We utilize the pre-trained tar-
get score in two ways. First, we initialize the fake model
with its copy. Second, we initialize the generator Gθ(x)
with the same copy Dreal

σ (x), but with a fixed σ ∈ [0, T ]
(since the generator is one-step). The denoiser parameteri-
zation is trained to predict the target domain’s clean images,
therefore, such initialization should significantly speed up
convergence and nudge the model to utilize the information
about the target domain more efficiently (Nguyen & Tran,
2023; Yin et al., 2023). We explore the initialization of σ
for I2I in Appendix B. The additional training details can
be found in Appendix C.

5.1. Toy Experiment

We validate the qualitative properties of the RDMD method
on 2-dimensional Gaussian → Swissroll. In this setting, we
explore the effect of varying the regularization coefficient
λ on the trained transport map Gθ. In particular, we study
its impact on the transport cost and fitness to the target
distribution pT .

In the experiment, both source and target distributions are
represented with 5000 independent samples. We use the
same small MLP-based architecture (Shi et al., 2024) for all
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Figure 4. Comparison of RDMD with diffusion-based baselines.
The figure demonstrates the tradeoff between generation quality
(FID↓) and the difference between the input and output (L2↓,
PSNR↑, SSIM↑). RDMD gives an overall better tradeoff given
fairly strict requirements on the transport cost. In the cases of
PSNR and SSIM, the y-axis is swapped for the sake of identical
readability with the first plot (left is better, low is better).

the networks.

The main results are presented in Figure 3. The standard
DMD (λ = 0.0) learns a transport map with several in-
tersections when demonstrated as the set of lines between
the inputs and the outputs. This observation means that the
learned map is not OT, because it is not cycle-monotone (Mc-
Cann, 1995). Increasing λ yields fewer intersections, which
can be used as a proxy evidence of optimality. At the same
time, the generator output distribution becomes farther and
farther from the desired target. The results show the im-
portance of choosing the appropriate λ to obtain a better
trade-off between the two properties. Here, the regulariza-
tion coefficient λ = 0.2 offers a good trade-off by having
small intersections and producing output distribution close
to the target.

Figure 5. Visual comparison of RDMD with diffusion-based base-
lines.

5.2. Cat to Wild

Finally, we compare the proposed RDMD method with
the diffusion-based baselines ILVR (Choi et al., 2021),
SDEdit (Meng et al., 2021), and EGSDE (Zhao et al., 2022)
on the 64 × 64 Cat → Wild translation problem, based
on the AFHQv2 (Choi et al., 2020) data set. Comparison
with the diffusion-based models makes the setting fair since
it allows to utilize the same pre-trained target diffusion
model for all of the methods. We stress, however, that the
GAN-based methods mostly demonstrate results inferior to
EGSDE (Zhao et al., 2022) in terms of FID and PSNR at
the same data set with resolution 256× 256.

We pre-train the target diffusion model using the EDM (Kar-
ras et al., 2022) architecture with the hyperparameters used
by the authors on the AFHQv2 data set. Our pre-trained
model achieves FID equal to 2.0. We initialize the model
with σ = 1.0 based on the observations from Section B and
train 5 RDMD generators, corresponding to the regulariza-
tion coefficients {0.001, 0.02, 0.05, 0.1, 0.2}. We slightly
adapt the official baseline implementations for compatibil-
ity with the EDM setting. The EGSDE classifier is trained
analogous to the paper: it is initialized from the Dhariwal
UNet (Dhariwal & Nichol, 2021), pre-trained on the Ima-
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geNet (Deng et al., 2009) 64×64. For each of the baselines,
we run a grid of hyperparameters. The detailed hyperparam-
eter values can be found in Appendix C.3.

We report our main quantitative results in Figure 5 and
compare the achieved faithfulness-quality trade-off with
the baselines. The quality metric is FID, the faithfulness
metrics are L2/PSNR/SSIM. Among these metrics, L2 is
the least convenient for our method. Nevertheless, RDMD
achieves a better trade-off given at least moderately strict
requirements on the transport cost: all of our models beat
all the baselines in the L2 range between 12.5 and 20.0.
In all cases, our model achieves strictly higher SSIM and
almost strictly higher PSNR. We note, however, that if the
lower FID is preferable over the transport cost (L2 values
around 22.5 − 27.5), then it might be better to use one of
the baselines. An example of a map with a high OT cost
(25.0) and low FID (5.4) is SDEdit on Figure 5.

Finally, we present a visual comparison between the meth-
ods. To this end, we randomly choose 6 pictures from the
test data set and report the corresponding outputs in Figure 5.
Here, we take RDMD with λ = 0.05 that achieves (FID,
L2) equal to (6.93, 17.86). As for the baselines, we choose
the hyperparameters (Appendix C.3) with the closest FID to
the RDMD: (8.87, 22.0) for ILVR, (5.4, 25.0) for SDEdit,
and (7.02, 22.35) for EGSDE.

