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ABSTRACT

We investigate the expressive power of state space models (SSM), which have re-
cently emerged as a potential alternative to transformer architectures in large lan-
guage models. Building on recent work, we analyse SSM expressiveness through
fragments and extensions of linear temporal logic over finite traces. Our results
show that the expressive capabilities of SSM vary substantially depending on the
underlying gating mechanism. We further distinguish between SSM operating
over fixed-width arithmetic (quantised models), whose expressive power remains
within regular languages, and SSM with unbounded precision, which can cap-
ture counting properties and non-regular languages. In addition, we provide a
systematic comparison between these different SSM variants and known results
on transformers, thereby clarifying how the two architectures relate in terms of
expressive power.

1 INTRODUCTION

State Space Models (SSM) have emerged as a potential alternative to traditional sequence modelling
architectures such as the popular transformer architecture. In this paper, we investigate the expres-
sive capabilities of SSM by establishing lower bounds on their computational power. The analysis
focuses on two key dimensions that influence expressiveness: the type of SSM layers used and the
arithmetic precision employed in computations. We specifically examine diagonal-gated SSM like
S6, cf. Gu & Dao (2024), where gate matrices can depend on the input but must maintain a diagonal
structure, and time-invariant SSM like S4, cf. Gu et al. (2022), where gate matrices remain con-
stant regardless of input. For each model variant, we consider both fixed-width arithmetic, with a
constant number of bits for all computations, and log-precision arithmetic, where precision scales
logarithmically with input length.

Motivated by recent research on the expressiveness of transformer architectures via extensions and
fragments of temporal logics, we investigate the expressiveness of SSM using similar formalisms.
We show that diagonal-gated SSM can recognise languages defined by pure-past Linear Tempo-
ral Logic on finite traces (PLTLf ) with counting capabilities, while time-invariant SSM capture
languages expressible in fragments with unary temporal operators plus modular predicates. By
connecting SSM capabilities to established logical formalisms, we provide insights into what these
models can and cannot express. The lower bounds established in this paper contribute to a grow-
ing body of research on the theoretical foundations of neural network architectures for sequence
modelling, complementing empirical observations about their practical performance.

RELATED WORK. Recent work on the theoretical foundations of SSM has been related to circuit
complexity, cf. Merrill et al. (2024), automata theory, cf. Sarrof et al. (2024), and communica-
tion complexity, cf. Zubic et al. (2025). Alsmann & Lange (2025) investigated the computational
complexity of verifying SSM. To the best of our knowledge, this is the first paper connecting the
expressive power of SSM to formal logic.

The work on the formal expressiveness of SSM started with Merrill et al. (2024) who provided
upper bounds via circuit complexity. They showed that diagonal gated as well as time-invariant
SSM working over log-precision as well as models working over fixed-precision (e.g. floating-point)
are contained in TC0. This is the class of functions definable with boolean circuits of polynomial
size, constant depth and using threshold gates. They also showed that SSM with arbitrary gates,
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meaning that the gate can be an arbitrary input-dependent matrix, can recognise all regular languages
including NC1-complete languages. This implies a strict increase in expressiveness unless TC0 =
NC1. Further work by Sarrof et al. (2024) provided a lower bound for diagonal gated SSM, proving
that they can recognise all star-free languages. They also showed that under certain restrictions
this lower bound is tight in the sense that these SSM recognise a regular language if and only if it
is star-free. Our results subsume their lower bound. Their upper-bounds cannot be transferred to
our settings because we assume a more general model of SSM. Lastly they showed that SSM can
perform unbounded counting and demonstrated this on several examples. Zubic et al. (2025) showed
that SSM working over fixed-precision can only recognise regular languages.

Parallel to the work on the expressiveness of SSM there has been a lot of research on the expressive-
ness of transformer architectures via connections to logics (see Strobl et al. (2024) for a survey on
these results). The most important work regarding this paper are Yang et al. (2024a), who proved
connections between unique hard-attention transformers and first-order logic as well as Barcelo
et al. (2024) and Yang et al. (2025), who investigate the counting abilities of several transformer
architectures via extensions of linear temporal logic.

2 FUNDAMENTALS

STATE SPACE MODELS. We explore SSM in a generalised setting as presented in Merrill et al.
(2024). For a structured analysis of this model, we will formalise its architecture following similar
approaches as in Sarrof et al. (2024) and Merrill et al. (2024). An SSM layer l is defined as a tuple
(h0, gate, inc, ϕ), where h0 ∈ Rd. The function gate is a mapping Rd → Rd×d, inc is a mapping
Rd → Rd, and ϕ is a mapping Rd × Rd → Rd. An SSM layer transforms an input sequence of
vectors x1 · · ·xk ∈ (Rd)∗ into an output sequence z1 · · · zk ∈ (Rd)∗ through the following process:
it computes an intermediate sequence h1 · · ·hk ∈ (Rd)+ via the linear recurrence

ht = gate(xt) · ht−1 + inc(xt) for 1 ≤ t ≤ k
and subsequently generates the output via zt = ϕ(ht,xt).

An SSM S comprising L layers is expressed as a tuple S = (emb, l1, · · · , lL, out). Each li refers
to a layer as defined above, while emb is a function Σ → Rd, and out is a function Rd → Rd,
computed by an FNN. The SSM computes a function Σ∗ → R as follows: let σ = σ1 · · ·σk ∈ Σ∗ be
a word. Initially, the SSM computes the embedding x0

1 · · ·x0
k of the word by setting x0

i = emb(σi).
Subsequently, for each layer 1 ≤ j ≤ L: compute zj1 · · · z

j
k = lj(x

j−1
1 · · ·xj−1k ). Each layer’s

output serves as the input for the succeeding layer, meaning xj+1
1 · · ·xj+1

k = zj1 · · · z
j
k. The SSM’s

final output, denoted as y1 · · ·yk, is derived by applying out element-wise: yi = out(zLi ). In the
end, the output of S(σ) is computed by yk. We say that S accepts a word σ if S(σ) = 1. Otherwise
it is rejected. We denote the language accepted by S as L(S).

Recent work on the expressiveness of SSM, cf. Merrill et al. (2024) and Sarrof et al. (2024), distin-
guishes between two main classes of SSM which differ in the allowed gate functions. The class of
time-invariant SSM, cf. Mehta et al. (2023) and Orvieto et al. (2023), only allow layers with gate
functions such that there is a matrix A ∈ Rd×d with gate(x) = A for all x ∈ Rd. The class of
diagonal-gated SSM, cf. Gu & Dao (2024), De et al. (2024) and Yang et al. (2024b), only allow
layers that use gate functions such that gate(x) is a diagonal matrix (with non-negative entries) but
can depend on x. Some SSM architectures like RetNet from Sun et al. (2023) use diagonal time-
invariant gates. We call SSM which combine diagonal as well as time-invariant layers mixed. To the
best of our knowledge, mixed SSM have not been used in practice yet, but they are interesting from a
theoretical point of view as upper bounds on expressiveness for those directly apply to time-invariant
and diagonal SSM. We therefore include them in our investigation. Lastly, we call SSM which do
not have any restriction on the gate-mechanism, cf. Hasani et al. (2022), arbitrary. The output of
each layer is computed by a non-linear function ϕ which also gets the initial input modelling a resid-
ual connection. In practice, different kinds of non-linear functions are used. In this paper we assume
ϕ to be represented by a Feedforward Neural Network (FNN) with ReLU activations.

