
Language Models as
Zero-Shot Trajectory Generators

Teyun Kwon, Norman Di Palo, Edward Johns
The Robot Learning Lab

Department of Computing
Imperial College London

{john.kwon20, n.di-palo20, e.johns}@imperial.ac.uk

Abstract: Large Language Models (LLMs) have recently shown promise as high-
level planners for robots when given access to a selection of low-level skills. How-
ever, it is often assumed that LLMs do not possess sufficient knowledge to be
used for the low-level trajectories themselves. In this work, we address this as-
sumption thoroughly, and investigate if an LLM (GPT-4) can directly predict a
dense sequence of end-effector poses for manipulation skills, when given access
to only object detection and segmentation vision models. We study how well a
single task-agnostic prompt, without any in-context examples, motion primitives,
or external trajectory optimisers, can perform across 26 real-world language-based
tasks, such as “open the bottle cap” and “wipe the plate with the sponge”, and we
investigate which design choices in this prompt are the most effective. Our con-
clusions raise the assumed limit of LLMs for robotics, and we reveal for the first
time that LLMs do indeed possess an understanding of low-level robot control suf-
ficient for a range of common tasks, and that they can additionally detect failures
and then re-plan trajectories accordingly. Videos, code, and prompts are available
at: https://www.robot-learning.uk/language-models-trajectory-generators.

Figure 1: A selection of the tasks we use to study if a single, task-agnostic LLM prompt can generate
a dense sequence of end-effector poses, when given only object detection and segmentation models,
and no in-context examples, motion primitives, pre-trained skills, or external trajectory optimisers.

1 Introduction
In recent years, Large Language Models (LLMs) have attracted significant attention and acclaim
for their remarkable capabilities in reasoning about common, everyday tasks [1, 2, 3, 4]. This
widespread recognition has since led to efforts in the robotics community to adopt LLMs for high-
level task planning [5]. However, for low-level control, existing proposals have relied on auxiliary
components beyond the LLM, such as pre-trained skills, motion primitives, trajectory optimisers,
and numerous language-based in-context examples (Fig. 2). Given the lack of exposure of LLMs to
physical interaction data, it is often assumed that LLMs are incapable of low-level control [6, 7, 8].

https://www.robot-learning.uk/language-models-trajectory-generators


However, until now, this assumption has not been thoroughly examined. In this paper, we now
investigate if LLMs have sufficient understanding of low-level control to be adopted for zero-shot
dense trajectory generation for robot manipulators, without the need for the aforementioned
auxiliary components. We provide an LLM (GPT-4 [2]) with access to off-the-shelf object detection
and segmentation models, and then require all remaining reasoning to predict a dense sequence of
end-effector poses to be performed by the LLM itself. We also require that the same task-agnostic
prompt is used for all tasks, without any in-context examples.

Given these requirements, we studied if a single prompt could be designed to solve a range of tasks
taken from the recent literature, such as “open the bottle cap” and “wipe the plate with the sponge”.
And through this investigation, we uncovered the underlying principles and strategies that empower
LLMs to navigate the complexities of robot manipulation.

Consequently, our contributions are threefold: (1) We demonstrate, for the first time, that a pre-
trained LLM, when provided with only an off-the-shelf object detection and segmentation model,
can guide zero-shot a robot manipulator by outputting a dense sequence of end-effector poses,
without the need for pre-trained skills, motion primitives, trajectory optimisers, or in-context exam-
ples. (2) We present several ablation studies which shed light on what techniques and prompts
lead to the emergence of these capabilities. (3) We study how, by analysing the trajectory of ob-
jects across an image, LLMs can also detect if a task has failed and subsequently re-plan an
alternative trajectory.

2 Related Work

While prior works have made significant strides in leveraging LLMs for various aspects of robotic
control [5], several limitations and dependencies on external modules persist. The core motivation
of our work is to investigate whether these limitations are inherent, or if LLMs can be deployed
for low-level control, going from language to a dense sequence of end-effector poses. In this sec-
tion, we provide an overview of the relevant literature and highlight key distinctions between prior
approaches and our research focus.

Figure 2: A taxonomy of requirements
of LLM-based zero-shot methods from
the recent literature.

Predefined Motion Primitives: A subset of previous
works, including Code as Policies [9] and ChatGPT for
Robotics [10], have predominantly employed LLMs to
address the high-level planning aspect of robotic con-
trol. These approaches often rely on predefined move-
ment primitives or pre-trained skills (such as SayCan [8])
to execute lower-level actions, thereby only partially solv-
ing the control stack. In contrast, our investigation aims
to push these boundaries by demonstrating that LLMs can
delve deeper into the control stack, predicting all lower-
level actions for the robot autonomously, in the form of
a dense sequence of poses for the robot end-effector to
follow to complete a given task.

External Trajectory Optimisers: VoxPoser [6] and Language to Rewards [7] have explored the
use of LLMs to generate high-reward regions for robot movement, significantly contributing to tra-
jectory planning. However, these methods still necessitate external trajectory optimisers to compute
a trajectory, such as cost and reward functions used to evaluate randomly sampled trajectories along
with Model Predictive Control (MPC) [6]. Our research deviates from this paradigm by showcasing
that LLMs are capable of autonomously shaping and generating their own trajectories, either as lists
of end-effector positions and orientations predicted as language tokens, or as the prediction of code
snippets that can then generate these trajectories, both of which remove the reliance on external
trajectory optimisers.