6. Discussion and limitations
In this paper, we propose RDMD, the novel one-step
diffusion-based algorithm for the unpaired I2I task. This
algorithm is a modification of the DMD method for diffu-
sion distillation. The main novelty is the introduction of
the transport cost regularization between the input and the
output of the model, which allows to control the trade-off
between faithfulness and visual quality.

From the theoretical standpoint, we prove that at low reg-
ularization coefficients, the theoretical optimum of the in-
troduced objective is close to the optimal transport map
(Thm. 3.1). Our experiments in Sec. 5.1 demonstrate how
the choice of regularization coefficient affects the trained
mapping and allows us to build the general intuition. In
Sec. 5.2 we compare our method with the diffusion-based
baselines (ILVR, SDEdit, EGSDE) and obtain better results
given fair restrictions on the transport cost. The results are
strictly better than all of the baselines in terms of SSIM and
almost strictly superior to all of the baselines in terms of
PSNR.

In terms of limitations, we admit that our theory works
in the asymptotic regime, while one could derive more
precise non-limit bounds. Our experimental results on
Cat → Wild demonstrate the lowest FID around 6.9, while
the pre-trained diffusion model has 2.01. Improving the vi-

sual quality and testing our method on high dimensions is
important for future work. Furthermore, the desired fea-
ture of the method would be switching among different reg.
coefficients without re-training.
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A. Theory
In this section, we aim at proving the main theoretical result of the work: solution of the soft-constrained RDMD objective
converges to the solution of the hard-constrained Monge problem. Our proof is largely based on the work (Liero et al., 2018).
It introduces the family of entropy-transport problems, consisting in optimizing the transport cost with soft constraints
based on the divergence between the map’s output distribution and the target. There are, however, differences between the
problems, that prevent us from reducing the functional in Equation 14 to the entropy-transport problems. First, authors
consider the case of finite non-negative measures, while we stick to the probability distributions. Second, the family of
Csiszár f -divergences (Csiszár, 1967), used in (Liero et al., 2018), seemingly does not contain the integral ensemble of KL
divergences, used in Equation 14. Finally, we illustrate the proof in a simpler particular setting for the narrative purposes.
Nevertheless, the used ideas are very similar.

A.1. Proof outline

We start by giving a simple outline of the proof. Given a pair of source and target distributions pS and pT , RDMD optimizes
the following functional with respect to the generator G:

T∫
0

ωt KL
(
pGt ∥ pTt

)
dt+ λEpS(x)c (x, G(x)) , (17)

where pGt and pTt are the generator distribution pG and the target distribution pT , perturbed by the forward diffusion process
up to the time step t. Our goal is to prove that the optimal generator of the regularized objective converges to the optimal
transport map when λ → 0. With a slight abuse of notation, in this section we will use a different objective

Lα(G) = α

T∫
0

ωt KL
(
pGt ∥ pTt

)
dt+ EpS(x)c (x, G(x)) (18)

and consider the equivalent limit α → +∞. We also define

L∞(G) =

{
EpS(x)c (x, G(x)) , if pG = pT ;

+∞, else
(19)

to be the objective, corresponding to the unconditional formulation of the Monge problem (Equation 12). In this section, we
will denote minimum of this objective (which is, therefore, the optimal transport map) as G∞ 4

We first assume that the infimum of the objective Lα is reached and define Gα be the optimal generator. We denote by
{αn}+∞

n=1 an arbitrary sequence with αn → +∞. We first make two informal assumptions that need to be proved (and will
be in some sence further in the section):

1. The sequence Gαn converges (in some sence) to some function Ĝ;

2. Lα is continuous with respect to this convergence, i.e. for every convergent sequence Gn → G holds Lα(Gn) →
Lα(G).

Given this, we first observe that for each map G the sequence of objectives Lαn(G) monotonically converges to the objective
L∞(G). It follows from the fact that the first summand of Lαn converges to +∞ if and only if the KL divergence is
non-zero, which is equivalent to saying that pG and pT differ (Wang et al., 2024). If instead pG = pT , the summand zeroes
out. This also means that the minimal values of the corresponding objectives form a monotonic sequence:

Lαn(Gαn) ≤ Lαn+1(Gαn+1) ≤ L∞(G∞). (20)

Finally, the monotonicity implies that for a fixed m

lim
n→∞

Lαn(Gαn) ≥ lim
n→∞

Lαm(Gαn), (21)

4Solution to the Monge problem is not always unique, but we will further impose assumptions that will guarantee the uniqueness.
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since the input Gαn is fixed and Lαn monotonically increases. Using the assumed continuity of the objective, we obtain

lim
n→∞

Lαn(Gαn) ≥ Lαm(Ĝ) (22)

for each m. Taking the limit m → ∞, we obtain

lim
n→∞

Lαn(Gαn) ≥ L∞(Ĝ). (23)

Combining this set of equations, we obtain:

L∞(G∞) ≥ lim
n→∞

Lαn(Gαn) ≥ L∞(Ĝ) ≥ L∞(G∞), (24)

where the first inequality comes from the monotonicity of the minimal values and the last inequality uses that G∞ is the
minimum of the objective L∞. Hence, that limiting map Ĝ achieves minimal value of the objective L∞ and is, therefore,
the optimal transport map.