ARITHMETICS. In our expressiveness analysis, we consider two distinct settings for the arithmetic
precision of SSM computations. First, we examine fixed-precision arithmetic, where all values and
computations use a constant number of bits b (like floating-point or fixed-point representations),
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regardless of the input length. We say that an SSM works over fixed-precision arithmetic if all
values and computations are carried out using only these b bits. We additionally assume that the
fixed-precision arithmetic is saturated, meaning that if an overflow occurs, the result is capped at
the maximum representable value (resp. the minimum representable value for underflows) and that
arithmetic operations are monotonic with respect to rounding. This is standard behaviour in, e.g.,
floating-point arithmetic, cf. IEEE (2019). Second, we study log-precision arithmetic, where the
precision grows logarithmically with the input length—specifically, using O(log n) bits for inputs
of length n. This setting was studied with regards to expressiveness both for SSM by Merrill et al.
(2024) and for transformer architectures by Merrill & Sabharwal (2023) and Hao et al. (2022), as it is
both practically reasonable and theoretically significant: it provides sufficient precision to accurately
count occurrences or compute sums that grow linearly with input size, while avoiding the unrealistic
assumption of unbounded precision. This balanced approach is particularly interesting because it
offers a middle ground between the restrictive fixed-precision model and the impractical unbounded
precision model.

LINEAR TEMPORAL LOGIC OVER FINITE TRACES. We use linear temporal logic over finite
traces (LTLf ) as introduced by De Giacomo & Vardi (2013) to analyse the expressiveness of SSM.
It extends propositional logic with temporal operators, enabling the expression of properties that
involve the ordering and timing of events. We consider the pure-past fragment PLTLf of LTLf as
studied by De Giacomo et al. (2021), which uses the temporal operators yesterday Y (”at the previ-
ous position”), previously P (”at some point in the past”) and since S (”since some event occured,
another event occured continuously”). Let P be a finite set of atomic propositions. The syntax of
PLTLf is defined as follows:

φ ::= p | ¬φ | φ ∧ φ | Yφ | Pφ | φ S φ

Formulas of PLTLf are interpreted over finite words over the alphabet Σ = 2P . Given a word
σ = σ1 · · ·σn ∈ Σ∗ and i ∈ {1, . . . , n}, the semantics of PLTLf is inductively defined as follows:

σ, i |= p ⇐⇒ p ∈ σi
σ, i |= ¬φ ⇐⇒ σ, i ̸|= φ

σ, i |= φ ∧ ψ ⇐⇒ σ, i |= φ and σ, i |= ψ

σ, i |= Yφ ⇐⇒ i > 1 and σ, i− 1 |= φ

σ, i |= Pφ ⇐⇒ ex. 1 ≤ k ≤ i : σ, k |= φ

σ, i |= φ S ψ ⇐⇒ ex. 1 ≤ k ≤ i : σ, k |= ψ and f.a k < j ≤ i : σ, j |= φ

We say that σ is a model of φ iff σ, n |= φ (or simply σ |= φ). Furthermore, we denote the
language of a formula as L(φ) = {σ ∈ Σ∗ | σ |= φ}. We use typical abbreviations tt, ff and
Hφ = ¬ P¬φ. Furthermore, we call the unary fragment of PLTLf , which only uses yesterday and
previously, UN-PLTLf .

COUNTING EXTENSIONS. Yang & Chiang (2024) and Barcelo et al. (2024) analysed the expres-
sive power of several transformer architectures, regarding the ability to do counting, by extending
LTLf with a counting operator. PLTLf [

←−
#,
−→
#] extends PLTLf syntactically by one additional

case: if φ1, · · · , φi, ψ1, · · · , ψj are PLTLf [
←−
#,
−→
#] formulas, a1 · · · ai, b1, · · · bj ∈ Z, c ∈ N and

∼ ∈ {<,≤,=,≥, >} then ∑
i

ai
←−
# φi +

∑
j

bj
−→
# ψj ∼ c

is also a PLTLf [
←−
# ,
−→
#] formula. When evaluating a formula on a wordw and position i,

←−
# φ counts

the number of positions j ≤ i such that w, j |= φ, and
−→
# φ does so analogously for positions j ≥ i.

By PLTLf [
←−
#] we denote the logic in which every counting subformula has bj = 0 for all j. We use

this restriction, because in contrast to transformers, where the attention mechanism is usually able
to attend to all positions, SSM can only see information from previous positions.

MODULAR PREDICATES. We introduce a third variant of PLTLf which adds modular predicates.
The syntax of PLTLf [MOD] is extended by additional atomic formulas MODmr form > 1 and 0 ≤ r <
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m. The semantics is the same as in PLTLf . For the new operator it is extended by

σ, i |= MODmr ⇐⇒ i ≡ r (mod m) .

Allowing these modular predicates increases the expressiveness of PLTLf to all regular languages
definable in AC0, cf. Straubing (1994).

3 RESULTS

Our analysis establishes lower bounds on SSM expressiveness across different architectural variants
and precision settings. The results reveal an interesting hierarchy where expressiveness varies sig-
nificantly based on gating mechanisms and arithmetic precision. An overview of these findings is
illustrated in Figure 1. It also shows how our fragments of PLTLf relate to circuit complexity and
first-order logic. A detailed explanation of these connections can be found in Appendix A.1.

DIAGONAL SSM. Theorem 1 demonstrates that diagonal SSM with fixed-width arithmetic can
recognise the languages definable in PLTLf , which corresponds to the class of first-order definable
or star-free regular languages. This result is constructive: we show how to systematically translate
any PLTLf formula into an equivalent diagonal SSM by decomposing the formula according to its
nesting depth and implementing each temporal operator through appropriate gate mechanisms.

The key insight underlying this construction is that while temporal operators like Y and P can be im-
plemented using simple gating patterns, the since-operator requires input-dependent diagonal gates
due to its recursive definition φ S ψ ≡ ψ ∨ (φ ∧ Y(φ S ψ)). This dependency on current input
evaluation necessitates the diagonal structure of the gates.

We complement this lower bound with a matching non-expressibility result. Theorem 3 proves
that diagonal SSM with fixed precision cannot recognise the simple non-star-free language (aa)∗.
This limitation arises from a fundamental monotonicity property (Lemma 2): when a diagonal SSM
repeatedly processes the same input symbol, its output must eventually stabilise.

When diagonal SSM are equipped with logarithmic precision arithmetic, their expressiveness ex-
pands considerably. Theorem 4 shows that these models can recognise all languages definable in
PLTLf [

←−
#]—pure-past LTL extended with backward-looking counting operators. Barcelo et al.

(2024); Yang & Chiang (2024) also used this logic to investigate the expressiveness of transformer
architectures. The extension by counting formulas enables the recognition of non-regular (and even
non context-free) languages, such as {anbncn | n ≥ 0}, which can be expressed by

φ = H
(
(a→ ¬ P(b ∨ c)) ∧ (b→ ¬ P c)

)
∧ (
←−
# a−

←−
# b = 0) ∧ (

←−
# c−

←−
# b = 0)

TIME-INVARIANT SSM. While we conjecture that time-invariant SSM cannot express the tem-
poral dependencies captured by the since-operator (Conjecture 1), they possess another capabil-
ity: the computation of modular predicates about sequence positions. Lemma 6 demonstrates how
time-invariant SSM can maintain counters modulo m using cyclic permutation matrices, enabling
recognition of languages like (aa)∗ that are beyond the reach of diagonal SSM with fixed precision.

This leads to the characterisation in Theorem 7: time-invariant SSM with fixed precision recognise
all languages definable in UN-PLTLf [MOD], the unary fragment of pure-past LTL extended with
modular predicates. With logarithmic precision, they can additionally handle counting operators,
recognising languages in UN-PLTLf [MOD,

←−
#].