Use of In-Context Examples: Previous approaches such as VoxPoser [6], Code as Policies [9],
and SayCan [8] have relied heavily on providing in-context examples to the LLM input. However,

2



these methods can encounter challenges when extrapolating beyond the demonstrated tasks. In
contrast, our research illustrates that, even when relying on their internal understanding alone, LLMs
exhibit the capacity to comprehend and solve a diverse range of manipulation tasks, thus broadening
the scope of applicability and adaptability in the real world and reducing the reliance on human
expertise.

Robotics-Specific Pre-Training and Fine-Tuning: Recently, Brohan et al. [11] and Driess et al.
[12] demonstrated that a Vision Language Model (VLM) [13] can be combined with a large robotics-
related dataset of actions to enable zero-shot language-conditioned control. However, both the VLM
weights and the compute capacity to fine-tune them are unavailable to most research groups: there-
fore, we focus our investigation on widely available LLMs and vision models [2], and tackle many
tasks from the recent literature that require similar or better dexterity than the ones included in the
work by Brohan et al. [11].

3 Problem Formulation
We investigate if an LLM (GPT-4 [2]) can predict a dense sequence of end-effector poses to solve a
range of manipulation tasks. We now explain what the assumptions and constraints are in our inves-
tigation, followed by details of our real-world experimental setup, and the tasks used for evaluation.
Given this background, we then present our investigation and its results in Sec. 4.

Assumptions and Constraints: We design a task-agnostic prompt to study the zero-shot control
capabilities of LLMs, with the following assumptions: (1) no pre-existing motion primitives, poli-
cies or trajectory optimisers: the LLM should output the full sequence of end-effector poses itself ;
(2) no in-context examples: we study the ability of LLMs to reason about tasks given their internal
knowledge alone, and no part of any task is explicitly mentioned in the prompt, either in the form of
examples or instructions; (3) the LLM can query a pre-trained vision model to obtain information
about the scene, but should autonomously generate, parse and interpret the inputs and outputs; (4)
no additional pre-training or fine-tuning on robotics-specific data: we focus our research on pre-
trained and widely available models, so that our work can easily be reproduced even with limited
compute budget.

Figure 3: Example wrist-camera obser-
vations received by the robot at the start
of each task, and their corresponding
task instructions.

Real-World Experimental Setup: We run our experi-
ments on a Sawyer robot equipped with a 2F-85 Robotiq
gripper. We use two Intel RealSense D435 RGB-D cam-
eras, one mounted on the wrist of the robot, and the other
fixed on a tripod, to observe the environment. The wrist-
mounted camera captures a top-down view of the environ-
ment at the beginning of an episode (Fig. 3), which is used
by a vision model if queried by the LLM. We utilise a pre-
trained object detection model, LangSAM [14] (based on
Grounding DINO [15] and Segment Anything [16]), and
whenever the LLM calls detect object, we automat-
ically calculate 3-D bounding boxes of the queried ob-
jects from the segmentation maps returned by LangSAM
using the camera calibration, and provide the bounding
boxes to the LLM. The LLM then leverages this visual
understanding of the environment to predict a sequence
of 4-D end-effector poses (3 dimensions for position, 1
dimension for rotation about the vertical axis), as well as either open gripper or close gripper

commands. This is then executed by the robot in an open loop, using a position controller to move
sequentially between each pose, hence producing a full trajectory. During this execution, we use
XMem [17] to track the segmentation maps over the entire duration of the task, which is then later
used for detecting if the task was successful or not.

Task Selection: In pursuit of objectivity, we opt to benchmark our zero-shot LLM-guided robotic
control against a challenging repertoire of everyday manipulation tasks. We recreated 26 everyday

3



Figure 4: An overview of the pipeline. (1) The main prompt along with the task instruction is
provided to the LLM, from which it (2) generates high-level natural language reasoning steps before
outputting Python code (3) to interface with a pre-trained object detection model and execute the
generated trajectories on the robot. (4) After task execution, an off-the-shelf object tracking model
is used to obtain 3-D bounding boxes of the previously detected objects over the duration of the task,
which are then provided to the LLM as numerical values to detect whether the task was executed
successfully or not.

manipulation tasks from recent robotics papers published at leading conferences [8, 18, 19, 20],
often tackled by relying on hundreds of manual demonstrations. This serves as a representative
benchmark of real-world challenges, mirroring the complexity and diversity of the tasks encountered
in contemporary robotics research. We choose tasks which semantically cover the most representa-
tive tabletop robot behaviours expressed in these papers, and success criteria are human-evaluated
and designed to mirror those proposed in the original papers. For each combination of task and
method in the following experimental sections, we calculate the success rate over 5 randomised
positions and orientations of the objects. The task description is provided in natural language to
the LLM, after which no additional human feedback or intervention is allowed. The full list of
tasks is shown in Fig. 6, and videos are available at https://www.robot-learning.uk/language-models-
trajectory-generators.

4 Prompt Development

Full Prompt: The core motivation of our work is to investigate whether LLMs can inherently guide
robots with minimal dependence on specialised external models and components, in order to provide
effective and useful insights for the robotics community. Through this investigation, we designed a
single task-agnostic prompt for a range of everyday manipulation tasks, which does not require any
in-context examples or task-specific guidance. Fig. 4 illustrates the main information flow in our
framework, showing how the task-agnostic prompt interfaces with the vision models and the robot.