At this point, we only need to define and prove some versions of the aforementioned facts:

1. Infimum of Lα is reached;

2. The sequence of minima Gαn converges;

3. Lα is continuous with respect to this convergence.

From now on, we formulate the result in details and stick to the formal proof.

A.2. Assumptions and theorem statement

First, we list the assumptions.
Assumption A.1. The distributions pS and pT have densities with respect to the Lebesgue measure. The distributions are
defined on open bounded subsets X ⊂ Rd and Y ⊂ Rd, where Y is convex. The densities are bounded away from zero and
infinity on X and Y , respectively.

We admit that boundedness of the support is a very restrictive assumption from the theoretical standpoint, however in our
applications (I2I) both source and target distributions are supported on the bounded space of images. We thus can set
X = Y = (0, 1)d.
Assumption A.2. The cost c(x,y) is quadratic ∥x− y∥2.

Here, we stick to proving the theorem only for L2 cost due to difficulties in investigation of Monge map existence and
regularity for general transport costs (De Philippis & Figalli, 2014).
Assumption A.3. The weighting function ωt is positive and bounded.
Assumption A.4. Standard deviation σt of the noise, defined by the forward process, is continuous in t.
Theorem A.1. Let pS , pT , c , ωt , and σt satisfy the assumptions 1-3. Then, there exists a minimum Gα of the objective Lα

from the Equation 18. If αn → ∞, the sequence Gαn converges in probability (with respect to the source distribution) to
the optimal transport map G∞:

Gαn
pS

−−−−→
n→∞

G∞. (25)

A.3. Theoretical background

We start by listing all the results necessary for the proof. They are mostly related to the topics of measure theory (weak
convergence, in particular) and optimal transport. Most of these classic facts can be found in the books (Bogachev & Ruas,
2007; Dudley, 2018). Otherwise, we make the corresponding citations.
Definition A.2. A sequence of probability distributions pn(x) converges weakly to the distribution p(x) if for all continuous
bounded test functions φ ∈ Cb(Rd) holds

Epn(x)φ(x) −−−−→
n→∞

Ep(x)φ(x). (26)

Notation: pn w−→ p.
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Definition A.3. A function f : Rd → R is called lower semi-continuous (lsc), if for all xn → x holds

lim inf
n→∞

f(xn) ≥ f(x). (27)

Theorem A.4 (Portmanteau/Alexandrov). pn
w−→ p is equivalent to the following statement: for every lsc function f ,

bounded from below, holds
lim inf
n→∞

Epn(x)f(x) ≥ Ep(x)f(x). (28)

Definition A.5. A sequence of probability measures pn is called relatively compact, if for every subsequence pnk there
exists a weakly convergent subsequece pnkj .

Definition A.6. A sequence of probability measures pn is called tight, if for every ε > 0 there exists a compact set Kε such
that pn(Kε) ≥ 1− ε for all n.

Theorem A.7 (Prokhorov). A sequence of probability measures pn is relatively compact if and only if it is tight. In particular,
every weakly convergent sequence is tight.

Corollary A.8. If there exists a function φ(x) such that its sublevels {x : φ(x) ≤ r} are compact and for all n

Epn(x)φ(x) ≤ C

holds with some constant C, then pn is tight (i.e. at least it has a weakly convergent subsequence).

Corollary A.9. If a sequence pn is tight and all of its weakly convergent subsequences converge to the same measure p,
then pn

w−→ p.

Definition A.10. The functional L(p) is called lower semi-continuous (lsc) with respect to the weak convergence if for all
weakly convergent sequences pn w−→ p holds

lim inf
n→∞

L(pn) ≥ L(p). (29)

Theorem A.11 (Posner 1975). The KL divergence KL(p ∥ q) is lsc (in sense of weak convergence) with respect to each
argument, i.e. if pn w−→ p and qn

w−→ q, then

lim inf
n→∞

KL(pn ∥ q) ≥ KL(p ∥ q) (30)

lim inf
n→∞

KL(p ∥ qn) ≥ KL(p ∥ q). (31)

Theorem A.12 (Donsker & Varadhan 1983). The KL divergence can be expressed as

KL(p∥q) = sup
g

(
Ep(x)g(x)− logEq(x)e

g(x)
)
. (32)

Definition A.13. The expression
Ep(x)e

i⟨s,x⟩ (33)

is called the characteristic function (Fourier transform) of the distribution p(x).