MIXED AND ARBITRARY GATES. Our hierarchy is completed by considering SSM that combine
multiple gating mechanisms. Corollary 8 establishes that mixed SSM (combining both diagonal and
time-invariant layers) with fixed precision can recognise all regular languages in AC0, effectively
capturing the union of capabilities from both individual architectures. SSM with arbitrary gates
achieve even greater expressiveness, recognising all regular languages as established in prior work
by Merrill et al. (2024).
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TC0 (Merrill et al. (2024))

SSM with diagonal time-invariant gates
≥ UN-PLTLf ⊆ FO2[<] (Corr. 5)

≥ UN-PLTLf [
←−
#] (log-precision) (Corr. 5)

SSM with mixed layers
≥ PLTLf [MOD] ≡ FO[<, MOD] ≡ REG ∩ AC0

(Corr. 8)

≥ PLTLf [
←−
#, MOD] (log-precision) (Corr. 8)

SSM with diagonal gates
≥ PLTLf ≡ FO[<] (Thm. 1)

≥ PLTLf [
←−
#] (log-precision) (Thm. 4)

SSM with time-invariant gates
≥ UN-PLTLf [MOD] ⊆ FO2[<, MOD] (Thm. 7)

≥ UN-PLTLf [
←−
# , MOD] (log-precision) (Thm. 7)

SSM with arbitrary gates
≥ REG (Merrill et al. (2024))

Figure 1: Overview on lower bounds established in this paper and recent results on the expressive-
ness of SSM. Dashed inclusions are strict as shown in Theorem 3. We conjecture that the inclusions
are also strict (Conjecture 1).

4 EXPRESSIVE POWER OF DIAGONAL SSM

We show that diagonal SSM are at least as expressive as PLTLf , which is expressively equivalent to
the set of star-free languages. This follows the lines of Sarrof et al. (2024) but we use it as the base
for further constructions regarding extensions and restrictions of PLTLf .

In order to evaluate a PLTLf formula φ at position i of a word σ, one can evaluate the subformulas of
φ in a bottom-up manner. We order the subformulas in such a way that every subformula is evaluated
after its own subformulas. Independent subformulas can be evaluated in parallel (in a single SSM
layer). This means that the number of layers needed for all our constructions corresponds to the
depth of the syntax tree of formula φ, here called nesting depth for brevity.
Definition 1. The nesting-depth nd(φ) of a PLTLf formula φ is defined inductively: nd(p) =
nd(MODmr ) = 0, nd(φ ◦bin ψ) = max(nd(φ), nd(ψ)) + 1, nd(◦un φ) = nd(φ) + 1 and
nd

(∑k
j=1 aj ·

←−
# φj ∼ c

)
= max{nd(φj) | 1 ≤ j ≤ k}+1 with ◦bin ∈ {∧, S} and ◦un = {¬, P, Y}

This allows us to order the subformulas of φ in the way described above. For each subformula ψ
of φ, we construct a diagonal SSM layer lψ which computes for each position i whether σ, i |= ψ.
The SSM Sφ for the whole formula φ then computes whether σ, n |= φ. A similar idea has already
been used by Alsmann & Lange (2025) to show that the satisfiability problem for diagonal SSM
over fixed-precision is PSPACE-complete.
Theorem 1. Diagonal SSM with fixed-precision recognise all languages definable in PLTLf .

Proof sketch. The detailed proof can be found in Appendix A.2. Each subformula corresponds to
one dimension of the SSM’s hidden states. The increment function of each layer together with the
position-wise FNN add information about subformulas evaluated in previous layers and take care of
the non-temporal subformulas such as conjunctions, negations and comparisons. After each layer,
each hidden state is a boolean vector, indicating which subformulas are satisfied at each position.
The temporal operators Y and P can be implemented by diagonal and time-invariant gates, because
they do not require any conjunctions with the current input. Y consistently references the imme-
diately preceding position, and P accumulates occurrences up to the current point. In contrast, the
since-operator is inherently recursive, defined by φ S ψ ≡ ψ ∨ (φ ∧ Y(φ S ψ)), thus combining
previous and current states through conjunction. Evaluating this operator inherently depends on the
current input evaluation of φ, necessitating an input-dependent gate.
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Next, we show that this characterisation is tight in the sense that diagonal SSM working over fixed-
precision cannot recognise (aa)*, which is not definable in PLTLf . This non-expressiveness result
is based on a monotonicity property of diagonal SSM working over fixed-precision. Any diagonal
SSM working over fixed-precision, after repeatedly seeing that same input must eventually become
constant.

Lemma 2. Let S be a diagonal SSM over an alphabet Σ. For σ ∈ Σ, let fσ : N→ Fd be the function
defined by fσ(n) = yn, where yn is the last vector of the output sequence of S after the last layer
on the word σn. Then there exists a number N ∈ N such that for all n ≥ N : fσ(n) = fσ(N).

Proof. The key insight is that since the gate matrices are diagonal, each dimension of the hid-
den state evolves independently. For the first layer this means that for each dimension i, (ht)i =
gate(emb(σ))i · (ht−1)i + inc(emb(σ))i. Because the gate is non-negative, this sequence must be
monotonic. Given the fixed-precision arithmetic, each dimension can only take on a finite number
of distinct values. Therefore, as t increases, each dimension must eventually stabilize to a constant
value. This implies that there exists some N such that for all n ≥ N , the output of the first layer
remains constant. The same argument applies inductively to each subsequent layer, leading to the
conclusion that the entire SSM’s output stabilises after a finite number of repetitions of the input
symbol.

The following is a direct consequence of Lemma 2 and the fact that (aa)∗ is not monotonic in the
sense that there are words in the language that can be extended to a word not belonging to the
language and vice-versa.

Theorem 3. No diagonal SSM with fixed-precision can recognise (aa)∗.

Proof. Assume that there exists a diagonal SSM S recognising (aa)∗. By Lemma 2, there exists a
number N such that for all n ≥ N : fa(n) = fa(N). This means that S either accepts or rejects all
words of the form an with n ≥ N , contradicting the assumption.

Lemma 2 showed that diagonal SSM behave montonically for each input symbol. With diagonal
SSM, even though they have a monotonic behaviour for each input symbol, they can still “reset” the
hidden state when seeing a different symbols and thus evaluate the since-operator.

Having characterised the expressiveness of diagonal SSM working over fixed-precision, we now
turn to diagonal SSM working over log-precision. In this setting, diagonal SSM can also recognise
non-regular and even non-context-free languages. This was already observed by Sarrof et al. (2024).
Also, Alsmann & Lange (2025) showed that the satisfiability problem for this class of SSM is
undecidable. We show that diagonal SSM working over log-precision can recognise all languages
definable in PLTLf extended by the backward-looking counting operator

←−
# .

Theorem 4. Diagonal SSM with log-precision recognise all languages definable in PLTLf [
←−
#].

Proof sketch. The detailed proof can be found in Appendix A.2. The proof is an extension of the
proof of Theorem 1. Given a counting subformula

∑k
j=1 aj ·

←−
# φj ∼ c, we add one layer to the

SSM which counts the occurrences of each φj in the hidden state using the increment function. The
position-wise FNN then checks whether their linear combination satisfies the comparison with c and
writes the result into the corresponding dimension of the hidden state. The rest of the construction
remains unchanged. As this construction does not require any non-diagonal gates, it also works for
time-invariant diagonal SSM.