Through our experiments outlined in this section, our final prompt formulation instructs the LLM to
self-summarise and decompose the predicted plan into steps, before generating Python code which,
when run by a standard Python interpreter, outputs a dense sequence of poses for the end-effector
to follow; this pipeline resulted in the best performance across those we experimented with. We
include details fundamental to all tasks, such as coordinate definitions, as well as functions available
for the LLM to call, such as detect object, which returns the calculated 3-D bounding boxes
of the queried objects directly to the LLM. We also include instructions which aim to improve the
correctness and reliability of the generated trajectories, such as guidance on step-by-step reasoning,
code generation, and collision avoidance. The full prompt is shown in Appendix B.

4

https://www.robot-learning.uk/language-models-trajectory-generators
https://www.robot-learning.uk/language-models-trajectory-generators


Table 7-1

Remove 
instruction to 
break down 
trajectory into 
steps

1.6

generate 
everything one 
pass

3.2

Remove 
instruction to 
include in the step 
by step plan when 
to lower gripper to 
make contact with 
the object, if 
necessary

3.2

Remove 
instruction to 
document each 
function it defines, 
and removing that 
it should define 
general, reusable 
functions, but also 
new functions if 
required

3.2

Remove 
instruction to 
name each 
trajectory with a 
number for 
smooth motion 

3.4

Taking out a 
specific phrase in 
the collisions 
avoidance section 
of the prompt

3.4

remove headings 3.4

SU
CC

ES
S 

RA
TE

 (
%)

0

20

40

60

80

100

FULL PROMPT
to chain the trajectory for smooth motion
to describe how best to approach the object
for entire collision avoidance section
to describe the part of the object most suitable for interaction
to describe the shape of the motion trajectory
section headings
to clear objects and the tabletop to avoid collisions
to name each trajectory variable with a number for smooth motion
to define reusable as well as specific functions, and annotate them
to plan when to lower the gripper to make contact with the object
to break down the trajectory generation and execution into steps
to break down the trajectory into steps

ABLATION STUDIES ON THE MAIN PROMPT
Table 7-1-1

Remove 
instructions to 
break down the 
trajectory into 
steps

32 0 0 0 0 0 0 0 0 0 0 0 0

Remove 
instructions to 
break down the 
trajectory 
generation and 
execution into 
steps

0 64 0 0 0 0 0 0 0 0 0 0 0

Remove 
instructions to 
include in the plan 
when to lower the 
gripper to make 
contact with the 
relevant object

0 0 64 0 0 0 0 0 0 0 0 0 0

Remove 
instructions to 
annotate each 
function definition, 
and define 
reusable as well 
as specific 
functions

0 0 0 64 0 0 0 0 0 0 0 0 0

Remove 
instructions to 
name each 
trajectory variable 
with a number for 
smooth motion

0 0 0 0 68 0 0 0 0 0 0 0 0

Remove 
instructions to 
clear objects and 
the tabletop to 
avoid collisions

0 0 0 0 0 68 0 0 0 0 0 0 0

Remove prompt 
section headings

0 0 0 0 0 0 68 0 0 0 0 0 0

Remove 
instructions to 
describe the 
shape of the 
motion trajectory

0 0 0 0 0 0 0 72 0 0 0 0 0

Remove 
instructions to 
describe the part 
of the object most 
suitable for 
interaction

0 0 0 0 0 0 0 0 72 0 0 0 0

Remove entire 
collision 
avoidance section

0 0 0 0 0 0 0 0 0 76 0 0 0

Remove 
instructions to 
describe how best 
to approach the 
object

0 0 0 0 0 0 0 0 0 0 76 0 0

Remove 
instructions to 
chain the 
trajectory for 
smooth motion

0 0 0 0 0 0 0 0 0 0 0 76 0

ORIGINAL 
PROMPT

0 0 0 0 0 0 0 0 0 0 0 0 76

PROMPT

Remove prompt…

1

Figure 5: We investigate the effect of removing parts of the main prompt on task success rates.

Prompt Ablations: During the design of this full prompt, we identified several challenges when
using LLMs for low-level control, without access to other external dependencies. In this section, we
now outline these challenges which motivated the final design of the prompt, and accompany them
with results from ablation studies conducted across a diverse set of tasks (Fig. 5), where certain parts
of the full prompt were removed. We choose a subset of the 26 original tasks for the ablation studies,
which we list in Appendix F, that still capture the various manipulation challenges in the full set.
The ablated components of the full prompt are shown in Appendix C.

(1) LLMs often require step-by-step reasoning to solve tasks. Prior work has shown that the
reasoning capabilities of LLMs can be improved by asking them to break down the task in a step-
by-step manner [21, 22], and adopting this strategy, we prompt the LLM (1) to break down the
trajectory into a sequence of sub-trajectory steps, and (2) to include in the plan when to lower the
gripper to make contact with an object. We find that, without including these step-by-step reasoning
prompts, the LLM often omits key trajectory steps required to execute the task successfully, such
as opening or closing the gripper, or aligning the gripper to be parallel to the graspable side of the
object, which are not stated explicitly in the prompt. Indeed, the first three columns in Fig. 5 show
that prompting the LLM to think step by step resulted in the highest performance increase.