Theorem A.14 (Lévy). Weak convergence of probability measures pn w−→ p is equivalent to the point-wise convergence of
characteristic functions, i.e. Epn(x)e

i⟨s,x⟩ → Ep(x)e
i⟨s,x⟩ for all s.

Definition A.15. A sequence of measurable functions φn(x) is said to converge in measure (in probability) to the function
φ with respect to the measure p(x), if for all ε > 0 holds

p ({x : |φn(x)− φ(x)| > ε}) → 0.

Theorem A.16 (Lebesgue). Let φn, φ be measurable functions such that ∥φn(x)∥, ∥φ(x)∥ ≤ C and φn(x) → φ(x)
pointwise. Then Ep(x)φ

n(x) → Ep(x)φ(x).

Lemma A.17 (Fatou). For any sequence of measurable functions φn the function lim infn φ
n is measurable and

b∫
a

lim inf
n→∞

φn(x)dx ≤ lim inf
n→∞

b∫
a

φn(x)dx. (34)
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Theorem A.18 (Brenier 1991). Given the Assumption A.1, there exists a unique optimal transport map that solves the
Monge problem 12 for the quadratic cost.

Proof. This result can be found e.g. in (De Philippis & Figalli, 2014, Theorem 3.1).

Theorem A.19. Given the Assumption A.1, the unique OT Monge map is continuous.

Proof. This is a simplified version of (De Philippis & Figalli, 2014, Theorem 3.3).

A.4. Lower semi-continuity of the loss

Having defined all the needed terms and results, we start the proof by re-defining the objective in Equation 18 with respect
to the joint distribution π input and output of the generator instead of the generator G itself. Analogous to the Kantorovitch
formulation of the optimal transport problem (Kantorovitch, 1958), for each measure π on Rd × Rd (which is also called a
transport plan or just plan) we define the corresponding fuctional as

Lα(π) = α

T∫
0

ωt KL
(
πy,t ∥ pTt

)
dt+ Eπ(x,y)c (x,y) , (35)

where πx and πy are the corresponding projections (marginal distributions) of π and πy,t is the perturbed y-marginal
distribution of π. Note that for π, corresponding to the joint distribution of (x, G(x)), Lα(π) coincides with Lα(G), defined
in Equation 18. Thus, we aim to optimize Lα(π) with respect to such plans π, that their x marginal is equal to pS and
π(y = G(x)) = 1 for some G.

Definition A.20. We will call a measure π generator-based if its x-marginal is equal to pS and π(y = G(x)) for some
function G.

For the sake of clearity, we note that the distributions πy
t and pTt can be represented as πy ∗ qt and pT ∗ qt, where ∗ is the

convolution operation and qt = N (0, σ2
t I). We thus rewrite the functional as

Lα(π) = α

T∫
0

ωt KL
(
πy ∗ qt ∥ pT ∗ qt

)
dt+ Eπ(x,y)c (x,y) , (36)

Previously, we wanted to establish continuity of the objective. This may not be the case in general. Instead, we prove the
following

Lemma A.21. Lα(π) is lsc with respect to the weak convergence, i.e. for all weakly convergent sequences πn w−→ π holds

lim inf
n→∞

Lα(πn) ≥ Lα(π). (37)

This result is a direct consequence of the Theorem A.11 about lower semi-continuity of the KL divergence.

Proof. We start by proving that the projection and the convolution operation preserve weak convergence. For the first, we
need to prove that for any test function g ∈ Cb(Rd) holds

Eπn
y (y)g(y) → Eπy(y)g(y) (38)

given πn w−→ π. For this, we note that the function φ(x,y) = g(y) is also bounded and continuous and, thus

Eπn
y (y)g(y) = Eπn(x,y)φ(x,y) → Eπ(x,y)φ(x,y) = Eπy(y)g(y). (39)

Regarding the convolution, recall that πn
y ∗ qt is the distribution of the sum of independent variables with corresponding

distributions. Its characteristic function is equal to

Eπn
y∗qt(yt)

ei⟨s,yt⟩ = Eπn
y (y)qt(εt)e

i⟨s,y+εt⟩ = Eπn
y (y)e

i⟨s,y⟩Eqt(εt)e
i⟨s,εt⟩. (40)

15



Regularized Distribution Matching Distillation for One-step Unpaired Image-to-Image Translation

Applying the Lévy’s continuity theorem to πn
y

w−→ πy , we take the limit and obtain

Eπy(y)e
i⟨s,y⟩Eqt(εt)e

i⟨s,εt⟩ = Eπy(y)qt(εt)e
i⟨s,y+εt⟩ = Eπy∗qt(yt)

ei⟨s,yt⟩, (41)

which implies
Eπn

y∗qt(yt)
ei⟨s,yt⟩ → Eπy∗qt(yt)

ei⟨s,yt⟩. (42)

We apply the continuity theorem for the convolutions and obtain πn
y ∗ qt

w−→ πy ∗ qt.