5 EXPRESSIVE POWER OF TIME-INVARIANT SSM

As established in the previous section, diagonal SSM can evaluate all formulas in PLTLf . However,
the since-operator inherently requires input-dependent gates. This raises the question of whether
time-invariant SSM, which have constant gates, can evaluate the since-operator. We conjecture that
they cannot, and thus cannot recognise all languages definable in PLTLf .

Conjecture 1. No time-invariant SSM with fixed-precision can recogniseL(aSb) over Σ = {a, b, c}.

6
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The intuition behind this conjecture is that the since-operator requires combining information from
the current input with information from previous positions in a way that depends on the current
input. While time-invariant SSM can “reset” the hidden state when seeing a different symbol, time-
invariant cannot adapt their gate based on the current input symbol. Due to this limitation, the only
difference between seeing a b or c in a word, lies within the additive inc-part of the SSM. Our
suspicion is that time-invariant SSM trying to recognise a S b will eventually reach a point, where
they loose track of whether the last non-a symbol was a b or a c. Good candidates for words where
this happens are σ = an(canban)m and σ′ = an(bancan)m for large n,m. A formal proof of this
conjecture however is difficult for two reasons. First, the behaviour of time-invariant SSM is more
complex than that of diagonal SSM, as the dimensions of the hidden state can interact with each
other. Second, due to saturation effects in fixed-precision arithmetic and the fact the fixed-precision
arithmetic is not associative, the behaviour of time-invariant SSM is difficult to analyse.

As the since-operator is the only temporal operator which needs an input-dependent diagonal gate
we get the following immediately for the case in which the SSM layers are both diagonal and time-
invariant. Without the since-operator, diagonal and time-invariant SSM can recognise languages in
the unary fragment of PLTLf .

Corollary 5. SSM with layers that are both diagonal and time-invariant can recognise all languages
definable in UN-PLTLf [

←−
#] under log-precision arithmetic, and those definable in UN-PLTLf under

fixed-width arithmetic.

While being possibly less expressive than diagonal SSM, time-invariant and non-diagonal SSM can
still recognise languages which are not definable in PLTLf . We demonstrate this by showing that
time-invariant SSM can compute modular predicates about sequence positions. For any position t in
a sequence, modular predicates determine whether t has a specific remainder when divided by some
modulus m. This ability originates from the possibility of time-invariant SSM to maintain a counter
modulo m in their hidden state using a cyclic permutation matrix as the gate.

Lemma 6. For any integer m ≥ 2, there exists a time-invariant SSM layer lMODm that outputs
er ∈ Rd at position t if and only if t ≡ r (mod m).

Proof. We construct the SSM layer ℓMODm as follows. The initial state is h0 = e1, the first standard
basis vector. The gate matrix P is the cyclic permutation matrix that maps ei to ei+1 for i =
1, . . . ,m−1 and em to e1. Specifically, all of P ’s entries are zero except for ones on the subdiagonal
and in position (1,m):

P =


0 0 0 · · · 0 1
1 0 0 · · · 0 0
0 1 0 · · · 0 0
...

...
. . . . . .

...
...

0 0 0 · · · 1 0

 .

The increment matrix B is set to zero, since the predicate depends only on the position and not on
the input. The key insight is that the hidden state evolves as ht = P th0 = P te1. Since P is a cyclic
permutation of order m, we have Pm = I , and thus P te1 = e(t mod m)+1. This means that, at each
position t, the hidden state is exactly the standard basis vector whose index encodes the remainder
of t modulo m. At position t, the state ht has a 1 in position (t mod m) + 1 and 0’s elsewhere.

Example 1. To illustrate the concept of modular predicates, consider MOD21, which determines
whether a position is odd. Here m = 2, so the permutation matrix is P = ( 0 1

1 0 ) and the initial
state is h0 = (1, 0)T . The state sequence alternates between e1 = (0, 1)T at odd positions and
e0 = (1, 0)T at even positions.

The cyclic permutation effectively maintains a counter modulo m in the hidden state, enabling the
computation of any modular predicate with a single time-invariant SSM layer. This especially allows
non-star-free languages to be defined, e.g. L(H a ∧ MOD20) = (aa)∗, which are not definable in
PLTLf , cf. Straubing (1994). In this sense diagonal and time-invariant SSM are incomparable in
expressiveness, as diagonal SSM cannot recognise (aa)∗ and time-invariant SSM seem to be unable
to recognise L(a S b).
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UN-PLTLf
⊂ diagonal time-invariant SSM (Corr. 5)

FO[<]
⊆ diagonal SSM (Thm. 1)

= UHAT (Yang et al. (2024a))

UN-PLTLf [MOD]
⊆ time-invariant SSM (Thm. 7)

FO[<, MOD]
⊆ mixed SSM (Corr. 8)

= UHAT + PE (Yang et al. (2024a))

Figure 2: Comparison of expressiveness results for diagonal, time-invariant and mixed SSM over
fixed-precision with results for unique hard-attention transformers (UHAT) from Yang et al. (2024a).
All inclusions are strict.

Theorem 7. Time-invariant SSM with fixed-precision recognise all languages definable in
UN-PLTLf [MOD] and time-invariant SSM with log-precision recognise all languages definable in
UN-PLTLf [MOD,

←−
#].

Proof sketch. The detailed proof can be found in Appendix A.3. It is similar to the proof of Theorem
1. The main difference is that we need to add one layer for each modular predicate MODmr appearing
in the formula. This layer is constructed as described in Lemma 6. The rest of the construction
remains unchanged. As this construction does not require any non-diagonal gates, it also works for
time-invariant diagonal SSM.

Having established lower bounds for diagonal and for time-invariant SSM, it seems natural to con-
sider SSM that are either diagonal or time-invariant in each layer. Mixed SSM can evaluate both the
since-operator and modular predicates. This allows us to show that mixed SSM with fixed-precision
can recognise all languages in PLTLf [MOD] which are exactly the regular languages in AC0, cf.
Straubing (1994), the class of languages recognised by constant-depth polynomial-size circuits with
unbounded fan-in. This class contains all star-free languages as well as languages like (aa)∗. The
same holds for mixed SSM with log-precision and PLTLf [MOD,

←−
#].

Corollary 8. Mixed SSM with fixed-precision recognise all regular languages in AC0. With log-
precision they recognise all regular languages in PLTLf [

←−
# , MOD].

6 COMPARISON TO TRANSFORMER ARCHITECTURES

In this section we will discuss how the results on the expressiveness of SSM fit into the broader
landscape of recent results on SSM expressiveness and the comparative expressivity of various trans-
former architectures.

Transformer architectures studied in the formal expressiveness communities can be classified into
two main categories: those with hard attention mechanisms and those with soft attention mecha-
nisms. Hard attention transformers, e.g. unique hard-attention (UHAT) and average hard-attention
(AHAT), use a discrete attention mechanism that allows them to focus on specific parts of the in-
put sequence. In contrast, soft attention transformers (SAT), like the original transformer model
by Vaswani et al. (2017) and its variants, employ a continuous attention mechanism that computes
weighted averages over the entire input sequence. While unique hard-attention transformers can
only attend to one position in the sequence, average hard-attention and soft-attention transformers
can attend to multiple positions, allowing them to count occurrences of certain properties. This dif-
ference corresponds to the difference between fixed-precision and log-precision arithmetic in SSM.