(2) LLMs can be prone to write code which results in errors, both syntactically and semanti-
cally. While much improvement has been made in the domain of code generation by LLMs [23, 2],
their outputs can still throw errors, as well as produce undesirable results when executed. In order
to mitigate this, and inspired again by the power of LLMs performing an internal monologue with
natural language reasoning, we prompt the LLM to document any functions it defines, with their
expected inputs and outputs, and their data types. In addition, we include a prompt instructing the
LLM to define reusable functions for common motions (for example, linear trajectory from one
point to another), to prevent instances where, as a notable example, it would hard-code the height
of the gripper inside a function definition, and reuse that function for another sub-trajectory step
which should have been executed at a different height. Similarly, we prompt the LLM to name each
sub-trajectory step variable with a number to relate it to each of the steps in the high-level trajectory
plan, and to minimise the chance of omitting a sub-trajectory step. The effects of removing these
prompt components are, again, noticeable (fourth and fifth columns in Fig. 5).

(3) LLMs are trained on limited grounded physical interaction data. Due to the scarcity of
grounded physical interaction data in their training corpora [24], LLMs often fail to take into account
possible collisions between the objects being manipulated. We therefore prompt the LLM to pay
attention to the dimensions of the objects and to generate additional waypoints and sub-trajectories,
which could help with avoiding collisions. We also include in the prompt a specific phrase which
we noticed during our investigation was being used frequently by the LLM for its internal reasoning
(“clear objects and the tabletop”). Our experiments show that, while removing this particular phrase
from the collision avoidance prompt lowered performance (sixth column in Fig. 5), LLMs do possess
some inherent understanding of possible collisions between different objects, as they performed well
even after removing the entire collision avoidance prompt (tenth column in Fig. 5).

(4) LLMs often fail to reason about complex trajectory shapes. In a manner similar to the first
challenge, we employ a two-step strategy, where initially, we explicitly ask the LLM to generate a

5



Table 1

Without 
replanning

Without 
replanning

ATTEMPT 2 ATTEMPT 3 WIth Replanning Sum with and 
without replanning

pick the chip bag 
on the left of the 
table

80 4 0 4

pick the rightmost 
can

80 4 0 1 1 5

pick the fruit in the 
middle

100 5 0 5

pick the chip bag 
which is to the 
right of the can

80 4 1 1 5

knock over the left 
bottle

40 2 0 0 0 2

move the fruit 
which is on the 
right towards the 
bottle

100 5 0 5

move the banana 
near the pear

40 2 0 0 0 2

push the bottle on 
the left side to the 
orange

40 2 1 0 1 3

move the can to 
the bottom of the 
table

40 2 0 0 0 2

move the lonely 
object to the 
others

20 1 0 0 0 1

push the can 
towards the right

80 4 0 4

use the sponge to 
clean the can

60 3 1 1 4

place the apple in 
the bowl

80 4 1 1 5

pick the apple 
from the bowl and 
place it on the 
table

100 5 0 5

wipe the plate 
with the sponge

60 3 0 3

shake the mustard 
bottle

100 5 0 5

stir the mug with 
the spoon

0 0 0 0 0

draw a five-
pointed star 10cm 
wide on the table 
with a pen

40 2 0 2

drop the ball into 
the cup

60 3 0 3

align the bottle 
vertically

60 3 1 1 4

open the bottle 
cap

60 3 0 3

insert the bread 
into the toaster

40 2 0 2

pick up the bowl 0 0 0 1 1 1

move the pan to 
the left

60 3 0 3

wipe the table 
with the sponge, 
while avoiding the 
plate on the table

20 1 0 1

draw a circle 
10cm wide with its 
centre at 
[0.0,0.3,0.0] with 
the gripper closed

80 4 0 4

AVERAGE 58.4615384615385

pick the chip bag on the left of the table
pick the rightmost can

pick the fruit in the middle
pick the chip bag which is to the right of the can

knock over the left bottle
move the fruit which is on the right towards the bottle

move the banana near the pear
push the bottle on the left side to the orange

move the can to the bottom of the table
move the lonely object to the others

push the can towards the right
use the sponge to clean the can

place the apple in the bowl
pick the apple from the bowl and place it on the table

wipe the plate with the sponge
shake the mustard bottle

stir the mug with the spoon
draw a five-pointed star 10cm wide on the table with a pen

drop the ball into the cup
align the bottle vertically

open the bottle cap
insert the bread into the toaster

pick up the bowl
move the pan to the left

wipe the table with the sponge, while avoiding the plate on the table
draw a circle 10cm wide with its centre at [0.0,0.3,0.0] with the gripper closed

AVERAGE
0 20 40 60 80 100

MAIN PROMPT SUCCESS RATE ON 26 TASKS

TASK SUCCESS RATE (%)

1

Figure 6: Success rates of the best-performing prompt in our investigation on 26 manipulation tasks.

textual description of the shape of the motion trajectory as internal reasoning (for example, shaking
involves a sinusoidal motion), before outputting the actual sequence of poses required to execute
this trajectory (in contrast to Challenge (1), where we prompted the LLM to output a more detailed
step-by-step trajectory plan). This has been shown to be beneficial in prior work [7], and indeed this
result is also reflected in the eighth column in Fig. 5.

(5) LLMs often fail to reason about how to interact with objects. In our experiments, we found
that LLMs often simplified and failed to reason about more intricate details of object interaction,
such as realising that some objects require interaction with a specific part (for example, the rim of a
bowl, or the handle of a pan). In order to enable the LLM to detect the most suitable object part to
interact with, we prompt it to describe the object part in high-level natural language, and we see in
the ninth column in Fig. 5 that this results in more tasks being executed successfully.