With this observation, we prove that the first term of Lα(π) is lsc. First, we apply Lemma A.17 (Fatou) and move the limit
inside the integral

lim inf
n→∞

T∫
0

ωt KL
(
πn
y ∗ qt ∥ pT ∗ qt

)
dt ≥

T∫
0

lim inf
n→∞

ωt KL
(
πn
y ∗ qt ∥ pT ∗ qt

)
dt. (43)

Using the lower semi-continuity of the KL divergence (Theorem A.11), we obtain

T∫
0

lim inf
n→∞

ωt KL
(
πn
y ∗ qt ∥ pT ∗ qt

)
dt ≥

T∫
0

ωt KL
(
πy ∗ qt ∥ pT ∗ qt

)
dt. (44)

Finally, the Assumption A.2 on the continuity of c(·, ·) implies its lower semi-coninuity. Theorem A.4 (Portmanteau) states
that

lim inf
n→∞

Eπn(x,y)c(x,y) ≥ Eπ(x,y)c(x,y). (45)

Combining inequalities from Equation 43, Equation 44 and Equation 45, we obtain

lim inf
n→∞

Lα(πn) ≥ Lα(π). (46)

A.5. Existence of the minimizer

Now we aim to prove that the objective Lα(π) has a minimum over generator-based plans. First, we need the following
technical lemma about sublevels of the KL part of the functional.

Lemma A.22. Let {πn}∞n=1 be a sequence of generator-based plans that satisfy

T∫
0

ωt KL
(
πn
y,t ∥ pTt

)
dt ≤ C (47)

for some constant C. Then, the sequence {πn}∞n=1 is tight.

Proof. We take arbitrary π from the sequence and apply the Donsker-Varadhan representation (Theorem A.12) of the KL
divergence. We take the test function g(x) = ∥x∥2/(2σ2

T ) and obtain

T∫
0

ωt KL
(
πy,t ∥ pTt

)
dt ≥

T∫
0

ωt

(
Eπy,t(yt)

1

2σ2
T

∥yt∥2 − logEpT
t (yt)

e∥yt∥
2/(2σ2

T )

)
dt. (48)

The choice of g(x) is not very specific, i.e. every function that will produce finite expectations and integrals is suitable. In
the right-hand side, we rewrite the expectations with repect to the original variable and noise:

T∫
0

ωt

(
Eπy(y)N (ε|0,I)

1

2σ2
T

∥y + σtε∥2 − logEpT (y)N (ε|0,I)e
∥y+σtε∥2/(2σ2

T )

)
dt. (49)
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We rewrite ∥y + σtε∥2 as ∥y∥2 + 2σt⟨y, σtε⟩+ σ2
t ∥ε∥2 and note that expectation of the second term is zero. The first term

is then equal to

1

2σ2
T

T∫
0

ωt dt · Eπy(y)∥y∥
2 +

1

2σ2
T

T∫
0

ωt σ
2
t dt · EN (ε|0,I)∥ε∥2. (50)

Boundedness of ωt (Assumption A.3) implies that the first integral is finite and, say, equal to C1. The second integral
contains a product of bounded ωt and continuous σ2

t (Assumtion A.4), which is also integrable. We then denote the second
summand by C2 and rewrite the first summand as

C1Eπy(y)∥y∥
2 + C2. (51)

As for the second summand, we see that the expectation

EpT (y)N (ε|0,I)e
∥y+σtε∥2/(2σ2

T ) (52)

with respect to ε will be finite, because σ2
t /(2σ

2
T ) is always less than 1/2, which will make the exponent have negative

degree. Moreover, simple calculations show that this function will be continuous with respect to σt and have only quadratic
terms with respect to y inside the exponent, i.e. have the form

ea(σt)∥y−b(σt)∥2+c(σt) (53)

with continuous a, b, c. We now want to prove that the expectation

EpT (y)e
α(σt)∥y−β(σt)∥2+γ(σt) (54)

will also be continuous in t. First, due to the boundedness of y, this expectation is finite. Second, for tn → t:

lim
n→∞

EpT (y)e
a(σtn )∥y−b(σtn )∥2+c(σtn ) = (55)

= EpT (y) lim
n→∞

ea(σtn )∥y−b(σtn )∥2+c(σtn ) = (56)

= EpT (y)e
a(σt)∥y−b(σt)∥2+c(σt) (57)

due to the Theorem A.16 (Lebesgue’s dominated convergence). It is applicable, since y is bounded and all the functions are
continuous, thus bounded in [0, T ].