Additionally due to the nature of the attention mechanism, transformers cannot distinguish between
different positions in a sequence without additional positional encodings. These encodings provide
the model with information about the order and position of elements in the sequence. In contrast,
SSM inherently encode positional information through their recurrent structure. But as observed

8
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C-RASP
⊆ SAT (Yang & Chiang (2024))

C-RASP[MOD]
⊆ SAT + PE (Yang & Chiang (2024))

PLTLf [
←−
#]

⊆ diagonal SSM (Thm. 4)

UN-PLTLf [
←−
#]

⊆ diagonal time-invariant SSM (Corr. 5)

UN-PLTLf [
←−
# , MOD]

⊆ time-invariant SSM (Thm. 7)

PLTLf [
←−
#, MOD]

⊆ mixed SSM (Corr. 8)

PLTLf [
←−
# ,
−→
# , MOD]

⊆ AHAT + PE (Barcelo et al. (2024))

Figure 3: Comparison of expressiveness results for diagonal, time-invariant and mixed SSM over
log-precision with results for soft-attention transformers (SAT) from Yang & Chiang (2024) and
average hard-attention transformers (AHAT) from Barcelo et al. (2024). All inclusions are strict.

in Section 5, allowing time-invariant SSM layers increases expressivity because the model can also
maintain a counter modulo m in its hidden state, enabling them to compute modular predicates
about sequence positions. Just as allowing time-invariant SSM layers, adding positional encodings
to transformers also allows them to compute modular predicates, cf. Yang et al. (2024a) and Barcelo
et al. (2024).

Yang et al. (2024a) established that unique hard-attention transformers (UHAT) can recognise all
languages definable in first-order logic with the order predicate (FO[<]) and that adding positional
encodings (UHAT+PE) allows them to recognise all languages definable in FO[<, MOD]. This aligns
with our results on diagonal and time-invariant SSM working on fixed-precision, as can be seen
in Figure 2. Analogously, Barcelo et al. (2024) showed that average hard-attention transformers
(AHAT) can recognise all languages definable in PLTLf [

←−
#,
−→
# , MOD]. This aligns with our results

on mixed SSM working on log-precision. The increase in power of AHAT is due to the transformers’
ability to attend to all positions in the input sequence. Yang & Chiang (2024) investigated the
counting abilities of soft-attention transformers (SAT) by analysing a logic called C-RASP and its
extension C-RASP[MOD]. C-RASP corresponds to a strict subset of UN-PLTLf [

←−
#], which we

show in Appendix A.4. Figure 3 shows how our results embed into the existing literature.

7 OUTLOOK

We established lower bounds on the expressiveness of various SSM architectures by demonstrating
their ability to recognise languages defined by different fragments of temporal logic. The results, as
visualised in Figure 1, provide a comprehensive picture of the expressiveness hierarchy among SSM
variants. They reveal an interesting gap between the lower bounds established here and the known
upper bound of TC0 established by Merrill et al. (2024). The language classes that are shown here
to be recognisable by various restricted SSM architectures with fixed-width arithmetic lie within
AC0, a proper subset of TC0. This suggests two possibilities: either the TC0 upper bound can
be tightened to AC0 for these SSM architectures, or these SSM can actually recognise languages
outside of AC0, such as parity. The first possibility seems more plausible, as we have not identified
any mechanism in these SSM architectures that would enable counting modulo some constant—a
capability required for recognising parity and other languages outside of AC0. Sarrof et al. (2024)
even proved that diagonal SSM cannot express parity, but only for a specific choice of non-linear
layer output functions. If this is indeed the case, it would align SSM with unique hard-attention
transformers which have also been shown to be limited to AC0, cf. Hao et al. (2022).

Moreover, investigating potential expressiveness hierarchies based on formula nesting depth could
provide finer-grained complexity classifications. Similar expressiveness hierarchies have been
proved for unique hard-attention, cf. Yang et al. (2024a), and soft-attention transformers, cf. Yang
et al. (2025).
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Nikola Zubic, Federico Soldà, Aurelio Sulser, and Davide Scaramuzza. Limits of deep learning:
Sequence modeling through the lens of complexity theory. In Proc. 13th Int. Conf. on Learning
Representations, ICLR’25, 2025.

A APPENDIX

A.1 EXPRESSIVE POWER OF PLTLf AND ITS EXTENSIONS/FRAGMENTS

Kamp’s theorem Kamp (1968), in conjunction with results from De Giacomo & Vardi (2013); De Gi-
acomo et al. (2021), establishes that PLTLf is equally expressive to first-order logic over words
FO[<], which in turn corresponds precisely to the class of star-free expressions. Similarly, the logic
PLTLf [MOD] is expressively equivalent to first-order logic with modular predicates FO[<, MOD], char-
acterising exactly the regular languages contained in AC0 Straubing (1994). The unary fragment
UN-PLTLf constitutes a subset of languages definable in the two-variable fragment of first-order
logic FO2[<] Etessami et al. (2002). While UN-PLTLf is restricted to the unary temporal operators
yesterday and previously, FO2[<] fully characterises languages definable in LTLf using the unary
operators yesterday, previously, next, and sometimes in the future. One can show that UN-PLTLf
must be a proper subset of FO2[<] as the standard construction for separating temporal formulas into
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past and future components Fisher et al. (2005) relies on the since operator. This relationship extends
to the modular predicate extensions, with UN-PLTLf [MOD] forming a proper subset of FO2[<, MOD].
Regarding the counting extension to PLTLf , we observe that restricting to counting subformulas
with exclusively positive weights does not enhance expressiveness. However, incorporating neg-
ative weights enables the representation of non-regular languages that may lie outside AC0. For
instance, consider the language {w ∈ {a, b}∗ | |w|a = |w|b} consisting of strings with equal occur-
rences of a and b. This language falls outside AC0 Furst et al. (1984), yet can be concisely expressed
even in UN-PLTLf [

←−
#] with the straightforward formula

←−
# a−

←−
# b = 0.

A.2 PROOFS OF SECTION 4

FEEDFORWARD NEURAL NETWORKS. An (FNN-)node is a function v : Rk → R with v(x) =

relu(
∑k
i=1 cixi + b), where k is the input dimension, the ci ∈ R are called weights, b ∈ R is the

bias and relu : R → R with relu(x) = max(0, x) is the activation function of v. An (FNN-)layer
l is a tuple of some n nodes (v1, . . . , vn) where each node has the same input dimension m. It
computes the function l : Rm → Rn via l(x) = (v1(x), . . . , vn(x)). We call m the input and n
the output dimension of l. A Feedforward Neural Network (FNN) N consists of k layers l1, . . . , lk,
where l1 has input dimension m, the output dimension of li is equal to the input dimension of li+1

for i < k and the output dimension of lk is n. The FNN N computes a function from Rm to Rn by
N(x) = lk(lk−1(. . . l1(x) . . .)).

For lower bound constructions we sometimes need to make use of FNN checking specific properties,
for instance: is some vector entry equal to a specific value? For easier notation we will define FNN
gadgets for specific properties we will need later.
Lemma 9. Let n, n1, · · · , nk,m, b ∈ Z. There are FNN

• N∼b s.t. N∼b(n) = 1 if n ∼ b and N∼b(n) = 0 otherwise, for all ∼ ∈ {<,≤,=,≥, >}.

• Nmin(0,x) s.t. Nmin(0,x)(n) = min(0, x).

Proof. Let N=b be the FNN computing N=b(x) = relu (relu(x− (b− 1))− 2 · relu(x− b)), N≤b
be the FNN computing N≤b(x) = relu (relu(b+ 1− x)− relu(b− x)), N≥b be the FNN com-
puting N≥b(x) = relu (relu(x− (b− 1))− relu(x− b)) and Nmin(1,x) be the FNN computing
Nmin(1,x)(x) = relu(x) − relu(−x) − relu(x − 1). Since we only work over integers, we can
rewrite x < b to x ≤ b− 1 and x > b to x ≥ b+ 1. It is straightforward to see that the given FNN
compute the required functions.