Full Prompt Evaluation: Here, we now investigate the LLM’s ability to solve zero-shot a range of
manipulation tasks, by evaluating the full prompt on the full set of tasks taken from the recent litera-
ture. These tasks and their success rates are presented in Fig. 6. Remarkably, our experiments reveal
that LLMs, when equipped with an off-the-shelf vision model and no external motion primitives,
policies, or trajectory optimisers, do indeed exhibit notable proficiency in executing the majority of
these tasks, by directly predicting a dense sequence of end-effector poses. In the original papers from
which these tasks are selected [19, 18, 20], solving these tasks required numerous human demon-
strations. As such, these findings underscore the potential of LLMs as intuitive and versatile guides
for robotic manipulation that minimise the need for human time and supervision. Sample LLM
outputs are available on our website at https://www.robot-learning.uk/language-models-trajectory-
generators, of which one is shown in Appendix G.

5 Further Investigations

In this section, we detail further ablation studies conducted regarding the modality of the trajectory
generation, the extent to which each output modality is executable by the robot, and the ability
of LLMs to detect whether a task was executed successfully or not and subsequently re-plan the
trajectory. We list the subset of the original tasks used for this set of ablation studies in Appendix F.
The prompts for these ablation studies are shown in Appendix D.

(1) How should the final trajectory be represented? In this set of experiments, we explore the
optimal way for the LLM to output the sequence of end-effector poses. Specifically, we conduct

6

https://www.robot-learning.uk/language-models-trajectory-generators
https://www.robot-learning.uk/language-models-trajectory-generators


Table 2

With replanning 63.8461538461538

SU
CC
ES
S 
RA
TE
 (
%)

40

50

60

70

80

58.5
63.8

With replanning
Without replanning

(D) SUCCESS RATES WITH AND 
WITHOUT REPLANNING

Table 2-1

Code out (w lang 
summary)

100

EX
EC
UT
AB
LE
 O
UT
PU
TS
 (
%)

80

85

90

95

100

94.3

100

Code output
Numbers output

(B) PERCENTAGE OF 
EXECUTABLE OUTPUTS

Table 2-2

Open/Close 
gripper functions

Binary gripper 
action

57.1428571428571

SU
CC
ES
S 
RA
TE
 (
%)

0

20

40

60

80

100

57.1

71.4

Open/Close gripper functions
Binary gripper action

(C) ABLATION STUDIES ON 
THE GRIPPER ACTION OUTPUT

SU
CC
ES
S 
RA
TE
 (
%)

0

20

40

60

80

100

62.9
71.4

Code output
Numbers output

(A) ABLATION STUDIES ON 
THE ACTION OUTPUT

1

Figure 7: (A) We compare different modes for the trajectory output. (B) We measure the percentage
of control outputs from the LLM that are directly executable by the robot. (C) We compare different
modes for controlling the gripper. (D) We demonstrate the ability of LLMs to detect failures and
re-plan autonomously.

ablation studies to evaluate whether this should be represented as a list of numerical values or as
code for trajectory generation. Fig. 8 shows the distinction between these two output modes.

Figure 8: Given the full main prompt
and the user input command, the LLM
first outputs a high-level natural lan-
guage self-summarisation of the trajec-
tory plan, before generating either code
which computes and executes the trajec-
tory, or the final trajectory directly as a
list of numerical values.

The results, summarised in Fig. 7 A, offer valuable in-
sights. Notably, our investigation shows that outputting
code that generates the trajectory outperforms predict-
ing the trajectory directly as an explicit list of numeri-
cal poses for the end-effector to follow, represented as
language tokens (Fig. 8). In particular, we observe that
representing trajectories as numerical values or as code
yields similar performance for most tasks, with distinc-
tions emerging in cases involving more intricate trajec-
tories (for example, drawing a circle or a five-pointed
star), where outputting code that generates such trajecto-
ries prevails (60% success rates for code output compared
to 10% for numerical output). This suggests a fundamen-
tal property of LLMs for control: while not trained on
physical interactions and trajectories, their understand-
ing of both code and mathematical / geometrical struc-
tures [2, 25] can bridge these two modes of thinking.
Once the overall trajectory shape has been identified by
the LLM, while it can be challenging to follow it directly
in numbers, it is proficient at generating code that itself
can follow complex paths.

Additionally, we study whether directly generating a list
of numerical poses, or code that then generates the poses
itself, leads to executable outputs more often. Giving low-
level control to the LLM poses the risk of the robot receiv-
ing wrongly formatted outputs that cannot be executed by
the robot. Therefore, in this ablation, we investigate how
often the output of the LLM is formatted such that it is executable by the robot. We include prompts
instructing the LLM to follow a specific format for the trajectory generation (for the former, we
require a list between the 〈trajectory〉 and 〈/trajectory〉 tags without any Python functions,
and for the latter, we require any Python code to be between the ```python and ``` tags). Given
the output of the LLM, if an error is thrown during automatic parsing according to this format, we
provide the LLM with the error message and ask it to correct the output, for up to three times.
Measuring the percentage of executable outputs (Fig. 7 B) demonstrates that outputting code results
in 100% of executable trajectories, while direct numerical values cannot be parsed even after three
self-corrections for some episodes.