We thus obtain that the second integral contains bounded ωt multiplied by the logarithm of continuous function, which is
always ≥ 1 (positive exponent). This means that the whole integral is finite. Denoting it by C3, we obtain

C1Eπy(y)∥y∥
2 + C2 − C3 ≤

T∫
0

ωt KL
(
πy,t ∥ pTt

)
dt. (58)

Combined with the condition of the lemma, we obtain

C1Eπy(y)∥y∥
2 + C2 − C3 ≤

T∫
0

ωt KL
(
πy,t ∥ pTt

)
dt ≤ C, (59)

which implies

Eπy(y)∥y∥
2 ≤ C + C3 − C2

C1
:= C4. (60)

We thus obtained a uniform bound on some statistic with respect to all measures from {πn}. The function ∥y∥2 has compact
sublevel sets {∥y∥2 ≤ r}. Lemma A.8 then states that the sequence πn

y is tight, i.e. for all ε > 0 there is a compact set Kε

with πn
y(y ∈ Kε) ≥ 1− ε.

Finally, marginal x distribution of each of the πn is pS , which is bounded (Assumption A.1), i.e. there is a compact K that
πn(x ∈ K) = 1. Combined with the previous observation, we obtain

πn(x ∈ K,y ∈ Kε) ≥ 1− ε (61)

for all n. The cartesian product K ×Kε is also compact. Theorem A.7 (Prokhorov) then implies that the sequence πn is
tight.
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Now we are ready to prove the following

Lemma A.23. Infimum of the loss Lα(π) over all generator-based transport plans π (with πx = pS and π(y = G(x)) for
some G) is attained on some plan π̂.

Proof. We start by observing that there is at least one feasible π with the aforementioned properties. For this purpose one
can take the optimal transport map G∞ between pS and pT , which is unique by Theorem A.18 under Assumptions A.1, A.2.

Let πn be a sequence of feasible generator-based measures that Lα(πn) converges to the corresponding infimum Lα
inf (it

exists by the definition of the infimum). Without loss of generality, we can assume that Lα(πn) ≤ Lα
inf + 1 for all n (if not,

one can drop large enough sequence prefix). This implies that for all n holds

α

T∫
0

ωt KL
(
πy,t ∥ pTt

)
dt ≤ Lα

inf + 1. (62)

Lemma A.22 implies that the sequence πn is tight. Prokhorov theorem then states that πn has a weakly convergent
subsequence πnk

w−→ π̂. Lower semi-continuity of the loss Lα implies that

lim inf
k→∞

Lα(πnk) ≥ Lα(π̂) ≥ Lα
inf . (63)

At the same time, Lα(πnk) is assumed to converge to Lα
inf , which means that π̂ is indeed the minimum.

A.6. Finish of the proof

Theorem A.1 proof. Finally, we combine the previous technical observations with the proof sketch from the Section A.1. Let
αn → ∞ be a sequence of coefficients, Gαn be the optimal generators with respect to Lαn and παn the joint distributions
of (x, Gαn(x)). Additionally, we define π∞ to be the optimal transport plan, corresponding to (x, G∞(x)), where G∞(x)
is the optimal transport map. First, due to the monotonicity of Lα with respect to α, we have

Lαn(παn) ≤ Lαn+1(παn+1) ≤ L∞(π∞). (64)

This implies that for all n holds

αn

T∫
0

ωt KL
(
παn
y,t ∥ pTt

)
dt ≤ L∞(π∞) ⇒ (65)

⇒
T∫

0

ωt KL
(
παn
y,t ∥ pTt

)
dt ≤ L∞(π∞)

αn
≤ L∞(π∞)

min
n

αn
, (66)

which is finite, since αn → +∞. One more time, we apply Lemma A.22 and conclude that the sequence παn is tight.

Let παnk be its weakly convergent subsequence: παnk
w−→ π̂. Analogously to the Section A.1, we observe that

lim inf
k→∞

Lαnk (παnk ) ≥ lim inf
k→∞

Lαnm (παnk ) ≥ Lαnm (π̂) (67)

for any fixed m. The first inequality is due to the monotonicity of Lα with respect to α and second is the implication of
lower semi-continuity of the loss Lα with respect to weak convergence. Taking the limit m → ∞, we obtain

lim inf
k→∞

Lαnk (παnk ) ≥ L∞(π̂). (68)

Combining all these observations, we obtain the following sequence of inequalities

L∞(π∞) ≥ lim inf
k→∞

Lαnk (παnk ) ≥ L∞(π̂) ≥ L∞(π∞), (69)
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which implies that the limiting measure π̂ reaches the minimum of the objective over generator-based plans. By the
uniqueness of the optimal transport map G∞ under the Assumptions A.1, A.2, A.3, we conclude that all the convergent
subsequences παnk converge to the optimal measure π∞. Using Corollary A.9 of the Prokhorov theorem, we deduce that
παn

w−→ π∞.