We will sometimes need to combine FNN. LetN1 andN2 be FNN computing functions Rmi → Rni

for i ∈ {1, 2}. The composition of N1 and N2 is defined as follows. When n2 = m1, the FNN
N1 ◦ N2 computes the function Rm1 → Rn−2 with N1 ◦ N2(x) = N1(N2(x)). Syntactically,
composition simply concatenates the output layer ofN2 and the input layer ofN1 setting all weights
to 1.

To simplify notation, we define the gate and increment functions of diagonal SSM layers using linear
projections. For fixed matrices A,B, let gate(xt) = diag(Axt) and inc(xt) = Bxt. This reduces
the diagonal SSM layer recurrence to

ht = (Axt) ◦ ht−1 +Bxt, (1)

where ◦ denotes element-wise multiplication. We leverage the sequential decomposition of PLTLf
formulas to construct an SSM evaluating subformulas layer-wise according to increasing nesting
depth.
Definition 2 (Sequential Decomposition). Let φ be an LTLf formula with nd(φ) = n. The se-
quential decomposition of φ is the unique sequence of sets M0, . . . ,Mn with Mi = {ψ ∈ Sub(φ) |
nd(ψ) = i}.

First, we construct the translation for each temporal operator individually, then provide the complete
construction by induction over nesting depth. Given a PLTLf [

←−
#] formula φ over propositions

P = {a1, . . . , ak}, we fix an injective function ι : P ∪ Sub(φ) ∪ {1} → {1, . . . , |P| + |φ| + 1},
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assigning each proposition p = ai to index i. The assignment for remaining subformulas is arbitrary.
This ordering assigns each subformula a fixed index within vectors computed by the resulting SSM,
which has dimension d = |P| + |φ| + 1. The final dimension in each vector is set to the constant
1. For ease of defining linear projections, we introduce the copy matrix C(i←j) ∈ Rd×d, defined by
C(i←j) = eie

T
j , for indices 1 ≤ i, j ≤ d. Multiplying a vector x ∈ Rd by C(i←j) yields a vector

whose j-th component is xi, with zeros elsewhere.

Theorem 1 and Theorem 4 are direct consequences of the following more general result. Which we
will prove at the end of this section.

Theorem 10. Let φ be a PLTLf [
←−
#] formula over propositions P . Then there exists an SSM Sφ

over alphabet Σ = 2P of dimension d = |P| + |φ| + 1 with exactly nd(φ) layers, satisfying the
following: For every word σ ∈ Σ∗ with |σ| = n, if y1 · · ·yn is the output produced by Sφ after the
final layer on input σ, then (yt)ι(ψ) = 1 if and only if σ, t |= ψ, and (yt)ι(ψ) = 0 otherwise, for all
positions 1 ≤ t ≤ n and subformulas ψ ∈ Sub(φ).

To prove this theorem, we first require some intermediate results. Specifically, evaluating formulas
involving the yesterday-operator necessitates a suitable encoding of prior-step information into the
current hidden state via the gate mechanism. This encoding was originally introduced by Sarrof
et al. (2024); we provide a self-contained proof adapted to our context.

Lemma 11 (Sarrof et al. (2024)). Let σ be a binary sequence σ = a1a2 · · · an ∈ {0, 1}∗. For every
1 ≤ t ≤ n we define the number ht ∈ R recursively by h0 = 0 and ht = 1

4ht−1 + at. There exists
an FNN Nprev which outputs the value at−1 at position t for all t ≥ 2, and outputs 0 at position 1.

Proof. The hidden state evolves according to ht = 1
4ht−1+at for t ≥ 1. Expanding this recurrence,

we obtain ht = at+
1
4at−1 +

1
16at−2 +

1
64at−3 + · · · . The key insight is that when ai ∈ {0, 1}, the

value ht has the binary representation at.0at−10at−20· · · a12. This encoding places the current
input at in the integer part, while previous inputs at−1, at−2, . . . occupy alternating binary digits in
the fractional part, separated by zeros.

To understand why this leads to disjoint intervals, observe that the contribution of all bits from
position t − 2 and earlier is bounded: the infinite series 1

16at−2 + 1
64at−3 + · · · can be at most

1
16 + 1

64 + 1
256 + · · · = 1/16

1−1/4 = 1
12 when all ai = 1, and at least 0 when all ai = 0. Therefore, the

contribution of the “tail” is bounded by the interval [0, 1
12 ].

Given this bound, we can analyze the four cases based on (at, at−1):

• For (at, at−1) = (0, 0): We have ht = 0 + 0 + tail, so ht ∈ [0, 1
12 ].

• For (at, at−1) = (0, 1): We have ht = 0 + 1
4 + tail, so ht ∈ [ 14 ,

1
4 + 1

12 ] = [ 14 ,
1
3 ].

• For (at, at−1) = (1, 0): We have ht = 1 + 0 + tail, so ht ∈ [1, 1 + 1
12 ] = [1, 1312 ].

• For (at, at−1) = (1, 1): We have ht = 1 + 1
4 + tail, so ht ∈ [ 54 ,

5
4 + 1

12 ] = [ 54 ,
4
3 ].

These intervals are clearly disjoint. For practical implementation under finite precision arithmetic,
we can use slightly tighter intervals with exact binary representations. Since all boundaries can be
represented exactly with at most 3 bits after the decimal point, we can safely use: (0, 0) 7→ [0, 18 ],
(0, 1) 7→ [ 14 ,

1
2 ], (1, 0) 7→ [1, 98 ], and (1, 1) 7→ [ 54 ,

3
2 ]. These refined intervals maintain the non-

overlapping property while providing additional safety margins against rounding errors.

Nprev extracts at−1 by mapping the intervals containing (at, at−1) ∈ {(0, 0), (1, 0)} to output 0,
and the intervals containing (at, at−1) ∈ {(0, 1), (1, 1)} to output 1. This piecewise-linear function
can be exactly represented by an FNN with ReLU activations using standard techniques for imple-
menting step functions Arora et al. (2018). For t = 1, we have h1 = a1, and Nprev(a1) = 0 by
construction. For t ≥ 2, the interval containing ht uniquely determines at−1, which is correctly
extracted by Nprev. The factor 1

4 (rather than 1
2 ) is crucial as it provides sufficient spacing between

encoded bits to prevent numerical errors under finite precision arithmetic.
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Having shown how we can recover information from previous positions in order to evaluate yester-
day formulas, we will now show how to construct layers evaluating PLTLf [

←−
#] formulas in general.

Lemma 12. Let σ = σ1 · · ·σn ∈ Σ∗ be a word, φ1, . . . , φk be PLTLf [
←−
#] formulas and x1 · · ·xn

be a sequence with the property (xt)ι(φi) = 1 ⇐⇒ σ, t |= φi for all 1 ≤ t ≤ n and 1 ≤ i ≤ k.
Then there are diagonal gated SSM layers for all ψ ∈ {¬φ1, φ1 ∧ φ2, φ S φ2, Yφ1, Pφ1,

∑
j aj ·←−

# φj ∼ c} such that for the layer output z1 · · · zn we have (zt)ι(ψ) = 1 ⇐⇒ σ, t |= ψ and
(zt)j = (xt)j for all j ̸= ι(ψ) and 1 ≤ t ≤ n.