7



Figure 9: (1) The LLM attempts to
grasp the bowl at its centroid, recog-
nises failure, and (2) proposes a new tra-
jectory. (3) On its third attempt after
re-planning again, it successfully grasps
the bowl.

(2) How should the LLM output the gripper action?
We also investigate the optimal way of letting the LLM
control the gripper open or close action: we compare
using a binary variable a ∈ {0, 1} or explicit functions
open gripper, close gripper. Our results, in Fig. 7
C, demonstrate that the LLM achieves better performance
when using explicit functions, while using a binary vari-
able leads to more errors. A notable failure case stemmed
from the LLM hard-coding the gripper state to be open in
one of the functions it defined for itself, such that when
the same function was then used to generate the object
approach-and-lift sub-trajectory steps, the gripper failed
to close and grasp the object. Having explicit functions
to open and close the gripper, on the other hand, allowed
a decoupling of these fundamental actions and enabled
the correct functions to be called at any time during the
overall trajectory generation plan.

(3) Can LLMs recognise unsuccessful trajectories, and
adapt their plan? Finally, we delve into the ability of
LLMs to recognise and respond to failures during task
execution. Our experiments demonstrate that, by analysing the numerical trajectories of objects,
LLMs can autonomously detect failure outcomes and initiate re-planning to rectify them. We there-
fore demonstrate that LLMs possess not only the ability to generate trajectories, but also to discern
whether they represent successful or unsuccessful episodes, given the tasks requested by the
user. Our proposed pipeline for task success detection and re-planning is shown in Appendix A.

For each of the 5 trials of a task, when a failure is identified, the LLM modifies the original plan
to tackle the possible issue. In Fig. 7 D, we demonstrate that this leads to a small improvement
in performance, without the need for any human intervention. As a notable example, the LLM
always fails at grasping a bowl on its first try (Fig. 6), attempting to grasp it by the centroid (Fig. 9).
Through a sequence of two re-planning iterations, however, the LLM adapts its trajectory and then
successfully grasps the bowl by its rim, leading to an increase from 0% to 20% in the overall task
execution success rate. The prompts for success detection and re-planning are shown in Appendix E.

6 Discussion
Conclusions: We have demonstrated that, when provided with the right prompt, LLMs can success-
fully predict dense sequences of end-effector poses for a range of real-world manipulation tasks, in
a zero-shot manner. This is achieved under the constraints that the LLM must use a single task-
agnostic prompt without any in-context examples, and has access to only off-the-shelf object de-
tection and segmentation vision models, with no other auxiliary components. Our experiments en-
compassed 26 diverse tasks drawn from the recent literature to provide a comprehensive benchmark,
and we showed that the LLM performed well on many of these tasks. This raises the assumed limit
of the utility of LLMs for robotics, and we hope that our investigations into how to write an LLM
prompt for robots will act as a helpful guide for the community wishing to raise this limit further.

Limitations: We acknowledge that there are several types of tasks which our pipeline would strug-
gle to execute, such as contact-rich tasks, tasks requiring more complex understanding of vision
beyond just a bounding box, and tasks in more dynamic and complex scenes.

Future Work: It would be interesting to investigate prompting LLMs to predict even lower-level
commands (for example, force-level control commands). Future work could also explore a more
sophisticated interface between the vision module and the LLM.

8



7 Acknowledgements

The authors wish to thank Kamil Dreczkowski, Georgios Papagiannis and Pietro Vitiello for their
valuable discussion and feedback during the writing of the paper.

References

[1] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakan-
tan, P. Shyam, G. Sastry, A. Askell, et al. Language models are few-shot learners.
In H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, editors, Advances
in Neural Information Processing Systems, volume 33, pages 1877–1901. Curran As-
sociates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/

2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

[2] OpenAI. GPT-4 Technical Report. arXiv e-prints, art. arXiv:2303.08774, Mar. 2023. doi:
10.48550/arXiv.2303.08774.

[3] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra,
P. Bhargava, S. Bhosale, et al. Llama 2: Open Foundation and Fine-Tuned Chat Models. arXiv
e-prints, art. arXiv:2307.09288, July 2023. doi:10.48550/arXiv.2307.09288.

[4] R. Anil, A. M. Dai, O. Firat, M. Johnson, D. Lepikhin, A. Passos, S. Shakeri, E. Taropa,
P. Bailey, Z. Chen, et al. PaLM 2 Technical Report. arXiv e-prints, art. arXiv:2305.10403,
May 2023. doi:10.48550/arXiv.2305.10403.

[5] L. Wang, C. Ma, X. Feng, Z. Zhang, H. Yang, J. Zhang, Z. Chen, J. Tang, X. Chen, Y. Lin,
et al. A Survey on Large Language Model based Autonomous Agents. arXiv e-prints, art.
arXiv:2308.11432, Aug. 2023. doi:10.48550/arXiv.2308.11432.

[6] W. Huang, C. Wang, R. Zhang, Y. Li, J. Wu, and L. Fei-Fei. VoxPoser: Composable 3D Value
Maps for Robotic Manipulation with Language Models. arXiv e-prints, art. arXiv:2307.05973,
July 2023. doi:10.48550/arXiv.2307.05973.

[7] W. Yu, N. Gileadi, C. Fu, S. Kirmani, K.-H. Lee, M. Gonzalez Arenas, H.-T. L. Chiang, T. Erez,
L. Hasenclever, J. Humplik, et al. Language to Rewards for Robotic Skill Synthesis. arXiv
e-prints, art. arXiv:2306.08647, June 2023. doi:10.48550/arXiv.2306.08647.