Finally, we want to replace the weak convergence of παn to π∞ with the convergence in probability of the generators, i.e.
show

Gαn
pS

−−→ G∞. (70)

To this end, we represent the corresponding probability as the expectation of the indicator and upper bound it with a
continuous function:

pS (∥Gαn(x)−G∞(x)∥ > ε) = EpS(x)I{∥Gαn(x)−G∞(x)∥ > ε} (71)

≤ EpS(x)d (G
αn(x), G∞(x)) , (72)

where d is a continuous indicator approximation, defined as

d(u,v) =

{
∥u−v∥

ε , if 0 ≤ ∥u− v∥ < ε;

1, if ∥u− v∥ ≥ ε.
(73)

We define the test function
φ(x,y) = d (y, G∞(x)) (74)

and rewrite the upper bound as

EpS(x)d (G
αn(x), G∞(x)) = EpS(x)φ(x, G

αn(x)) = Eπαn (x,y)φ(x,y). (75)

Due to Assumptions A.1, A.2 and Theorem A.14 the optimal transport map G∞ is continuous, which implies that this test
function is bounded and continuous. Given the weak convergence of παn , we have

Eπαn (x,y)φ(x,y) → Eπ∞(x,y)φ(x,y) = EpS(x)φ(x, G
∞(x)) = (76)

= EpS(x)d(G
∞(x), G∞(x)) = 0, (77)

which implies the desired
pS (∥Gαn(x)−G∞(x)∥ > ε) → 0. (78)

B. Ablation of the initialization parameter
In this section, we further explore the design space of our method by investigating the effect of the fixed generator input
noise parameter σ on the resulting quality. To this end, we take the colored version of the MNIST (LeCun, 1998) data
set and perform translation between the digits ”2” and ”3” initializing from various σ. We use a small UNet architecture
from (Gushchin et al., 2024).

The parameter σ is residual from the pre-trained diffusion architecture and therefore fixed throughout training and evaluation.
However, the target denoiser network tries to convert the expected noisy input into the corresponding sample from the output
distribution. Consequently, one may expect that at a suitable noise level, the generator may change the input’s details to
make them look appropriate for the target while preserving the original structural properties.

We demonstrate this effect on various noise levels in Figure 6. Here we observe that the small sigmas lead to the mapping
close to the identity, whereas the large sigmas lead to almost constant blurry images, corresponding to the average ”3”
of the data set. However, there is a segment [1.0, 10.0] of levels that gives a moderate-quality mapping in terms of both
faithfulness and realism, which makes it a suitable initial point. Note that the FID-L2 plot is not monotone at high L2 values
due to the overall poor quality of the generator, i.e. it outputs bad-quality pictures slightly related to the source. We further
investigate optimal σ choice by going through a 2D grid of the hyperparameters (σ, λ) and aim to see if it is possible to
choose the uniform best noise level. In Figure 6 we report the faithfulness-quality trade-off concerning various σ. We
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Figure 6. Left: visualization of the generator initialization at various σ ∈ [0.1, 80.0], where σ is the noise level parameter residual from
the pre-trained diffusion architecture. Right: comparison of different σ in terms of the quality-faithfulness trade-off. The metrics are
obtained by initializing the generator at the corresponding σ level and training it with the RDMD procedure. Here, λ ∈ {0, 1.0, 2.0, 4.0}.
Higher λ corresponds to the lower transport cost values.

observe that there is almost monotone dependence on σ on the segment [1.0, 40.0]: here the σ = 1.0 gives almost uniformly
best results in terms of both metrics. Similar results are obtained by the values 5.0, 10.0 which have fair quality visual
results at initialization. Therefore, we conclude that it is best to choose the least parameter σ among the parameters with
appropriate visuals at the initial point.

C. Experimental Details
C.1. 2D experiments

Architecture. The architecture used for training diffusion model and generator (De Bortoli et al., 2021) consists of
input-encoding MLP block, time-encoding MLP block, and decoding MLP block. Input encoding MLP block consists of 4
hidden layers with dimensions [16, 32, 32, 32] interspersed by LeakyReLU activations. Time encoding MLP consists of a
positional encoding layer (Vaswani et al., 2017) and then follows the same MLP block structure as the input encoder. The
decoding MLP block consists of 5 hidden layers with dimensions [128, 256, 128, 64, 2] and operates on concatenated time
embedding and input embedding each obtained from their respective encoder. The model contains 88k parameters.