Proof. We will show how to construct the layers for each formula individually. For all layers we
set h0 = 0. When defining an FNN which only affects a single dimension in the input, we always
assume that all other inputs remain unchanged.

Case 1: ¬φ1. Notice that in order to evaluate the negation, we do not need to transfer any informa-
tion from previous positions via the gate. The formula can be evaluated statically at each position
using the increment function. We define

A = 0 and B = I + C(ι(¬φ)←ι(1)) − C(ι(¬φ1)←ι(φi)) .

After computation of the linear recurrence as defined in Eq. 1 we get a sequence h1 · · ·hn with
(ht)ι(¬φ1) = 1− (xt)ι(φ1). As this already satisfies the claim, we can set the non-linear activation
ϕ of this layer to be the identity ϕ(x,h) = h.

Case 2: φ1 ∧ φ2. Let

A = 0 and B = I + C(ι(φ1∧φ2)←ι(φ1)) + C(ι(φ1∧φ2)←ι(φ2)) − C(ι(φ1∧φ2)←ι(1))

After computation of the linear recurrence as defined in Eq. 1 we get a sequence h1 · · ·hn with
(ht)ι(φ1∧φ2) = (xt)ι(φ1) + (xt)ι(φ2) − 1 ∈ {−1, 0, 1}. The non-linear layer output ϕ now maps
this sequence to z1 · · · zn, such that (zt)ι(φ1∧φ2) = N≥1((ht)ι(φ1∧φ2)). This yields the wanted
property.

Case 3: Pφ1. In this case we need to use a gate in order to transfer information about previous
positions at which φ1 is satisfied at, to the current position.

A = Cι(Pφ1)←ι(1) and B = I + C(ι(Pφ1)←ι(φ1))

Notice that the gate is actually time-invariant and diagonal, as the transfer does not depend on the
current input. The gate just propagates the previous value, hence

(ht)ι(Pφ1) = (ht−1)ι(Pφ1) + (xt)ι(φ1) =

t∑
i=1

(xi)ι(φ1) .

Therefore, (ht−1)ι(Pφ1) holds the number of times Pφ1 was true at previous positions. The non-
linear layer output ϕ now maps this sequence to z1 · · · zn, such that (zt)ι(Pφ1) = N≥1((ht)ι(Pφ1)).

Case 4:
∑
j aj ·

←−
# φj ∼ c. For a more compact notation we denote the formula by ψ. This case

is basically an extension of the previously case. Instead of only testing if the number of positions at
which a formula held is at least one, we compute a weighted sum on the number of occurences and
compare it to a specific value.

A = C(ι(ψ)←ι(1)) and B = I +

k∑
j=1

aj · C(ι(ψ)←ι(φj))

As in the previous case this gate is also time-invariant and diagonal as it only propagates the value
of a specific dimension independently of xt. We get

(ht)ι(ψ) = (ht−1)ι(ψ) +

k∑
j=1

aj · (xt)ι(φj) =

t∑
i=1

k∑
j=1

aj · (xi)ι(φj) =

k∑
j=1

aj ·
t∑
i=1

(xi)ι(φj)︸ ︷︷ ︸
←−
# φj

.
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The non-linear layer output ϕ now maps this sequence to z1 · · · zn, such that (zt)ι(ψ) =
N∼c((ht)ι(ψ)).

Case 5: φ1Sφ2. We use the temporal unfolding of the since-operator: φ1Sφ2 ≡ (φ1∧Y(φ1Sφ2))∨
φ2. At closer look one can see that the unfolding has a similar structure as the linear recurrence in
SSM layers. The current evaluation of φ1 gets multiplied with the previous evaluation of φ1 S φ2

and additionally the evaluation of φ2 is added in order to restart the recurrence in case of a new
occurence of φ2. We define

A = C(ι(φ1Sφ2)←ι(φ1)) and B = I + C(ι(φ1Sφ2)←ι(φ2))

This leads to (ht)ι(φ1Sφ2) = (xt)ι(φ1) · (ht−1)ι(φ1Sφ2)+(xt)ι(φ2). We see that in this case the gate
is not time-invariant as it actually depends on the value of (xt)ι(φ1). Obviously φ1 S φ2 is satisfied
at some position t if (ht)ι(φ1Sφ2) > 0. The non-linear layer output ϕ now maps this sequence to
z1 · · · zn, such that (zt)ι(φ1Sφ2) = Nmin(1,x)((ht)ι(φ1Sφ2)).

Case 6: Yφ1. We use the encoding trick from Lemma 11. Let

A =
1

4
C(ι(Yφ1)←ι(1)) and B = I + C(ι(Yφ1)←ι(φ1))

We get (ht)ι(Yφ1) = 1
4 (ht−1)ι(Yφ1) + (xt)ι(φ1). Let Nprev be the FNN defined in Lemma

11. The non-linear layer output ϕ now maps this sequence to z1 · · · zn, such that (zt)ι(Yφ1) =
Nprev((ht)ι(Yφ1)). This recovers the previous value of Yφ from position t− 1 and yields the wanted
property.

We are now ready to prove Theorem 10. The proof shows that we do not need a single layer
for each subformula of φ, but it is possible to evaluate all subformulas of the same nesting-depth
simultaneously. We therefore need a decomposition of every PLTLf formula, by its nesting-depth.

Proof of Thm. 10. Let φ be a PLTLf [
←−
#] formula with nd(φ) = k andM0, · · · ,Mk be its sequential

decomposition. We show the claim via an induction over the sequential decomposition and nesting
depth k of φ.

Case k = 0: M0 contains only atomic formulas. Let emb : Σ → Rd with emb(σ) = xi with
(xi)ι(1) = 1 and (xi)ι(p) = 1 if p ∈ σ and otherwise 0 for all p ∈ P . All other dimensions are set
to zero. Let σ ∈ Σ∗ be some word and x1 · · ·xn = emb(σ), then obviously (xt)ι(p) = 1 ⇐⇒
σ, t |= p for all p ∈ P and 1 ≤ t ≤ |σ|.
Case k > 0: Using the induction hypothesis we assume that the claim holds for all formulas in
Mk−1. Hence, we can apply Lemma 12 to each ψ ∈ Mk. Let (Aψ, Bψ) the gate and inc tuples
gained from Lemma 12 for each ψ ∈ Mk. We now define layer lk with A =

∑
ψ∈Mk

Aψ and B =∑
ψ∈Mk

Bψ . Recall that Lemma 12 shows that each Aψ and Bψ only affects the dimension of
ψ, leaving all other dimensions unchanged. This enables us to simply accumulate the effect of all
gates and inc, resulting in a layer which simultaneously evaluates all ψ ∈ Mk. The same holds for
the non-linear outputs. We argued that for each ψ, the layer output ϕψ only affects the dimension
of ψ. Hence, we can compose all FNN without affecting the wanted output. Therefore, let ϕ =h
ψ∈Mk

ϕψ , where hdenotes the repeated composition of FNNs. Using these arguments together
with Lemma 12 we get that for every word σ ∈ Σ∗, the output zl1 · · · zl|σ| of Sφ after layer ln has
the property (zlt)ι(ψ) = 1 ⇐⇒ w, t |= ψ for all ψ ∈Mn and 1 ≤ t ≤ |σ|.