[8] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David, C. Finn, C. Fu, K. Gopalakr-
ishnan, K. Hausman, et al. Do As I Can, Not As I Say: Grounding Language in Robotic Af-
fordances. arXiv e-prints, art. arXiv:2204.01691, Apr. 2022. doi:10.48550/arXiv.2204.01691.

[9] J. Liang, W. Huang, F. Xia, P. Xu, K. Hausman, B. Ichter, P. Florence, and A. Zeng. Code
as policies: Language model programs for embodied control. In 2023 IEEE International
Conference on Robotics and Automation (ICRA), pages 9493–9500, May 2023. doi:10.1109/
ICRA48891.2023.10160591.

[10] S. Vemprala, R. Bonatti, A. Bucker, and A. Kapoor. Chatgpt for robotics: De-
sign principles and model abilities. Technical Report MSR-TR-2023-8, Microsoft,
February 2023. URL https://www.microsoft.com/en-us/research/publication/

chatgpt-for-robotics-design-principles-and-model-abilities/.

[11] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, X. Chen, K. Choromanski, T. Ding, D. Driess,
A. Dubey, C. Finn, et al. RT-2: Vision-Language-Action Models Transfer Web Knowledge to
Robotic Control. arXiv e-prints, art. arXiv:2307.15818, July 2023. doi:10.48550/arXiv.2307.
15818.

9

https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
http://dx.doi.org/10.48550/arXiv.2303.08774
http://dx.doi.org/10.48550/arXiv.2303.08774
http://dx.doi.org/10.48550/arXiv.2307.09288
http://dx.doi.org/10.48550/arXiv.2305.10403
http://dx.doi.org/10.48550/arXiv.2308.11432
http://dx.doi.org/10.48550/arXiv.2307.05973
http://dx.doi.org/10.48550/arXiv.2306.08647
http://dx.doi.org/10.48550/arXiv.2204.01691
http://dx.doi.org/10.1109/ICRA48891.2023.10160591
http://dx.doi.org/10.1109/ICRA48891.2023.10160591
https://www.microsoft.com/en-us/research/publication/chatgpt-for-robotics-design-principles-and-model-abilities/
https://www.microsoft.com/en-us/research/publication/chatgpt-for-robotics-design-principles-and-model-abilities/
http://dx.doi.org/10.48550/arXiv.2307.15818
http://dx.doi.org/10.48550/arXiv.2307.15818


[12] D. Driess, F. Xia, M. S. M. Sajjadi, C. Lynch, A. Chowdhery, B. Ichter, A. Wahid, J. Tomp-
son, Q. Vuong, T. Yu, et al. PaLM-e: An embodied multimodal language model. In
A. Krause, E. Brunskill, K. Cho, B. Engelhardt, S. Sabato, and J. Scarlett, editors, Pro-
ceedings of the 40th International Conference on Machine Learning, volume 202 of Pro-
ceedings of Machine Learning Research, pages 8469–8488. PMLR, 23–29 Jul 2023. URL
https://proceedings.mlr.press/v202/driess23a.html.

[13] J.-B. Alayrac, J. Donahue, P. Luc, A. Miech, I. Barr, Y. Hasson, K. Lenc, A. Mensch,
K. Millican, M. Reynolds, et al. Flamingo: a visual language model for few-shot learn-
ing. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Ad-
vances in Neural Information Processing Systems, volume 35, pages 23716–23736. Curran
Associates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/

2022/file/960a172bc7fbf0177ccccbb411a7d800-Paper-Conference.pdf.

[14] L. Medeiros. Langsam: Language segment-anything. https://github.com/

luca-medeiros/lang-segment-anything. Accessed: 2023-10-01.

[15] S. Liu, Z. Zeng, T. Ren, F. Li, H. Zhang, J. Yang, C. Li, J. Yang, H. Su, J. Zhu, and L. Zhang.
Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detec-
tion. arXiv e-prints, art. arXiv:2303.05499, Mar. 2023. doi:10.48550/arXiv.2303.05499.

[16] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead,
A. C. Berg, W.-Y. Lo, et al. Segment Anything. arXiv e-prints, art. arXiv:2304.02643, Apr.
2023. doi:10.48550/arXiv.2304.02643.

[17] H. K. Cheng and A. G. Schwing. Xmem: Long-term video object segmentation with an
atkinson-shiffrin memory model. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and
T. Hassner, editors, Computer Vision – ECCV 2022, pages 640–658, Cham, 2022. Springer
Nature Switzerland. ISBN 978-3-031-19815-1.

[18] T. Xiao, H. Chan, P. Sermanet, A. Wahid, A. Brohan, K. Hausman, S. Levine, and J. Tompson.
Robotic Skill Acquisition via Instruction Augmentation with Vision-Language Models. arXiv
e-prints, art. arXiv:2211.11736, Nov. 2022. doi:10.48550/arXiv.2211.11736.

[19] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, J. Dabis, C. Finn, K. Gopalakrishnan, K. Haus-
man, A. Herzog, J. Hsu, et al. RT-1: Robotics Transformer for Real-World Control at Scale.
arXiv e-prints, art. arXiv:2212.06817, Dec. 2022. doi:10.48550/arXiv.2212.06817.