Training Diffusion Model. Diffusion model was trained for 100k iterations with batch size 1024 with Adam optimizer
(Kingma & Ba, 2014) with learning rate 10−4.

Training RDMD. Fake denoising network was trained with Adam optimizer with learning rate 10−4. The generator
model was trained with a different Adam optimizer with a learning rate equal to 2 · 10−5. We trained RDMD for 100k
iterations with batch size 1024.

Computational resources. All the experiments were run on CPU. Running 100k iterations with the batch size 1024 took
approximately 1 hour.

C.2. Colored MNIST

Architecture. We used the architecture from (Gushchin et al., 2024), which utilizes convolutional UNet with conditional
instance normalization on time embeddings used after each upscaling block of the decoder5. Model produces time
embeddings via positional encoding. The model size was approximately 9.9M parameters.

5https://github.com/ngushchin/EntropicNeuralOptimalTransport/blob/06efb6ba8b43865a30b0b626384fa64da39bc385/
src/cunet.py
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Training Diffusion Model. The diffusion model was trained for 24500 iterations with batch size 8192. We used the Adam
optimizer with a learning rate equal to 4 · 10−3. The model was trained in FP32. It obtained FID equal to 2.09.

Training RDMD. Fake denoising network was trained with Adam optimizer with a learning rate equal to 2 · 10−3. The
generator model was trained with Adam optimizer with learning rate 5 · 10−5. RDMD was trained for 7300 iterations with
batch size 4096.

Computational resources. All the experiments were run on 2x NVIDIA GeForce RTX 4090 GPUs. Training Diffusion
model for 24500 iterations with batch size 8192 took approximately 6 hours. Training RDMD for 7300 iterations with batch
size 4096 took approximately 3 hours.

C.3. Cat2Wild

Architecture. We used the SongUNet architecture from EDM repository6, which corresponds to DDPM++ and NCSN++
networks from the work (Song et al., 2020). The model contains approximately 55M parameters.

Training Diffusion Model. The diffusion model was trained for 80k iterations. We set the batch size to 512 and chose the
best checkpoint according to FID. We used the Adam optimizer with a learning rate equal to 2 · 10−4. We used a dropout
rate equal to 0.25 during training and the augmentation pipeline from (Karras et al., 2022) with probability 0.15. The model
was trained in FP32. It obtained FID equal to 2.01.

Training RDMD. In all runs we initialized the generator from the target diffusion model with the fixed σ = 1.0. We’ve
run 4 models, corresponding to the regularization coefficients {0.02, 0.05, 0.1, 0.2}. All models were trained with Adam
optimizer with generator learning rate 5 · 10−5 and fake diffusion learning rate 3 · 10−4. We trained all models for 25000
iterations with batch size 512. Training took approximately 35 hours on 4× NVidia Tesla A100 80GB.

ILVR hyperparameters. The only hyperparameter of ILVR is the downsampling factor N for the low-pass filter, which
determines whether guidance would be conducted on coarser or finer information. nsteps denotes number of sampling
steps. All metrics in Figure 4 for ILVR were obtained on the following hyperparameter grid: N = [2, 4, 8, 16, 32],
nsteps = [18, 32, 50]. We excluded runs that have the same statistical significance and achieve FID higher than 20.0. The
images in Figure 5 were obtained with hyperparameters N = 16 and nsteps = 18.

SDEdit hyperparameters. The only hyperparameter of SDEdit is the noise level σ, which acts as a starting point for
sampling. The higher the noise level, the closer is the sampling procedure to the unconditional generation. The smaller
the noise values, the more features are carried over to the target domain at the expense of generation quality. nsteps denotes
number of sampling steps. All metrics in Figure 4 for SDEdit were obtained on the following hyperparameter grid:
σ = [4, 5, 10, 15, 20, 30, 40], nsteps = [18, 32, 50]. We exclude runs that have the same statistical significance and achieve
FID higher than 20.0. The images in Figure 5 were obtained with hyperparameters σ = 10 and nsteps = 50.

EGSDE hyperparameters. EGSDE sampling hyperparameters include the initial noise level σ at which the source image
is perturbed, and the downsampling factor N for the low-pass filter. nsteps denotes number of sampling steps. All metrics
in Figure 4 for EGSDE were obtained on the following hyperparameter grid: σ = [5, 10, 15, 20, 40], N = [8, 16, 32],
nsteps = [18, 32]. We exclude runs that have the same statistical significance and achieve FID higher than 20.0. The images
in Figure 5 were obtained with hyperparameters σ = 10, N = 32, nsteps = 50.

6https://github.com/NVlabs/edm/blob/008a4e5316c8e3bfe61a62f874bddba254295afb/training/
networks.py
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