Proof of Thm. 1. Let σ = σ1 · · ·σn ∈ Σ∗ be a word and z1 · · · zn be the vector sequence produced
after the last layer of Sφ as constructed in Theorem 10. We have (zt)ι(ψ) = 1 ⇐⇒ w, t |= ψ for all
ψ ∈ Sub(φ) and 1 ≤ t ≤ n. Therefore, σ ∈ L(φ) ⇐⇒ σ, n |= φ ⇐⇒ (zn)ι(φ) = 1. We define
the final output FNN of Sφ such that yt = N=1((zt)ι(φ)). We get σ ∈ L(φ) ⇐⇒ Sφ(σ) = 1.

It is important to note that the expressiveness of SSM evaluating PLTLf [
←−
#] formulas with counting

subformulas depends crucially on the arithmetic model used for computation. When operating over
fixed-width arithmetic with a constant number of bits, SSM can only evaluate counting subformulas
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∑k
j=1 aj ·

←−
# φj ∼ c in which all coefficients aj are positive (i.e., formulas in PLTLf [

←−
#]+). This re-

striction arises because the accumulation can only increase when coefficients are solely positive, and
the comparison against the threshold c remains stable even under bounded-precision approximations.
A decision procedure simply needs to determine whether the accumulated sum exceeds, equals, or
falls below the constant c, which can be achieved with fixed precision. In contrast, when the arith-
metic precision grows logarithmically with the input length, SSM can evaluate general counting
formulas in PLTLf [

←−
#], including those with negative coefficients aj . This is the case because

logarithmic precision provides enough bits to exactly count occurrences of subformulas in words
of length n, maintaining the precise difference between positive and negative terms. For instance,
recognising the language {anbn | n ≥ 0} expressed by formula H(a→ ¬ Y b)∧(

←−
# a−

←−
# b = 0) re-

quires tracking the exact difference between occurrences of a and b, which necessitates unbounded
precision as n grows, since any fixed-precision arithmetic would eventually lead to overflow or
rounding errors when processing sufficiently long inputs.

A.3 PROOFS OF SECTION 5

For time-invariant SSM, the gate of each layer is a constant matrix, independent of the input. For
the construction carried out here we assume, as in the previous section, that the increment function
is simply computed by a linear projection. This means we can represent the recurrence of a time-
invariant SSM layer as

ht = Aht−1 +Bxt .

For easier construction we show that we effectively only need to maintain one single counter, even
when several modular predicates occur in a formula.

Lemma 13. For every φ ∈ UN-PLTLf [
←−
# , MOD] using modular predicates with divisors d1, . . . , dk

there is a formula φ′ ∈ UN-PLTLf [
←−
# , MOD], which only uses modular predicates with the same

divisor d′.

Proof. Take the least common multiple d′ = lcm(d1, · · · , dk). Then construct φ′ by replacing each
predicate MODdir by MODd

′

r ∨ MODd
′

r+di
∨ MODd′r+2di

∨ · · · .

We will now show that every language recognised by a UN-PLTLf [
←−
# , MOD] formula can also be

recognised by a time-invariant SSM. We will show this by extending the proof of Theorem 10. Let
φ ∈ UN-PLTLf [

←−
# , MOD] be a formula over modular predicates all having a single divisor m. The

resulting SSM will have d = |P|+ |φ|+m+ 1 dimensions. We refine the function ι to a function
ι : P ∪ {MODmr | 0 ≤ r < m} ∪ Sub(φ) ∪ {1} → {1, · · · , d} which has the same properties as
in Section 3. The only difference is that we have additional dimensions for every possible modular
predicate MODmr . For simplicity, we ensure that the indices of modular predicates are adjacent in
memory, with ι(MODmr ) = ι(MODm0 ) + r for all 0 ≤ r < m, forming a contiguous interval of
indices. We are then ready to prove that time-invariant SSM can recognise all languages definable
in UN-PLTLf [

←−
# , MOD].

Theorem 14. Let φ be a UN-PLTLf [
←−
# , MOD] formula over P using only modular predicates with

divisor m. There is an SSM Sφ over the alphabet Σ = 2P with dimension d = |P| +m + |φ| + 1
and nd(φ) + 1 layers, such that for all words σ ∈ Σ∗ with |σ| = n: If y1 · · ·yn is the output of Sφ
after the last layer on input σ, then (yt)ι(ψ) = 1 if and only if w, t |= ψ and otherwise 0, for all
1 ≤ t ≤ n and ψ ∈ Sub(φ).

Proof. The proof follows the exact same lines as in Theorem 10. The only difference is that we
need an additional layer right after the embbedding in order to evaluate the modular predicates. Let
σ ∈ Σ∗ and x1 · · ·xn be the vector sequence following the embedding. We add an additional layer
lMODm as described in Lemma 6. For this layer, we extend the permutation matrix P from Lemma
6 to the full dimension d by embedding it in a larger matrix. Specifically, we construct a d × d
matrix where the cyclic permutation P is applied only to the dimensions ι(MODmr ) for 0 ≤ r < m,
which form a contiguous block of indices as established earlier. All other entries are set to zero.
Let A be this matrix. We set the increment B to be the matrix which looks like the identity matrix,

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

but with zeros on the diagonal for all dimensions ι(MODmr ) for 0 ≤ r < m. Therefore we get
(ht)ι(MODmr ) = 1 ⇐⇒ t ≡ r (mod d) and (ht)i = (xt)i for all other dimensions i. Therefore, all
atomic formulas are evaluated after the first layer. The remaining layers are defined as in Theorem
10.

Theorem 7 now follows directly from the previous theorem.

It is important to note that the considerations regarding fixed-width arithmetic for time-invariant
SSM mirror those discussed for diagonal SSM in Appendix A.2. When operating over fixed-width
arithmetic with a constant number of bits, time-invariant SSM can only reliably evaluate counting
subformulas with positive coefficients (i.e., formulas in UN-PLTLf [

←−
# , MOD]+), as the accumulation

only increases and comparisons against thresholds remain stable under bounded-precision approxi-
mations. The ability to evaluate formulas with negative coefficients requires arithmetic precision that
grows logarithmically with input length. The addition of modular predicates does not affect this fun-
damental limitation, as the modular counter component operates independently from the counting
mechanisms. Thus, when restricted to fixed-width arithmetic, the expressiveness of time-invariant
SSM seems to remain limited to UN-PLTLf [MOD], which corresponds to a fragment of FO2[<, MOD].

A.4 PROOFS OF SECTION 6

C-RASP was first introduced by Yang & Chiang (2024) as a logic called Kt[#]. The syntax of
C-RASP is very similar to UN-PLTLf [

←−
#], with the only difference being that C-RASP has no

yesterday and no previously operator. The only temporal operator is the
←−
# operator in counting

formulas.

We show that C-RASP is strictly less expressive than UN-PLTLf [
←−
#]. The proof is based on the fact

that while C-RASP can simulate the previously-operator, it cannot simulate yesterday.

Lemma 15. C-RASP ≡ UN-PLTLf [
←−
#] without the yesterday-operator.

Proof. The inclusion of C-RASP in UN-PLTLf [
←−
#] is trivial, as all operators of C-RASP are also

in UN-PLTLf [
←−
#]. For the other direction, let φ be a UN-PLTLf [

←−
#] formula without the yesterday-

operator. We only need to replace all previously subformulas Pψ by the counting formula
←−
# ψ ≥ 1.

This yields a C-RASP formula which is obviously equivalent to φ.

To see that C-RASP is strictly less expressive than UN-PLTLf [
←−
#], we consider the language L =

{w ∈ {a, b}∗ | w contains aa}, which is definable by the UN-PLTLf [
←−
#] formula P(a ∧ Y a), but as

noticed by Yang & Chiang (2024) cannot be defined in C-RASP.
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