[20] T. Yu, T. Xiao, A. Stone, J. Tompson, A. Brohan, S. Wang, J. Singh, C. Tan, D. M, J. Peralta,
et al. Scaling Robot Learning with Semantically Imagined Experience. arXiv e-prints, art.
arXiv:2302.11550, Feb. 2023. doi:10.48550/arXiv.2302.11550.

[21] J. Wei, X. Wang, D. Schuurmans, M. Bosma, b. ichter, F. Xia, E. Chi, Q. V. Le, and
D. Zhou. Chain-of-thought prompting elicits reasoning in large language models. In
S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Advances
in Neural Information Processing Systems, volume 35, pages 24824–24837. Curran As-
sociates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/

2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf.

[22] T. Kojima, S. S. Gu, M. Reid, Y. Matsuo, and Y. Iwasawa. Large language models are zero-shot
reasoners. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors,
Advances in Neural Information Processing Systems, volume 35, pages 22199–22213. Curran
Associates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/

2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf.

[23] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. Ponde de Oliveira Pinto, J. Kaplan, H. Edwards,
Y. Burda, N. Joseph, G. Brockman, et al. Evaluating Large Language Models Trained on
Code. arXiv e-prints, art. arXiv:2107.03374, July 2021. doi:10.48550/arXiv.2107.03374.

10

https://proceedings.mlr.press/v202/driess23a.html
https://proceedings.neurips.cc/paper_files/paper/2022/file/960a172bc7fbf0177ccccbb411a7d800-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/960a172bc7fbf0177ccccbb411a7d800-Paper-Conference.pdf
https://github.com/luca-medeiros/lang-segment-anything
https://github.com/luca-medeiros/lang-segment-anything
http://dx.doi.org/10.48550/arXiv.2303.05499
http://dx.doi.org/10.48550/arXiv.2304.02643
http://dx.doi.org/10.48550/arXiv.2211.11736
http://dx.doi.org/10.48550/arXiv.2212.06817
http://dx.doi.org/10.48550/arXiv.2302.11550
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
http://dx.doi.org/10.48550/arXiv.2107.03374


[24] J. Hoffmann, S. Borgeaud, A. Mensch, E. Buchatskaya, T. Cai, E. Rutherford, D. de Las Casas,
L. A. Hendricks, J. Welbl, A. Clark, et al. Training Compute-Optimal Large Language Models.
arXiv e-prints, art. arXiv:2203.15556, Mar. 2022. doi:10.48550/arXiv.2203.15556.

[25] H. Luo, Q. Sun, C. Xu, P. Zhao, J. Lou, C. Tao, X. Geng, Q. Lin, S. Chen, and D. Zhang. Wiz-
ardMath: Empowering Mathematical Reasoning for Large Language Models via Reinforced
Evol-Instruct. arXiv e-prints, art. arXiv:2308.09583, Aug. 2023. doi:10.48550/arXiv.2308.
09583.

11

http://dx.doi.org/10.48550/arXiv.2203.15556
http://dx.doi.org/10.48550/arXiv.2308.09583
http://dx.doi.org/10.48550/arXiv.2308.09583


A Task Success Detection and Re-Planning

Figure 10: Our experiments demonstrate that LLMs can interpret the trajectories of objects to detect
successful and unsuccessful episodes.

12



B Main Prompt

Figure 11: The full main prompt.

13



C Main Prompt Ablations

Figure 12: The full prompt with the highlighted sections removed for the ablation studies on the
main prompt.

14



Figure 13: The full prompt with the highlighted sections removed for the ablation studies on the
main prompt (continued).

Figure 14: The full prompt with the highlighted sections removed for the ablation studies on the
main prompt (continued).

15



D Action Output Prompt Ablations

Figure 15: The full main prompt modified for evaluating the LLM’s ability to generate trajectories
directly in numbers as language tokens.

16



Figure 16: The full main prompt modified for ablation studies on the gripper action output.

17



E Task Success Detection and Re-Planning Prompts

Figure 17: Task success detection prompt.

Figure 18: Task re-planning prompt, to be appended to the main prompt if the LLM detects that the
task has failed and needs to be re-planned and retried.

Figure 19: Task summary prompt, as part of task re-planning.

18



F Tasks Selected for Ablation Studies

Figure 20: List of tasks selected for the main prompt ablation studies in Sec. 4.

Figure 21: List of tasks selected for the action output ablation studies in Sec. 5.

19



G Sample LLM Output

Figure 22: Sample LLM output on the “draw a five-pointed star 10cm wide on the table with a pen”
task.

20



Figure 23: Sample LLM output on the “draw a five-pointed star 10cm wide on the table with a pen”
task (continued).

21



Figure 24: Sample LLM output on the “draw a five-pointed star 10cm wide on the table with a pen”
task (continued).

Figure 25: Sample LLM output on the “draw a five-pointed star 10cm wide on the table with a pen”
task (continued).

22



Figure 26: Sample LLM output on the “draw a five-pointed star 10cm wide on the table with a pen”
task (continued).

23


	Introduction
	Related Work
	Problem Formulation
	Prompt Development
	Further Investigations
	Discussion
	Acknowledgements
	Task Success Detection and Re-Planning
	Main Prompt
	Main Prompt Ablations
	Action Output Prompt Ablations
	Task Success Detection and Re-Planning Prompts
	Tasks Selected for Ablation Studies
	Sample LLM Output

